
 
This document is downloaded from the 
Digital Open Access Repository of VTT 

 

VTT 
http://www.vtt.fi 
P.O. box 1000 
FI-02044 VTT 
Finland 

By using VTT Digital Open Access Repository you are 
bound by the following Terms & Conditions.  

I have read and I understand the following statement: 

This document is protected by copyright and other 
intellectual property rights, and duplication or sale of all or 
part of any of this document is not permitted, except 
duplication for research use or educational purposes in 
electronic or print form. You must obtain permission for 
any other use. Electronic or print copies may not be 
offered for sale. 
 
 

 

Title On the use of fractional Brownian motion 
in the theory of connectionless networks 

Author(s) Norros, Ilkka 
Citation IEEE Journal on Selected Areas in 

Communications  
vol. 13(1995):6, pp. 953-962 

Date 1995 
URL http://dx.doi.org/10.1109/49.400651 

 
Rights Copyright © (1995) IEEE. 

Reprinted from IEEE Journal on Selected 
Areas in Communications. 
This article may be downloaded for 
personal use only 

 



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 6, AUGUST 1995 953 

On the Use of Fractional Brownian Motion in 
the Theory of Connectionless Networks 

Ilkka Nomos 

Abstrucl- An abstract model for aggregated connectionless 
traffic, based on the fractional Brownian motion, is presented. 
Insight into the parameters is obtained by relating the model to 
an equivalent burst model. Results on a corresponding storage 
process are presented. The buffer occupancy distribution is ap- 
proximated by a Weibull distribution. The model is compared 
with publicly available samples of real Ethernet traffic. The 
degree of the short-term predictability of the traffic model is 
studied through an exact formula for the conditional variance of 
a future value given the past. The applicability and interpretation 
of the self-similar model are discussed extensively, and the notion 
of ideal free traffic is introduced. 

I. INTRODUCTION 
N this paper we consider the modeling of traffic phenom- I ena in a connectionless network. The principle of such a 

network is that all data is sent in relatively small indepen- 
dent pieces, packed in so called datagrams labeled with the 
destination address. No bandwidth needs to be reserved. The 
emerging available bit rate service in asynchronous transfer 
mode (ATM) networks has the latter feature also, even though 
ATM is a connection oriented service, and thus a lot of this 
paper is applicable to this service as well. 

The connectionless transfer makes efficient sharing of re- 
sources possible in the case that the traffic sources are bursty, 
i.e., they are not transmitting continuously but have silent or 
low-activity periods alternating with periods of high activity. 
This is typical for computer communications. Moreover, the 
traffic is usually bursty at several timescales. For example, 
the activity of a person’s workstation depends on the general 
character of hisher present work and on the particular task, and 
it consists of several kinds of sessions, which again can contain 
many short traffic-intensive operations like file transfers. 

A condition for the success of connectionless communica- 
tion is some flexibility of the partners. The performance of 
the network depends on the unpredictable activity of the other 
users, and it must be accepted that, for example, file transfer is 
sometimes slower than normal. There is considerable interest 
in using the existing connectionless networks and their more 
effective future counterparts for real-time services like voice 
and video, and the speed requirements for data traffic are 
becoming more stringent as well, so the problem of appropriate 
modeling of connectionless traffic has practical importance. 

Modeling is based on understanding what is essential. In 
our context, one can in fact distinguish between two types 
of understanding: concrete causal understanding and abstract 
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statistical understanding. In the former, one thinks of events 
like file transfers and sessions and builds the total traffic 
model by combining element models. In the latter, one finds a 
stochastic model for the total traffic which is mathematically 
nice and has some of the essential statistical properties but does 
not contain models for more elementary events and remains 
in this sense abstract. 

In the case of connectionless traffic, concrete modeling 
is practically impossible because the traffic consists of so 
many different elements. Therefore it was a truly great dis- 
covery when W. Leland’s group in Bellcore found that the 
multi-timescale burstiness of local area network (LAN) traffic 
could be well characterized with a very simple notion-self- 
similarity. In late spring 1992, working within the project 
RACE 2032 COMBINE, I studied the paper by Fowler and 
Leland [7] and proposed a three-parameter Gaussian traffic 
model with self-similar variation. Later I learned that within 
Leland’s group self-similar models were not only identified as 
promising but their applicability had been extensively studied 
with surprisingly positive results. This work has obtained wide 
publicity, in particular after its presentation in Proc. ACM 
SIGCOMM I993 [ 151. 

The aim of the present paper is to summarize and discuss 
certain properties of the above mentioned Gaussian model. 
The three main themes are understanding the parameters of 
the model, the properties of a queue with self-similar input, 
and short-term traffic prediction. The paper is organized as 
follows. The model is introduced and its parameters discussed 
in Section 11. The properties of a storage with self-similar input 
are considered in Section 111. Short-term traffic prediction is 
the theme of Section IV. The problems of the applicability 
of the model, in particular its relation to the transport layer 
protocol, are discussed in Section V. Finally, some conclusions 
are summarized in Section VI. 

11. A GAUSSIAN SELF-SIMILAR TRAFFIC MODEL 

A. Preliminaries 

Let us consider an element of a connectionless network 
(e.g., an Ethernet section) and denote by At the amount 
of traffic (in bits, say) offered to it in the time interval 
[0 , t ) .  In particular, we always have A0 = 0. Let At be 
defined for all t E (-ea, m) and denote the traffic offered 
in [s . t )  by A(s , t )  = A ,  - A,.  A true cumulating arrival 
process is of course an increasing process. We shall, however, 
not emphasize this since below we shall model the traffic 
with a Gaussian process A, which necessarily has negative 
increments also. 

