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The Superposition of Variable Bit Rate Sources in an 
ATM Multiplexer 

Ilkka Norros, James W. Roberts, Alain Simonian, and Jorma T. Virtamo 

Abstract-When variable bit rate sources are multiplexed in an ATM 
network, there arise queues with a particular form of correlated ar- 
rival process. We analyze such queues by exploiting a result expressing 
the distribution of work in system of the G / G / l  queue originally de- 
rived by BeneS. We provide a simple alternative demonstration of this 
result and extend it to the case of fluid input systems. The result is 
applied first to a queue where the arrival process is a superposition of 
periodic sources (the E D , / D / 1  queue), and then to a variable input 
rate constant output rate fluid system. The latter is shown to model the 
so-called burst component of the considered superposition queueing 
process. The difference between this and the real queue, the cell com- 
ponent, can he evaluated by means of the results obtained for the 
C D , / D / l  queue. The relative importance of these two components 
is explored with reference to the particular case of a superposition of 
onloff sources. 

I. INTRODUCTION 
HE ATM technique allows digital communications of any T type to share common transmission links and switching de- 

vices on a statistical multiplexing basis. Information is trans- 
mitted in the form of constant length cells, and the different 
types of communication are distinguished by the way their 
sources produce cells. Constant bit rate sources emit cells pe- 
riodically at a frequency determined by their bit rate. On/off 
sources emit cells periodically during activity periods, o r  
“bursts,” of variable length alternating with silences, also of 
variable length. More generally, the cell emission rate might 
vary continuously, in the sense that the interval between suc- 
cessive cells varies gradually, o r  discontinuously, with the rate 
changing at random instants between different constant values. 
When these sources share the same network resources, there 
arise queueing systems of a particular nature. In the present pa- 
per, we consider such a queue which would typically occur in 
the buffer of an ATM multiplexer. Our objective is to derive 
analytical tools allowing buffer dimensioning for very low 
overflow probabilities. 

The superposition of on/off sources has been studied, nota- 
bly, in the context of packetized speech and it has long been 
recognized that the convenient device of assuming that the su- 
perposition of a large number of independent sources yields a 
Poisson arrival process can lead to quite inaccurate results [7], 
[35], [14]. More accurate queueing models must take account 
of the correlated nature of the cell arrival process [35], [26]. 
Two kinds of correlation can be identified: 

negative correlation between successive interarrival times 
due to the periodic nature of cell emissions by active sources; 
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positive correlation between the average arrival intensities 
in successive periods of length greater than the inter-cell time 
of the multiplexed sources. 

Various modeling approaches proposed in the literature at- 
tempt to account for these dependence effects. 

The superp’osition arrival process is modeled as a renewal 
process in [35]. Correlations of the second kind are approxi- 
mately accounted for by the choice of the second moment of 
the interarrival time distribution. An approach which has proved 
more popular is to approximate the arrival process by a Markov- 
modulated Poisson process (MMPP): the arrival rate is gov- 
erned by the evolution of a discrete-space Markov process; when 
in state i, cells are generated acsording to a Poisson process of 
rate A,. System state is then Markovian, and equilibrium state 
equations can be solved algorithmically (e.g. ,  using matrix geo- 
metric methods). A two-state MMPP is proposed in [ 141 where 
the four parameters (state transition rates and the two arrival 
intensities) are chosen to match four arrival process character- 
istics. Different possibilities are available for the choice of these 
four characteristics [27], [24]. In [15], the author models a su- 
perposition of N onloff sources as an N-state MMPP where the 
arrival rate is simply proportional to the number of active 
sources. Clearly, in any MMPP model, when the number of 
states increases, the numerical problem of solving the state 
equations to determine the performance measures of interest is 
compounded. Use of spectral expansion techniques appears to 
reduce the computational complexity [ 1 1 1 .  

The use of point process models, such as the MMPP, can be 
criticized on two counts: 

they do not accurately represent short-term correlation ef- 
fects [26]; 

performance evaluation remains complex. 
Simpler models, which also retain the long-term correlation 

characteristics of the arrival process, are obtained with the so- 
called fluid approximation: the arrival of (discrete) cells is as- 
similated to the (continuous) arrival of a liquid. This appears as 
a reasonable approximation when the cell interarrival times are 
small compared to the time between arrival rate changes. 

Kosten was perhaps the first to employ this approximation for 
a superposition of exponentially distributed bursts starting at 
the epochs of a Poisson process (infinite source model) [18]. 
The superposition of a finite number of on/off fluid sources is 
considered in [ I ] .  Like the MMPP, the arrival rate is modulated 
according to a Markov process. Nonexponentially distributed 
burst and silence lengths (e.g., Erlang o r  hyperexponential dis- 
tributions) can be accounted for by multiplying the number of 
states of this underlying process [ 191-(221. The model in [ 1 1  is 
generalized in [36] to allow a buffer of finite capacity. A su- 
perposition of on/off sources of potentially different bit rates is 
analyzed in [16] while the model in [32] allows sources with 
two types of onloff behavior. Discrete-time models with cor- 
related input described in [23] are also members of the family 
of fluid approximations. A continuously varying intensity input 

0733-87 16/9 I /0400-0378$0 I .OO 0 199 1 IEEE 

.~ 



NORROS er U / . :  THE SUPERPOSITION OF VARIABLE BIT RATE SOURCES 

process is modeled as a fluid model with a diffusion input in 
[31]. The same system is considered in [I71 as an asymptotic 
limit for a superposition of a large number of on/off sources. 

