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Telecommunication networks and multifractalanalysis of human population distributionPetteri Mannersalo� Antti Koskiy Ilkka NorroszAbstractMultifractal analysis is applied to the population distribution ofFinland. A relation between generalized q-dimensions and minimalcable length needed to interconnect the whole population by a starnetwork is demonstrated. Furthermore, a cost estimate suitable fordimensioning hierarchical networks is presented.1 IntroductionFractal properties of human population distributions have been studied forseveral years. For example, it has been shown that in many countries theirpopulation distribution exhibits multifractal scaling over a large range of res-olutions [App96, Adj97]. Steve Appleby from British Telecom might be the�rst to combine multifractal analysis of population distributions and telecom-munication network planning [App94, App95]. Loosely speaking, his ideawas that in some minimizing problems solutions behave according to simplepower laws depending only on parameters related to scaling of a populationdistribution.After obtaining very accurate data about the population distribution ofFinland, we have examined whether Appleby's results are valid in this case�VTT Information Technology, P.O.Box 1202, FIN-02044 VTT, Finland. E-mail:petteri.mannersalo@vtt.�yVTT Information Technology, P.O.Box 1202, FIN-02044 VTT, Finland. E-mail:antti.koski@vtt.�zVTT Information Technology, P.O.Box 1202, FIN-02044 VTT, Finland. E-mail:ilkka.norros@vtt.� 1



too. First we show that, indeed, the population distribution of Finlandexhibits multifractal scaling. Then we consider how to optimally build one-layer star networks when the number of nodes is given. By combining theresults from the above topics, we show that the minimal cable length neededto connect all the inhabitants of Finland as a function of number of nodes is alinear function on a log-log scale with the slope equal to the reciprocal of thebox-counting dimension of the population distribution. This is exactly thesame result that Appleby found when studying the population distributionsof Great Britain and the United States. Finally, assuming that this relationholds for all consecutive layers, we state a cost estimate that could be usedfor dimensioning hierarchical star networks.2 Multifractal analysis and fractal q-dimensionsThe material needed to analyze discrete data is introduced in this section.More comprehensive presentations are found, e.g., in [Fal90, Man88, Rie95]Consider a compactly supported probability measure � sampled by amesh consisting of quadrants with diameter �. Let I i;j� denote quadrant (i; j)at scale � and �� = �I i;j� : �(I i;j� ) > 0	, the set of non-empty quadrants. Inorder to check whether multifractal scaling exists we calculate the partitionsum S�(q) = XIi;j� 2�� � �I i;j� �q ; q 2 Rat di�erent scales �. If S�(q) is a linear function of � in some region in alog-log scale we say that the region in question is the scaling region and themeasure exhibits multifractal scaling there. Evidently, the partition sum isin
uenced by the choice of origin for the quadrants, i.e., the position of thegrid relative to the distribution. Natural choice would be to place the originsuch that the partition sum is minimized. Nevertheless, usually the di�erenceis signi�cant only if the quadrant size is about the same order as that of thewhole support.The generalized q-dimensions are determined asD(q) = �(q)(q � 1) ; (1)2



where �(q) = lim inf�!0 logS�(q)log � :In practical applications, this limit is unattainable and we need to approxi-mate the partition function �(q) by solving the equationlogS�(q) � �(q) log � + const (2)for �(q) in the least square sense in the scaling region. After solving �(q),the corresponding generalized q-dimension is obtained by equation (1).The case q = 1 needs a bit extra care. First notice thatlimq!1 logS�(q)q � 1 = XIi;j� 2�� � �I i;j� � log �� �I i;j� �� = �H�;where H� is known as the Shannon information or entropy. Thus, instead ofequations (1) and (2), D(1) is found by solvingH� � �D(1) log � + constin the least square sense.Another function characterizing scaling properties is the Legendre spec-trum fL which is also de�ned by �(q):fL(�) = infq2R(�q � �(q)):Loosely speaking, fL measures asymptotic probability to observe a coarseH�older exponent � when picking a quadrant at random: for self-similar mea-sures P(�(I�(x)) � �) � �D(0)�fL(�);where �(I�(x)) = log�(I�(x))log �is the coarse H�older exponent of a quadrant I�(x) containing point x. Thus,the probability of observing any exponent � 6= �0, with fL(�0) = D(0), tendsto zero as the quadrant size gets smaller.3



