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Busy periods of fractional Brownian storage:
a large deviations approach

Ilkka Norros
VTT Information Technology
P.O.Box 1202, 02044 VTT, Finland
ilkka.norros@utt.fi

Abstract

A storage with constant service rate and fractional Brownian input is
considered. It is shown how large deviation asymptotics of the buffer occu-
pancy and the ongoing busy period can be obtained applying a generalized
Schilder’s theorem. The crucial point of the method is to identify the “most
probable path” satisfying some criterion. Whereas this turns out to be very
simple in the case of achieving a given buffer occupancy, the case of achiev-
ing a given length of the ongoing busy period remains an open problem.
Instead, tight bounds are obtained in this latter case.

1 Introduction

A teletraffic model based on fractional Brownian motion (“fractional Brownian
traffic”) and a corresponding storage system (“fractional Brownian storage”) were
introduced in [5]. The stationary storage level distribution of this system has
been studied in several papers ([2, 7, 3, 4]) giving increasingly accurate estimates
of its tail behaviour.

The present paper might be the first one where such an analysis is attempted
on the distribution of a busy period of fractional Brownian storage. Our technical
framework here is the theory of large deviations in path space of a Gaussian
process. The inspiration for doing this came from reading the recent book by A.
Shwartz and A. Weiss [10]. It deals, however, only with Markovian systems, and
the general theory must in our case be taken from the world of general Gaussian
processes.

The problem of describing long busy periods of the fractional Brownian stor-
age was raised in [6] in the following context. There is lot of evidence that a



self-similar correlation structure is a reasonable choice for a simplified model of
data traffic. If the traffic to a particular link additionally comes from a large num-
ber of sources, traffic fluctuations can be assumed Gaussian, and the aggregated
traffic can be modelled by fractional Brownian traffic. However, when a heavily
loaded link is considered, the Gaussian variation is distorted, since sources using
end-to-end control protocols like TCP or ABR can adjust their rates so that the
aggregated rate roughly equals the link capacity over long periods. Huge queues,
predicted by FBM-based theory, cannot be observed — the buffer sizes of real
systems are limited. Instead, we can see very long busy periods on heavily loaded
Internet links, international ones in particular.

It was suggested in [6] that, in the situation described above, one could
still apply fractional Brownian traffic modelling. Indeed, one can think that the
corresponding “free traffic”; i.e., what the sources would transmit if the link speed
would not be a restriction, would sum up to self-similar Gaussian traffic, and that
there is indeed a wvirtual huge queue, which is distributed among the sources and
thus not directly observable. The busy periods of the heavily loaded link, on the
other hand, remain unchanged, in the ideal case at least. Thus, the fractional
Brownian storage could be used to explain and to predict the behaviour of a
heavily loaded link also when the buffer in front of it has only moderate size and
the sources obey some rate control which keeps the losses low.

The formulation of the mathematical problem is as follows. Let (Z;)icr be
a standard fractional Brownian motion (FBM) with self-similarity parameter
H € (0,1), that is, a centered Gaussian process with stationary increments and
variance EZ? = |t|*f. We always choose a version with continuous paths. (For
the theory of FBM, see, e.g., Section 7.2 of [9].) Let us define the normalised
fractional Brownian storage as the process

Vi =sup(Z, — Z, — (t — s)).
s<t

V is a non-negative stationary process. Its path can be thought of as consisting of
excursions from 0 to the domain of positive values and back. Asin the thoroughly
studied Brownian case (the special case H = 1/2), the random set of ¢ such that
Vi = 0 is an uncountable set of Lebesgue measure zero, and one cannot speak
about the distribution of a “typical” excursion like one can speak about a typical
busy period in an ordinary queue. (Although each path consists of a countable
number of excursions, there are “too many” small excursions, and there is never
(a.s.) such a thing as “the next” excursion.) Note also that the excursions are
not independent when H # 1/2. It seems that little is known about them in the
non-Brownian case.

Although there is no probability distribution for a “typical excursion” picked



randomly from the set of all excursions, the excursion going on at a particular
time t is a well defined random object. By stationarity, its distribution is the
same for all ¢, and we can focus at the excursion or, in the storage terminology,
busy period containing time 0.