The negative correlation between cell interarrival times is a 
local phenomenon occurring while the composition of active 
sources remains constant. When the overall arrival rate remains 
below multiplex capacity, the system behaves like the so-called 
C D , / D / I  queue: a superposition of independent periodic 
sources of possibly different periods and random phase is of- 
fered to a deterministic server. In the case where the sources all 
have the same period, this queue was solved in [9] and revisited 
more recently in [13], [28], [29], [4], [38], [301, [25] where 
alternative formulas and calculation procedures are proposed. 
The more general superposition of sources of different periods 
is considered in [29] and [37], where accurate approximate for- 
mulas for the queue length distribution are derived. 

The focus of the present paper is on the relationship between 
the real queueing system and the equivalent fluid queue. We see 
this fluid queue not as an approximation but as the exact expres- 
sion of one component of the real queue, to which we must add 
a further component due to local fluctuations of the cell arrival 
rate about the fluid average. The first component accounts for 
the long-term positive correlations in the arrival rate process, 
while we can introduce the effects of the negative correlation 
between cell interarrival times in the second. 

We first establish, in Section 11, some basic queueing results 
useful in analyzing both discrete and fluid arrival queues. These 
results are applied, in Section 111, to the C D , / D /  1 queue and, 
in Section IV, to queues with fluid arrivals. In the latter case, 
the derived relations allow an approach to more general arrival 
processes than those amenable to analysis by the usual Marko- 
vian methods. In Section v, we establish the relationship be- 
tween the real queue and its burst component derived from the 
equivalent fluid model. In Section VI, we consider some nu- 
merical examples, illustrating the decomposition of queue be- 
havior into burst and cell components. 

11. GENERAL RESULTS FOR QUEUEING ANALYSIS 

After a succinct description of the type of arrival process to 
be considered, we introduce some general tools allowing us to 
analyze the queue arising in an ATM multiplexer. 

A .  Arrival Process 

It is an essential feature of an ATM-based network that the 
bit rate of sources can be variable. This variability may take 
different forms. In Fig. I ,  we distinguish: 

ontoff sources; 
more general piecewise constant rate sources; 
continuously varying rate surces. 

We expect many forms of data- and image-based communi- 
cation will exhibit output of the first kind while the latter two 
may be more typical of multi-media and VBR video commu- 
nications. Bit rate variability is manifested in the network by 
the changing frequency of cell arrivals. However, at source, 
data may be considered to be generated as a continuous bit 
stream which is “packetized” into cells at the network input. 
It is essentially this bit stream which is depicted in Fig. 1. 

In considering the queue arising when a superposition of such 
variable bit rate sources is offered to an ATM multiplex, it is 
useful to distinguish two time scales: 

a “cell scale” where we consider the congestion due to 
simultaneous cell arrivals occurring in a time span equivalent 
to a source inter-cell time; 

319 

2 
(a) oxdoff source 

(b) rate varying by steps 

(c) rate varying continuously 
Fig. I .  Variable bit rate sources 

a “burst scale” where congestion occurs when the total 
arrival rate, averaged over a period greater than an inter-cell 
time, is greater than the multiplex capacity. 

T o  study burst scale congestion, it is convenient to ignore the 
discrete nature of the cell arrival process and revert to the notion 
of a continuous bit stream. This allows us to use fluid models 
to evaluate what we refer to as the “burst component” of the 
multiplex queue. This appears somewhat simpler than analyz- 
ing the real (cell) queue directly. T o  correctly evaluate the lat- 
ter, we must also account for a “cell component” resulting from 
the discrete (i .e. ,  packetized) nature of the arrival process. In 
the remainder of this section, we establish some general tools 
for studying both cell and burst components. 

B. Virtual Waiting Time Distribution 
The general result for constant service-time single server 

queues proved in [29] and [37] turns out to be a special case of 
a theorem due to BeneS expressing the virtual waiting time dis- 
tribution of a G/G/1 queue [2]. The results we quote below 
can also be rigorously proved along the lines of the demonstra- 
tions in [2] (see also [ 5 ] )  but we prefer to give a more intuitive 
justification. 

Consider a system where a single constant rate server is sub- 
mitted work according to a random process. The work may ar- 
rive in jumps (customers arriving to a queue) or in a continuous 
flow (fluid arriving to a reservoir). The server has the capacity 
to accomplish 1 unit of work per unit of time and has a waiting 
room of unlimited capacity. We assume the arrival process is 
such that the system is stable and we consider the state of the 
system at an arbitrary instant in time which we take for time 
zero. 

Let W (  t )  ( t  2 0 )  be the amount of work arriving to the sys- 
tem in the interval ( - t ,  0 )  and let VI be the work still in the 
system at time - t :  in queueing terms, VI is the virtual waiting 
time at - r .  Define X ( t )  = W ( t )  - t to be the excess work 
arriving in ( - t ,  0 ) .  

It is easy to see that: 

The virtual waiting time can thus be obtained as the maximum 
of a stochastic process. 

