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Telecommunication networks and multifractal
analysis of human population distribution

Petteri Mannersalo* Antti Koskif Ilkka Norros?t

Abstract

Multifractal analysis is applied to the population distribution of
Finland. A relation between generalized g-dimensions and minimal
cable length needed to interconnect the whole population by a star
network is demonstrated. Furthermore, a cost estimate suitable for
dimensioning hierarchical networks is presented.

1 Introduction

Fractal properties of human population distributions have been studied for
several years. For example, it has been shown that in many countries their
population distribution exhibits multifractal scaling over a large range of res-
olutions [App96, Adj97]. Steve Appleby from British Telecom might be the
first to combine multifractal analysis of population distributions and telecom-
munication network planning [App94, App95]. Loosely speaking, his idea
was that in some minimizing problems solutions behave according to simple
power laws depending only on parameters related to scaling of a population
distribution.

After obtaining very accurate data about the population distribution of
Finland, we have examined whether Appleby’s results are valid in this case
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too. First we show that, indeed, the population distribution of Finland
exhibits multifractal scaling. Then we consider how to optimally build one-
layer star networks when the number of nodes is given. By combining the
results from the above topics, we show that the minimal cable length needed
to connect all the inhabitants of Finland as a function of number of nodes is a
linear function on a log-log scale with the slope equal to the reciprocal of the
box-counting dimension of the population distribution. This is exactly the
same result that Appleby found when studying the population distributions
of Great Britain and the United States. Finally, assuming that this relation
holds for all consecutive layers, we state a cost estimate that could be used
for dimensioning hierarchical star networks.

2 Multifractal analysis and fractal ¢-dimensions

The material needed to analyze discrete data is introduced in this section.
More comprehensive presentations are found, e.g., in [Fal90, Man88, Rie95]

Consider a compactly supported probability measure p sampled by a
mesh consisting of quadrants with diameter d. Let Iy denote quadrant (i, j)
at scale  and Ay = {Ig’j : /L(I;’j) > 0}, the set of non-empty quadrants. In
order to check whether multifractal scaling exists we calculate the partition
sum

Sil)= D u(’)",  qeR

I;’jGA(g

at different scales 6. If Ss(q) is a linear function of § in some region in a
log-log scale we say that the region in question is the scaling region and the
measure exhibits multifractal scaling there. Evidently, the partition sum is
influenced by the choice of origin for the quadrants, i.e., the position of the
grid relative to the distribution. Natural choice would be to place the origin
such that the partition sum is minimized. Nevertheless, usually the difference
is significant only if the quadrant size is about the same order as that of the
whole support.
The generalized ¢g-dimensions are determined as
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where

_ s 108 55(g)
7(q) = hgrl)lonfm.

In practical applications, this limit is unattainable and we need to approxi-
mate the partition function 7(¢) by solving the equation

log S5(q) ~ 7(¢) log § + const, (2)

for 7(¢) in the least square sense in the scaling region. After solving 7(q),
the corresponding generalized g-dimension is obtained by equation (1).
The case ¢ = 1 needs a bit extra care. First notice that

log S - -
lim 850 _ S~ (i) log (4 (129)) = —H,

=1 g—1 -
15’J€A5

where Hy is known as the Shannon information or entropy. Thus, instead of
equations (1) and (2), D(1) is found by solving

Hs ~ —D(1)logd + const

in the least square sense.
Another function characterizing scaling properties is the Legendre spec-
trum f;, which is also defined by 7(¢):

fir(a) = inf (g — 7(q)).

geR

Loosely speaking, f; measures asymptotic probability to observe a coarse
Holder exponent o when picking a quadrant at random: for self-similar mea-
sures

P(a(I5(x)) =~ «) ~ 5D(0)—fL(a),

where

_ log u(15(z))

a(ls(z)) = 2

is the coarse Holder exponent of a quadrant I5(x) containing point z. Thus,

the probability of observing any exponent « # «, with f1,(ag) = D(0), tends
to zero as the quadrant size gets smaller.
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Figure 1: The population distribution of Finland and a mesh of quadrants
of size 80 x 80 km?.
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Figure 2: Multifractal scaling of the population distribution of Finland. Par-
tition sum against quadrant size: on the left ¢ = —3, —2, —1 and on the right
qg=0,0.5,...,2.



2.1 Multifractal analysis of the population distribution
of Finland

The population distribution of Finland at resolution 0.5 x 0.5 km? was ob-
tained from Finnish Central Statistical Office. Multifractal scaling was tested
by calculating partition sums over resolutions 2/ x2¢ km?,i = —1,0,1,... , 11,
(see figure 2).

If q is non-negative, the scaling is good over all resolutions, besides few
largest ones. When using the resolutions of order 100 km or more, the fact
that the partition sums were calculated with the same fixed mesh origin
caused that the scaling was no more so fine.