In addition to more standard facts about FBM, we make use of Theorem
1.1 below which gives an explicite orthogonalization of FBM. This result has
turned out to be very useful in many contexts. For a detailed presentation and
references to earlier similar results, see [8]. Let H # 1/2, and define a process
M as

t
M; = ¢ / séfH(t—s)%fdeS, (1.1)
Jo
where
3 17!
e1= [2HD(G ~ H)I(H+3)|

and I'(-) denotes the gamma function.

Theorem 1.1 The centered Gaussian process M has independent increments
and is thus a martingale. Its variance function is

EM? = 31> 21

where

cy = (H(QH —1)(2-2H)B(H — % 2 — 2H)> ;

=

and B(u,v) denotes the beta function

1
B(u,v) = / 21— z) e =
0
Moreover, EZ,M; = s for 0 < s <t.

This result is easiest to understand in a Hilbert space framework. Let G
denote the Gaussian space of Z, that is, the L? closure of linear combinations
of random variables Z;. The integral (1.1) can be defined as an L? limit. Doing
this, one in fact constructs a new Hilbert space Ly by extending Z; — 11
to an isometry from G to Lp. The Gaussian random variable M; is then the
counterpart of the function w(t,-) € Lr defined by

w(t, s) = clséfy(t - s)%fﬁl(o,t)(s). (1.2)

A central role is played below by a third Hilbert space, the reproducing kernel
Hilbert space of Z. Its isometry with G and the last statement of Theorem 1.1



turn out to be surprisingly useful when considering busy periods of fractional
Gaussian storage (Proposition 3.1 below).

The paper is organized as follows. The general large deviation results applied
here are resumed in Section 2. Some basic “most probable paths” are identified
in Section 3. The main result is derived in Section 4. Since we have only
considered the normalised storage process, the result is also formulated for a
system with arbitrary traffic and capacity parameters in Section 5. In Section
6, we indicate how the large deviations asymptotics of the storage occupancy
distribution (that is, the stationary distribution of V') can be obtained with the
path space approach, with the “typical path” to high occupancy as a by-product.
We compare the large deviation estimate with simulation results in Section 7.
Some final remarks are made in Section 8.

2 Large deviation principle for fractional Brownian
motion
Let us first specify the framework of the generalized Schilder’s theorem of [1] in

our case. We shall use this framework throughout the paper. Denote by 2 the
function space

t t
0= {w : w continuous R — IR, w(0) =0, w(t) li w(t) = 0} .

im = lim
t—oo 1 + ‘t‘ t——occ 1 + ‘t‘
Equipped with the norm

jw(®)]

w = su
follo = sup { 1200

D te IR} ;
Q) is a separable Banach space.

We choose 2 also as our basic probability space by letting P be the unique
probability measure on the Borel sets of €2 such that the random variables
Zi(w) = w(t) form a normalised fractional Brownian motion with some fixed
self-similarity parameter H. The covariance function of Z is denoted by

T(s,t) = = (|s|* + [t —|s — t|*), s,t € R.

N | =

The reproducing kernel Hilbert space R related to Z is a space of functions IR, —
IR which is defined by letting the mapping

Zt = F(ta )



span an isometry from the Gaussian space of Z, i.e. from the smallest closed
linear subspace of L?(Q, Bq, P) containing all the Z;’s, onto R. The relation

<F(37 ')7 F(ta ))R = F(S, t)

is generalized to the useful reproducing kernel property:

(f.T(t )r=1f(t), [feR (2.1)

To see the basic relationships between R and €2, let f be any linear combination
of any finite choice of functions I'(s;,-). Then (2.1) holds for f and, by Cauchy-
Schwarz,

1"

‘<f11—‘(t7 )>R‘ < sup ||f||RHF(t7 )”R — Hf”RSUP

fllo = sup <sup ——————— :
111 tem L+t teR. 1+t ter 1+ ]

We see that all elements of R are continuous functions, R is a subset of €2, and
the topology of R is finer than that of €.
Next we define two families of linear transformations on R. First, set

T I'(t,) =T (t+s,-) —T'(s,-)

for any s € IR and extend 74 by linearity and continuity to all f € R. Second,
for any a > 0, let

(0af)(t) = a” " f(at).