Now, X (  t )  may increase by jumps but decreases always oc- 
cur continuously. Furthermore, assuming the system is stable, 
X (  03 ) = - 03 and thus X (  t ) ,  for t 2 0, attains all values in the 
interval ( -03 ,  Vol .  It follows that, if Vo L x, then there exists 
a unique instant - U  ( U  L 0)  such that X ( u )  = x and X ( w )  < 
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x for all w > U. The converse is obviously true and we have, 

{ Vo L x }  0 { 3 unique u s.t. X ( u )  = x and 

X ( W )  < x f o r w  > U}. 

The instant u is the greatest value of r such that X ( r )  = x (see 
Fig. 2 ) .  It defines a partition of all trajectories of the process 
X ( t )  ( r  L 0 )  leading to a value Vo 2 x. Let v ( x )  be the com- 
plementary distribution of Vo: v ( x )  = Pr { Vo > x }  ( w e  write 
v ( x - )  for Pr { Vo L x } ) .  Noting that u > 0 when Vo > 0, we 
deduce the relation: 

v ( x - )  = [ Pr { X ( u  + d u )  < x 5 X ( u )  and 
u > o  

X ( W )  < x for w > U}. ( 2 . 2 )  

Now, applying relation (2 .1)  at the point U (i .e. ,  u takes the 
role of the arbitrary instant O ) ,  we deduce the equivalence: 

{ vu = 0 }  0 { x ( w )  X ( U )  for w > u ) .  

Except for some very strange arrival processes, therefore, the 
instant U is almost surely uniquely defined by { X (  U )  = x and 
Vu = 0 } . A sufficient condition is that the event { x is a local 
maximum of ( X (  t ) )  , o }  has zero probability. With this con- 
dition, we also have v ( x )  = v ( x  -) and we can write: 

v ( x )  = [ Pr { X ( u  + d u )  < x 5 X ( u )  and Vu = 0). 
u > o  

( 2 . 3 )  
I )  The G / D / I  Queue: In a constant service-time queueing 

system, work arrives discontinuously in quanta of equal size 
equivalent to the service requirement of one customer. Take 
this requirement as the unit of work and let N (  t )  be the number 
of customer arrivals in ( -t,  0). We then have X (  r )  = N (  t )  - 
t and the probability in the right-hand side of ( 2 . 3 )  is concen- 
trated on the values of u such that x + U is an integer. We can 
thus replace the integral by a summation: 

v ( x )  = c Pr { N ( n  - x)  = n and V,,-, = 0). ( 2 . 4 )  
n > .r 

2) Fluid Arrival Process: If W( t )  is a continuous function, 
the considered system behaves like a reservoir with constant 
output whenever its content V, is non-zero. Let A, be the arrival 
rate at time - r :  

dX(t) - 1 +-  
dt dt ' 

A , = - -  dW(t)  

Writing X ( u  + d u )  = X ( u )  + (A, - 1 )  du in ( 2 . 3 ) ,  we de- 
duce: 

v ( x ) =  j u > o P r { x s X ( u ) < x + ( l  -A,)duandV,=O}. 

Summing over all possible values of A,, ( the system is certainly 
not empty at u if the arrival rate is greater than 1 ), we deduce: 

v ( x )  = j u , o  s Pr { x  5 X ( u )  < x + ( 1  - X) du 
o r  hr I 

Fig. 2 .  A realization of the process X( t ) .  

which we can rewrite as: 

. Pr { X ( u )  5 x, A, I X and Vu = 0 )  d h  du. 

( 2 . 5 )  

See [33]  for an alternative derivation of this result. 

111. A SUPERPOSITION OF PERIODIC SOURCES 
When constant bit rate sources are multiplexed in an ATM 

network, the cell arrival process appears as a superposition of 
periodic streams. We consider here the queue arising when S 
independent periodic streams are superposed in a multiplexer 
with unlimited waiting room. The time between two cell emis- 
sions of stream i is equal to D,,  expressed in units of the mul- 
tiplex cell transmission time, and its phase with respect to a 
common time origin is chosen at random between 0 and D,.  The 
multiplex load, C l / D , ,  is assumed to be less than one. W e  
refer to this system as  the C D , / D /  1 queue. Its evaluation has 
application to the superposition of variable bit rate sources, as 
explained in Section V below. 

A. Bounds a n d  Approximations 

Bounds and accurate approximations for the queue length dis- 
tribution of the C D , / D /  1 queue were derived in [29]  and [37] .  
We reformulate the principal results here to give expressions 
for the virtual waiting time distribution v ( x ) .  

T o  use expression ( 2 . 4 ) ,  we need the joint probability of n 
cell arrivals in an interval ( - t ,  0)  and an empty system at time 
- t .  Let the number of cell arrivals from source i be N ,  ( t )  and 
let d, ( t )  and r, ( t )  represent the integer and fractional part of 
the quotient t / D , ,  respectively. W e  then have: 

d , ( t )  with probability 1 - r , ( t )  [ d , ( t )  + 1 with probability r , ( t ) .  
Nf(t) = 

Writing K, = N, - d, ( E  { 0, 1 }), we can expand ( 2 . 4 )  by 
conditioning on the possible values of the K, contributing to the 
event N ( n  - x )  = n :  

X 5 A, < X + d h a n d  Vu = 0 )  
where, for brevity, we omit the argument of d,, r i ,  and K,. We 
conjecture an upper bound for v ( x )  by replacing the conditional 
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empty system probability by ( 1  - p,) '  where p r  is the condi- 
tional arrival intensity at time n - x: 

1-k, 
P< = 

1 = ~  D,(1 - r , ) '  

