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Abstract

Recent measurement studies have shown that the burstiness of packet
traffic is associated with long-range correlations that can be efficiently mod-
eled by terms of fractal or self-similar processes, e.g., fractional Brownian
motion (FBM). To gain a better understanding of queuing and network-
related performance issues based on simulations as well as to determine
network element performance and capacity characteristics based on load
testing, it is essential to be able to accurately and quickly generate long
traces from FBM processes. In this paper, we consider an approximate
FBM generation method based on the concept of bisection and interpola-
tion, which is an improvement of a much used but inaccurate method known
as the random midpoint displacement (RMD) algorithm. We further extend
our new algorithm (referred to as RMD,,,) to be able to generate FBM
traces without a priori knowledge of the length of the simulation (i.e., on-
the-fly generation), instead of being a pure top-down generation (that is,
the entire trace has to be generated first before it can be used) like the
original RMD algorithm. We present the mathematical and numerical as-
pects of the RMD,,,,, algorithm as well as compare it with two other widely
favored FBM generation methods, i.e., the fast Fourier transform (FFT)



method and the method based on aggregating a large number of ON-OFF
sources with infinite-variance sojourn times.

Keywords: fractional Brownian motion, self-similar traffic generation, ran-
dom midpoint displacement.

1 Introduction

Recent measurement studies (see for example |7, 10, 18]) have shown that the
burstiness of packet traffic is associated with long-range correlations than can be
efficiently modeled by terms of fractal or self-similar processes, e.g., fractional
Brownian motion (FBM). Fractional Brownian motions were included in the tool-
box of statistical models by Mandelbrot and Van Ness [13], the first applications
being in economy and hydrology. Later, these processes have been used in many
other fields, including generation of artificial landscapes [12] and, more recently,
teletraffic modeling [15]. However, the generation (or simulation) of FBMs has
remained somewhat non-trivial since it is practically impossible to build large
FBM samples precisely using a sequence of independent standard Gaussian ran-
dom variables as the basic random elements. This paper presents a conceptually
simple FBM generation algorithm which can reach practically arbitrary accuracy
without sacrificing too much computation efficiency.

A normalized FBM with self-similarity parameter H € (0, 1) is a stochastic
process (Z;);>o characterized by the following properties:

(i) Z; has stationary increments;
(ii) Zp =0, and EZ; = 0 for all ¢;
(i) EZ} = 21 for all ¢;

(iv) Z; is Gaussian;
(v) Z; has continuous sample paths.

Ordinary Brownian motion is obtained as the special case with H = 1/2. The
existence of such a process was established by Kolmogorov [8] in the Hilbert space
framework. In [13], the process was defined more constructively as an integral
with respect to ordinary Brownian motion:

Zy— 7y = cH{ /t(t—u)H%qu (1.1)
o) an



The normalization EZ? = 1 is achieved with

e = \/2HF(3 — H)/(T(H + %)F(z — 2H)),

where I' is Euler’s Gamma function. The single most important property of a
FBM is its statistical self-similarity: the processes Z,; and aff Z; have the same
path space distribution for any « > 0. In particular, the correlation structure is
the same in all timescales. For H # 1/2, this implies that the correlations do
not die out in the same way as most processes used in statistical modeling, for
example the finite order autoregressive processes. Thus, it is in general not a good
idea to generate a long sequence of successive increments of a FBM using either
an exact (too heavy) or truncated (eventually exponential decay of correlation)
autoregressive scheme.

The exact generation of long FBM traces is infeasible in practice due to
the amount of storage and CPU time required (consider, for example, the di-
mensionality of the covariance matrix of the sequence of FBM increments, and
the difficulty of generating a sequence that exactly conforms to this correlation
structure). For example, skillful use of matrix algebra allows the FBM simulation
program of FRACLAB (a toolbox for signal processing with fractals developed
in the FRACTALES team at INRIA Rocquencourt, France) to generate exact
FBM sequences of length 10*, but the algorithm slows down dramatically if
longer sequences are required.