0733-8716/95$04.00 0 1995 IEEE 
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We always assume that the process At has stationary 
increments, i.e., that for any t E % and s1 < . . .  < s, the 
distribution of 

(A(t  + SI. t + SZ), . . . , A( t  + ~ ~ - 1 ,  t + s n ) )  

is independent of t .  We also assume square integrability, i.e., 
EA: < CO. It follows from the stationarity of the increments 
that EAt = mt for some constant m, the mean rate, and that, 
denoting v(t)  = VarA+ 

1 
2 

CovA,,At = - ( v ( t )  + t f ( ~ )  - v ( t  - s ) )  

for s < t .  Thus, the correlation structure (all so called second- 
order properties) of At is determined by the variance function 
v(t) alone. 

The process At is called short-range dependent if for 
any s < t 5 U < v the correlation coefficient between 
A(as,at)  and A ( a u , a v )  converges to zero when the time 
scale a approaches infinity. Otherwise it is called long- 
range dependent. If At is short-range dependent, v ( t )  is 
asymptotically linear. In particular, if At is a process with 
independent increments, say a Poisson process or a compound 
Poisson process, then w ( t )  is a linear function. 

All traffic models traditionally used in teletraffic theory 
are short-range dependent. From this point of view it was 
rather shocking that the accurate and extensive LAN traffic 
measurements conducted in Bellcore [ 151 gave variance curves 
where v ( t )  grew rather accurately as a fractional power t p ,  

with p taking values strictly between 1 and 2, through half a 
dozen of orders of magnitude. It became obvious that at least 
some traffic phenomena had to be studied with long-range 
dependent models. 

The power form v ( t )  = tP is closely related to the fascinat- 
ing fractal nature of the traffic traces recorded at Bellcore. 
Indeed, the time-scaled process A,t then has the variance 
function 

V,arAmt = (at)P = aPVarAt 

which implies that Aat and apI2At have the same correlation 
structure, i.e., the centered process At - mt is second-order 
self-similar. Note that a second-order self-similar process is 
long-range dependent unless it has uncorrelated increments, 
and that the (centered) Poisson process is second-order self- 
similar (with p = 1). 

A process Yt is called (strictly) selfsimilar with Hurst 
parameter (or self-similarity parameter) H if, for any a > 0, 
the processes Yet and aH& have the same finite-dimensional 
distributions. Obviously, self-similarity and second-order self- 
similarity are equivalent for Gaussian processes since their 
finite dimensional distributions are by definition Gaussian 
and thus fully characterized by their first and second-order 
moments. By an important theorem of Lamperti [14], self- 
similarity is a generic property of wide classes of limit 
processes. As a general reference to self-similar processes, 
see, e.g., articles in the collection [5] .  

When a model is built on second-order properties alone, a 
Gaussian process is often the simplest choice. In this paper 
we shall model the variation of connectionless traffic with a 

0 . 2  0 . 4  0 . 6  0 .8  1.0 
-0.1 

v 
Fig. 1. A realization of Zt , t E [0,1] with H = 0.8 

Gaussian self-similar process, a fractional Brownian motion 
(FBM). A normalized FBM with Hurst parameter H E [i, 1) 
is a stochastic process Zt, t E (-m, CO) ,  characterized by the 
following properties: 

1) 2, has stationary increments; 
2) 2, = 0, and EZt = 0 for all t ;  
3) EZ? = Jt12H for all t ;  
4) Zt has continuous paths; and 
5 )  2, is Gaussian, i.e., all its finite-dimensional marginal 

distributions are Gaussian. 
This process was found by Kolmogorov [12], but relatively 
little attention was paid to it before the pioneering paper by 
Mandelbrot and Van Ness [16] (where the FBM also got its 
present name). In the special case H = l / 2 ,  Zt is the standard 
Brownian motion. We have ruled out the other limiting case 
H = 1 since the respective 2, is a deterministic process with 
linear paths. 

The covariance of the increments in two nonoverlapping 
intervals is always positive and has the expression 

covzt, - zt, , zt, - zt, 
1 
2 

= - ((t4 - t p  - (t3 - t p  

+(t3 - t 2 y  - (t4 - t p )  

for tl < t2 5 t 3  < t4. 
Many features of FBM’s with H > 1/2 are different 

from those of most stochastic processes usually appearing 
in traffic models. They are not Markov processes and not 
even semimartingales, having nondifferentiable paths with 
zero quadratic variation. Fig. 1 presents a simulated realization 
of Zt with H = 0.8, produced with a simple but somewhat 
inaccurate bisection method given in [17]. Note that the path 
looks considerably smoother than that of an ordinary Brownian 
motion. 

For the use of the FBM as a traffic model element it is 
pleasant to note that in spite of the strong correlations, it is 
ergodic in the sense that the stationary sequence of increments 
Zn+l - 2, is ergodic (e.g., [2], Theorem 14.2.1). 

B. Fractional Brownian TrafJic 

model defined as follows. 
The rest of this paper is devoted to the -study of a traffic 
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Definition 2.1: We call the process 

At = mt + G Z , ,  t E (-x, cm) (2) 

where Zt a normalized FBM, fractional Brownian trafic. The 
process has three parameters m, a and H with the following 
interpretations: m > 0 is the mean input rate, a > 0 is a 
variance coefficient, and H E [1/2,1) is the Hurst parameter 
of 2,. In the special case H = 1/2 we call At Brownian trafic. 