At first glance, the partition sums calculated with negative values of ¢
seem to be also scalable. Unfortunately, this is only an illusion. When
considering the linear region, that is, resolutions from 0.5 km to 100 km,
the number of quadrants with few, say one or two, habitants inside remains
almost constant. On the other hand, behavior of the partition sum for neg-
ative ¢g-values is dominated by these quadrants. Thus 7(¢) is approximately
constant and multifractal scaling does not exist.
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Figure 3: Generalized ¢ dimensions and Legendre spectrum of the population
distribution of Finland.

Generalized ¢-dimensions were approximated from the log-log plots. The
values changed a bit depending on which resolutions were used in the least
square fitting, for example D(0) = 1.65 £ 0.05. The Legendre spectrum was



calculated using only positive g-values. The maximum of the spectrum was
obtained with oz &~ 1.65 and the corresponding value fr(a) ~ D(0).

3 Self-similar distributions and minimizing prob-
lems

3.1 Strictly self-similar measures

Consider a strictly self-similar set S related to an iterated function scheme
(IFS), i.e., a set that is invariant under a collection of similarities Gy, ... , Gy, :
R? — R?,

|Gi(x) = Giy)| = cilw —yl, (3)

where 0 < ¢; < 1. In other words, S satisfies the equation

For convenience, let the G;(S)’s be disjoint. Let py, ..., p, be positive num-
bers with Y " p; = 1. A self-similar measure y on S can be defined by
setting u(G;, o...0 Gy, (S)) = pi, -+ pi,-

Consider the problem of finding optimal placements for nodes r;, ¢ =
1,...,n, such that

f(ﬁ)(rla s arn) = .:I{lin {|X - ri|ﬁ} dM(X)a ﬂ € R+a (4)

R2 yees

is minimized. If we can solve this problem for n = 1 then an upper bound
for all n = m! is easily found. Denote fr(bﬁ) = min f#(ry,...,r,). Making a



change of variables and using definition (3) we get
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Though (5) is only an upper bound, it characterizes quite well the behav-
ior of f,(f ). Assume that the inequality holds for all integers n, i.e.,

logn

< 17 (Bl

where E,(c?) = >, pic?. Taking logarithm of both sides leads to the
inequality

5 loc E..(c? -
log {7 < Ong(mC) logn + log fl(ﬁ) = C(c, B) logn + const, (6)

which means that ﬁ(bﬁ) is majorized by a linear function on a log-log scale.
If p, = 1/m and ¢; = ¢ for all 4, then C(c,1) = loge/logm = —1/D(0),
where D(0) is the box-counting dimension of the set defined by similarities
Gi,i=1,...,m, satisfying |G;(z) — G;(y)| = ¢ |z —y|. In this case, (5) is an
equality. If the ¢;’s are identical, the left hand side of (5) reduces to f1 clﬁ,

so that the upper bound is insensitive with respect to p;’s.



3.2 An example: Sierpinski triangle

As a concrete example, also appearing in [App95], we consider a self-similar
distribution defined on a triangle. In this case, the similarities G;, i = 1, 2, 3,
are mappings that shrink a triangle by factor 0.5 and move it onto one of
the corners of the original triangle (see figure 4). Suppose that the mass is
evenly distributed, i.e, p; = 1/3, i = 1,2,3, and try to find the minimum
cable length needed to interconnect this population to a given number of
nodes; determine fﬁ” for arbitrary n.

If the population is served by one node, its position should be some-
what shown on the left in figure 5, and when the number of nodes is in-
creased by three, it is clear that the nodes should be placed at the same
location with respect to the half-size triangles as the single node was respect
to the full-size triangle. This means that increasing the number of nodes
by three decreases the total and average cable length by factor 0.5. Thus
fU n = 31 satisfies equation (6) with C/((0.5,0.5,0.5),1) = —log2/log3,
i.e., the total (weighted) cable length is a power law whose exponent is
log2/log3 = —1/D(0), the reciprocal of the box-counting dimension of the
Sierpinski triangle. In the case of figure 4, the upper bound given by inequal-
ity (5) has exactly the same power law.
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Figure 4. Three different resolutions of a self-similar measure defined on a
Sierpinski’s triangle. p; = 0.5, p» = 0.3 and p3 = 0.2.

3.3 Statistical self-similarity

The concept of a self-similar measure can be enlarged to statistically self-
similar random measures too. In this case the support of each realization
is distributed on a statistical self-similar set, and weights of each subset are
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Figure 5: Connecting a population distributed on a Sierpinski triangle.

defined by some randomized procedure. In practice, a test for statistical self-
similarity could be performed by testing the linearity of the partition sum
on a log-log scale.