Therefore, well understood and efficient approximate algorithms become de-
sirable, especially for generating long traces for the purpose of network perfor-
mance testing, simulation and analysis. Several approximation algorithms have
been proposed, which include:

e 3 fast but ad hoc method suggested by Mandelbrot that is based on short
memory approximation [11];

e queuing based methods such as a method based on the M /G /oo queue length
with Poisson arrivals and heavy-tailed service time [4];

e transform methods based on inversely transforming known FBM coefficients
in the transformed domain, these include methods based on the fast Fourier
transform [17] and the wavelet transform |1, 5, 21, 20];

e aggregation methods based on aggregating a large number of single source
models such as models based on chaotic maps [19], ON-OFF model with
infinite-variance sojourn times [22], and AR(1)-processes with the AR(1)
parameters chosen from a beta-distribution on [0,1] with shape parameters
p and ¢q [6].



e bisection methods based on generating points of the process path “top-
down” by properly interpolating from the existing points.

The last group includes, as the simplest case, random midpoint displacement
(RMD), which has traditionally been identified as a method appropriate for fast
but somewhat inaccurate FBM generation. It gives realizations with roughly the
right self-similarity parameter, but the correlations behave in a non-stationary
manner. Lau et al. found it, however, quite suitable for the generation of simu-
lated data traffic [9], at least to the extent that the generated traces are quali-
tatively satisfactory. In [14], a one step further conditionalized version of RMD
was proposed, and it was found quite satisfactory for most needs.

The main idea behind the algorithm proposed in this paper is to apply the
same principle of bisection, but to achieve arbitrary accuracy at minimal com-
putation and storage costs. Moreover, the algorithm can be modified to produce
long accurate FBM traces on-the-fly instead of being a pure top-down algorithm,
with moderate memory requirements and high computational efficiency. Here,
the term on-the-fly means that traces are generated without a priori knowledge
of the length of the simulation; in pure top-down algorithms, the entire trace
has to be generated first before it can be used. This on-the-fly capability greatly
improves the usability of the proposed generation method in simulation and load
testing that requires long traces such as the ATM environment with its stringent
QoS objectives and high capacities.

This paper is organized as follows. The algorithm and some mathematical
aspects are studied in Section 2. Numerical studies on the accuracy of the al-
gorithm are presented in Section 3.1; an outline of our implementation and the
computation complexity is given in Section 3.3; and comparison with two other
widely favored algorithms, i.e., the FF'T and the aggregation methods, in terms
of their accuracy and time complexity is presented in Section 3.2. Finally, the
paper is summarized in Section 4.

2 The Conditionalized Random Midpoint Displace-
ment Algorithm

In this section, we first describe an exact construction for a FBM. Then we
introduce our RMD,,,, algorithm and describe an extension of the algorithm to
enable generation of FBM traces on-the-fly. Finally, covariances of approximate
traces are studied.



Figure 2.1: Ordering of the intervals in the binary construction.

2.1 The Full Binary Construction

Let Iy, Iy, I3, . .. denote dyadic subintervals of (0, 1], numbered as shown in Figure
2.1. For any i, denote by X; the increment X; = Z;, — Z,,, where I; = (a;, b;].
Further, let e(i) and v(i) be the i-vector and scalar, respectively, defined by

e(i)[Xi, Xi 15, X1]" = B[Xip | Xi, X1, X0,
v(i) = Var [X;11 | X4, Xi1, ..., X4].
Finally, denote U; = X; = Z; and
Uit1 = (Xip1 — e(d)[Xi, Xio1,. ., X1]T) /V/0(), i=1,2,...

The above relations establish a 1—1 mapping between the sequence X1, Xo, ... of
FBM increments and the sequence Uy, Us, ... of mutually independent standard
Gaussian random variables. It can be considered as one of the many interesting
orthogonalizations of a FBM. (For a very different kind of orthogonalization, see
[16].) By the continuity of Z, the mapping (U1, Us,...) — (X1, Xo,...) extends
to an almost everywhere defined map ¥ : RN — C[0,1] such that

v (U,Us,...)=Z.
We note the following monotonicity properties:
Proposition 2.1 The mapping
(w1, u2) — U(uy,us,us,...)

is increasing in the set of sequences (uy,us,us,...) such that the right hand side

is defined.