Lemma 2.1 All tranformations 15 and o, are automorphisms of R. Moreover,
they have the group properties T,7y = Teyy and 0,08 = Tag.

Proof The automorphism property of 75 follows from the fact that Z has
stationary increments. The automorhism property of o, follows from the self-
similarity of Z. The group properties are easy to check. O

Let us now turn to the large deviations. It is straightforward to check that
(Q, R,1d, P), where Id denotes the natural embedding of R into (2, is a Wiener
quadruple as defined on p. 88 of [1]. Then, theorem 3.4.12 of [1] gives the
following generalized Schilder’s theorem for fractional Brownian motion:

Theorem 2.2 The function I : @ — [0, o],

I(w) = (2.2)

o0, otherwise,

{ Hwll, if we R,



1s a good rate function for the centered Gaussian measure P and satisfies the
large deviations principle:

1 7Z
for F' closed in Q2 : limsup —logP (— € F) < — inf I(w);
n—o0 n \/ﬁ weF

1 7
for G open in Q : liminf —logP <— € G) > — inf I(w).
n—00 n \/ﬁ weqd@
For any set A C €, denote I(A) = inf,ca I(w). We call a function f € A
such that I(f) = I(A) < oo a most probable path of A. The following explanatory
passage shows that a most probable path can be intuitively (remember that there

is no counterpart to Lebesgue measure on §2!) understood as a point of maximum
likelihood.

Motivation from the finite-dimensional case

Since the above framework is somewhat difficult to understand at the first sight,
a reader unfamiliar with it can obtain some insight from the finite-dimensional
case. Consider a finite-dimensional centered Gaussian vector X = (X,..., Xy)
with non-singular covariance matrix I'. The density function of X is

g(x) = const - e 3@ ', (2.3)

Now, the expression & "I~ 'a is in fact the square of a norm in IR?. Indeed, write
I'=[I'y,...,T'4]. Since I' in non-singular, the vectors I'; are linearly independent
and thus form a (non-orthogonal) basis of IR%. Define an inner product (-,-)p in
IR? by setting

(I‘,;,I‘j)R = FU = EX,X]

and extending it by linearity to all € = Z'li a;T";. Now,

d d
|7 = <Z a;l';, Z aiFi> =a'Ta=z"T"z, (2.4)
i=1 i=1 R
so that the density function can be written as

g(x) = const - e3llzl% (2.5)

The “kernel” I' has the reproducing property

d

(:c, Fj)R = Z aiFij = Tj- (2.6)
i=1



This implies that the conditional expectation of X, when some of its com-
ponents are known, is closely related to the R-norm. Indeed, consider the con-
ditional distribution of X on the condition {X; =y}. Since the conditional
distribution is Gaussian, its expectation is at the point of highest probability
density, and by (2.5), the task is to minimize the norm |||z in the set {z; = y}.
But by the reproducing kernel property (2.6), the condition can be written with
the inner product as

(@, Ti)r =y

Thus, the task is to minimize the norm when the inner product with a fixed
vector is given. The solution is of course found in the subspace Sp {I';}, i.e.

z=B[X|X; =y = —IIFg-/HQ .
illR
More generally, the conditional expectation of X given that X;, = z;,,..., X;, =
, is the linear combination of [';,,...,T;, which satisfies (z,T';;)r = =;; for
j =1,...,k. Finding the conditional expectation requires only solving a linear
equation of order k.

3 Most probable paths of fractional Brownian motion

In this section, we consider the simplest optimization problems in the space R.
These facts turn out to be very useful in the study of busy periods.

The first question is about the “most probable path” to reach a value z > 0
at a time ¢ > 0, i.e., we want to minimize ||f||r in the set

D(t,s) = {f € R: f(t)=x}.

Now, by the reproducing kernel property (2.1), the condition f(f) = x can be
written in the form (f,T'(¢,-))g = x. Obviously, the solution f* with smallest

R-norm is
T

I, t)F(t, ).

One can hardly visually distinguish f* from a straight line from the origin to
(t,z). For the busy period problem it is, however, important to note that
f*(t/2) = z/2 and f* has an S-form for H > 1/2 and a mirrored S-form for
H < 1/2. Figure 3.1 shows the difference f*(t) — ¢ in the case t = z = 1,
H =0.75.