Remark 2.2: Z ( t )  is a mathematical object which has no 
physical dimension and its parameter t is dimensionless as 
well. Therefore it would be better to write it in the traffic model 
as Z(t/ t ,) ,  where t is physical time and tu is the physical time 
unit. This helps, in particular, to avoid confusion by a change 
of the time unit. However, we shall not do this in order to 
keep our notation simple. If work is measured in bits and time 
in seconds, a has the dimension bit . s. The Hurst parameter 
H is dimensionless. 

The factor fi in (2) is motivated by the following easily 
verified superposition property: The sum At = A!a) 
of K independent fractional Brownian traffics with common 
parameters a and H but individual mean rates mi can be 
written as At = mt + JmaZt ,  where m = ma and Zt 
is a FBM with parameter H .  This shows that the roles of 
the three parameters of the traffic model (1) can be separated 
so that H and a characterize the “quality” of the traffic in 
contrast to the long run mean rate m which characterizes its 
“quantity” alone. 

C. Parameter Interpretation with a Burst Model 

More insight into the roles of the three parameters can be 
obtained by relating fractional Brownian traffic to another 
simple long-range dependent traffic model, namely a fluid 
burst model where the burst length has infinite variance. 
Assume that the arriving traffic consists of (“fluid”) bursts 
that begin according to a Poisson process with parameter A, 
come with rate T each and have independent total volumes 
B, with joint distribution F ( z )  = P(B 5 x). The length of 
burst n in time is then T, = BTL/r ,  and P(T 5 t )  = F(7-t). 
This kind of fluid flow models have been widely used in 
teletraffic theory since Kosten’s seminal paper [13], but the 
corresponding storage system cannot be analyzed in our case 
with the Markovian tools usually applied in this context. 

Denote the number of bursts going on at time t by Kt.  It 
is then standard knowledge (the system can be considered as 
an M/G/cm system) that the system can be made stationary 
if and only if the mean burst size b = EB is finite. Then 
EK = XET and 

COvKt, Kt+h X (1 - F(rs))ds. r 
Note that any correlation function p(h)  such that p(h) \ 0 
and p ’ ( h )  \ 0 for h /” cm can be realized by this type of rate 
process. The system is long-range dependent if 

COVKO, Ktdt = ET2 = x I* 
(this is equivalent to our previous definition, see [3]), i.e., 
exactly when B has infinite variance. 

Denote the fluid arrival rate at time t by Rt = rKt .  The 
mean arrival rate is then m = ER = Ab. A straightforward 
calculation gives two useful expressions for the variance of 
the cumulating arrival process At = Ji R,ds 

r t  r t  

= 2Xrb 1 du Jo’ dv P ( U  > T U )  

: IU 

(3) 

= A~b(2tE((U/7) A t )  - E ( ( U / r )  A t)’) (4) 

where U is a random variable that has the “residual lifetime” 
distribution corresponding to that of B in the renewal theory 
sense, i.e., 

P ( U  5 U )  = - (1 - F ( t ) ) d t .  

Note that if B has infinite variance, then U has an infinite 
expectation. 

Assume now that the distribution F ( z )  has tail behavior of 
type xd with /3 E (-2,  -1) in the sense that for any t > 0 
there exist positive constants y and r such that 

yd-t 5 1 - F ( ~ )  5 r z P + € .  

It then follows from (3) that VarAt grows asymptotically (in 
the above sense) as VarAt N Since p + 3 E (1,2),  
this is of the same type as by fractional Brownian traffic 
with H = (0 + 3)/2. Note that H does not depend on the 
other parameters of the fluid model. This suggests an intuitive 
understanding of high Hurst parameter values as coming from 
the distribution of very long bursts (or activity periods, etc.). It 
has been indeed often observed that activity periods of a traffic 
source have “heavy-tailed” distributions (see, e.g., [23]). 

This connection between long-range dependence, activity 
periods with infinite variance and self-similarity was estab- 
lished by Mandelbrot who considered the convergence of 
aggregations of so called renewal reward processes with 
heavy-tailed inter-renewal distributions toward an FBM. For 
exact convergence results on renewal reward processes (which 
are, however, not quite the same thing as our present fluid 
model), see [22]. The asymptotic self-similarity of the fluid 
model considered here was noted, in terms of the M/G/oo 
system, in [3], and referred to in [15]. A detailed traffic model 
of this type has been proposed at least in [24]. 

It remains to study what corresponds to the variance param- 
eter a of fractional Brownian traffic in an “equivalent” fluid 
burst model. Equating the variances of At for large t in both 
models we get the equation 

VarAt = 7natZH = X ~ b ( 2 t E ( ( U / r )  A t )  - E ( ( U / T )  A t ) 2 ) .  