Figure 1: The population distribution of Finland and a mesh of quadrantsof size 80� 80 km2.
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Figure 2: Multifractal scaling of the population distribution of Finland. Par-tition sum against quadrant size: on the left q = �3;�2;�1 and on the rightq = 0; 0:5; : : : ; 2.
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2.1 Multifractal analysis of the population distributionof FinlandThe population distribution of Finland at resolution 0:5 � 0:5 km2 was ob-tained from Finnish Central Statistical O�ce. Multifractal scaling was testedby calculating partition sums over resolutions 2i�2i km2, i = �1; 0; 1; : : : ; 11;(see �gure 2).If q is non-negative, the scaling is good over all resolutions, besides fewlargest ones. When using the resolutions of order 100 km or more, the factthat the partition sums were calculated with the same �xed mesh origincaused that the scaling was no more so �ne.At �rst glance, the partition sums calculated with negative values of qseem to be also scalable. Unfortunately, this is only an illusion. Whenconsidering the linear region, that is, resolutions from 0.5 km to 100 km,the number of quadrants with few, say one or two, habitants inside remainsalmost constant. On the other hand, behavior of the partition sum for neg-ative q-values is dominated by these quadrants. Thus �(q) is approximatelyconstant and multifractal scaling does not exist.
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Figure 3: Generalized q dimensions and Legendre spectrum of the populationdistribution of Finland.Generalized q-dimensions were approximated from the log-log plots. Thevalues changed a bit depending on which resolutions were used in the leastsquare �tting, for example D(0) = 1:65� 0:05. The Legendre spectrum was5



calculated using only positive q-values. The maximum of the spectrum wasobtained with � � 1:65 and the corresponding value fL(�) � D(0).3 Self-similar distributions and minimizing prob-lems3.1 Strictly self-similar measuresConsider a strictly self-similar set S related to an iterated function scheme(IFS), i.e., a set that is invariant under a collection of similaritiesG1; : : : ; Gm :R2 ! R2 , jGi(x)�Gi(y)j = cijx� yj; (3)where 0 < ci < 1. In other words, S satis�es the equationm[i=1Gi(S) = S:For convenience, let the Gi(S)'s be disjoint. Let p1; : : : ; pm be positive num-bers with Pmi=1 pi = 1. A self-similar measure � on S can be de�ned bysetting �(Gi1 � : : : �Gil(S)) = pi1 � � �pil .Consider the problem of �nding optimal placements for nodes ri, i =1; : : : ; n, such thatf (�)(r1; : : : ; rn) = ZR2 mini=1;::: ;n�jx� rij�	 d�(x); � 2 R+; (4)is minimized. If we can solve this problem for n = 1 then an upper boundfor all n = ml is easily found. Denote f (�)n = min f (�)(r1; : : : ; rn). Making a
6



change of variables and using de�nition (3) we getf (�)m = min f (�)(r1; : : : ; rm) � mXi=1 minri2R2 ZGi(S) jx� rij� d�(x)= mXi=1 minri2R2 ZS jGi(y)� rij� pi d�(y)= mXi=1 minri2R2 ZS jy�G�1i (ri)j� c�i pi d�(y)= minr12R2�ZS jy � r1j� d�(y)� mXi=1 c�i pi = f (�)1 mXi c�i pi:Respectively,f (�)ml � f (�)1 mXi1=1 � � � mXil=1 pi1 � � � pil c�i1 � � � c�il = f (�)1  mXi=1 pi c�i!l ; l = 0; 1; 2 : : : :(5)Though (5) is only an upper bound, it characterizes quite well the behav-ior of f (�)n . Assume that the inequality holds for all integers n, i.e.,~f (�)n � ~f (�)1 �Ep(c�)� log nlogm ;where Ep(c�) = Pmi=1 pic�i . Taking logarithm of both sides leads to theinequalitylog ~f (�)n � log Ep(c�)logm logn + log ~f (�)1 = C(c; �) logn + const; (6)which means that ~f (�)n is majorized by a linear function on a log-log scale.If pi = 1=m and ci = c for all i, then C(c; 1) = log c= logm = �1=D(0),where D(0) is the box-counting dimension of the set de�ned by similaritiesGi, i = 1; : : : ; m, satisfying jGi(x)�Gi(y)j = c jx�yj. In this case, (5) is anequality. If the ci's are identical, the left hand side of (5) reduces to f (�)1 cl�1 ,so that the upper bound is insensitive with respect to pi's.7