Proof 1t is enough to note that the coefficients of U; and Uy are positive in
the representation of any Z; in the orthogonal basis {Uj, Us, ...}. The coefficient
of Uy is simply Cov (Z;, Z1), which is positive for ¢ > 0. Since Uy = (Z1/, —
Z1/2)/y/v(1), the coefficient of Uy is

Cov (Z;,Uz)  Cov (21, Z1)2) — 5Cov (2, Z1)
Var (Us) v(1)Var (Us) '

It is easy to check that the nominator is positive for ¢ € (0,1), with a maximum
at t = 1. |
2

On the other hand, the whole mapping W is not monotone. For example,
increasing Uz while keeping the other U;’s fixed decreases Z3 4.

2.2 Basic Algorithm

By truncating the exact construction described in the previous section, we now
construct an approximate FBM realization (Z(t) : t € [0,1]) with parameter
H € (0,1). Note that using the property of self-similarity, Z(¢) can be scaled
onto an interval of any desired length. First, we set Z(0) = 0 and draw Z(1)
from the standard Gaussian distribution. The conditional distribution of Z(3)
given Z(0) =0 and Z(1) is then N($2(1), 272 — 1), Thus, we can next draw
Z (%) from this distribution.

In principle, this bisecting (or halving) process could be continued using exact
conditional distributions. However, the dimension of the multivariate Gaussian
distribution grows by each new additional point, and it quickly becomes necessary
to restrict the number of previously drawn points that are used in conditioning.
In the traditional RMD algorithm, conditioning is made only on the increments
of the interval to be halved. In the version proposed in [14], we additionally
conditionalized on the increment of the left neighboring interval. This idea is
further extended in the present version to conditionalize on a fixed finite number
of already generated left and right neighboring intervals.

To be more precise, let us fix two integers m > 0 and n > 1. We shall
conditionalize on (at most) m neighboring increments to the left of the interval
to be halved and on (at most) n neighbor increments to the right of the interval
to be halved, including the “mother” interval itself. Thus, we can call our algo-
rithm RMD,,,,, so that the conventional RMD is just RMDyg; and the algorithm
presented in [14| is RMDy ;.

Let {Uik ci=0,1,...; k=0,...,20"1 — 1} be a set of independent stan-
dard Gaussian random variables. Denote X;; = Z(j-27%) — Z((j — 1) - 27%),



i =0,1,2,..., 5 = 1,...,2%. (Note the different numbering of the intervals
compared to the previous section!) We define the FBM generation algorithm re-
cursively. Assume that we have obtained the values up to stage i — 1 (resolution
27-11). We then draw X1, X;2,... as follows:

Since X; 251 + Xj2; = X;_1, it is sufficient to generate X; ; for odd j. Let
us proceed from left to right, and assume that X;,...,X; 2 have already been
generated (k € {0, 1,...,20°1 — 1}) Now, we can choose

Xigk+1 = (6, k) [Xi ohmit)vis-- > Xizks XicLhtts - Xi 1 (hrnyrzici] -
Vol B Usg, 21)
where e(i, k) is a row vector such that
e(i, k) [Xi ohmi1)vis - > Xigks Xiclkt1s - Xio 1 (kpnynzici] -
= E [Xiges1 | Xi@homtt)vis- - Xigks XioLht1s s Xit (knyr2i-1](2.2)
and v(i, k) a scalar defined by
(i, k) = Var [Xiopq1 | Xi2b-ma)vis- s Xizks Xio Lkt o> Xio1 (ktn)n2i-1] -

The vector e(%, k) and the number v(i, k) are computed by the standard formulae
for multivariate Gaussian distributions as follows. Denote by I';; the covariance
matrix

Tit = Cov ([Xikt1, Xi(2h-mi1)vis- > Xigks Xi Lktire» Xio1 (bnyazi-1]) s

where
Cov(zy,z1) Cov(zi,z2) --- Cov(zy,zy)
Cov (o, ...1]) = Cov(a':g,xl) Cov(a':g,xg) Cov(a?g,xn) ’
Cov(zp,z1) Cov(xn,z2) -+ Cov(zy,zy)

and split it as

Lix =

Var (X;¢41) Ty ]

(2.1) (2:2)
Uik Uik
Then ) det T
. - : et [y
e(i,k) =\1? (732 v(i k) = ——
) 7 ? (272)
( ) det I';,



By the stationarity of the increments of Z and by self-similarity, e(7, k) is inde-
pendent of ¢ and k& when 2k > m and k < 2°! —n. Moreover, it depends on i
only when 2¢ < m + 2n.

