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THE INTERACTION OF THE UTILITY AND ITS CUSTOMERS IN LOAD CONTROL

Pekka Koponen
VTT Energy
P.0.Box 1606, FIN-02044 VTT
Espoo, Finland

ABSTRACT

Load control consists of the interaction of two
optimization ~ problems  with different
objectives. One minimizes the purchase costs
of the needed power and the other maximizes
the comfort or the profit of the customer. In
this paper the Joad control and the interaction
of the two optimization tasks are studied by
simulations of three cases.

Keywords: optimization of load control,
dynamic tariffs, advanced EMS

1. INTRODUCTION

The energy management system of a power
distribution utility minimizes the production
and purchase costs of the required power. At
the same time the optimization of the end use
maximizes the comfort or the profit of the
customer. The interaction of these two
optimization tasks can substantially reduce the
power purchase costs by adjusting the timing
of the end use and by giving more reliable
predictions. Sormunen [1] has studied the
value of load control to the power company.

The effective use of dynamic tariffs requires,
that the customer has an automated control
system. This applies also for space heating,
ventilation and air conditioning {2]. Manual
real time response is too expensive and too
unreliable. Modern building control systems
and process management systems have
capabilities to integrate also the optimization of
energy consumption.

Energy utilities could benefit from the load
predictions given by the customers. Those are
based on the production plans and known or
sudden shutdowns of the customer factory or
on the measured state and planned usage of
buildings. However, the predictions may be

confidential and there may be temptations to
manipulate predictions or prices. An interface
that gives mutual benefits and trust must be
agreed. Also the interaction of the two
optimization tasks should be co-ordinated to
prevent convergence problems.

In [3] a group of base metal plants has been
studied from the point of view of electric
energy management, load control and time
variable or dynamic tariffs. It included both
continuous and batch processes and a power
plant. The group has a centralised energy
management that co-ordinates the local energy
and process management systems and gets load
predictions from them. It participates in the
energy trade much like a power utility.

This paper presents simulation examples of
the interaction between the utility and its
customer. Three cases of load control and
dynamic tariffs are studied also from the point
of view of the customers of the utility.

2. SPACE HEATING AND VENTILATION

2.1 Model and cost function

Heating and ventilation loads in a building
are considered in the first example. The timing
of heating and ventilation is gptimized using a
criterion that takes into account both the needs
and comfort of the house and the heating costs.
The use and occupancy of the room define a
time dependent quadratic cost and hard
constraints. In the optimization criterion this
rather imaginary cost is added to the linear
heating costs. Tuning between the costs and
comfort can be easily done by adjusting the
weights of this cost function.

A simple model of heat capacities and heat
conductivity of the walls and the interior is
used. Outside temperature is taken into
account as a time variable non-controllable
input to the system. Also the effect of

12th Power Systems Computation Conference
Dresden, August 19 - 23, 1996

749




ventilation on the quality and temperature of

the air and on the power consumption is

included in the model. The system model is

linear except the state and control constraints

and two non-linear terms due to ventilation.
The system equations are

C,x, = —kyx, +k,x, + k,u,
=k, (xy = T,,)u,
Cyx, = kyxy = (k, + ky)x, (1)
+ kT, + ky,u,
Vi, = —kfx3u2 + k,..0 + k,
where
x1(t) temperature in the building
x2(t) wall temperature
x3(t) air contamination (e.g. CO;
percentage) in the building
Cy, C heat capacities
v internal volume of the building
uy(t) electric power for heating
uy(t) electric power for ventilation

ki, ko, kni, kiz, kvt

constants related to heat transfer
kg, koee, ko constants related to air

‘ contamination

Tou(t) outside temperature
O(t) occupancy of the building

(e.g. number of persons)
t,t0,tf  time, start time, end time.
The objective is to find u(t) that minimizes

J = [x(tf) = %, O Flx(tf) = x,(¢f)]
+T[<x~xs>TQ(x—xs>+ P(uy +uy)
" (= )" R(u—u,))ds 2)
where

x=x (t) = (x1,x2,X3)" state vector
u=u(t) = (u,uy)’ control vector

F positive definite diagonal 3x3
matrix for end state weights

Q) time variable positive definite 3x3
diagonal matrix for state weights

R positive definite diagonal 2x2

matrix for soft bounds on control

P(t) price of the electricity at time t

Xs(t) reference values for the state
variables at time t

Us reference or stationary value of the

control vector

The weights in the criterion are tuning
variables that are chosen to balance comfort
and the power cost. Two terms in state weight
Q(t) are important. They weight the inside
temperature and the air quality. Other terms in
Q and R are used so that they have only small
effects on the result. R is used to prefer small
control actions more than large ones and also
to improve convergence. The end weight F is
necessary in order to move the optimization
horizon further in time. It 1is chosen
proportional to the state weights Q.