4 One-layer star networks

Suppose that an arbitrary population distribution is given and we want to
determine the minimal cable length needed to interconnect all the inhabitants
by a one-layer star network with n nodes. The problem is to find the positions
and catchment areas for the nodes. Unfortunately, for general n no algorithm
that would surely converge to the global solution is known, and we are forced
to use some weaker methods.

4.1 Optimal way to place one node

Consider the problem of placing one node so that the following function is
minimized:

:/|r—x|5u(dx), g=1,2,
A

where r is the location of the node and p is a population mass distribution.
Using standard tools of the calculus of variations we find that the optimally
placed node satisfies:

g=1: /R I._Xu(dx):()

2 |I'—X|



B=2: /R2(r—x),u(dx):0.

One should notice that the solution for 4 = 1 is not always unique. For
example, if a mass is distributed into two points, the optimal placement of a
node is anywhere in between them.

If i is atomic, then the corresponding equations are

pzr_Xz .
Z Ir — x;| =0

sz‘ (I‘ - Xi) =0,

where p; is the proportion of the population located at point x;. In the case
B =1, an optimal placement is found by a fixed point iteration

_DiXi
r— Z |l‘ Xz‘ (7)
Z |r— xl\

and in the case § = 2, simply by calculating the center of mass

— %pgjz = Zpixi. (8)

When performing the fixed point iteration, a good initial guess is the
center of mass, that is, the solution for 4 = 2. In many cases the difference
between solutions of these two problems is small, so that only a few iterative
steps are needed. (In [App95], only § = 2 is used for simplicity.)

i

4.2 K-means algorithm

Our problem is to find the places of the nodes such that the total cable length
of each person from the nearest node is minimal. The problem of finding the
optimal placement for a large number of nodes for a given population is a
hard one. There are several clustering methods to approximate the density
centroids of a distribution, but the K-means algorithm [Sch92] is perhaps the
best known; it was used also in [App95]. In the K-means algorithm, nodes
are initially placed onto the map and the following calculations are repeated
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until the situation does not get sufficiently better: for each data vector (i.e.
here a person on the map) we search for the nearest node and the new nodes
are calculated as a mean vector of all the nearest data vectors of the old
node.

The K-means algorithm produces a reasonably good approximation of
the minimal squared length problem. However, the initial placement of the
nodes may affect the result considerably. Usually several initial placements
are calculated and K-means algorithms are performed and the best result is
chosen.

Though the K-means algorithm is designed to solve the squared length
problem, it can be used also in the minimal total length problem. As a
first approximation, the node placements given by K-means can be thought
as solutions for both problems. In many cases the difference between the
minimal total length and the total length given by the node positions chosen
by the basic K-means is only a few percents. The algorithm may be improved
by solving the fixed point problem (7) among persons having the same nearest
node at every step, and setting the new positions of the nodes according to
this. In numerical studies, the best results seem to be found when the basic
K-means is run for a while at the beginning and the improved version only
after that.

4.2.1 Choosing initial values

We have considered the following three possibilities for choosing the initial
placement of the nodes

e Uniform distribution
e Weighted distribution
e Neural network

In a uniform distribution each component is picked randomly and evenly
distributed between the minimum and maximum value.

In a weighted distribution the distribution of population is taken into
consideration. We may use either marginal distributions or the common
population distribution. We can for example pick randomly one person from
the population and place a node at that position, which weights the distri-
bution of nodes according to the population distribution
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A self-organizing neural network [Sch92] can also be used to determine
the initial placement of nodes. This method places the nodes also according
to the population distribution. The neural network uses a so called neigh-
borhood matrix to organize the nodes. The learning process resembles the
K-means algorithm but instead of updating each node with only the nearest
persons we update a larger neighborhood of nodes with a nearest person. In
the beginning of the learning the neighborhood radius is large (the diameter
of the matrix can be used) and it shrinks during the learning process so that
at the end of the process only individual nodes are updated.

From these initial placement methods we may conclude that the weighted
and the neural network methods work considerably better than placing the
nodes uniform-randomly onto the map. The neural network produces a
few percent better results than the weighted initial placement method, but
in some cases it performs worse than the simple weighted method, so we
may conclude that there is no significant difference using a simple weighting
method than a more complex weighting method.

4.3 Interconnecting inhabitants of Finland

The data about the population distribution of Finland was given at resolution
0.5x 0.5 km?, and no information about the distribution inside the quadrants
was available. We have approximated that all the inhabitants in a quadrant
live at the center of that. This approximation is the same as if we had first
constructed a star network with nodes placed at the center of each quadrant
and then tried to connect all these nodes to the upper layer.

First we consider how to optimally place an arbitrary number of nodes in
Finland. Using the equations (7) and (8), the center of mass and the minimal
cable length node were determined (see figure 6). In figure 7, the locations
of nodes determined by the improved K-means algorithm are shown. As
expected, their distributions follows nicely that of the population of Finland.

