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Busy periods of fractional Brownian storage:a large deviations approachIlkka NorrosVTT Information TechnologyP.O.Box 1202, 02044 VTT, Finlandilkka.norros@vtt.�AbstractA storage with constant service rate and fractional Brownian input isconsidered. It is shown how large deviation asymptotics of the bu�er occu-pancy and the ongoing busy period can be obtained applying a generalizedSchilder's theorem. The crucial point of the method is to identify the �mostprobable path� satisfying some criterion. Whereas this turns out to be verysimple in the case of achieving a given bu�er occupancy, the case of achiev-ing a given length of the ongoing busy period remains an open problem.Instead, tight bounds are obtained in this latter case.1 IntroductionA teletra�c model based on fractional Brownian motion (�fractional Browniantra�c�) and a corresponding storage system (�fractional Brownian storage�) wereintroduced in [5]. The stationary storage level distribution of this system hasbeen studied in several papers ([2, 7, 3, 4]) giving increasingly accurate estimatesof its tail behaviour.The present paper might be the �rst one where such an analysis is attemptedon the distribution of a busy period of fractional Brownian storage. Our technicalframework here is the theory of large deviations in path space of a Gaussianprocess. The inspiration for doing this came from reading the recent book by A.Shwartz and A. Weiss [10]. It deals, however, only with Markovian systems, andthe general theory must in our case be taken from the world of general Gaussianprocesses.The problem of describing long busy periods of the fractional Brownian stor-age was raised in [6] in the following context. There is lot of evidence that a1



self-similar correlation structure is a reasonable choice for a simpli�ed model ofdata tra�c. If the tra�c to a particular link additionally comes from a large num-ber of sources, tra�c �uctuations can be assumed Gaussian, and the aggregatedtra�c can be modelled by fractional Brownian tra�c. However, when a heavilyloaded link is considered, the Gaussian variation is distorted, since sources usingend-to-end control protocols like TCP or ABR can adjust their rates so that theaggregated rate roughly equals the link capacity over long periods. Huge queues,predicted by FBM-based theory, cannot be observed � the bu�er sizes of realsystems are limited. Instead, we can see very long busy periods on heavily loadedInternet links, international ones in particular.It was suggested in [6] that, in the situation described above, one couldstill apply fractional Brownian tra�c modelling. Indeed, one can think that thecorresponding �free tra�c�, i.e., what the sources would transmit if the link speedwould not be a restriction, would sum up to self-similar Gaussian tra�c, and thatthere is indeed a virtual huge queue, which is distributed among the sources andthus not directly observable. The busy periods of the heavily loaded link, on theother hand, remain unchanged, in the ideal case at least. Thus, the fractionalBrownian storage could be used to explain and to predict the behaviour of aheavily loaded link also when the bu�er in front of it has only moderate size andthe sources obey some rate control which keeps the losses low.The formulation of the mathematical problem is as follows. Let (Zt)t2IR bea standard fractional Brownian motion (FBM) with self-similarity parameterH 2 (0; 1), that is, a centered Gaussian process with stationary increments andvariance EZ2t = jtj2H . We always choose a version with continuous paths. (Forthe theory of FBM, see, e.g., Section 7.2 of [9].) Let us de�ne the normalisedfractional Brownian storage as the processVt = sups�t (Zt � Zs � (t� s)):V is a non-negative stationary process. Its path can be thought of as consisting ofexcursions from 0 to the domain of positive values and back. As in the thoroughlystudied Brownian case (the special case H = 1=2), the random set of t such thatVt = 0 is an uncountable set of Lebesgue measure zero, and one cannot speakabout the distribution of a �typical� excursion like one can speak about a typicalbusy period in an ordinary queue. (Although each path consists of a countablenumber of excursions, there are �too many� small excursions, and there is never(a.s.) such a thing as �the next� excursion.) Note also that the excursions arenot independent when H 6= 1=2. It seems that little is known about them in thenon-Brownian case.Although there is no probability distribution for a �typical excursion� picked2