Substituting m = Ab, dividing by t 2 H ,  choosing t sufficiently 
large to make the right hand side approximately independent 
of it, and denoting then x0 = r t ,  we finally get 

a = r,2H-1.ro2H(2.roE(U A L O )  - E(U A TO)’) (5) 

where zo can be considered as a boundary (rather arbitrary 
upwards) between “small” and “large” bursts. Thus, we can 
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TABLE I 
ESTIMATES FOR m ,  CL, AND H FROM THE BELLCORE SAMPLE pOct.TL, FROM A 
SIMULATED REALIZATION OF FRACTIONAL BROWNIAN TRAFFIC WITH PARAMETERS 

TAKEN FROM THE pOct.TL COLUMN AND FROM THE SAMPLE 0ctExt.TL 

6Mb/s 

0 2 0 0  400 600 8 0 0  1000 [sec]  
(b) 

Fig. 2. The variation of the bitrate (b/s, averaged over intervals of 1 s) in 
the true Ethernet trace pOct.TL (upper graph) and a simulated realization of 
fractional Brownian traffic with the same parameters (lower graph). 

make the following observations on the parameter a in terms 
of an equivalent fluid burst model: 

a is independent of A; 
when H = l / 2 ,  a is the index of dispersion (variance 
over mean) of A, for large t ,  and it is independent of 
the burst transmission rate T .  Note that H = 1 /2  means 
that “all bursts are short,” and at a large time scale their 
arrivals can be considered instantaneous; 
when H > l / 2 ,  a is the product of three factors; the 
first factor rZH-l gives an interesting expression for a’s 
dependence on the burst transmission rate T ;  the first two 
factors together show that a depends on H through a 
factor of the form constZH. The remaining factor depends 
mainly on the truncated distribution of B for “short 
bursts .” 

D. An Experiment with Bellcore Data 

Let us compare the FBM traffic model with a trace of 
actual Bellcore Ethernet traffic data from October 1989 (avail- 
able with anonymous FTP from jlash.bellcore.com, directory 
pub/lun_trufJic, file pOct.TL). It contains the time stamps and 
lengths of 1 000 000 consecutive packets. For convenience, we 

200kb/s 

150kb/s 

lOOkb/s 

50kb/s I 

Fig. 3. 
sample of seven daytime hours of external traffic in Bellcore. 

The variation of the bitrate (b/s, averaged over intervals of 8 s) in a 

restrict to the first 1024 s of the trace (the whole trace it not 
much longer). 

The parameters a and H were estimated by linear regression 
from the logarithms of the sample variances for 2k  s, k = 
-5: . . . ,4 .  A simulated sample of the FBM model was created 
with the same parameter set (using, in fact, the same method 
and pseudorandom sequence as in Fig. 1). For a check, the 
parameters were also estimated from the simulated sample. 
Both parameter sets are given in Table I.  The accuracy of the 
algorithm is satisfactory for our present purposes. Fig. 2 shows 
the profiles of both traces. The visual similarity is considerable. 

Let us then consider another Bellcore trace (file 0ctExt.TL 
in the same directory), where only the external traffic between 
Bellcore and the rest of the world is recorded. This formed 
only a small portion of the total traffic. The second-order self- 
similarity was quite strong in both samples in the sense that 
the above mentioned logarithms of sample variances formed 
straight lines. Fig. 3 shows the variation of the transmission 
rate during 7 daytime hours, averaged over intervals of 8 s, and 
the estimated parameters rn, a and H are given in the rightmost 
column of Table I. The most obvious difference from the 
previous sample is that the overall mean rate m is much lower 
than the mean deviations of averages over intervals even in the 
order of magnitude of seconds. The distribution of the local 
rate is thus strongly non-Gaussian, which indicates that the 
traffic is not aggregated from sufficiently many independent 
streams to allow the applicability of a Gaussian model. The 
corresponding fractional Brownian traffic looks essentially 
similar to that of Fig. 2 and thus has almost half of the total 
arrivals in the averaging intervals negative. 

It is interesting that the parameter a is so much lower 
and H clearly higher in the latter case. Tentative explana- 
tions suggested by the findings of Section 11-C could be the 
lower transmission rates of long-distance data traffic and the 
dominance of file transfer, respectively. 

111. THE QUEUE WITH GAUSSIAN SELF-SIMILAR INPUT 

A. Definition of the Storage Process 

Let us now turn to the problem of buffering of traffic 
fluctuations. Assume that fractional Brownian traffic with 
certain parameters m, a, and H is offered to a link with 
capacity C > rn that has an unlimited buffer in front of it. The 
buffer occupancy can be defined in analogy to Reich’s formula 

http://jlash.bellcore.com
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In the Brownian case H = 1/2, (8) reduces to 

l-p . x = const (9) 

with p = 7n/C. Here we may roughly say that reducing the 
relative free capacity 1 - p by half costs doubling the storage 
size. Note that the link capacity C does not appear in the 
equation except within p. 

With H > l / Z  the situation is different. Let us first write 

Pa 

(8) in the form of a buffer dimensioning formula - VPC 
p m - H ) )  

(1 - o)H/(l--H) 
= f - 1  ( t )a1 / (2 (1-H) )C(2H--1) l (2 (1~H))  

Fig. 4. 
connections. 

Reduction of VPC's by the use of a CLS instead of pairwise ATM 

for the virtual waiting time in a queueing system ([20], cited 
according to [l]). 

Dejinition 3. I :  The (stationary) fractional Brownian stor- 
age with input parameters m, a and H and output capacity 
C > m is the stochastic process X t  defined as 

X t  SUP (At  - A ,  - C( t  - s ) ) ,  t E (-CO, CO) (6) 
s s t  

where At is the fractional Brownian traffic process with 
parameters m, n and H .  In the special case H = l / Z  we 
call X t  the Brownian storage. 

The stationarity of X t  follows from the stationarity of 
the increments of A t .  That X t  is almost surely finite is 
a consequence of Birkhoff's ergodic theorem. Indeed, the 
ergodicity of Zt implies that limt,, Zt / t  = E21 = 0 a.s., 
which together with the assumption rn < C yields 

lim ( A t  - A ,  - C( t  - s ) )  = --x as. 
Y ' - m  

Note that the storage process X t  is always nonnegative, 
although the arrival process has also negative increments. 