The next step is to find the “most typical path” with fixed values a and b at
two points s < t, respectively. As in the previous case, the solution is a linear

/=



0.01 I'(1,t)-t

0.005

-0.005

Figure 3.1: The difference I'(1,¢) — ¢ in the case H = 0.75.

combination of the basic functions: f* = ul'(s,-) + vI'(¢,-). Denoting

O [(s,s) I(s,t)
S st Tt |

so that
7 T(s,)
1 )
Further, we have
Ifllz ={f, flr=la b]F[s,t}F[s,t}F[s,t} [ b ] =[a b]F[syﬂ [ b ] . (3.2)
In the “excursion” case b = 0, ¢ = 1, we have the particularly simple formula
a2

*(12 __
||f HR - F(S,S) _ F(LS)Q'

Since Z has stationary increments, we have
5 1 1 1 9
L(t,t) —T(t1)° = 3 v(t) +o(l —t) — 3 5(1}(73) —o(l—1)° ],

where v(t) = ['(t,£). This is symmetric with respect to the point ¢t = 1. Figure
3.2 shows the “typical path” for H = 0.5, 0.9 and 0.2. We see three clearly
different temperaments!



Figure 3.2: Typical forms of excursions of fractional Brownian motions to the
value 1 and back, with H values 0.5, 0.9 and 0.2 (from top).



Later we shall also need the solution to the following optimization problem:
find the path f € R with smallest R-norm satisfying f(¢) = ¢ for ¢ € [0,1].
Since its solution is less trivial than the previous examples, we formulate it as
a proposition. The result is a by-product of Theorem 1.1 which was briefly
discussed in Section 1.

Proposition 3.1 The element of
J={feR: f(t)=tVte][0,1]}

with the smallest R-norm, say x, is the counterpart of the random variable My,
defined in (1.1), in the isometry Z; — U(t,-) from the Gaussian space of Z onto
R. In particular, ||x||r = co, where ¢y is the constant defined in Theorem 1.1.

Proof  First note that x € J since, by the reproducing kernel property and
Theorem 1.1,
X(f) = (X,F(t, )> =EMZ; =1t Vte [07 1]

Second, x belongs to the closed linear subspace R|y ) generated by the functions
I'(¢,-), t € [0,1], since the corresponding fact holds for My by (1.1). For any
function g € J, the reproducing kernel property implies that the orthogonal
projection of g on Ry j is x and, consequently, |gllr > |Ix||r- O

Remark 3.2 The function y has the explicite expression

x(s) = w(1, %)F(l,s) — /2 (s, t)w'(1,t)dt — /_I(F(s,t) —T(s,1))w'(1,¢) dt,

1
0 2

where w(1,t) was defined in (1.2). This can be found by applying integration by
parts to (1.1) and changing to the space R.

Remark 3.3 The following table summarizes some isometry counterparts in the
Gaussian space G and in the function spaces Lp and R. (The spaces G and Ly
and the function w(1,-) were defined in Section 1.)

L+ | ¢ | R
L, Z I'(t,)
w(l,-) M, X

10



4 Path approach to asymptotics of storage occupancy
distribution

For any path w € 2, we define the corresponding storage level path

vi(w) = sup(w(t) — w(s) = (t = s)).

s<t

Since |w| grows slower than linearly at infinities, vy(w) is finite for every w € .
By busy periods of v;(w) we mean its positive excursions, that is, intervals [a, b]
such that v (w) > 0 for ¢ € (a,b) and v,(w) = vp(w) = 0. The busy period
containing 0 is defined as

[a(w),b(w)] = [sup{t <0: v (w) =0}, inf{t>0: v (w) =0},

if a(w) < 0 < b(w), otherwise the system is considered non-busy at time 0 (which
happens in our case only with probability 0). Note that we have

w(t) —wl(a(w)) >t —a(w) fort e (a(w),b(w)). (4.1)
Denote by
Kr={weQ: a(w) <0< bw), bw) —alw) >T} (4.2)

the set of paths for which the busy period containing 0 is strictly longer than 7.
It is easy to see that Kt is an open subset of {2. The following proposition, a
direct consequence of the self-similarity of Z, indicates how Schilder’s theorem
can give estimates of P (Z € Kr) for large T.

