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Abstract

Fuzzy triggers are database triggers incorporating fuzzy concepts. The
approach leads to the application of approximate reasoning to trigger-
based decision making. In C-fuzzy triggers, fuzzy rules may be specified in
the trigger condition part. The C-fuzzy trigger model is presented, and an
implementation thereof in the TEMPO Server—a prototype active database
system—is described. The performance test results are included.
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1 Introduction

In various application domains of information technology a phenomenon of data
explosion may be observed. For example, in the field of industrial process
management, the data explosion effect is caused by the improved data acquisition
techniques: more and more process variables are reported at higher and higher
frequencies. In a needs survey performed in 1993 [JP93] a peak acquisition rate
required for a major power station installation was about 5 000 measurements per
second, and the requirements have been growing since then. In the presence of data
explosion one needs powerful means to extract useful information from the flooding
data. In time-critical environments like manufacturing process management and control,
the speed of data evaluation is also of great importance. As we see it, providing the right
information at the right time becomes a new challenge of next generation database
systems. The goal may be achieved by improving the active capabilities of database
systems. In this paper, we present an implementation of a new type of database triggers
using fuzzy inference in making the decisions. The results of this work are applicable to
other environments suffering from data explosion—ranging from corporate databases to
World Wide Web.

The work presented in this paper was originally driven by the requirements of an
industrial application: a paper machine drive control system. A paper machine is
equipped with tens of high-power electric motors. Process measurements data is stored
in a database which is fed by sensors. There is a need to analyze the data and to provide
useful information to the end user, in a timely and appropriate manner, in order to
prevent failures of the drive system. To achieve this, in the TEMPO project, we have
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proposed a technique of fuzzy triggers [BW96]. In this paper, we focus on a concrete
implementation of the concept.

To our best knowledge, no attention has been paid until now on integrating im-
precision and/or uncertainty within database triggers. There are many approaches
through which this integration can take place [BW96, BW97]. The TEMPO approach
focuses on a seamless integration of fuzziness within database triggers. There are three
design criteria which we strive to satisfy in TEMPO.

The first goal is to enhance the expressive power of triggers to capture the expert
knowledge which is imprecise, incomplete or vague. This knowledge is more easily
expressed using fuzzy rules which allow fuzziness in the antecedents and/or
consequents [Zad84, Zad89]. Indeed, many experts have found that fuzzy rules provide
a convenient way to express their domain knowledge. In industrial applications,
linguistic terms such as low, medium, high, large, small, etc. are widely used since
they convey more information than crisp values would do [Men95].

The second goal is to extend the (exact) reasoning inherent to triggers and to integrate
it with the approximate reasoning more tightly. This makes fuzzy triggers a powerful
mechanism to capture both approximate and exact reasoning characterizing real-world
problems. Approximate reasoning deals with inference under imprecision and/or
uncertainty in which the underlying logic is approximate rather than exact [Zad75,
GKB+84]. It should be noted that in our daily life most of the information on which our
decisions are based is linguistic rather than numerical in nature. In this perspective,
approximate reasoning provides a natural framework for the characterization of human
behavior and suitable for decision making.

The third goal, a practical one, is to find an easy way to add a fuzzy trigger capability
to an existing active database system since we have previously developed such a system
[WKP96]. Also, a possibility to use an existing fuzzy inference engine is highly
recommended since it reduces the implementation effort.

This paper is organized as follows: Section 2 illustrates the main features of the
model of implemented fuzzy triggers. Section 3 presents selected topics of the
implementation of the TEMPO Server prototype. We show performance test results in
Section 4. Then, we conclude in Section 5.

2 TEMPO Fuzzy Triggers

In this section we briefly describe a trigger model incorporating approximate reasoning
(fuzzy inference) in the process of the evaluation of the condition part of an ECA
trigger. We are calling such triggers C-fuzzy triggers (or Condition-fuzzy ECA
triggers). For a more detailed presentation of this one and other fuzzy trigger models,
see [BW96, BW97]. The C-fuzzy trigger model is based on the concepts of the
linguistic variables, the corresponding terms and the rule set function.

2.1  Linguistic Variables

A linguistic variable is a variable whose values are words rather than numbers [Zad89].
It has a name and a term set which is a set of linguistic values (terms) defined over the
definition domain of the linguistic variable. Each term is defined by its corresponding
membership function.
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Example: Let us consider the linguistic variable temperature. Its term set
T(temperature) could be T(temperature) = {low, normal, hot} where each term is
characterized by a fuzzy set in a universe of discourse U = [0, 300]. We might interpret
“low” as “a temperature below about 100¯C,” “normal” as “a temperature close to
120¯C” and “hot” as “a temperature above about 130¯C”. These terms can be
characterized as fuzzy sets whose membership functions are shown in Figure 1. Each
element u ∈  U belongs to a fuzzy set F with a degree of membership µF(u) ∈ [0, 1]. For
example, if the current temperature is 90¯C then the membership degree to the fuzzy
subset low is equal to 0.5.