After determining the positions of the nodes, the corresponding cable
lengths were calculated. We consider two different cable lengths: weighted
cable length measuring the length of a link multiplied by the number of
persons served by the link, and unweighted length counting only the length
of a link without considering capacities. The exact definitions are given in
section 5. The minimal total weighted cable length and the corresponding
average cable length as functions of the number of nodes are both straight
lines on a log-log scale with the negative reciprocals of the gradient 1.60+0.05

12



Figure 6: The Finnish population distribution with resolution 4 x 4 km?, and
the center of mass node (upper) and the minimal cable length node (lower).
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Figure 7: Placements of n nodes with n = 1000, 100, 50.
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Figure 8: On the left, total weighted cable length and, on the right, the cor-
responding average weighted (lower) and unweighted (upper) cable lengths,
all plotted against number of nodes.

(figure 8) — approximately the same as the box counting dimension of the
population distribution of Finland! The average unweighted cable length
for the same locations of the nodes scales too but with a different scaling
parameter, the negative reciprocal of the gradient is 2.0 £ 0.05 in this case.

5 Hierarchical star networks

The next step in [App95] is to consider hierarchical star networks which are
built from bottom upwards, i.e., the number and locations of the nodes on
the lower layer are chosen without consideration of the upper layers of the
network. With this strategy, we need to handle only one layer at time. Thus
our problem is to determine the optimal number and positions of nodes on a
upper layer when the location of nodes on the previous layer are given. Our
reasoning and the final formula are a slightly different from those in [App95].

Consider two consecutive layers with the positions of nodes {t;, i =
1,...,N:} (lower) and {s;, i = 1,...,Ns} (upper). Denote by p(t;) and
p(s;) the fraction of the population served by nodes t; and s;, respectively.
Suppose that the number of nodes on the lower layer, Ny, is given and, fur-
thermore, that nodes t; are distributed in a statistically self-similar way. Let
Ly, be the minimal weighted cable length needed to interconnect a lower
layer to a upper layer via N, nodes, i.e.,

N
LNS :Z Z p(tj)d(siatj)a (9)
1=1 t;€V(s;)



where s;’s are optimally placed, d(s;,t;) is the length of the link between
nodes s; and ¢; and V(s;) is the set of nodes whose nearest node on the upper
level is s;, i.e., the Voronoi cell of node s;. The corresponding unweighted
average cable length ¢y, with the same s;’s as above is

KNS :Nitzs Z d(Si,tj). (10)

i=1 t;€V(s;)

By the numerical studies of the population distributions of Great Britain,
the United States and Finland, we may assume that these both obey power
laws!:

Ly ~ Llefl/D(U),

where D(0) is the box-counting dimension of the distribution of the lower
layer nodes, and

ly, ~ ONTYP"

where D* can be approximated from the log-log plot.
Suppose that the cost of the network satisfies following assumptions:

e Cost of a network is divided into costs of nodes and costs of links.

e Cost of a node is a fixed cost plus a cost proportional to the number
of people served:

Chode = f(5i) = ap + a1p(si).

e Cost of a link is the product of the length and a function depending on
its capacity, which again depends on the population served by it:

Ciime = d(si, t5)g(p(t;)) = d(si, t5) (b + bap(t;)).

Using the above assumptions and definitions (9) and (10), the cost of the
nodes on the upper layer is

N, N,
Chodes = Z f(si) = Z(ao +a1p(s;)) = ap Ns+ a4
i=1 i=1

!The validity of the latter claim is tested only with the population of Finland
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and the cost of the links is

Clinks = Z Z d(si, t5)g(p(t;))

i=1 t;eV(s;)
N, N
= b, D dlsit)+bi Y > plt)d(sit)
i=1 t;€V(s;) i=1 t;eV(s;)

- bOthNs + blLNs-
By the scaling assumptions the total cost is
C= C1nodes + Clinks ~ Qo Ns +a + bOthle_l/D* + blLle_l/D(O) (11)

and the optimal number of nodes on the upper level is found by minimizing
the previous equation with respect to Nj.

6 Concluding remarks

We have shown by numerical studies that the population distribution of Fin-
land has a scale-invariant structure and that the solution of the cable length
problem obeys a power law whose exponent depends on the box-counting
dimension of the population of Finland. This adds evidence to Appleby’s
results which indicate that this kind of relationship may be quite a general
one. Furthermore, the utilization of self-similarity in dimensioning problems
seems to be very promising. If one was able to construct a large toolbox
of easily applicable thumb rules for dimensioning hierarchical networks, it
would have great potential in higher level network planing problems.

Only an introductory treatment of the subject was presented in this re-
port. Possible future’s tasks could be, e.g,

to study effects of limited node capacities

to test numerically the accuracy of the cost estimate (11)

to consider more complex cost functions

to apply similar analysis to other network topologies than hierarchical
star network.
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