Proposition 4.1 For T > 0 and the set K7 C Q as defined in (4.2), we have

7
P(ZeKp)=P WEK] .
Proof
P(ZeKr) =P ((Fa<0,b>(a+T)": Z,—Z, >t —aVte (a,b))

P
=P(3a<0,b>(a+1)": Zpy— Zpg > Tt —Ta Vt € (a,b))
P

(E|a<0 b> (a+1)": T2, — Z,) >t — a Vit € (a,b))

T] 7 EK1>

I
N

11



Thus, we obtain a large deviations lower bound by minimizing I(f) = %||f||%?
for f € K1 N R. Denote for s <t

Q(s.t) ={weQ: wt) —w(s) >t—s}, Q(s,t)= [) Qs,u).
u€(s,t)

Then
Kj:LHQW&ﬂ:s<0<Lt—s>1}

To get the large deviations upper bound result, we also have to consider the
closed set K.

Proposition 4.2

E:U{Q*(s,t): s§0§t,t7521}, (4.3)

and
Q*(s,t) ={w: w(u) —w(s) >u—sVue (st)}. (4.4)

Proof  We first prove (4.4). The inclusion “C” is obvious. To show “D”, let
w be an arbitrary element of the set at the right hand side. Then wy(u) =
w(u) + ((u At) — )T /n defines a sequence in Q*(s,t) such that w, — w.

Let us then prove the inclusion “2” of (4.3). Taking into account (4.4) and
its proof, it remains to show that any path w € Q*(0,¢) can be approximated by
a sequence wy such that w, € Q*(—1/n,t) and ||w, —wl|/q — 0. Such a sequence
can be defined simply by

1 1 1
o) —w(—) =L u<
wp(u) = u, ue (_1’0]’
n
w(u), u > 0.

Finally, we show “C” of (4.3). Let w € K; be arbitrary. There exists a
sequence w, € Kj such that ||w, — w| = 0. For each n, choose s, and t,, such
that w, € Q*(sp,t,) and t, — s, > 1. First note that the sequences s, and t,
must be bounded. Indeed, using the condition wy,(t,) — wn(sn) > t, — Sp, and

the definition of || - ||, we can deduce that
w(t tn 14 s w(s S
(n) Z n ‘ n| ( n) ‘ n| 7”&)7(‘)””9 7”&)7&)””9.
T4ty = L4ty L4t, \1+]|sn| 1+ s

Since w(u)/(1 + |u|) — 0 when u — oo, the right hand side would obtain larger
values than the left hand side if either of the sequences were unbounded. Thus,

12



we can pick a subsequence such that there exist finite limits s,, — so and
tn, — too. Obviously o — 500 > 1.
Now, the fact that w € Q* (80, txo) follows by taking limits in the inequality

Wny, (“‘) — Wny (an) >u— Sny s
which holds for every u € (8o, too) for k sufficiently large. 0

It is no big surprise that the closure does not matter in I(Q*(0, 1)), as shown
in the next proposition.

Proposition 4.3 I(Q*(0,1)) = I(Q*(0,1)).
Proof It is sufficient to show that I(Q*(0,1) N R) > I(Q*(0,1) N R). Take any

f€Q*0,1)NR and let x € R be as in Proposition 3.1. Then f+ex € Q*(0,1)
for every € > 0, and
If + exlz = Iz ase—0,

which proves the claim. O

Next we show that it is sufficient to consider paths on the interval [0, 1]. (Note
that this means that the huge difference between an on-going and an arbitrary
busy period, discussed in the Introduction, vanishes in the large deviations limit.)

Proposition 4.4
1. N
I(Ky) = §lnf{||f||§z= feQ(0,1)N R}
and )
1K) = sinf { |71 : feQ@ONR}.
Proof We have to show that

I(Ky) = S<0<1t{1ffs>1feggfs,t)I(f) = I1(Q"(0,1)).