120100
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0 140 160

0.5

80

normal hot

Figure 1. Membership functions of the linguistic variable temperature.

The domain of a linguistic variable is defined using a linguistic type. For example, we
assume that the above linguistic variable is of the linguistic type called Temperature
which can be defined as follows1:

CREATE LING TYPE Temperature float (
low TRAPEZOID (0, 0, 80, 100),
normal TRAPEZOID (90, 120, 120, 150),
hot TRAPEZOID (130, 160, 300, 300)

)

2.2  Rule Set Functions

A fuzzy logic rule takes the form of if-then statement such as “if X IS A then Y IS B”
where X and Y are linguistic variables, A and B are terms. The if part of a fuzzy if-then
rule is called the antecedent (or premise), whereas the then part is called the consequent.
The antecedent part of a fuzzy rule is a conjunction and/or a disjunction of fuzzy
propositions such as (X IS A) where X  is a linguistic variable representing a database
value, fuzzyfied using the term A.

A rule set is a series of if-then statements, grouped in a structure called a rule set
function. The idea behind it is to utilize the expressive power of fuzzy rules and to take
the advantages of the fuzzy inference by incorporating the rule set as a function call in
the trigger condition part. Formally, the rule set function is defined as follows:

RSF R S Di: ×{ } →

                                                
1 The syntax of the language RQL/F used in these examples is based on SQL. The full syntax of the
language elements can be found in the extended version of this paper in
ftp://ftp.vtt.fi/pub/projects/rapid/tempo-design.ps.
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where R is a set of fuzzy rules in which the consequent linguistic variable should be the
same one occurring in all the fuzzy rules in R. Si refers to the current state of the
database. The range of RSF, D, is a domain (universe of discourse) of the output
linguistic variable. Thus, RSF yields a value which can be used in a regular comparison
predicate evaluating, in turn, to true or false.

Example: Let us consider a rule set function which monitors the speed and the
temperature of a motor. Each fuzzy rule in the rule set traduces the occurrence of an
alarming condition. Let us assume the default alarm value is “a_none” which is
considered as an output when none of these rules is fired (no alarm). We are interested
in specifying rules leading to other alarm values. The rule set may be defined as
follows:

CREATE RULE SET ControlAlarm (temperature Temperature, speed Speed)
Severity DEFAULT a_none(

IF temperature IS normal AND speed IS high THEN a_low,
IF temperature IS high AND speed IS very_high THEN a_high,
…)

The rule set ControlAlarm monitors the temperature and the speed parameters of a
motor. The rule set expresses the conditions when the operator should be alarmed. In
order to simplify the syntax, the output linguistic variable does not appear explicitly in
the example shown above (only its type is specified as “Severity”).

2.3  C-fuzzy Triggers

A C-fuzzy trigger is a regular ECA trigger which includes, in its condition part, a
function call to a rule set. The execution semantics of a C-fuzzy trigger is based on the
execution model of regular ECA trigger as shown in [WC96], p. 17. In its simple form,
the rule processing algorithm, which characterize the execution model, repeatedly
executes three consecutive calculations performed when an event occurs:

1. detecting an event and finding a relevant trigger,

2. evaluating the condition and

3. executing the action if the condition is true.

Our approach of incorporating fuzzy inference into triggers requires only the
modification of the second calculation step of the above rule processing algorithm. The
condition contains a rule set function call which takes place during the condition
evaluation. The following three calculation steps are included in the evaluation of each
rule set function call:

2.1 Fuzzification: the fuzzification is the process of converting crisp input data to
fuzzy sets. The linguistic variables in the antecedent part of the rules are
evaluated, i.e. the corresponding source data are mapped into their membership
functions and truth values then fed into the rules. We are assuming no fuzzy
values need to be stored in the database.

2.2 Inference: The most commonly used fuzzy inference method is the so-called
Max-Min inference method [Lee90], in particular in engineering applications
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[Men95]. The Max-Min inference method is applied to the rule set, producing a
fuzzy conclusion.

2.3  Defuzzification: the result of the fuzzy inference is a fuzzy set. The
defuzzyfication step produces a representative crisp value as the final output of the
system. There are several defuzzification methods [Lee90, Men95]. The most
commonly used is the Centroid (Center-of-gravity) defuzzifier which provides a
crisp value based on the center-of-gravity of the result (the output fuzzy set). The
Center-of-gravity method yields to a crisp function value which is then applied to
the comparison predicate.