3.2 An example: Sierpinski triangleAs a concrete example, also appearing in [App95], we consider a self-similardistribution de�ned on a triangle. In this case, the similarities Gi, i = 1; 2; 3,are mappings that shrink a triangle by factor 0.5 and move it onto one ofthe corners of the original triangle (see �gure 4). Suppose that the mass isevenly distributed, i.e, pi = 1=3, i = 1; 2; 3, and try to �nd the minimumcable length needed to interconnect this population to a given number ofnodes; determine f (1)n for arbitrary n.If the population is served by one node, its position should be some-what shown on the left in �gure 5, and when the number of nodes is in-creased by three, it is clear that the nodes should be placed at the samelocation with respect to the half-size triangles as the single node was respectto the full-size triangle. This means that increasing the number of nodesby three decreases the total and average cable length by factor 0.5. Thusf (1)n , n = 3i, satis�es equation (6) with C((0:5; 0:5; 0:5); 1) = � log 2= log 3,i.e., the total (weighted) cable length is a power law whose exponent islog 2= log 3 = �1=D(0), the reciprocal of the box-counting dimension of theSierpinski triangle. In the case of �gure 4, the upper bound given by inequal-ity (5) has exactly the same power law.

Figure 4: Three di�erent resolutions of a self{similar measure de�ned on aSierpinski's triangle. p1 = 0:5, p2 = 0:3 and p3 = 0:2.3.3 Statistical self-similarityThe concept of a self-similar measure can be enlarged to statistically self-similar random measures too. In this case the support of each realizationis distributed on a statistical self-similar set, and weights of each subset are8



Figure 5: Connecting a population distributed on a Sierpinski triangle.de�ned by some randomized procedure. In practice, a test for statistical self-similarity could be performed by testing the linearity of the partition sumon a log-log scale.4 One-layer star networksSuppose that an arbitrary population distribution is given and we want todetermine the minimal cable length needed to interconnect all the inhabitantsby a one-layer star network with n nodes. The problem is to �nd the positionsand catchment areas for the nodes. Unfortunately, for general n no algorithmthat would surely converge to the global solution is known, and we are forcedto use some weaker methods.4.1 Optimal way to place one nodeConsider the problem of placing one node so that the following function isminimized: f(r) = ZA jr� xj��(dx); � = 1; 2;where r is the location of the node and � is a population mass distribution.Using standard tools of the calculus of variations we �nd that the optimallyplaced node satis�es: � = 1 : ZR2 r� xjr� xj�(dx) = 09



� = 2 : ZR2 (r� x)�(dx) = 0:One should notice that the solution for � = 1 is not always unique. Forexample, if a mass is distributed into two points, the optimal placement of anode is anywhere in between them.If � is atomic, then the corresponding equations are� = 1 : Xi pi(r� xi)jr� xij = 0;� = 2 : Xi pi (r� xi) = 0;where pi is the proportion of the population located at point xi. In the case� = 1, an optimal placement is found by a �xed point iterationr = Pi pixijr�xijPi pijr�xij ; (7)and in the case � = 2, simply by calculating the center of massr = Pi pixiPi pi =Xi pixi: (8)When performing the �xed point iteration, a good initial guess is thecenter of mass, that is, the solution for � = 2. In many cases the di�erencebetween solutions of these two problems is small, so that only a few iterativesteps are needed. (In [App95], only � = 2 is used for simplicity.)4.2 K{means algorithmOur problem is to �nd the places of the nodes such that the total cable lengthof each person from the nearest node is minimal. The problem of �nding theoptimal placement for a large number of nodes for a given population is ahard one. There are several clustering methods to approximate the densitycentroids of a distribution, but the K-means algorithm [Sch92] is perhaps thebest known; it was used also in [App95]. In the K-means algorithm, nodesare initially placed onto the map and the following calculations are repeated10