On the other hand, the number of the true covariance matrices, when running
up to the stage i = [log(m +2n)],is 1+2+22+... +271 =20 — 1 < 2m +4n.
Thus, less than 2m + 4n vectors e(i, k) need to be computed. The same holds
for the scalars v(i, k), except that “independence with respect to i” is replaced
by scaling a constant factor 2721%,

In the case m = n = 1, the only special case is k = 0, that is, the first
splitting for each %, which is then made according to the rule of the usual RMD.
For all the other ¢ and k£, we need only one weight vector e and one conditional
variance, which are computed as

-1 det I’ o
e =112 (p(2,2)> . Var [Xioert | Xiok Xic1pa1] = TG o 2Hi
where
. F(l 2) 1 22H71 -1 22H71
- [ 21 p@2) ] = | 221 1 3(3°1 =221 —1)
sy s 92H—1  L(32H _2H _ 1) 92H
2

2.3 On-the-Fly RMD,,,, Generation

Without the on-the-fly generation capability, performance simulation of FBM
queues with long synthetic input traces cannot be achieved. This is especially
important in network environments where Quality-of-Service (QoS) objectives
are stringent such as the case in ATM.

At the first sight, the RMD,,,,, algorithm looks unsuitable for generating FBM
“on-the-fly”, which could be a requirement of a synthetic traffic generator for the
purpose of simulation and load testing, e.g., to determine the queuing behavior
and performance of ATM switches. However, the basic algorithm described in
the previous section can be extended to have such a capability because of the
following observation: it is not necessary to generate the splits in exactly the
same order as above. That is, instead of completely generating each resolution
before moving to the finer one, we can have several unfinished resolutions at the
same time.

An “on-the-fly” FBM generation algorithm may be constructed so that after
the interval [0,2'6] is generated with resolution 6, the trace is “expanded” to the
interval [0,2/71§]. Naturally, the algorithm slows down after each “expansion”,
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Figure 2.2: Running the RMD,,,, algorithm over an interval and the on-the-fly
version. The order of the splits is shown under the axis.

but if we generate the increments in an appropriate order, the speed of the slow-
down is only logarithmic. The appropriate way is to choose the new increment
to be as left as possible, i.e., the interval under consideration must have n — 1
(or all) nearest intervals on the right hand side of the same size as the mother
interval. In addition to these intervals, m (or all) nearest intervals on the left,
whose length is same as the new interval, are taken into account in conditioning.
(The algorithm could be still improved by counting, whenever it is possible, m
neighboring intervals from the left; if there do not exist m intervals of the same
size as the new interval, take m intervals as large as possible. For example,
in the first step in figure 2.3, Z(160) — Z(89) would be drawn conditioned on
Z(80) — Z(40) and Z(40) — Z(0).) Denoting

Yij=2(j-20) - Z((j —1)-2%), i=0,1,..., j=12,..., (2.3)

where § is the desired resolution, then similar relations as in equation (2.1) can
be written. The enlargement is defined by

Yii=EYi1|Yici1] + \/Var Yii | Yici1] Uin = e(i, 1)Y;_11 + /o(3,1) Uiy

and increments on the inner intervals by

. _ T
Yiokr1 = €(i, k) [Yi h1—m)vis-- > Yi2ks YitLk+1s - - - Vi1, (km)ANis1]



+\/ U(’i, k) Ui,ka

where N;;1 is the last generated increment on the resolution 2!, One should
notice that in the “on-the-fly” case the order of the splits depends on the param-
eter n, while in the basic algorithm it is always the same (see figure 2.2).