B. A Scaling Law 

The fractional Brownian storage X t  obeys an interesting 
scaling law which is easily deduced from the self-similarity of 
the FBM. Consider the typical requirement that the probability 
that the amount of work in system exceeds a certain level x 
must be small. (The value x is the substitute for the buffer size 
in our infinite storage model.) If the largest allowed buffer 
saturation probability (or time congestion probability) is t, 
then the equation 

t = P(X > x) (7) 

holds at the maximal allowed load. Now, the self-similarity 
of Zt allows for deriving from (7) a more explicit relation 
between the design parameters x (buffer space, or requirement) 
and C (link capacity) and the traffic parameters m, a and H 
at the critical boundary. 

Theorem 3.2: [ 181 Assuming (7), the following equation 
holds 

where the function 

\ V I  

(10) 
It is seen that when H is high, a substantial increase in utiliza- 
tion, say again halving the free capacity, requires a tremendous 
amount more storage space. Thus we have a new argument 
for the widely accepted view that for connectionless packet 
traffic the utilization factor cannot be practically improved by 
enlarging the buffers. 

The scaling relation (8) can also be written as the bandwidth 
allocation rule 

C = + ~ ~ l ( ~ ) a l / ( 2 H ) x - ( l - H ) / H ~ ~ ~ l / ( z H )  (11) 

showing that, for H > l / Z ,  the link requirement C increases 
slower than linearly in m so that a multiplexing gain is 
obtained by using links with higher capacity. 

As a practical example where the multiplexing gain plays 
a central role, compare the use of painvise ATM virtual path 
connections (VPC's) between n + 1 LAN/ATM intenvorking 
units (IWU's) with the use of a centralized routing function 
(connectionless server (CLS)). The essential difference be- 
tween an ATM switch and a CLS is that the former performs 
switching purely at the ATM layer whereas the latter looks at 
the network layer address, found in the payload of the first 
cell of each datagram. The two alternatives, called in [lo] 
indirect and direct connectionless service provision over an 
ATM network, respectively, are depicted in Fig. 4 in the case 
ri = 3. 

Denote the bandwidth needed per IWU with centralized 
routing by Cdir and the total bandwidth needed per IWU with 
painvise VPC's by Cindir,n. Assume that a fixed amount x 
of output buffer space is allocated for any VPC and that all 
traffic streams between the IWU's are equal. It is then seen 
from (1 1) that 

Cin&r,lL = m + (Cdir - m)711-1 ' (2H) .  (12) 

Note that this expression for the relative multiplexing gain 
does not contain the unknown factor f - ' ( t ) .  

C. The Approximate Queue Length Distribution 

No explicit formula for the distribution of the fractional 
Brownian storage seems to be known. Instead, we shall 
approach the distribution of X t  through a lower bound. 

Theorem 3.3: [ 181 Let X t  be the fractional Brownian stor- 
age with parameters m, a ,  H and C. Then 

depends on H but not on m, a ,  C or x. 
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-1 
-2 

-3  

-4  

- 5  

- 6  

-7 

x 
.t 

Fig. 5.  Weibull approximation of log,, P(X > .r) with 711 and a as in the 
Bellcore sample pOct.TL, C = 4.8 Mb/s and H = 0.5, 0.6. 0.7. 0.8, 
and 0.9. 

where r;(H) = ”(1 - H ) l - H  and q(y) = P(Z1 > y) is 
the residual distribution function of the standard Gaussian 
distribution. 

This result is a consequence of the trivial lower bound 

P ( X  > x) 2 maxP(At  > Ct + x) (14) 

where the maximum at the right hand side is obtained at 
t = N z / ( ( l  - H ) ( C  - m)).  It has been recently shown 
by Duffield and O’Connell [4] with techniques of the theory 
of large deviations that (16) below is in fact logarithmically 
accurate for large x. This is in line with the intuitive principle 
that “rare events occur only in the most probable way.” 

t>o 

Using further the approximation 
- 
W Y )  exP(-Y2/2) (15) 

we obtain the expression 

Thus, the distribution of Xt can be approximated by a Weibull 
distribution, in particular as regards the tail behavior. 

Remark 3.4: In line with Remark 2.2, the right-hand side 
of (1 6) can be written in the form 

where tu is the physical time unit, making the probability 
expression explicitly dimensionless. 

Fig. 5 shows the residual distribution function of the 
Weibull distribution (16) with different values of H ,  m and 
a being taken from the first column of Table I and C chosen 
to be 4.8 Mb/s. (Remember, however, that the consideration 
of Section 11-C indicates that in a practical situation it might 
not be fully reasonable to consider the effect of changes in H 
without respective changes in a.) 

It is interesting to look at Fig. 5 from the point of view of 
the distinction between cell and burst scale traffic fluctuations, 
often emphasized in the analysis of ATM multiplexers with 
variable bitrate traffic (e.g., [19]). The sharp knee between 
the cell and burst scale components of the queue length 
distribution, observed in studies like the one just mentioned, 
is here replaced by continuous flattening, corresponding to the 

7Mbls 

5Mb/ s 

3Mb/s 

I 
! 

/ 

0 200  400  [kbitsec] 
Fig. 6. Required link capacity as a function of a with m = 2 Mb/s and 
H = 0.5, 0.7, and 0.9. The upper three curves (as at the right) correspond 
to the buffer size 100 kbytes and the lower three to the buffer size 1 Mbyte. 

intuitive idea of “burstiness in all time scales.” In particu- 
lar, the curves don’t have nonzero asymptotic slopes when 
H > l / 2 .  