The occupancy of the building is taken into
account in two ways to reduce heating and
ventilation costs. In the model (1) the
occupancy of the building increases the air
contamination. The state weights Q(t) in the
criterion (2) are smaller during the non-
occupied periods in order to let the
temperature and the air quality vary more then.

A temperature controller is added in the
model (1) and the optimization gives its set-
point. Real systems may have higher dimension
and use alternative fuels. However the
character of the model is similar.

The model (1 and 2) is kept simple. The
reactive power and the varying power factor of
ventilation and heating are not considered.
Although"'there afe non-linear terms in the
model it is not intended to be realistic on a very
wide temperature! range. The temperature
exchange with the ground and with adjacent
rooms is not included.

2.2 Methods

The model is discretized with 16 time steps
into a constrained non-linear programming
problem. Optimization program, that is based
on the generalised reduced gradient method
GRG2 of Lasdon and Warren, is used to solve
the optimization. Two methods are compared.
In the first a piecewise constant control as a
function of time is directly optimized; the fact,
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that the model is a dynamic system with
causality, has not been utilised in any way to
improve the optimization speed. Tigure 1
shows a solved case in a possible user
interface. The other method is known to be
more accurate but less reliable [4]. It uses the
Pontryagin’s maximum principle and solves the
resulting two point boundary value problem by
searching the initial values of the adjoint system
using the non-linear optimization method. The
methods were implemented in a spreadsheet
program in a personal computer (486-33).

The non-linear optimization of the control
functions can be made faster. With the direct
method sparse matrix techniques give a great
benefit [4] because the gradient matrix is very

sparse. Another way is to calculate the gradient
of the optimization criterion via the solution of
the adjoint system [5]. With larger models the
speed of the method is crucial.

2.3 Experience
1) With the method that solves the two

point boundary value problem failures to
converge occurred often. Direct optimization
of the control functions was more reliable and
less sensitive to the starting guess. Initial
guesses for both methods were generated by
gradually increasing the number of time steps.
2) Different starting points gave often
different solutions because of local minima and
poor convergence. Solutions depending on
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Figure 1. An example of heating and ventilation load optimization
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the starting point have sometimes been
removed when an implicit hard constraint
hidden in the model has been explicitly given to
the optimization method.

3) With the optimization the customer can
much better take advantage of dynamic tariffs.

4) Advance information on the changes in
the prices is important for the customer. It
almost doubles the potential to reduce the
costs.

5) With hourly prices the optimization time
step of half an hour gives smaller costs than an
hour.

6) The planned power consumption of the
house could be given to the utility in order to
get more accurate short term load predictions.
If the tariff gives credit of accurate predictions,
this will be in the customers’ interest too.

3. OTHER CONTINUOUS PROCESSES

In many continuous energy intensive
processes like electrolysis, the power
limitations of medium size mean only loss of
production proportional to the limited energy.
Only large limitations create start-up and
shutdown costs and degrade the quality of the
production. The integration of process phases
and decreasing of buffers between them cause
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dependencies that cannot be ignored in loac
control. Based on the market value of the
products and raw materials the energy price
that leads to Iimiting production can bc
calculated. Here it may be better for the utility
to know the price that leads to restrictions than
to get from the customer the predicted power
based on the dynamic price variations.

Loads that do not have complicated
dynamics and scheduling problems can be
integrated to the optimization of power
purchase of the utility. That has been done in
the second simulation example where the load
model is static. The optimization method is
described in [6] and [7]. Figure 2 shows the
solution with and without load control. The
method already optimizes heat and water
storage using a linear model of their dynamics.
Also load dynamics could be included the same
way. This may even improve solution
convergence. For example the model of the
first example, (1) and (2), can be piecewise
linearised at its normal operating point and
included this way.

All continuous processes are not easily
suitable for load control. Many are run based
on static optimization and electricity costs may
be small compared to other costs. For example,
the integrated system in [8] would make it easy
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Figure 2. Optimized power dispatch with load control (left) and without (right)
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+6 implement load control but it is not
mentioned.

The distinction between continuous and
hatch processes is not clear. The optimization
oT a continuous process may include changing
ctates and scheduling operations because of
c osts of start-ups, shutdowns of motors or
5 Wbprocesses in addition to energy costs. The
¢ ontrol of drinking water supply system with
p umps in [9] shows among other things a way

een inwous—and-batch

car—F imization of-a

ontipnons  process may  include changing
tates-and-scieduling operati ause-eflto

ake time variable or even dynamic tariffs into
gccount in such an optimization. Solutions are,
however, tailored to processes, because there 1s
not any general method that effectively can
solve all dynamic optimization problems. The
solution  provides  the planned  power
consumption, that could be given to the utility.

4. BATCH PROCESSES

An example of short term energy
management of batch processes is the
scheduling of a steel plant. Here a prototype s
described, that automates the heuristics of
scheduling experts and shows the connections
to energy management. The method can also
be applied to other steel plants that have
different flow of production. For example In
. [10] wvarious scheduling methods and case
studies, including steelmaking in pp. 607-654,
. are described.