This should overestimate the empty system probability since, 
in a rough average sense, the arrival intensity is greater than p, 
f o r t  > n - x. We deduce the bound: 

I Dj(  1 - r ; )  
( 1  - c 

Expression (3 .1)  is particularly complex to evaluate numeri- 
cally (less complex but looser bounds are derived in [29])  but 
a probability change argument applied in [37] leads to an ac- 
curate approximation allowing rapid calculation. Following the 
same procedure detailed in [37] ,  we deduce 

where z,, is the root o f  

c '8' = n - c d, 
I 1 + r,z - r, I 

and 

We refer to [37] for the rather involved derivation of (3 .2)  whose 
final justification lies in the excellent numerical results ob- 
tained. The approximation technique, consisting in an applica- 
tion o f  the central limit theorem after a probability change, is 
used in a different context in Section IV-D. 

B. Characterizing the Superposition Process 

It would be convenient for the performance evaluation and 
dimensioning o f  ATM systems to be able to succinctly charac- 
terize a superposition of periodic sources in terms o f  a small 
number of parameters. T o  gain some idea of what parameters 
are important, we have performed a large number of numerical 
experiments. The following parameters appear to be among the 
most significant: multiplex load ( E  l / D , ) ;  number of multi- 
plexed streams (S) ;  period of the lowest rate stream (max 

In Fig. 3 ,  we compare the 10- I o  percentile of the virtual wait- 
ing time distribution v(x) for a variety of different source mixes. 
(This percentile is assimilated to the required buffer dimen- 
sion). In the figure, three kinds of mix are differentiated de- 
pending on the value of the greatest period: all mixes are com- 
posed of a number o f  streams of period 6.67 and 33.3, together 
with streams o f  one other period; this period is 200 for the first 
kind, 500 for the second, and 1000 for the third. By varying the 
proportions o f  streams of the different periods, we vary the total 
number o f  multiplexed streams while keeping the multiplex load 

{ D l I ) .  

a 
3* . 
same period 

x m a {  Di)=200 
m a {  Di)=500 
max( Di)=1000 

(load = 0.9) 

number of streams 

200 400 600 800 
0 

0 
Fig. 3 .  Buffer dimension ( 10 '" percentile) against number of streams 

fixed at 0.9. The figure plots the lo-'' percentile against the 
number of streams. Also plotted is the lo-'' percentile obtained 
when all streams have the same period. 

We note from these results that, for a given greatest period, 
the percentile lies roughly on the same curve even though the 
mix can change quite significantly between neighboring points; 
buffer requirements increase with the bit rate of the lowest rate 
streams; a superposition o f  homogeneous streams yields the 
greatest buffer requirement. 

C. Superposition of Homogeneous Sources 
When all streams have the same period ( D ,  = D ), we can 

derive an exact expression for the virtual waiting time distri- 
bution using the general relation (2 .4)  on making the following 
observation. I f  S < D ,  there is necessarily some instant in ( -D,  
0)  at which the system is empty and the value o f  Vo depends 
only on the arrivals occurring after such an instant. Vo thus has 
the same distribution as a queueing system in which the arrival 
process consists uniquely of  the S arrivals uniformly distributed 
over ( - D ,  0) .  We apply (2 .4)  to this system writing: 

The first probability is binomial: 
s-,z 

Pr { N ( n  - x)  = n }  = (;)(y)'I(1 - 7) 
T o  calculate the second, note that, given N ( n  - x)  = n ,  V , , - ,  
depends only on the S - n uniformly distributed arrivals in the 
interval ( - D ,  -n  + x ) .  Reversing the above argument, the 
distribution o f  V , , - ,  is the same as in a queue with a superpo- 
sition of S - n periodic arrival processes o f  period D - n + x. 
As - ( n  - x )  is an arbitrary instant with respect to this process, 
we have Pr { V,r..x = 0 )  = 1 - p where p = ( S  - n ) / ( D  - 
n + x) is the server load in the modified queue. We deduce: 

s - ,z 

D - S S X  
" ( X )  = r < n a s  c (;) (y)"(1 - y) D - n + x '  

( 3 . 3 )  
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D.  Brownian Bridge Approximation 

A convenient analytic approximation is obtained by approx- 
imating the process N ( t )  - ( t / D ) S  by & . B ( r / D )  where 
B (  . ) is a Brownian bridge, i .e. ,  a continuous Gaussian process 
on [ 0, 1 ] with zero mean and covariance function: E { B (  U )  . 
B ( v ) }  = U( 1 - U ) ,  [8]. It is well known that: 

[see [34], exercise 2.2.4 and formula (2.2.8)].  Substituting the 
parameters of the present model and applying (2.1) yields: 

where p = S / D .  For the limiting case S = D ,  we deduce the 
formulas: 

Sengupta has reported independent and more thorough studies 
of this approximation and, in particular, proves a heavy traffic 
limit theorem establishing the accuracy of (3.4) in certain limit 
conditions [30]. 

In Table I ,  we compare exact and asymptotic results for a 
superposition of streams of period 100 for loads of 1 (S = 100) 
and 0.8 (S = 80). The Brownian bridge approximation is good 
for heavy traffic and has a pleasing simple expression. It may, 
however, be too inaccurate for dimensioning purposes at mod- 
erate loads. 