until the situation does not get su�ciently better: for each data vector (i.e.here a person on the map) we search for the nearest node and the new nodesare calculated as a mean vector of all the nearest data vectors of the oldnode.The K-means algorithm produces a reasonably good approximation ofthe minimal squared length problem. However, the initial placement of thenodes may a�ect the result considerably. Usually several initial placementsare calculated and K-means algorithms are performed and the best result ischosen.Though the K-means algorithm is designed to solve the squared lengthproblem, it can be used also in the minimal total length problem. As a�rst approximation, the node placements given by K-means can be thoughtas solutions for both problems. In many cases the di�erence between theminimal total length and the total length given by the node positions chosenby the basic K-means is only a few percents. The algorithmmay be improvedby solving the �xed point problem (7) among persons having the same nearestnode at every step, and setting the new positions of the nodes according tothis. In numerical studies, the best results seem to be found when the basicK-means is run for a while at the beginning and the improved version onlyafter that.4.2.1 Choosing initial valuesWe have considered the following three possibilities for choosing the initialplacement of the nodes� Uniform distribution� Weighted distribution� Neural networkIn a uniform distribution each component is picked randomly and evenlydistributed between the minimum and maximum value.In a weighted distribution the distribution of population is taken intoconsideration. We may use either marginal distributions or the commonpopulation distribution. We can for example pick randomly one person fromthe population and place a node at that position, which weights the distri-bution of nodes according to the population distribution11



A self-organizing neural network [Sch92] can also be used to determinethe initial placement of nodes. This method places the nodes also accordingto the population distribution. The neural network uses a so called neigh-borhood matrix to organize the nodes. The learning process resembles theK-means algorithm but instead of updating each node with only the nearestpersons we update a larger neighborhood of nodes with a nearest person. Inthe beginning of the learning the neighborhood radius is large (the diameterof the matrix can be used) and it shrinks during the learning process so thatat the end of the process only individual nodes are updated.From these initial placement methods we may conclude that the weightedand the neural network methods work considerably better than placing thenodes uniform-randomly onto the map. The neural network produces afew percent better results than the weighted initial placement method, butin some cases it performs worse than the simple weighted method, so wemay conclude that there is no signi�cant di�erence using a simple weightingmethod than a more complex weighting method.4.3 Interconnecting inhabitants of FinlandThe data about the population distribution of Finland was given at resolution0:5�0:5 km2, and no information about the distribution inside the quadrantswas available. We have approximated that all the inhabitants in a quadrantlive at the center of that. This approximation is the same as if we had �rstconstructed a star network with nodes placed at the center of each quadrantand then tried to connect all these nodes to the upper layer.First we consider how to optimally place an arbitrary number of nodes inFinland. Using the equations (7) and (8), the center of mass and the minimalcable length node were determined (see �gure 6). In �gure 7, the locationsof nodes determined by the improved K-means algorithm are shown. Asexpected, their distributions follows nicely that of the population of Finland.After determining the positions of the nodes, the corresponding cablelengths were calculated. We consider two di�erent cable lengths: weightedcable length measuring the length of a link multiplied by the number ofpersons served by the link, and unweighted length counting only the lengthof a link without considering capacities. The exact de�nitions are given insection 5. The minimal total weighted cable length and the correspondingaverage cable length as functions of the number of nodes are both straightlines on a log-log scale with the negative reciprocals of the gradient 1:60�0:0512



Figure 6: The Finnish population distribution with resolution 4�4 km2, andthe center of mass node (upper) and the minimal cable length node (lower).
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Figure 7: Placements of n nodes with n = 1000; 100; 50.13