By the reproducing kernel property (2.1) and Lemma 2.1,
1(Q%(s,1)) = Emf{llfll?zr feR, (f.T(u,)r—(f.T(s,))r >u—s,

Yu € (s,t)}

St {Iflk: e R, (F.rl(u))p>u Yue (0.6 5)}

= st {lr o fl: S € R {r ol Nr > u Yue (01 5)}
= Q01 %)),

13



Thus, I(K;) = inf,~1 I(Q*(0,u)). Since u — I(Q*(0,u)) is increasing, it suffices
to note that for any f € Q*(0,1) and n > 0 there is a number u, > 1 such that
f+1x€Q*(0,u,) (cf. the proof of Proposition 4.3).

Thanks to Proposition 4.2, the proof for Kj is similar, except for replacing
certain strict inequalities by non-strict ones. O

We can now state our main result.
Theorem 4.5

. 1 .
i gy log P (Z € Kr) = —1(Q7(0,1)).

1 12
The number I1(Q*(0,1)) is 1/2 for H = 1/2 and lies in the interval (5, %2) for
H #1/2, where cg = co(H) is the number given in Theorem 1.1.

Proof  We have shown everything except the bounds for 7(Q*(0,1)). First,
I(Q*(0,1)) < ¢3/2 because (1 + €)x € Q*(0,1) for every e. On the other hand,

1(Q°(0,1)) = 1(Q(0,1)) = I(T'(1,+)) = 5. (4.5)

For H = 1/2, we have ¢3(1/2) = 1. It remains to assume H # 1/2 and show
that the interval in the assertion is open.

Consider first the left endpoint. Here the essential observation is that the set
Q*(0,1) is convex (by the way, note that K is not convex!) and the level sets
of I are strictly convex and compact. Since I'(1,-) € Q*(0,1) (by (4.4) and the
fact illustrated in Figure 3.1), the lower bound in (4.5) must be strict.

Finally, we show that the bound ¢3/2 can be improved by finding a function
1 € R such that () > 0 for ¢t € [0,1] and ||x + ¥|r < |[x|r. Let t € (0,1)
and denote by 1 (t;-) the function with minimal R-norm satisfying (¢;¢) = 1,
(t; 1) = 0, identified in Section 3. As shown there, it has the expression

1
['(t,t) — T'(1,1)2 (

P(t;) = I(t,-) =T, HI(,) .

Now,
t—TI(1,1%)
t:-))r =
<X7¢( 3 )>R F(t,t) - F(l’t)Q’
which is negative when ¢t > 1/2 for H > 1/2 and negative when ¢ < 1/2 for
H <1/2. Fixany t € (1/2,1) if H > 1/2 and any ¢t € (0,1/2) if H < 1/2. Since

the minimum of

Ix + ap(t: )% = lIxl% + 200, 9(8: ) v + a®9(5: ) I, (4.6)

14



with respect to a is obtained with

W —T(1,t) —t >0, (4.7)

I + at (& )17 < lIxI%- H

Substituting (4.7) into (4.6), we can further minimize with respect to ¢ and
find that the minimal norm is obtained with

(t —T(1,1))?
C(t,t) — T(1,%)2 }

t = argmin, { (4.8)
Further, this approach can be extended to any finite number of points ¢; and mul-
tipliers a;. Thus, one can obtain arbitrarily good approximations to I(Q*(0,1))
and to the most probable busy period path by solving minimization problems
numerically.

For H > 1/2, ¢y is very close to 1 (see Figure 4.1) so in practice one can use
the approximation I(Q*(0,1)) =~ 1/2. For H < 1/2, this estimate is less good.

4
1.05
3.5
3 1.04
2.5
1.03
2 2
2 c5(H) c5(H)
1.5 1.02
1
01
0.5
0.2 0.4 0.6 0.8 lH 0.3 0.4 0.5 0.6 0.7 0.8 0.9 H

Figure 4.1: The constant ¢4 as a function of H. The right plot shows the values
for H € (0.3,1) in higher resolution.

The exact value of I(Q*(0,1)) remains unknown in the present paper. We
have shown, however, that there exists a non-trivial most probable busy period
path, whose identification is an interesting problem for further study.