IV. BURST SCALE FLUID MODELS 

Fluid models appear particularly attractive for modeling the 
queueing process in an ATM multiplex when the cell arrival 
rate varies and can momentarily exceed link capacity. Cell scale 
queues, such as those considered in the previous section, can 
then become negligible compared to the queue produced when- 
ever the arrival rate exceeds capacity for any length of time. 
The behavior of this queue is largely independent of how the 
cells arrive: it is convenient to suppose they arrive as a fluid. 

A. Bounds for  General Fluid Input 

Relation (2.5) provides a tool for analyzing an infinite capac- 
ity queue with fluid input. Let $ , ( x ,  A )  denote the joint density 
of X( t )  and A,: 

Relation (5) can then be written: 

. ( x )  = s,,, ! , ( I  - h ) $ u ( x ,  X I  

Pr { V u  = OIX(u) = x ,  A, = A }  d X d u .  

We are generally unable to calculate the conditional probability 
in the above integral. However, since this is certainly less than 
1 ,  we have an immediate upper bound: 

The quality of this bound as an approximation depends on the 
value of Pr { Vu = 0 I X (  U )  = x ,  Au = X 1. In most practically 

TABLE I 
ACCURACY OF BROWNIAN BRIDGE APPROXIMATION 

p = 1.0 p = 0.8 

X Exact Approx. Exact Approx. 

1 9.73e-01 9.80e-01 5.39e-0 1 5.92e-01 
10 1.27e-01 1.35e-01 1.21e-03 5.53e-04 
20 2.78e-04 3.36e-04 1.74e-08 2.06e-09 

5.18e-17 30 8.86e-09 I .52e-08 1.66e-15 

interesting cases, we maintain that this will be very close to 
one. In particular, when we have a high capacity link multi- 
plexing a large number of sources, the system behaves rather 
like a multiserver system for which we know the empty queue 
probability to be very much closer to 1 than 1 - p .  

Bound (4.1) has been evaluated explicitly when the input rate 
varies continuously as an Omstein-Uhlenbeck process [33]. We 
consider below how it might be applied to a superposition of 
onloff sources. 

B. Generally Distributed On/Off Sources 
Consider the particular fluid input process consisting of a su- 

perposition of S independent statistically identical onloff 
sources. In this case, A, takes only discrete values. Let the 
source input rate, when on, be y and express (4.1) as: 

v ( x )  5 1 2 ( 1  - n y ) + , , ( x  + U, n )  du 
U Z O  O S , , <  I / y  

where 

+,(w, n )  = - d Pr { W ( t )  5 w a n d  
dw 

A, = n y }  f o r o  I n 5 S. 

This integral can readily be evaluated numerically if we can 
calculate the function 4, (U', n ) .  T o  this end, we distinguish the 
contribution to the work W (  t )  arriving in ( - t ,  0) of sources 
which are on at - t  and that of sources which are off at -t .  Let 
W, ( t )  be the contribution of source i and define 

d 
dw 

a , ( w )  = - Pr { Wi(t) I wand source i o n  at - t )  

d 
dw P , ( w )  = - Pr { W,(r) 5 wand source i off at - t } .  

Thus, W (  t )  = C W,( t )  and w e  can express +,( w ,  n )  as: 

where * denotes convolution. 
To derive the densities a, and P, we must, of course, make 

some more assumptions about the individual source processes. 
For example, the case where the succession of on and off pe- 
riods constitutes an alternating renewal process is considered in 
[31. 

C. Shifed Normal Approximation 
In fact, whatever the source input process, we will have trou- 

ble exactly evaluating the convolution in (4.2). Fortunately, the 
shifted (or tilted) normal approximation (see [12], p. 188), suc- 
cessfully used to derive expression (3.2) for the E D , / D / I  
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queue 1371, proves particularly convenient here. We present this 
technique with reference to the on/off source mpdel of Section 
IV-c .  

First, introduce the Laplace transforms +:(S, n ) ,  a , * ( S ) ,  and 
P : ( s ) :  

A .  Coupling Cell Process and Fluid Process 

From the point of view of the multiplex, the only arrival pro- 
cess is the discrete cell arrival process. With respect to this pro- 
cess, it is possible to define any number of “equivalent fluid 
processes.” The nature of this ambiguity is clarified with ref- 
erence to the following definition. 

A stationary conservative pa‘cketization scheme is a triple +:(S. n )  = [ +,(w, n)e-”‘ dw, etc. 
J 

Taking transforms in (4.2), we deduce ( ( r r ) ,  ( T , , ) ,  U )  where 
i) (r,) is a nonnegative stationary process on ( - 03, 03 ); 
ii) (T , , )  is a stationary point process on ( -03, 00); 

iii) U is a random variable with values in [ 0, I ] ;  
iv) (r,), ( T , , ) ,  and U are defined on the same probability 

(4 .3)  

Now, define the shifted density space and are coupled by the relations: 

(4’4) To = inf t 2 0: U + I?, ds > 1 , and for all n > 0, I s: 1 
which is the convolution of similarly transformed densities 
a:” ( n  times) and 0:” ( S  - n times). The shifted normal ap- 
proximation technique consists in replacing 4; ’ )  by a central 
limit approximation and inverting (4.4) to provide an estimate 
of 4,. As the Gaussian approximation is most accurate about the 
distribution mean, to estimate +,( w ,  n ) ,  we choose s so that w 
is precisely the mean of &’)( w, n ) ,  i .e. ,  s is the root of 

S u+,(u,  n1e-Y’ du 
w =  

+:(& n )  

which may be written: 

The normal approximation for +:‘) is then: 

where a: is the variance of +!‘) 

The stationarity requirement allows us to consider 0 as a ran- 
dom time point for both processes simultaneously. The random 
variable U may be interpreted as the fullness of the packetizer 
buffer at time 0. By “conservative,” we imply that the scheme 
preserves the volume of work produced in the sense that: 

L + I 5 r r  dr = I ,  for all n 

The random variable U determines the phase of ( T , , )  with re- 
spect to ( r,). 