I | 2
] /
0 o0 25 45 80 160

| | | 5 |

AR R ! |
0 & 2% 45 80 164

| || || || |
I I I 2 I |

] |

0 o0 2 45 8% 165

Figure 2.3: Conditionalizing the “on-the-fly” generation algorithm with m =n =
2. The line segments above the axis correspond to the intervals (i.e., increments)
to be counted in the conditionalizing.

The critical aspect in the “on-the-fly” generator, related to the speed of the
slowdown, is the memory usage. Assume that we have generated the interval
[0,7] with the resolution ¢ and the trace is enlarged to [0,27]. In order to
generate Z (T + ) we need either m or all the nearest values from each resolution
on the left, i.e, all the values from the resolutions T', T'/2, T'/4, ..., [T/m] and
m nearest values from the resolutions d, 26, 40, ..., |T//m] need to be stored.
Summing up the number of the needed values from the left, we get

T m T
Hron =1+1+2+4+.. +208m 4 <log2(§) — [log, m]> 2 = mlOgQ(E)-
From the right we must keep all the generated values in the memory. The rule of
choosing an interval to be split guarantees that there can never exist more than
n + 1 intervals of the size 20 and n intervals of the coarser resolutions (if n is

even, then the worst possible case is n intervals of the size 20 and n — 1 intervals
of the coarser resolutions), i.e.,

T T
H#right < 1 +nlogy (%> < nlogQ(E), n > 1.

10



Moving towards the point 27" decreases #ighy and increases #ief;, nevertheless,
the latter is bounded by mlog,(27'/6). Thus, by a clever memory manage-
ment one can generate simulation traces on the interval [0,27"] with less than
mlogy(27/0) + nlogy(T/0) values of the trace stored at a time. For example,
to generate a one-day simulated trace with the resolution of one millisecond and
m =n = 2 we need only about one hundred memory locations.

2.4 Exact Covariances of RMD;; and RMD,

For the usual RMDy 1, the true covariances of the simulated process can be easily
determined. Indeed, given the increments X; and X; on two disjoint intervals
I; and I;, the further evolution of the simulation inside these intervals proceeds
independently. If I;; is either half of I; and I is either half of I}, then we have

Cov (Xi’an’) = Cov (%Xl + \/U(i, - 1)Ui’a %X] + ’U(j’ - 1)U]/>

1
= ZCOV (Xz, X]) .
Iterating this, we see that the correlation coefficient of the increments X;, X; on
two intervals of equal size is
Corr (X;, X;) = kN =VCH=2)Corr (Z,, Zy — 7)) = 2KENEH=2)(92H—1 _ 1),

where k(%, j) is the number of generation steps from I; and I; up to their closest
common ancestor. The covariance matrix

F(i) — COV[Xi,la Xz',27 s aXi,Qi]

can be computed by a simple rule: start with ['©) = [1] and proceed from I'(?)
to ['(+1) by replacing each diagonal element of fyj(-;) of '™ by the 2 x 2 matrix

—2H 1 —2H
'y(-i-) [ 2 53— 2 ]
JJ 1 —2H —2H
53— 2 2

and each non-diagonal element 'y(.i) (7 # k) by the 2 x 2 matrix

J

The matrix I'®) is shown in Figure 2.4. The true covariance matrix, shown in
the next figure, is thus approximated by “terrace architecture”.

e Ll Lo
e Ll Lo
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Figure 2.4: The 32 x 32 covariance matrix of RMDg ;. H = 0.9.
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Figure 2.5: The true 32 x 32 covariance matrix of FGN. H = 0.9.
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When m > 0 and/or n > 1, computation of the exact covariance matrix of
the RMD,,,, process is more complicated, since the dependence of increments is
not restricted to the common ancestor type, and each split corresponds to a less
trivial extension of the covariance matrix than by RMDyg ;. We have derived this
in the next simplest case RMD1 ;. The 32 x 32 matrix is shown in Figure 2.6.
Note that the asymmetricity of the algorithm causes a strange, robust look of
the surface.

Figure 2.6: The 32 x 32 covariance matrix of RMD; ;. H = 0.9.