Example: Let us assume that, when the returned defuzzified value of the rule set
function is between two and three, then a medium-level alarm is raised. A
corresponding trigger can be defined as follows:

CREATE TRIGGER Trig_alarm_medium INSERT ON motor
WHEN (ControlAlarm(temp, speed) > 2 AND

 ControlAlarm(temp, speed) <= 3)
(MediumTempAlarm@TempAlarms)

If the condition is satisfied, the action specified as MediumTempAlarm@TempAlarms is
executed. Note that the action part contains a call to an external procedure, i.e. the action
of a trigger is executed outside the database. This feature is significant for control room
applications of complex industrial processes (e.g. a paper mill or a power plant).

3 TEMPO Fuzzy Trigger Implementation

The TEMPO Server has been written in C++ and it runs both in the Unix (HP-UX) and
Windows NT environments. Its object model comprises of 147 C++ classes. The
Client/Server and Server/Action Server protocols have been implemented using the
Socket API. For in-process multithreading, the libraries of Win32 API (for Windows
NT) and the DCE-compliant pthread package (for Unix) were used. A free
demonstration package of TEMPO Server for Windows NT (and Windows 95) is
available for downloading from our web site (http://www.vtt.fi/tte/projects/tempo/). The
following subsections present selected topics of the implementation.

3.1  Architecture Overview

The TEMPO Server is a prototype active database system equipped with C-fuzzy
triggers. It has been designed for maintaining rapidly changing temporal data acquired
from an industrial process. The requirements of such environments have been analyzed
in a previous case study [WKP96] which have led to the development of RapidBase—
an active time series database system. TEMPO Server has been built by extending
RapidBase. In terms of external characteristics, the RQL language of RapidBase has
been extended with constructs to define database objects related to rule set processing:
linguistic types and terms, rules and rule sets. The trigger syntax has been modified to
include rule set calls in the trigger conditions (predicates). The syntax of the resulting
language, RQL/F, is demonstrated in the examples appearing in this paper.

In the true spirit of contemporary database systems, all the objects of newly
introduced database types may be maintained dynamically by the user: they can be
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created, dropped or modified at any time. In the same time, the referential integrity
constraints among the objects are maintained by the system.

Figure 2 depicts the essential components of the TEMPO Server. All the parts shown
are comprised within a single operating system process. The server process maintains
network connections to client programs submitting RQL/F requests and connections to
programs responsible for executing triggers actions (such programs are called Action
Servers). Following the RapidBase operation model, TEMPO Server supports external
trigger actions of arbitrary semantics. The unit of concurrency control and recovery is a
single RQL/F command.
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Figure 2. General architecture of the TEMPO Server.

Brief descriptions of the TEMPO components are given below:

• The Managers are entities responsible for maintaining, persistently, certain
objects. The requests to create and modify such objects are directed, to the
managers, by the RQL/F Language Interpreter (the requests are not shown in the
picture).

• The Database Engine is a low-level main-memory-based data manager maintaining
database table objects and indices.

• The Predicate Subsystem provides services to create pre-compiled predicates of
the complexity allowed by the RQL/F language. The predicate objects themselves
are managed either by the interpreter (if they are related to data manipulation
commands) or by the Trigger Manager (if they are a part of a trigger definition).
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• The TEMPO Inference Engine comprises a generic component and a specific
third-party fuzzy inference software (CFlie2).

As compared to RapidBase, the Inference Engine is the only entirely new component.
Of the other components, only two had to be modified: the Predicate Subsystem—to be
able to make use of the rule set objects, and the interpreter—to accept the new language
syntax.

3.2  Run-time Trigger Processing

The arrows shown in the figure illustrate the advancing of the run-time trigger
processing. A data manipulation command arrives from the network and is passed to the
interpreter for processing (A) and it, subsequently, results in elementary data requests
executed by the Database Engine (B).

A trigger is fired upon detection of a pre-defined event. Regular database events (of
type INSERT, DELETE or UPDATE) are detected by the engine (1a). Alternatively, a
triggering event may be generated by the Timer Manager (1b), as would be the case of a
composite-event based trigger, like a timer trigger [WKP96]. If there is a condition
associated with the fired trigger, a stored predicate is invoked (2). The predicate uses
the services of the Database Engine (3) to get the current data for the predicate
evaluation, including the data for the evaluation of the rule set. If a rule set call is
specified, in the predicate, the corresponding rule set is invoked (4) with the necessary
input data. The defuzzified rule set call result is returned to the predicate which, in turn,
returns the predicate evaluation result to the Trigger Manager. If the trigger condition is
satisfied, the trigger action is requested (5).