The following examples illustrate this definition with refer- 
ence to the relation between a cell stream and a fluid process. 

1) Random phase coupling: if U is uniform on [0, 11 and 
independent of (r,), we say (r,) and (T , , )  are coupled with 
random phase. ( I t  may readily be shown that, given a stationary 
fluid process ( r,), it is always possible to construct a stationary 
equivalent point process (T , , )  by random phase coupling). 

2) General synchronous coupling: given (T , , ) ,  a stationary 
fluid process can always be defined-by: 

1 r, = ~ f o r ?  E tT,,, T,,,). 
Finally then, we have an approximation depending only on the 

+r(w, n )  = Ga, . 

T I + ,  - T ,  
Laplace transforms: 

3) Synchronous coupling of on/off sources: consider the im- 
portant case where the cell process consists of bursts with con- 
stant bit rate; the distance between consecutive cells is D ,  say, 
inside a burst and greater than D between bursts; the most nat- 
ural fluid process is I?, = 1 / D  if t E [ T,?, T,, + D ) for some n 
and I‘, = 0 otherwise. In this case, U depends on (r,) and, in 

e\”+:(s, n )  

Results of implementing this method are presented in 131. 

v.  INTEGRATING BURST AND CELL SCALE CONGESTION 

The fluid model was introduced in Section IV, as an approx- 
imation, valid when congestion is mainly due to the burst scale 
arrival rate exceeding multiplex capacity. It is more satisfying 
to recognize the fluid queue models as a means for evaluating 
a “burst component” of the real queue. T o  evaluate the exact 
multiplexer performance, we must add to this a further com- 
ponent due to cell scale fluctuations about the burst scale aver- 
age arrival rate. 

particular, U = 1 if Fo = 0. 
The difference between two packetizations of the same fluid 

stream over any time interval (difference determined by the val- 
ues of U ) is at most one cell so that, from a practical point of 
view, we can choose the scheme which is most convenient for 
the purpose at hand. If we are given a cell process, it seems 
most natural to define an associated fluid stream by 2 )  or 3) 
above. If, on the other hand, we wish to define a cell process 
for a given fluid process, it would be more appropriate to as- 
sume random phasing. 
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B. Burst Component and Cell Component 

Consider the queue arising in a multiplexer due to the super- 
position of S cell arrival streams, each resulting from an inde- 
pendent stationary conservative packetization scheme ( ( r  i), 
( T : z ) ,  U ' ) .  Let A, = C I':, be the fluid arrival rate at time -t 
and define the fluid excess with respect to time 0: 

X , ( t )  = i: At, du - t .  

Divide the virtual waiting time V, into burst and cell compo- 
nents, B, and C,, where B, is the virtual waiting time obtained 
with the fluid arrival process A, and C, is defined simply as the 
difference C, = V, - B,. Consider the value of V, and its com- 
ponents at the arbitrary instant 0. We assume it is possible to 
determine the distribution of Bo (by the methods of Section IV, 
for example) and seek to characterize the additional term Co. 

First note that CO is the difference between the maxima of 
two interrelated processes: X ( t )  and X , , ( t )  (see Fig. 4). 

We have the iflentity, for f > 0, 

V, = Bo + c, = B, + c, + X ( t )  + I ( t )  (5.1) 

where I ( t )  is the cumulative idle time in ( - t ,  0):  

I ( t )  = i: 1 { V,, = 0 )  du. 

Let T be the smallest t such that X,, ( T )  realizes the maximum of 
the process X , , ( t ) .  We then have the properties (see figure): 

i) Bo = X,,( 7 ) ;  

ii) B, = 0 and B, > 0 for 0 I t < T ;  

iii) A, I 1 I AT-.  
Substituting 7 for t in ( 5 .  l ) ,  we deduce: 

c,, = c, + X ( T )  - X , , ( T )  + 1 ( 7 ) .  ( 5 . 2 )  

Case Bo > 0: In the case B,, > 0, we have 7 > 0. Now, 
I ( ? )  is not necessarily zero, although the burst component is 
always positive in ( - 7 ,  0)  but we may reasonably expect it to 
be negligible. C, is the virtual waiting time at the moment when 
the burst component busy period began. In the particular case 
of on/off sources, it may be recognized that C, is the virtual 
waiting time of a C D , / D / 1  queue with load equal o r  close to 
one (by property iii above). For sources with output of forms 
b) or c) in Fig. 1,  this is also approximately true. 