1 5 10 50 100 500

1. · 10
8

1.5 · 10
8

2. · 10
8

3. · 10
8

5. · 10
8

7. · 10
8

1. · 10
9

1.5 · 10
9

2. · 10
9

2 5 10 20 50 100

2

5

10

20

50

100

200

Figure 8: On the left, total weighted cable length and, on the right, the cor-responding average weighted (lower) and unweighted (upper) cable lengths,all plotted against number of nodes.(�gure 8) { approximately the same as the box counting dimension of thepopulation distribution of Finland! The average unweighted cable lengthfor the same locations of the nodes scales too but with a di�erent scalingparameter, the negative reciprocal of the gradient is 2:0� 0:05 in this case.5 Hierarchical star networksThe next step in [App95] is to consider hierarchical star networks which arebuilt from bottom upwards, i.e., the number and locations of the nodes onthe lower layer are chosen without consideration of the upper layers of thenetwork. With this strategy, we need to handle only one layer at time. Thusour problem is to determine the optimal number and positions of nodes on aupper layer when the location of nodes on the previous layer are given. Ourreasoning and the �nal formula are a slightly di�erent from those in [App95].Consider two consecutive layers with the positions of nodes fti; i =1; : : : ; Ntg (lower) and fsi; i = 1; : : : ; Nsg (upper). Denote by p(ti) andp(sj) the fraction of the population served by nodes ti and sj, respectively.Suppose that the number of nodes on the lower layer, Nt, is given and, fur-thermore, that nodes ti are distributed in a statistically self-similar way. LetLNs be the minimal weighted cable length needed to interconnect a lowerlayer to a upper layer via Ns nodes, i.e.,LNs = NsXi=1 Xtj2V (si) p(tj)d(si; tj); (9)14



where si's are optimally placed, d(si; tj) is the length of the link betweennodes si and tj and V (si) is the set of nodes whose nearest node on the upperlevel is si, i.e., the Voronoi cell of node si. The corresponding unweightedaverage cable length `Ns with the same si's as above is`Ns = 1Nt NsXi=1 Xtj2V (si) d(si; tj): (10)By the numerical studies of the population distributions of Great Britain,the United States and Finland, we may assume that these both obey powerlaws1: LNs � L1N�1=D(0)s ;where D(0) is the box-counting dimension of the distribution of the lowerlayer nodes, and `Ns � `1N�1=D�s ;where D� can be approximated from the log-log plot.Suppose that the cost of the network satis�es following assumptions:� Cost of a network is divided into costs of nodes and costs of links.� Cost of a node is a �xed cost plus a cost proportional to the numberof people served: Cnode = f(si) = a0 + a1p(si):� Cost of a link is the product of the length and a function depending onits capacity, which again depends on the population served by it:Ci;jlink = d(si; tj)g(p(tj)) = d(si; tj)(b0 + b1p(tj)):Using the above assumptions and de�nitions (9) and (10), the cost of thenodes on the upper layer isCnodes = NsXi=1 f(si) = NsXi=1 (a0 + a1p(si)) = a0 Ns + a11The validity of the latter claim is tested only with the population of Finland15



and the cost of the links isClinks = NsXi=1 Xtj2V (si) d(si; tj)g(p(tj))= b0 NsXi=1 Xtj2V (si) d(si; tj) + b1 NsXi=1 Xtj2V (si) p(tj)d(si; tj)= b0Nt`Ns + b1LNs:By the scaling assumptions the total cost isC = Cnodes + Clinks � a0 Ns + a1 + b0Nt`1N�1=D�s + b1L1N�1=D(0)s (11)and the optimal number of nodes on the upper level is found by minimizingthe previous equation with respect to Ns.6 Concluding remarksWe have shown by numerical studies that the population distribution of Fin-land has a scale-invariant structure and that the solution of the cable lengthproblem obeys a power law whose exponent depends on the box-countingdimension of the population of Finland. This adds evidence to Appleby'sresults which indicate that this kind of relationship may be quite a generalone. Furthermore, the utilization of self-similarity in dimensioning problemsseems to be very promising. If one was able to construct a large toolboxof easily applicable thumb rules for dimensioning hierarchical networks, itwould have great potential in higher level network planing problems.Only an introductory treatment of the subject was presented in this re-port. Possible future's tasks could be, e.g,� to study e�ects of limited node capacities� to test numerically the accuracy of the cost estimate (11)� to consider more complex cost functions� to apply similar analysis to other network topologies than hierarchicalstar network. 16
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