randomly from the set of all excursions, the excursion going on at a particulartime t is a well de�ned random object. By stationarity, its distribution is thesame for all t, and we can focus at the excursion or, in the storage terminology,busy period containing time 0.In addition to more standard facts about FBM, we make use of Theorem1.1 below which gives an explicite orthogonalization of FBM. This result hasturned out to be very useful in many contexts. For a detailed presentation andreferences to earlier similar results, see [8]. Let H 6= 1=2, and de�ne a processM as Mt := c1 Z t0 s 12�H(t� s) 12�H dZs; (1.1)where c1 = �2H�(32 �H)�(H + 12)��1 ;and �(�) denotes the gamma function.Theorem 1.1 The centered Gaussian process M has independent incrementsand is thus a martingale. Its variance function isEM2t = c22t2�2H ;where c2 = �H(2H � 1)(2� 2H)B(H � 12 ; 2� 2H)�� 12 ;and B(�; �) denotes the beta functionB(�; �) = Z 10 x��1(1� x)��1 dx = �(�)�(�)�(�+ �) :Moreover, EZsMt = s for 0 � s � t.This result is easiest to understand in a Hilbert space framework. Let Gdenote the Gaussian space of Z, that is, the L2 closure of linear combinationsof random variables Zt. The integral (1.1) can be de�ned as an L2 limit. Doingthis, one in fact constructs a new Hilbert space L� by extending Zt 7! 1[0;t]to an isometry from G to L�. The Gaussian random variable Mt is then thecounterpart of the function w(t; �) 2 L� de�ned byw(t; s) = c1s 12�H(t� s) 12�H1(0;t)(s): (1.2)A central role is played below by a third Hilbert space, the reproducing kernelHilbert space of Z. Its isometry with G and the last statement of Theorem 1.13



turn out to be surprisingly useful when considering busy periods of fractionalGaussian storage (Proposition 3.1 below).The paper is organized as follows. The general large deviation results appliedhere are resumed in Section 2. Some basic �most probable paths� are identi�edin Section 3. The main result is derived in Section 4. Since we have onlyconsidered the normalised storage process, the result is also formulated for asystem with arbitrary tra�c and capacity parameters in Section 5. In Section6, we indicate how the large deviations asymptotics of the storage occupancydistribution (that is, the stationary distribution of V ) can be obtained with thepath space approach, with the �typical path� to high occupancy as a by-product.We compare the large deviation estimate with simulation results in Section 7.Some �nal remarks are made in Section 8.2 Large deviation principle for fractional BrownianmotionLet us �rst specify the framework of the generalized Schilder's theorem of [1] inour case. We shall use this framework throughout the paper. Denote by 
 thefunction space
 = �! : ! continuous IR! IR; !(0) = 0; limt!1 !(t)1 + jtj = limt!�1 !(t)1 + jtj = 0� :Equipped with the normk!k
 = sup� j!(t)j1 + jtj : t 2 IR� ;
 is a separable Banach space.We choose 
 also as our basic probability space by letting P be the uniqueprobability measure on the Borel sets of 
 such that the random variablesZt(!) = !(t) form a normalised fractional Brownian motion with some �xedself-similarity parameter H. The covariance function of Z is denoted by�(s; t) = 12 �jsj2H + jtj2H � js� tj2H� ; s; t 2 IR:The reproducing kernel Hilbert space R related to Z is a space of functions IR!IR which is de�ned by letting the mappingZt 7! �(t; �)4



span an isometry from the Gaussian space of Z, i.e. from the smallest closedlinear subspace of L2(
;B
; P ) containing all the Zt's, onto R. The relationh�(s; �);�(t; �)iR = �(s; t)is generalized to the useful reproducing kernel property:hf;�(t; �)iR = f(t); f 2 R: (2.1)To see the basic relationships between R and 
, let f be any linear combinationof any �nite choice of functions �(si; �). Then (2.1) holds for f and, by Cauchy-Schwarz,kfk
 = supt2IR jhf;�(t; �)iRj1 + jtj � supt2IR kfkRk�(t; �)kR1 + jtj = kfkR supt2IR jtjH1 + jtj :We see that all elements of R are continuous functions, R is a subset of 
, andthe topology of R is �ner than that of 
.Next we de�ne two families of linear transformations on R. First, set�s�(t; �) := �(t+ s; �)� �(s; �)for any s 2 IR and extend �s by linearity and continuity to all f 2 R. Second,for any � > 0, let (��f)(t) := ��Hf(�t):Lemma 2.1 All tranformations �s and �� are automorphisms of R. Moreover,they have the group properties �s�t = �s+t and ���� = ���.Proof The automorphism property of �s follows from the fact that Z hasstationary increments. The automorhism property of �� follows from the self-similarity of Z. The group properties are easy to check. �Let us now turn to the large deviations. It is straightforward to check that(
; R; Id; P ), where Id denotes the natural embedding of R into 
, is a Wienerquadruple as de�ned on p. 88 of [1]. Then, theorem 3.4.12 of [1] gives thefollowing generalized Schilder's theorem for fractional Brownian motion:Theorem 2.2 The function I : 
! [0;1],I(!) = ( 12k!k2R; if ! 2 R;1; otherwise; (2.2)5