The difference X (  T )  - X b (  T )  is not independent of the value 
of CT and we can say little about their joint distribution. If, 
however, we assume a random phase coupling between cell and 
burst processes, we can conclude that X (  T )  - X,,( 7) has zero 
expectation for any of the source characteristics depicted in Fig. 
1 .  Let N ' (  t )  be the number of cell emissions of stream i in ( - t ,  
0):  

1 N ' ( t )  = sup ( n  2 0: T-,2 > - t }  = 

where [ x ]  denotes the integer part of x. 

have 

I?: ds + 1 - U [ s:, 
With random phasing ( i . e . ,  U uniform on [ 0, 1 I ) ,  we thus 

That E { X (  t )  } = E { X,, ( t )  } follows on noting that X (  f )  = C 
N ' (  t )  - t .  For the particular instant 7, we also have E { X (  T )  } 
= E { X,,( T )  } since 7 is independent of the U ' .  

cells m- 

Fig. 4. A realization of processes X(/) and X , , ( t ) .  

We conclude from (5 .2 ) ,  therefore, that 

E{C,IB, > 0 }  = E{C,IB, > 0 )  = E { C , \ A ,  = I }  

( 5 . 3 )  

i .e. ,  the expected value of the cell component is approximately 
equal to the mean of a C D , / D / I  queue of load 1.  This is, in 
general, rather small compared to the value of Bo as illustrated 
in the numerical example in Section VI-B below. Its variance 
is also rather small: in the case of homogeneous on/off sources, 
(3.5) provides the estimate Var { C, I BO > 0 )  = ( 4  - a)S/8; 
it may also be shown that, with random phase coupling, X ( t )  
- X , , ( f )  has a variance of 1/6 times the number of sources 
active in ( - - t ,  0) ,  i.e., Var { X ( t )  - X , , ( t ) }  < S/6. 

Case Bo = 0: When the burst component is zero, the behav- 
ior of the multiplex queue is qualitatively different, being de- 
termined by cell emissions in a relatively short interval before 
considered time 0. This behavior is most clearly defined in the 
case of homogeneous on/off sources where the virtual waiting 
time at time 0 depends only on  the cell emissions within the 
interval ( - D ,  0 ) .  Let MO be the number of sources which emit 
a cell in this interval. The conditional virtual waiting time dis- 
tribution can be determined using the formulas of Sections 111-C 
and 111-D above. Of course, the distribution of MO, conditioned 
on Bo = 0, remains to be determined. 

In the case of other types of variable bit rate sources, the 
queueing process is approximately that of a C D , / D / I  system 
where the joint distribution of the D, is conditioned on the fact 
that B, = 0. In most cases, for practical purposes, the condition 
Bo = 0 can be replaced by the simpler condition A, < 1. 

VI. APPLICATION TO A SUPERPOSITION OF ON/OFF 
SOURCES 

The general formula: 

(6 .1)  
is a useful decomposition of the queueing process. However, i t  
is clear that, in practice, it is unlikely that we need to  take ac- 
count of congestion in both burst and cell time scales at the 
same time. W e  first evaluate the queue length distribution when 
the probability of burst congestion is negligible, and then con- 
sider the case of packetized voice where the relative signifi- 
cance of the two components depends on the number of active 
sources. 
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A.  Negligible Burst Component 
We consider a superposition of S homogeneous on/off sources 

of period D ,  assuming the burst component of the multiplex 
queue is negligible: Pr { B o  > 0}  < t where t is an order of 
magnitude smaller than some cell loss rate requirement ( e .g . ,  
E = Assume for present purposes that cells and bursts 
are related as in example 3 of Section V-A, i .e. ,  each burst 
begins with a cell emission and ends D time units after the last 
cell emission. This means that bursts in progress at time 0, and 
only these, emit a cell in the interval ( -D,  0) .  W e  denote this 
number by MO. Let p be the ratio of the average burst length to 
the average burst silence cycle. Then p is also the probability a 
burst is on at 0 and we have: 

Pr { M ,  = m }  = p”’(1 - p ) ’ ” .  (3 
By (6.1), we can write: v(x) < Pr {CO > x and Bo = 0 )  + 
E .  As noted above, Pr  {CO > x and Bo = 0}  = Pr { CA > x 
and Bo = 0 )  where CA is the virtual waiting time due solely to 
the MO arrivals in ( - D ,  0) .  Furthermore, since { M O  5 D } 
includes { Bo = 0 } ,  we can write: 

Pr {CA > x a n d  Bo = 0 )  < Pr {CA > x a n d  MO 5 D }  

With the above conditional probability given by the results 
of Section 111-C, we deduce an approximation for v(x) which 
is an upper bound for probabilities an order of magnitude greater 
than E :  

(nix)”( - l - -  n ; x ) ’ ” - ‘ ‘ ~ -  m + x  

D - n + x  

6 .2 )  

It is  interesting to verify how close to this distribution is the 
virtual waiting time distribution of an M / D / I  queue with 
equivalent load. Given D and p ,  we have calculated S so that 
Pr { M O  2 D } < lo-’ ( P r  { B o  > 0 )  is thus somewhat greater 
than and estimated v(x) by (6.2). Results for D = 100 
and p = 0.5 and 0.1 are shown in Fig. 5 .  

It is apparent that, with the condition of negligible burst scale 
congestion, the assumption of Poisson arrivals overestimates the 
virtual waiting time but constitutes a good approximation for a 
superposition of very bursty sources ( p  = 0.1). It should, in 
general, lead to good estimations of the first moments of the 
virtual waiting time distribution. 