Let us have a closer look at some correlations. First, note that RMDg ; gives
the variances of the dyadic increments X; exactly right, whereas RMD1 ; doesn’t
— see Figure 2.7. We see an interesting fractal shape. The behavior of these
curves remains to be further investigated and is beyond the scope of this paper.

3 Evaluation of RMD,,,

We have coded a prototype program (http://www.vtt.fi/tte/tte23/cost257/)
for generating approximate FBM traces for a given interval with RMD,,,,. The
program is written in C and, in addition to the standard C-libraries, it uses the
random number library Ranlib and the matrix algebra library Meschach, both
available via Netlib (http://www.netlib.org/).

As a starting point, we show in Figure 3.1 synthetic traces generated by

13
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Figure 2.7: The diagonals of the 32 x 32 and 1024 x 1024 covariance matrices of
RMD;y 1, each normed by the true FGN value. H = 0.75.

RMD; 3 with input H = 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. We can see that, as the H
value increases, the traces indeed become more and more (long-term) correlated
(shown as a low frequency fluctuation in the figure). In contrast, the trace for
H = 0.5, corresponding to independent increments, does indeed resemble white
noise. Thus, the RMD,,,, algorithm generates traces that qualitatively resemble
FBM. We next provide a quantitative assessment of the RMD,,,, algorithm and
compare it with other widely favored approaches such as the method based on
the fast Fourier transform (referred to as the FFT method) [17] and the method
based on aggregating a large number of ON-OFF sources with infinite-variance
sojourn times |22| (referred to as the aggregation method).

3.1 Accuracy Analyses

3.1.1 Variations in the Sample Path

As an internal check of the accuracy of the algorithm with different values of m
and n, we rely on the algorithm being very accurate when m and n are large, and
choose the trace Z(t) calculated with parameters H = 0.8, m = 50 and n = 25
as a reference trace. Differences between this and simulations with parameters

14



50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

5000 10000 15000 20000 0 5000 10000 15000 20000

5000 10000 15000 20000 0 5000 10000 15000 20000

H=0.95

40

30

20

10

5000 10000 15000 20000 0 5000 10000 15000 20000

Figure 3.1: Synthetic traffic traces generated by RMD .
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(m=0,n=1), (m=2,n=2),and (m = 6,n = 4) are shown in figure 3.2. Note
that all the simulations are performed with same values of the random number
generator. Omne way to measure the error is to consider absolute values of the
differences of the increments. An error function may be defined as

N -
Ek:1 |Xk - Xk|
N =
Ek:l |Xk|

i.e., relative error in the £,-norm, where X}, = Z(t;,) — Z(tj_1) and Xj, = Z(ty) —
Z(t;_1). The observed values of the error function with different trace lengths
and parameters m and n are shown in table 3.1. It seems to be quite obvious that
there is no need to require more than a few, in this case four, nearest neighbors
in order to get a good simulation trace. The other remarkable fact observed is
that the length of a trace does not play any significant role in the error. The

reason for that is, of course, the self-similarity of fractional Brownian motion.

error = ,

Length of trace
212 214 216 218

m=0 |n=1]0.2138 | 0.2203 | 0.2256 | 0.2286
m=2 |n=2|0.0126 | 0.0128 | 0.0131 | 0.0132
m=4 | n=3]0.0055 | 0.0055 | 0.0056 | 0.0056
m=06 | n=4]0.0028 | 0.0028 | 0.0028 | 0.0028
m=8 | n=2>5|0.0020 | 0.0019 | 0.0019 | 0.0018
m =10 | n =6 | 0.0014 | 0.0015 | 0.0014 | 0.0013

Table 3.1: Relative £1-error as a function of trace length

3.1.2 Hurst Parameter

We next provide an assessment of the method by evaluating the difference be-
tween the target (input to the method) and the output Hurst parameters. The
evaluation is performed by randomly generating 100 traces (for each target Hurst
parameter) and estimate the output Hurst parameter based on the wavelet esti-
mation method [3, 2| which has been proven to be unbiased and robust (against
deterministic trends, for example). These 100 estimates for each target Hurst
parameter value are then averaged and plotted on Figure 3.3 against 16 choices
of (m, n) pairs ranging from (0, 1) (ordinary RMD) to (20, 10). The estimation
is set up so that the 95% confidence intervals are the same for all the cases we
simulated.