In the Brownian case H = l /2 ,  the Weibull distribution 
(16) reduces to the exponential distribution 

It is interesting to note that the lower bound approximation 
(14) and approximation (15) happen to cancel out each other so 
that the right-hand side of (17) gives in fact exactly P(X > x) 
for the Brownian storage [21, ch. 61. 

Solving (16) for C we see that P(X > x) = E is achieved 
approximately when 

C = + ( ~ ( ~ j ~ ~ ) ~ ~ ~ a ’ / ~ 2 ” ~ ~ - ~ l - ” ~ / H m l / ~ 2 H ~ .  

(18) 
Note that by the exact scaling relation (1 l), the only approx- 
imate part of (18) is the coefficient in front of the powers of 
a, x and m. 

For practical use of (18) as a link dimensioning formula, it is 
interesting to consider its sensitivity on a and H .  Fig. 6 depicts 
the link recommendation with various values of a and H for 
m = 2 Mb/s, E = lop3 and for the two buffer sizes 100 kbytes 
and 1 Mbyte. Of course, the same reservation as with the 
previous figure should be made on the meaningfullness of 
independent variation of a and H .  In any case, it is seen that 
when the buffer is small, the link requirement depends much 
less on H than when the buffer is large. It is very difficult for 
short-range dependent traffic to fill a large buffer! 

D. A Further Remark on Weibullian Queue Lengths 

The Weibull distribution P ( X  > x) = e-y lC2-2H with 
H > 1/2 is a somewhat “unfriendly” distribution which 
has finite moments but not a finite moment-generating 
function (Laplace transform) in any neighborhood of  zero. 
Thus it can be expected that long-range dependent queueing 
systems sometimes have qualitatively different behavior than 
corresponding short-range dependent systems. An example 
of such a difference is provided by the following simplistic 
consideration of a problem of the type “who causes a typical 
congestion?’ 

Assume that connectionless traffic from a large number 
of sources comes to a multiport router from which it is 
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Fig. 7. Three curves presenting, from top to bottom (mostly), 
loglo P(X > .r) as estimated from a queueing process realization 
produced with the true trace, as given by the approximate formula (16) and 
as estimated from a purely simulated queueing process. 

distributed between n links with equal capacities. The n traffic 
streams directed to each output are assumed to be independent 
fractional Brownian traffics with identical parameters. Assume 
further that all the streams share a common buffer. The amount 
of data in the buffer, destined for link i ,  is denoted by X i ,  so 
that the total buffer content is X = CXi. 

An idea about how it most probably happens that a given 
large value K of buffer occupation is exceeded can be obtained 
by looking for the maximum of the probability 

n 

P(X2 > X 2 , i  = 1,. . . , n )  = n P ( X 2  > Xi) 
i = l  

with the constraint Cxi = K .  It turns out that there is 
a qualitative difference between the cases of short-range 
dependent traffic and long-range dependent traffic. In the 
former case with H = l / Z  we obtain 

P(X, > X i r  i = 1, ‘ .  ’ , n)  
n 

on the simplex S = {z E 87 : 2, = K } .  Thus, it can be 
concluded that all combinations of “guilt for the overflow” 
between the traffic streams are equiprobable. In the case 
H > l / Z  we have for z E S the inequality 

z 2 - 2 H  P(X, > x,,i = 1,. . . . n )  = e - c  1 

5 e - y K L ( l - H ) .  

(20) 
The equality is reached at the comer points of S where one of 
the z,’s equals K and the others are zero. When H is high, the 
probability has much larger values at the corner points than 
between them, which indicates that only one stream is guilty 
for a typical overflow. Of course, this half-heuristic reasoning 
assumes that n be not too large. 

E. An Experiment with Bellcore Data-Continuation 

The applicability of the Weibull approximation (16) was 
studied by feeding the genuine and simulated Ethernet traffic 
samples depicted in Fig. 2 into a simulated link. In order to 
obtain queueing processes of appropriate variation, the link 
capacity C = 4.8 Mbls was chosen. The queue length process 
was generated with resolution b = Z-7 s by the usual formula 

X(n+1)6 = ( L 6  + 4 7 1 6  ( n  + 1 ) b )  - Cb)+ 

The empirical queue length distributions and the corresponding 
approximation (16) are shown in Fig. 7. The rightmost third, 
or perhaps half, of the figure can be ignored because the 
observations in this part are too few to yield statistically 
significant results. Some preliminary observations can be made 
from the smooth part-remembering that the role of reality is 
played by a single trace recorded five years ago. 

First, there is qualitative similarity in the three slopes. 
However, the curve produced from the true sample ends 
its convex part earlier than that coming from the simulated 
sample. Second, the queue coming from the true sample is 
stochastically remarkably longer than the purely simulated 
one. Third, the approximate formula (16) is an upper bound 
although it was deduced from the lower bound (14). 

A similar experiment with the external traffic sample 
(Fig. 3) resulted in a much bigger difference between queues 
generated with the true and the simulated sample, respectively, 
as could be expected on the basis of their visual dissimilarity. 
A more theoretical explanation is that the outlook of this 
sample is much closer to the single source models with 
heavy-tailed on and off periods studied in [6] where the 
corresponding queue length was found to have a power tail 
instead of the Weibull tail of our model. 

Thus, we can end this small empirical study with the 
following tentative conclusions, or conjectures: 

Internal LAN traffic produced by a large number of 
sources with not too high individual peak rates can be 
wcharacterized as fractional Brownian traffic. 
Fractional Brownian traffic does not model well traffic 
where the local rate, averaged on seconds, is far from 
Gaussian; this is the case when, e.g., the number of 
simultaneously active sources is small or a few high speed 
sources dominate the whole. 
The Weibull approximation (16) for the residual distri- 
bution function of the fractional Brownian storage is an 
upper bound with satisfactory accuracy. 