If S < D ,  we have Bo E 0 (and MO identically less than D ) 
and expression (6.2) is exact (interpreting the binomial coeffi- 
cients to be zero when m > S ) .  Changing the order of sum- 
mation and simplifying, we deduce a simpler expression: 

D - p ( S  + X )  

D - p ( n  + x ) ’  
(6 .3  ) 

Note that this relation is the same as (3.3) with D replaced by 
D / p .  It is independent of any assumptions about the distribu- 

0 5 10 15 x 0 5 10 15 x 
Fig. 5 .  Distribution v ( x )  for negligible burst congestion. 

tion of burst and silence lengths other than the requirement that 
the intercell interval be at least equal to D .  This observation 
could, in fact, have been deduced from a more general result 
(Corollary 2.4.5) proved in [ lo] .  

B. Packetized Voice 

The particular example of a superposition of packetized voice 
sources, introduced in [ 3 5 ] ,  constitutes a useful benchmark for 
evaluating the accuracy of different approaches to modeling 
queues with a correlated arrival process (see [ 141, [ 151). A 1.536 
M b / s  link multiplexes voice sources coded at 32 K b / s  and 
packetized with silence suppression, each packet containing 5 12 
bits. Mean talkspurt length is 352 ms and mean silence length 
650 ms. The number of cells in a talkspurt is geometrically dis- 
tributed with mean 22 and the silence has an exponential dis- 
tribution. The number of multiplexed sources is a model param- 
eter, less than or equal to 136 to ensure stability. The link is 
momentarily saturated when 48 or more sources are simulta- 
neously active. 

To estimate the mean virtual delay V0 using the present ap- 
proach, we estimate separately the mean burst component and 
the mean cell component. For the former, we have used the 
fluid model of [ 11 assuming, therefore, that talkspurt length has 
the exponential distribution. Note that the approach described 
in Section IV above provides a good estimate of the queue length 
distribution tail but is not suitable here for estimating mean de- 
lays. 

The expected cell component is given by: 

E{c,} = E { C ~ ) ( B ~  = 0 )  . Pr { B ~  = 0 )  

+ E{c,,(B, > 0 )  . Pr { B ~  > o}. 
Applying the results of the previous sections, we approximate 
this by: 

E{Co} = E{ColMo = m }  . Pr { M O  = m }  
0 5 1 n  5 48 

+ E {  C n / M o  = 48) . Pr { M O  > 48).  

The condition MO = 48 in the second term refers, of course, to 
the system state at the onset of the current burst scale busy pe- 
riod. 

Results of applying this method are compared in Table I1 to 
the results of simulations taken from [35]. W e  have converted 
our virtual waiting time results to real waiting times by calcu- 
lating the mean queue length in cells ( the queue length distri- 
bution being determined from v(x) at integer arguments) and 
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TABLE I1 
MEAN DELAY FOR A SUPERPOSITION OF VOICE SOURCES 

Delay Components Mean Delay 

Sources E { C O }  E { B , }  E { C O  + B,} Simul f 95% 

80 0.22 0.00 0.22 0.22 5 ,007 
1 I O  0.55 0.35 0.90 0.89 k .I4 
125 0.82 9.77 10.59 10.4 k 1.3 
132 0.93 56.59 57.52 52.1 k 7.5 
134 0.95 121.9 122.85 110 k 21.4 

r--- 1 r 

30 x (packets) 0 10 20 

Fig 6 Burst and cell components of virtual waiting time distribution 

applying Little’s result. Waiting times are expressed in milli- 
seconds. Results are visibly in good agreement. 

The relative significance of the two components CO and Bo is 
further illustrated in Fig. 6. This figure depicts the distribution 
of Bo (calculated by the results of [ 1 1 )  and the conditional dis- 
tribution of CO, given Bo = 0, [approximated by (6.2)] in the 
case of 80 voice sources. The virtual waiting time distribution 
is practically equal to the maximum of these two distributions 
( w e  should, however, add a cell component of mean 4.2 cells 
in the case Bo > 0). The importance of the burst component in 
calculating the low percentiles necessary for buffer dimension- 
ing is evident, despite the very low probability of a positive 
burst component (Pr { B o  > 0 )  < 

VII. CONCLUSIONS 

T o  account for the correlations arising in the cell arrival pro- 
cess when variable bit rate sources are multiplexed in an ATM 
network, we have made use of a general result for the G / G /  1 
queue due to BeneS. W e  have given an intuitive demonstration 
of this result and applied it to determine the distribution of a 
multiplex queue first, when the arrival process is a superposi- 
tion of periodic sources (the E D , / D / l  queue) and second, 
when the arrival process is assimilated to a random intensity 
fluid input. 

The fluid approximation for the superposition queue can be 
more satisfactorily viewed as a way to calculate the “burst com- 

ponent” of the real queue, to which must be added a further 
“cell component” depending on local fluctuations in the arrival 
rate about the fluid average. The cell component is shown to 
behave like a C D , / D / l  queue when the burst component is 
zero, and to constitute a small positive bias when the latter is 
positive. The expected value of this bias is approximately equal 
to the mean of a C D , / D / l  queue with load equal to 1 (this 
being finite and generally much smaller than the burst compo- 
nent). 

The decomposition into cell and burst components clearly 
shows the relative importance of correlations at cell scale (due 
to locally periodic cell emissions by active sources) and at burst 
scale (due to the slowly varying longer-term arrival rate). In 
particular, we observe that the first moments of the delay dis- 
tribution may depend significantly on the cell component while 
the low percentiles necessary for buffer dimensioning are given 
essentially by the burst component alone. 
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