16
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Figure 3.2: Differences between the reference trace (m = 50,n = 25) and traces
(m=0,n=1), (m=2,n=2) and (m = 6,n =4).
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Figure 3.3: Comparing the estimated Hurst parameters of the traces generated
by the RMD,,,, algorithm and the target Hurst parameter values.
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We can see that in general the quality of the traces is quite good, i.e., the
Hurst parameters of the simulated traces are close to the target values, and as
expected as the m and/or n increase, the quality of the generated traces improves.
Note that traditional RMD produces traces with too low Hurst parameter, and
the same holds, to lesser extent, for RMD,,,,, when m and n are very small, with
one surprising exception: with m = 1 and n = 2, the Hurst parameters of the
synthetic traces are extremely close to the target values.

3.2 Comparison with Other Methods

In this section, we compare the RMD,,,, algorithm with two other popular gen-
eration methods: the fast Fourier transform (FFT) method (note that a version
of the FFT method was proposed in the ATM Forum as a method to generate
synthetic self-similar traffic traces) and the method based on aggregation of ON-
OFF sources with heavy-tailed sojourn times. The comparison is based on the
time complexity and the quality of the generated traces in terms of the matching
between the Hurst parameter values of the synthetic traces and their targets.

The left panel of Figure 3.4 demonstrates the quality of the FFT method by
depicting the difference of the average Hurst parameter estimates of 100 gen-
erated traces and their target values against the target Hurst parameter value.
The right panel shows the same figure-of-merit for the RMD; o algorithm. We
can see that in terms of the Hurst parameter estimates of the generated traces,
these two algorithms are quite comparable.

For the aggregation method, we found that the Hurst parameter value of the
generated trace is close to its target value asymptotically, i.e., when the time
scale is large. However, the convergence to the asymptotic result (i.e., the target
Hurst value) may be slow. This is demonstrated in Figure 3.5 which shows the
variance-time plot [10] of a trace generated based on the aggregation method
with a target Hurst parameter value of 0.5. We see that the Hurst parameter
estimate is only close to 0.5 (i.e., parallel to the dotted line) when the time
scale is sufficiently large. This issue could potentially hinder the use of the
aggregation method in practice. (Note that the theory states that aggregation
in time and space (i.e. number of sources) with proper normalization is required
for the convergence to FBM to take place, thus the discussion here relating to
the quality and complexity of the aggregation-based method needs to be taken
with care. However, one needs to be aware of the trade-off between accuracy and
time-complexity with the need for large aggregations (both in space and time)
when using the aggregation-based method.)

The comparison of the time complexity of these three algorithms (for gen-
erating a synthetic trace with 2'7 points) are depicted in Figure 3.6, with the
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Figure 3.5: Variance-time plot of a trace generated by the aggregation method

with target Hurst parameter value of 0.5.

20



left panel showing the computation time in seconds against the length of the
generated trace and the right panel showing time against the length of the gen-
erated trace in logarithmic 2 base. We see that the time of generating a synthetic
trace for all three algorithms increases linearly with the length of the trace, with
RMD; » slightly faster than the FFT method, and both are much faster than
the aggregation method. (All three algorithms were coded in C and no efforts
have been attempted to optimize the codes; therefore, the difference in the ab-
solute computational time may be debatable.) Note that the time complexity of
the aggregation method depends on the number of sources and the target Hurst
parameter value. The curve shown here is for a target Hurst parameter value of
0.7 and 30 aggregated ON-OFF sources. Furthermore, the aggregation method
was originally suggested in the context of a parallel computing architecture [22],
where the method can be easily implemented simply by multiplexing. When
using the FFT or RMD,,,, algorithms, it is not so clear whether the benefit of
parallelizing is as large as in the aggregation-based methods.
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Figure 3.6: Comparing the time complexity of the FF'T method and the RMD »
algorithm.