Iv .  SHORT-TERM PREDICTION OF 
FRACTIONAL BROWNIAN TRAFFIC 

A. Preliminaries 

One consequence of the positive correlations of fractional 
Brownian traffic is that nontrivial short-term traffic prediction 
is possible. It is interesting to study how such a prediction 
should be made and what can be expected to be gained 
from it. Practical answers to these questions can be quickly 
found by numerically calculating the prediction coefficients in 
a finite discretized approximation. However, the problem is 
theoretically interesting in the continuous case and has also 
a nice solution. The following presentation summarizes the 
findings of [SI. 

Let us assume that the three parameters m, a and H have 
been reliably estimated during a long observation period. The 
problem of short-term prediction, say, predicting the value 
of A(t , t  + h)  on the basis of observing A( t  - T, s )  for 
s E [t - T ,  t ] ,  then reduces to the problem of finding more 
or less explicit expressions for the predictors (conditional 
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approaches infinity at both ends of the interval. 
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- 

expectations) 

Z h , T  = E[Zh I z s , S  E (-T,0]], h > 0,T E (0, W]. 

It would be natural to represent the predictors as integrals over 
the observed part of the process in the form 

0 

Zh,T = lT gT(hr t)dzt (21) 

where gT(h, t) is an appropriate weight function. When the 
integrand is a smooth deterministic function, an integral w.r.t. 
2, can be defined simply as a limit of Riemann sums in 
L2.  As a general treatment on integration with respect to 
Gaussian processes that are not necessarily semimartingales, 
the reader is referred to [9]. We note here only the following 
formula for the covariance of two such integrals: for f,g E 
L2(W; W )  n L1(Iw; W) we have 

0 . 4  

0 .  

= H(2H - 1) f ( s ) g ( t ) ) s  - dtds. (22)  Ss 

t 

B. The Prediction Weight Function 

the representation (21) holds with 
It was shown in [8] that for each h > 0 and T E (0,031, 

h + q H - 3  
da (23)  

for T < 00, and 

It is interesting to note that the weight function goes to 
infinity both at the origin and at -T when T is finite (see 
Fig. 8). Intuitively, the nonmonotonicity can be understood 

0 . 5  0 . 6  0 . 7  0 .8  0 . 9  1 
Fig. 9. 
tion of the self-similarity parameter H .  

The relative variance of error Var(Zh - Z,,.m)/\iarZh as a func- 

so that the “closest witnesses” to the unobserved past have 
special weight. 

Since any practical prediction formula would be a finite sum 
with a few terms, the continuous prediction formula is as such 
only of theoretic interest. However, it can be used to derive 
other results which give immediately useful information. One 
such application is the calculation of the variance of the 
predictor E[Zh I Z,, s E (-T, O ) ] ,  which is a concrete measure 
of the statistical unpredictability of fractional Brownian traffic. 
It was shown in [8] that 

= Var(Zh)HIT’hgT/h(l ,  -s)((l + s ) ~ ~ - ~  - s2H-1)ds. 

(25) 

Moreover, for T = cc we have a short expression in terms 
of the gamma function 

Var(EIZhIZs, s 5 01) 

The relative variance of error Var(Zh - Bh,,)/VarZh is plot- 
ted in Fig. 9 as a function of H .  Note that, as a consequence 
of self-similarity, this quantity is independent of h. It is seen 
that the predictive force of the past is not very high unless 
H is rather large. The past before 0 explains half of the 
variance of Z h  when H is about 0.85, which is a rather typical 
value for daytime Ethernet traffic according to the Bellcore 
measurements. 

Fig. 10 depicts the relative variance of error 
VarZl - ZI,T/VarZ1 as a function of T with H = 0.9. It is 
seen that for the prediction of z h ,  it makes relatively little 
difference whether we know Z on (-h,O) or ( -m,O) .  

Thus, we have found two rules of thumb for the short term 
statistical predictability of fractional Brownian traffic: 

the past before t explains about half of the variance of 
any single future value A,, U > t ;  
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The relative variance of error Var(Z1 - Zl,r)/VarZ1 as a func- 

one should predict (with the appropriate nonuniform 
weights) the next second with the latest second, the next 
minute with the latest minute. etc. 

v. ON THE INTERPRETATION OF 
FRACTIONAL BROWNIAN TRAFFIC 

In this section we shall move to the meta-level and discuss 
the practical usability of fractional Brownian traffic as a model 
for connectionless traffic. We first consider problems related 
to traffic characterization, then turn to dimensioning method- 
ology, and end with a view on connectionless communication 
as distributed fair queueing. 

A. On the Characterization of Connectionless TrafJic 

Traffic characterization in teletraffic theory usually means 
the identification of a statistical law according to which the 
traffic sources, thought of as insensitive, purely outwards 
directed beings, put out bits. Then the network is dimensioned 
so that blocking and/or loss probabilities remain low. A 
distinguishing feature of data communication is, however, the 
presence of feedback: The well-designed control functions of 
transport layer protocols (e.g., [ 111) give the sources flexibility 
and intelligence in their utilization of the shared network 
resources. 