. The production consists of different batch
' operations following each other. The capacity,
. availability and timing of the operations are
important constraints. The due times of orders
must be met. Waiting times between process
operations should be minimized because they
increase consumption of energy and refractory
materials. Long delays cause also quality
problems and the result may be a cheaper steel
grade than desired or even waste oOr
reprocessed production. Reprocessing wastes
production capacity and energy for example in
remelting. The energy price makes a

remarkable share of the production costs.
However, restrictions in power consumption
increase costs if the requirements of the
production process are ignored.

The scheduling problem as such leads to the
explosion of the number of alternative actions.
The specialists of the steel plant have
developed heuristics that reduce the dimension
of the problem and solve it in two phases that
proceed backwards in time. This has been
necessary in order to create the production
schedule and to adjust executing schedules to
disturbances and unexpected events. In this
example the dynamic price of the electricity
and natural gas have been included in the input
information. The user will see the energy prices
and costs of his plan on the display. He can
tune the schedule and replace some electricity
usage with natural gas or the opposite. Figure3
is a display of this prototype system. It shows
how the timing of individual process operations
contributes to the total power.

The planned energy consumption is known
for several hours ahead and could be given to
the utility. If there are disturbances they delay
the steel production and thus reduce the power
consumption in the near future. Sudden
unpredictable increases in load would be
expensive to purchase, but there are none. On
the long run the disturbances in the production
increase the energy consumption and reduce
the steel output of the plant. Executing
schedules can be adjusted as a response to
unexpected changes in power prices also.

5. PEAK CONTROL SYSTEMS

Systems that restrict the consumption peak
by controlling the loads usually hide the
dynamics from the optimization of the power
purchase, They minimize the power exceeding
a given level or curve. They may also give the
predicted power consumption both with and
without the load control actions. Typically
these systems cannot directly use dynamic
tariffs as input, because they take into account
only the amount of the overshoot but not its
price.
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Figure 3. A display of a steel plant scheduling prototype with short term energy management

6. DISCUSSION

The first and third example show how
customers could get advantage of the dynamic
tariffs and give the predicted consumption to
the power utility also. The utility can then use
these predictions in its power purchase
optimization, like the one in the second
example. In this approach the main problems
seem to be:

- The customer may not have an automatic
control or process management system where
the short term energy management could be
situated.

- There are some problems in getting or using
the predictions: They may contain confidential
information. It may also be possible to cheat
the other party by manipulating the predictions
or dynamic prices. If there is not enough
mutual trust, binding offers may be exchanged
instead of predictions although the interaction
1s then slower.

-The control is sensitive to prediction accuracy.
-The plans and predictions include different
types of uncertainty and the actual distributions
of error probabilities of individual targets are
far from normal. The sum of very many
relatively small demands can usually reasonably
well be “calculated by assuming normally
distributed " errors ‘but large units must be
individually dealt with.  Their predicted
maximum demand can be easier to determine
than the most probable demand. The maximum
can be more useful al$p because it may be very
expensive to purchase power for unforeseen
demand peaks. Further research is needed on
how a utility can aggregate the planned power
consumptions to get the total demand.

- How the optimization of the power
purchase in the utility interacts with the
customer’s system The interaction may cause
convergence problems between the two
optimizations. The prices and predictions may
start to oscillate, if the interaction is t00 strong
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and too slow. There may be a need to use
dynamic load response models and similar
techniques as with the decomposition and co-
ordinating of optimization problems, see for
example the books[11, 12].

The second example does not have such
interaction problems and does not set
requirements on the automation system of the
customer because the whole problem is treated
by one optimization system. However, the
dimension of the power purchase optimization
problem and so the computation task may
increase.

All changes of plans and control actions
include also such costs and risks that are not
included in the optimization criterion in the
examples. For example transfer of information
may have a certain cost. Thus the solutions
tend to include too frequent load control
actions compared to real benefits and costs.
There is a need to solve this problem
efficiently.

The time span of interest is here about 24
hours. That is because it is one of the
dominating periods in the power prices and
most loads. The power prices are assumed to
change in one hour intervals. Then shorter time
step gives clear benefits in the load
optimization, because it enables the use of
short buffering capacity to move loads between
consecutive hours. In the steel plant scheduling
example the time step is one minute. In the
heating and ventilation example a time step of
half an hour could be a good choice if the data
processing capacity is adequate.

Load control is often needed to cope with
sudden loss of power production or transfer
capacity. Then it is used instead of more
expensive production than in prescheduled
power dispatch. Only loads that can be
controlled at short notice can be reserved for
this purpose.

7. CONCLUSIONS

The cases described have different interfaces
i between the utility and its customer.
- Alternative principles of interaction are needed

depending on the characteristics of the loads
and control systems of the customers.
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