3.3 Implementation Issues and Computational Complexity

The main structure of our implementation and some statistics about runtime are

presented in this section.
Because the covariance matrices I';, are needed at each step of the algorithm

and, furthermore, they are independent of 4 if multiplied by the scaling term
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27217 it is natural to calculate them in the beginning. Equivalently to (2.2) we

-1
(i, k) = iy (p?)

have

and
det I';,

det ng’m

where the last equivalence is due to simple manipulations of matrices. Because

-1
v(i, k) = = Var(X;o41) — I (FEi’”) i,

FEZ’z) is a symmetric matrix, we can solve e(i, k) and v(7, k) using the Cholesky
method. (If m and n are small enough, e(i, k) and v(7, k) can be solved exactly,
e.g., with Mathematica; thus, if one knows beforehand that neither large m nor
large n are needed then it is maybe better to use the exact covariance matrices.)
After initialization of e(i, k) and v(i, k), carrying through the FBM simulation
is only a matter of generating random numbers and performing simple matrix
algebra.

Runtime as a function of trace length and conditionalizing parameters is
shown in table 3.2. The real runtime varied from one second to one minute
demonstrating that the algorithm is really a fast one. The difference in runtime of
the traces with different m and n is mainly due the time spent in the initialization
— the bigger the covariance matrix the slower the Cholesky method. After solving
e(i, k) and v(i, k), the simulation runs about same speed for all n and m not too
big, say, smaller than 30.

Conditionalizing Length of trace
212 215 218 221

parameters
m=0 [n=1 0.02 | 0.04 | 0.26 | 3.39
m=4 |n=3 0.02 | 0.04 | 0.26 | 3.40
m=10 | n==6 0.02 | 0.05 | 0.27 | 3.42
m=20|n=12 0.07 | 0.10 | 0.32 | 3.49
m=30|n=20 0.28 | 0.32 | 0.53 | 3.70

Table 3.2: CPU time in seconds elapsed when simulating FBM in a HP
9000/J210XC workstation.

4 Conclusions

In this paper, we considered an approximate FBM generation method, RMD,,,,
based on the concept of bisection and interpolation, which is a generalization
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of the ordinary random midpoint displacement (RMD) algorithm. We further
modified RMD,,,, to be able to generate FBM traces on-the-fly. We discussed
both mathematical and numerical aspects of RMD,,, as well as compared it
with two other methods widely favoured in generating FBM traces for teletraffic
modeling purposes: the fast Fourier transform (FFT) method and the method
based on aggregating a large number of ON-OFF sources with infinite-variance
sojourn times.

One should notice that the fair comparison between different methods is a
very difficult task while all approximate generation methods have their pro’s and
con’s. By choice of the aspects to compare, almost any method can be oversold.
Our comparison is strictly based on the criteria mentioned in this paper, and
other criteria, such as the need to demultiplex the trace into different individual
traffic streams, may need to be considered in the choice of the appropriate traffic
generation method in practice.

We have made the following observations:

e the time complexity of all three algorithms grows linearly with the desired
trace length,;

e the aggregation method requires a couple of orders of magnitude of time
periods to converge to the asymptotic results, and is therefore much slower;

e the FFT method is comparable to the RMD,,,, algorithm in terms of quality
and time complexity, however, the FFT method is strictly a top-down
algorithm, that is, the whole trace has to be generated before it can be
used in any application;

e the RMD,,, algorithm gives quite satisfactory results both in terms of the
trace quality as well as the computational efficiency, in addition to the
ability to generate synthetic traces on-the-fly, and thus, in our opinions, is
a better choice for the FBM traffic generation among the three.

e it is possible to design algorithms based on some other techniques (e.g.
wavelets), which are superior to RMD,,,, in some aspects, but outperform-
ing the simplicity of the RMD,,,, algorithm may be difficult.

As a final remark, we note that it is straightforward to generalize RMD,y,
to produce good traces of any centered Gaussian process Y with stationary in-
crements and a variance function v(t) = EY,2. The only difference to our case
is that without self-similarity, one has to generate the needed multiplier vectors
and constants for each resolution separately, which increases memory require-
ments and the duration of the initialization phase. When this has been done,
the generation algorithm runs as fast as in our case.
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