What does it then mean to have a statistical characterization 
of connectionless traffic? Obviously, there cannot be a single 
generally true characterization, since the traffic certainly de- 
pends both on the application environment and on the network 
environment. But let us focus on the Bellcore findings and ask: 
What does it mean that some LAN traffic is found to be close 
to fractional Brownian traffic with relatively high Hunt param- 
eter? Can this be a characterization that is strongly conditional 
on the particular applications, transport layer mechanisms, 
etc., working over the network where the measurements were 
made? I have heard this opinion sometimes, and I think that it 
is based on a misunderstanding of the nature of second-order 
self-similarity. As already mentioned, self-similarity is in fact a 
generic feature of limit processes, and Hurst parameter values 
larger than 1/2 appear together with long-range dependence, 

which in turn is intuitively easy to accept as a generic feature 
of LAN traffic. 

On the other hand, it is clear that connectionless traffic 
arriving to a congested link is not at all similar to fractional 
Brownian traffic-othenvise, a large portion of the traffic 
would simply overflow. Therefore, the area of applicability 
of the model has to be outlined more accurately. Let us define 
free trafic as an ideal notion for “what the traffic would be if 
the network resources were unlimited.” Note that this does not 
mean infinite transmission speeds since it is assumed that the 
sources and destinations still have only their limited abilities. 
In fact, internal Ethernet traffic from 1989 should be close to 
free traffic in the above sense since the 10 Mb/s bandwidth 
could be considered practically unlimited in traditional LAN 
application environments. I then propose for discussion the 
following hypothesis: fractional Brownian traffic is a rather 
generally applicable model for free traffic aggregated from a 
large number of independent sources. 

Let us make some additional remarks on the three traffic 
parameters. The mean rate of fractional Brownian traffic has 
more the character of a “background parameter” than the 
intensity of a Poisson process-its reliable estimation takes 
hours when H is high. Thus, the model can also be considered 
as a model with varying mean rates at several short time 
scales. The qualitative parameters a and H seem to vary 
quite a lot between different measurements. By the analysis 
presented in Section 11-C it can be conjectured that n increases 
historically, e.g., with the transmission speeds of terminal 
equipment, whereas H is probably more stable as regards 
hardware development but may increase e.g., with the sizes 
of transferred files. 

B. On the Dimensioning of Connectionless Networks 

When speaking on dimensioning in a connectionless con- 
text, one should first clearly separate buffer dimensioning and 
link dimensioning as very different tasks. 

As regards buffer dimensioning for network elements like 
routers, the applicability of a fractional Brownian storage 
as a mathematical model is problematic even if the cor- 
responding free traffic would be close to the FBM-based 
model, the reason being the built-in feedback control of most 
connectionless communication mentioned above. In particular, 
the traditional notion of loss probability loses its objective 
character in the connectionless context since the sources are 
able to avoid extensive losses by changing their own behavior. 
Buffer dimensioning should rather be based on different and 
partly nonstochastic principles. The situation may, however, be 
somewhat different in the huge information superhighways of 
the future if their traffic is statistically essentially more stable 
than in the packet networks of today. The storage dimensioning 
formula could be applicable also in a context with no delay 
requirements like the electronic mail service. 

Practical link dimensioning has usually been based on 
user-perceived service quality, and even considerable under- 
dimensioning has been tolerable. However, if a CL service is 
to be designed with guaranteed high throughput, low delay 
and low loss probability (in the sense that retransmissions are 
seldom needed), then the network has to be dimensioned for 
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free traffic so that the congestion control capabilities of the 
transport layer remain largely in the reserve. In this task, the 
theory of the fractional Brownian storage can be practically 
useful. 

C. A Global View on a Connectionless Network 

Consider a congested bottleneck link in a large connection- 
less network. As explained above, it can be assumed that the 
aggregated communication need of the involved traffic sources 
can be described by fractional Brownian traffic. However, the 
buffer in front of the link is small and yet the net throughput 
is high. Where is the tremendous queue predicted by the 
theory of the fractional Brownian storage? Obviously, a large 
part of the free traffic waits at the sources, forming thus a 
global distributed virtual queue. Moreover, the queueing is 
approximately fair (in the sense of processor sharing) so that 
no user can observe the total length of the queue as a delay. 
The huge queue is visible nowhere except in the distribution of 
saturated periods in the link. This view suggests an interesting 
task for further study: one could compare the (so far unknown) 
busy period distribution of the fractional Brownian storage 
with measurement data on highly loaded links. 

VI. CONCLUSIONS 
Fractional Brownian traffic is an abstract model for aggre- 

gated connectionless traffic. Insight into the eventual relation 
of the model parameters to reality was obtained by relating 
the model to an equivalent fluid burst process. 

The comparison with two publicly available samples from 
the Bellcore measurements gave as a result that the total, 
mostly internal LAN traffic was rather accurately described by 
the model but the much less intense external traffic was not, 
despite of its high second-order self-similarity. This shows that 
an approximately Gaussian character of the traffic is crucial for 
the applicability of the model. 

The 1 orresponding queue length process, the fractional 
Browni ,n storage, was shown to be a tractable mathematical 
object, in contrast to other long-range dependent queueing 
models which are generally considered very difficult to study. 
Exact formulas governing the short-term predictability of 
fractional Brownian traffic were presented also. 

The notion of free traffic was introduced to describe ideal 
communication with unlimited network capacity, and it was 
proposed that the fractional Brownian traffic should be inter- 
preted as a model for aggregated free traffic rather than any 
aggregated connectionless traffic. Finally, it was suggested that 
the storage model could be used in the study of busy (satu- 
rated) periods of highly loaded links of a large connectionless 
network through the notion of a distributed virtual queue. 
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