5 The effect of traffic parameters on the busy period
distribution

It is now straightforward to obtain the large deviations asymptotics of busy
periods of a fractional Brownian storage with parameters m, a and ¢ as defined

15



in [5]. That is, the input in an interval (s, t] is m(t — s) + v/ma(Z; — Zs) and the
leak rate is ¢. The following proposition is easily proved by a scaling argument
(cf. Theorem 3.1 of [5]).

Proposition 5.1 Denote by V; the storage occupancy process of a fractional
Brownian storage with parameters m, a, H and c. Then

<~ p (c—m c—m\ Y1)
V,) = ( - Vat) ., where o= ( - ) .
telR @ telR vma

In particular,

. 1 i ~ .
t1i>rgo el log P ([busy period of V containing 0] > T)

N[zt

ma

6 The typical path to high buffer occupancy

In a similar way, we can derive the large deviation asymptotics of the stationary
storage occupancy distribution. As a by-product, we obtain the “typical path”
to reach a high buffer level z. We restrict to a heuristic presentation, since it
is straightforward to write the analog of the detailed reasoning of the previous
section in this considerably simpler case.

So, reaching level x in the buffer at time 0 means that for some 7' > 0 we
have (0 — Z_p) — (0 — (=T)) > z. Using stationarity and self-similarity, this is
transformed to an equiprobable event on time interval [0,1]: Z; > T # 427,
The most probable path to realize this is (7' =7 +2T7~")'(1,-), and its R-norm
is (T'"# 4+ T~ H). Minimizing this with respect to T gives

_H
1—-H

Substituting this, re-scaling and translating the big queue back to the origin,
yields that the most probable way to reach z is that Z; follows the path T*Hf(l—i—
t/T*) defined by

T*

x.

xlfH

where k(H) = H"(1 — H)'"H and the probability of doing this is, in the
exponential large deviation asymptotics, roughly

r'(,s), seIlR,

oy £2-2H
P(Vy>zx)= eXP(—§||f||R) = exp <_W) '
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This is (as it should!) the same Weibull distribution which was obtained as
asymptotics of a lower bound in [5] and with full one-dimensional large deviations
approach in [2].

7 Comparison with simulation results

We have made some comparisons of the large deviations estimates with results
obtained by simulation. For H = 0.7, 0.9 and 0.2, ten simulation runs of length
220 time points were made in each case. More precisely, discrete time queues
with normalised fractional Gaussian noise X, as input sequence and unit ser-
vice capacity were simulated, starting with empty queue and determining queue
length V1 at time n+1 by V41 = (V,, + X,,41)". From these realizations, the
conditional probabilities

P[we are in busy period with length > n | we are in busy period]

were estimated. The results are shown in Figure 7.1. For H = 0.7 and H = 0.2,
the large deviations estimate is surprisingly good indeed. Note, however, that the
discretization makes part of the busy periods shrink or disappear (there are long
idle periods also, unlike the continuous time system), so the true distribution in
the continuous time case may deviate from the large deviations estimate more
than the simulations.

As regards H = 0.9, it is also somewhat surprising to note that in this case
a simulation with one million time points is clearly too little for estimating the
distribution of busy period length.

8 Concluding remarks

The results of this paper show that the fractional Brownian storage can quite
well be analysed with large deviation techniques in path space. Simple and useful
approximate results are obtained relatively easily, and simulations indicate that
they are usable not only for extremely rare events but for “moderate rarity”
as well. Determining the most probable busy period path remains a nice open
problem. However, we indicated a method for approximating the asymptotics
numerically.

Finally, it is worth of noting that this approach can also be applied to the
case of a general Gaussian input process. Without self-similarity, it is then not
sufficient to find the typical busy period of length 1, but some other technical
ideas of this paper, like the important role of the counterpart of the function y,
can be expected to be useful in the more general setting as well.
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Figure 7.1: Plots of log P (busy period containing 0 longer than T') for a discrete
time version of fractional Brownian storage. For H = 0.7 (top), H = 0.9 (middle)

and H = 0.2 (bottom), estimates from 10 simulated realizations of fractional
Gaussian noise (sequence length 2%°) and the large deviations estimates (thick
lines) are presented. Both approximations 1(Q*(0,1)) ~ ¢3/2 and I(Q*(0,1)) ~

1/2 are shown.
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