3.3  Predicate Subsystem

The Predicate Subsystem of the TEMPO Server consists of a set of hierarchical, tree-
like predicate objects, which are used for evaluating the predicates of RQL/F queries
and trigger conditions. Fuzzy inference is fully encapsulated within these objects. Any
predicate can contain a rule set call as a sub-expression anywhere in the tree structure.
From the point of view of the system, a rule set call is simply an expression that returns
a floating-point value. The return value can then be used in other predicate expressions,
e.g. in a comparison. The arguments to the rule set call can be any expressions, e.g.
column values, constants or even other rule set calls. The fuzzification of the argument
values and the defuzzification of the result value are handled inside the Inference
Engine. The Predicate Subsystem only needs to pass the crisp argument values to the
Inference Engine and call the proper rule set function.

3.4  Inference Engine

TEMPO Inference Engine consists of two main modules: Generic Rule Set Manager
(GRSM) and the CFlie inference engine. GRSM is responsible for storing and

                                                
2 Originally developed as Flie at Institute of Robotics, ETH, Zurich, Switzerland; converted to C at
Lab. for Concurrent Computing Systems, Swinburne Univ. of Technology, Hawthorn, Australia.
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maintaining rule set objects by creating, modifying and deleting them. The CFlie
inference engine is the software module that implements the inference method. We
chose CFlie because of its speed and simplicity. However, CFlie can be easily replaced
with some other inference engine package, since the GRSM is implemented in such a
way, that it fully hides the underlying engine implementation from other parts of the
system.

4 Performance

The performance of the fuzzy trigger system was measured using two kind of tests: i)
performance of the TEMPO Inference Engine alone and ii) the total throughput of the
TEMPO Server in trigger-intensive processing. The selected metrics allow us to asses
the applicability of the approach to real life applications. The tests were run in a 133
MHz Pentium PC with 32 MB of main memory. The operating system was Windows
NT 4.0. The database size was tailored to the size of available main memory so no page
faults were occurring.

In the first test, the speed of the inference process was evaluated by way of full load
of inserts to a database table, each causing a fuzzy trigger firing. The performance of the
TEMPO Inference Engine was isolated from the overall performance of the system by
running the tests with two trigger configurations.  In the first case, only one trigger was
used. In the second case, two identical triggers were used. No action requests were
generated. The Inference Engine performance was calculated by dividing the speed
difference of the two cases by the number of inserts. In both cases, five test runs with
10 000 inserts to a database table were used. To find out the non-fuzzy condition
evaluation time, similar tests with normal triggers, without fuzzy predicates, were also
performed.

With the rule set of eight rules, each consisting of two premise predicates and one
conclusion predicate, one fuzzy condition evaluation took approximately 0,45 ms. With
64 rules the corresponding result value was 0,55 ms. With non-fuzzy triggers, one
condition evaluation was approximately 0,1 ms (Fig. 3a).

0

0,1

0,2

0,3

0,4

0,5

0,6

Non-fuzzy 
trigger

Fuzzy trigger 
with 8 rules

Fuzzy trigger 
with 32 rules

Fuzzy trigger 
with 64 rules

m
ill

is
ec

on
ds

200

250

300

350

400

450

500

0 % 25 % 50 % 75 % 100 %
action requests / inserts

in
se

rt
s 

/ s
ec

on
d

non-fuzzy
fuzzy(8)
fuzzy(64)

Rule set
execution
time

Server
throughput

a) b)

Figure 3. Results of a) the TEMPO Inference Engine performance, b) the TEMPO Server
throughput performance.
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The speed difference between non-fuzzy and fuzzy condition evaluation can be clearly
seen. It is caused by a start-up overhead of the rule set processing. However, it should
be noted that the number of rules in a rule set has only a slight effect on the
performance.

In the second test, the full TEMPO Server throughput was measured (Fig. 3b). In
addition to the condition evaluation time of a trigger, also the overhead caused by the
insert request processing and action request transmission were taken into account. Three
kind of tests were performed: i) with normal, non-fuzzy trigger, ii) with a fuzzy trigger
using a rule set of 8 rules and iii) with a fuzzy trigger using a rule set of 64 rules. Five
test runs with 10 000 inserts were used with each of the above cases. Among the test
cases, the relative amount of inserts causing action requests, was varied.

The difference between non-fuzzy and fuzzy trigger throughput is notable. It can be
explained with the speed difference of the condition evaluation of non-fuzzy and fuzzy
triggers (see Fig. 3a). Increasing the relative amount of action requests from 0% to
100% of inserts, decreases the maximum insertion speed by approximately 25% in both
non-fuzzy and fuzzy trigger tests. It is worth noting that the number of rules in a rule set
has only infinitesimal effect on the overall performance.

5 Conclusions

We have investigated a seamless approach of integrating fuzzy logic rules with a
traditional active database server. We have also demonstrated a feasible implementation
of the proposed C-fuzzy trigger model. The performance results enforce our confidence
in the approach as a way to alleviate the data explosion problem in data-intensive
industrial applications. The benefits and the application domains of C-fuzzy triggers are
summarised in [BW96] with some open research problems.
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