is a good rate function for the centered Gaussian measure P and satis�es thelarge deviations principle:for F closed in 
 : lim supn!1 1n logP � Zpn 2 F� � � inf!2F I(!);for G open in 
 : lim infn!1 1n logP � Zpn 2 G� � � inf!2G I(!):For any set A � 
, denote I(A) = inf!2A I(!). We call a function f 2 Asuch that I(f) = I(A) <1 a most probable path of A. The following explanatorypassage shows that a most probable path can be intuitively (remember that thereis no counterpart to Lebesgue measure on 
!) understood as a point of maximumlikelihood.Motivation from the �nite-dimensional caseSince the above framework is somewhat di�cult to understand at the �rst sight,a reader unfamiliar with it can obtain some insight from the �nite-dimensionalcase. Consider a �nite-dimensional centered Gaussian vector X = (X1; : : : ;Xd)with non-singular covariance matrix �. The density function of X isg(x) = const � e� 12xT��1x: (2.3)Now, the expression xT��1x is in fact the square of a norm in IRd. Indeed, write� = [�1; : : : ;�d]. Since � in non-singular, the vectors �i are linearly independentand thus form a (non-orthogonal) basis of IRd. De�ne an inner product h�; �iR inIRd by setting h�i;�jiR = �ij = EXiXjand extending it by linearity to all x =Pd1 ai�i. Now,kxk2R = * dXi=1 ai�i; dXi=1 ai�i+R = aT�a = xT��1x; (2.4)so that the density function can be written asg(x) = const � e� 12kxk2R : (2.5)The �kernel� � has the reproducing propertyhx;�jiR = dXi=1 ai�ij = xj: (2.6)6



This implies that the conditional expectation of X, when some of its com-ponents are known, is closely related to the R-norm. Indeed, consider the con-ditional distribution of X on the condition fXi = yg. Since the conditionaldistribution is Gaussian, its expectation is at the point of highest probabilitydensity, and by (2.5), the task is to minimize the norm kxkR in the set fxi = yg.But by the reproducing kernel property (2.6), the condition can be written withthe inner product as hx;�iiR = y:Thus, the task is to minimize the norm when the inner product with a �xedvector is given. The solution is of course found in the subspace Sp f�ig, i.e.x = E [X j Xi = y] = yk�ik2R�i:More generally, the conditional expectation ofX given that Xi1 = xi1 ,. . . , Xik =xik is the linear combination of �i1 ; : : : ;�ik which satis�es hx;�ij iR = xij forj = 1; : : : ; k. Finding the conditional expectation requires only solving a linearequation of order k.3 Most probable paths of fractional Brownian motionIn this section, we consider the simplest optimization problems in the space R.These facts turn out to be very useful in the study of busy periods.The �rst question is about the �most probable path� to reach a value x > 0at a time t > 0, i.e., we want to minimize kfkR in the setD(t; x) = ff 2 R : f(t) = xg :Now, by the reproducing kernel property (2.1), the condition f(t) = x can bewritten in the form hf;�(t; �)iR = x. Obviously, the solution f� with smallestR-norm is f� = x�(t; t)�(t; �):One can hardly visually distinguish f� from a straight line from the origin to(t; x). For the busy period problem it is, however, important to note thatf�(t=2) = x=2 and f� has an S-form for H > 1=2 and a mirrored S-form forH < 1=2. Figure 3.1 shows the di�erence f�(t) � t in the case t = x = 1,H = 0:75.The next step is to �nd the �most typical path� with �xed values a and b attwo points s < t, respectively. As in the previous case, the solution is a linear7
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Figure 3.1: The di�erence �(1; t) � t in the case H = 0:75.combination of the basic functions: f� = u�(s; �) + v�(t; �). Denoting�[s;t] = " �(s; s) �(s; t)�(s; t) �(t; t) # ;the condition for u and v reads[u v]�[s;t] = [a b];so that f = [a b]��1[s;t] " �(s; �)�(t; �) # : (3.1)Further, we havekfk2R = hf; fiR = [a b]��1[s;t]�[s;t]��1[s;t] " ab # = [a b]��1[s;t] " ab # : (3.2)In the �excursion� case b = 0, t = 1, we have the particularly simple formulakf�k2R = a2�(s; s)� �(1; s)2 :Since Z has stationary increments, we have�(t; t)� �(t; 1)2 = 12 �v(t) + v(1 � t)� 12 � 12(v(t)� v(1� t))2� ;where v(t) = �(t; t). This is symmetric with respect to the point t = 12 . Figure3.2 shows the �typical path� for H = 0:5, 0.9 and 0.2. We see three clearlydi�erent temperaments! 8
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Figure 3.2: Typical forms of excursions of fractional Brownian motions to thevalue 1 and back, with H values 0.5, 0.9 and 0.2 (from top).
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Later we shall also need the solution to the following optimization problem:�nd the path f 2 R with smallest R-norm satisfying f(t) = t for t 2 [0; 1].Since its solution is less trivial than the previous examples, we formulate it asa proposition. The result is a by-product of Theorem 1.1 which was brie�ydiscussed in Section 1.Proposition 3.1 The element ofJ := ff 2 R : f(t) = t 8t 2 [0; 1]gwith the smallest R-norm, say �, is the counterpart of the random variable M1,de�ned in (1.1), in the isometry Zt 7! �(t; �) from the Gaussian space of Z ontoR. In particular, k�kR = c2, where c2 is the constant de�ned in Theorem 1.1.Proof First note that � 2 J since, by the reproducing kernel property andTheorem 1.1, �(t) = h�;�(t; �)i = EM1Zt = t 8t 2 [0; 1]:Second, � belongs to the closed linear subspace R[0;1] generated by the functions�(t; �), t 2 [0; 1], since the corresponding fact holds for M1 by (1.1). For anyfunction g 2 J , the reproducing kernel property implies that the orthogonalprojection of g on R[0;1] is � and, consequently, kgkR � k�kR. �Remark 3.2 The function � has the explicite expression�(s) = w(1; 12)�(1; s) � Z 120 �(s; t)w0(1; t) dt� Z 112 (�(s; t)� �(s; 1))w0(1; t) dt;where w(1; t) was de�ned in (1.2). This can be found by applying integration byparts to (1.1) and changing to the space R.Remark 3.3 The following table summarizes some isometry counterparts in theGaussian space G and in the function spaces L� and R. (The spaces G and L�and the function w(1; �) were de�ned in Section 1.)L� G R1[0;t] Zt �(t; �)w(1; �) M1 �10



4 Path approach to asymptotics of storage occupancydistributionFor any path ! 2 
, we de�ne the corresponding storage level pathvt(!) = sups�t (!(t)� !(s)� (t� s)):Since j!j grows slower than linearly at in�nities, vt(!) is �nite for every ! 2 
.By busy periods of vt(!) we mean its positive excursions, that is, intervals [a; b]such that vt(!) > 0 for t 2 (a; b) and va(!) = vb(!) = 0. The busy periodcontaining 0 is de�ned as[a(!); b(!)] := [sup ft � 0 : vt(!) = 0g ; inf ft � 0 : vt(!) = 0g];if a(!) < 0 < b(!), otherwise the system is considered non-busy at time 0 (whichhappens in our case only with probability 0). Note that we have!(t)� !(a(!)) > t� a(!) for t 2 (a(!); b(!)): (4.1)Denote by KT = f! 2 
 : a(!) < 0 < b(!); b(!)� a(!) > Tg (4.2)the set of paths for which the busy period containing 0 is strictly longer than T .It is easy to see that KT is an open subset of 
. The following proposition, adirect consequence of the self-similarity of Z, indicates how Schilder's theoremcan give estimates of P (Z 2 KT ) for large T .Proposition 4.1 For T > 0 and the set KT � 
 as de�ned in (4.2), we haveP (Z 2 KT ) = P � ZT 1�H 2 K1� :ProofP (Z 2 KT ) = P �9a < 0; b > (a+ T )+ : Zt � Za > t� a 8t 2 (a; b)�= P �9a < 0; b > (a+ 1)+ : ZT t � ZTa > Tt� Ta 8t 2 (a; b)�= P �9a < 0; b > (a+ 1)+ : TH�1(Zt � Za) > t� a 8t 2 (a; b)�= P � ZT 1�H 2 K1� : �11



Thus, we obtain a large deviations lower bound by minimizing I(f) = 12kfk2Rfor f 2 K1 \R. Denote for s < tQ(s; t) = f! 2 
 : !(t)� !(s) > t� sg ; Q�(s; t) = \u2(s;t)Q(s; u):Then K1 =[ fQ�(s; t) : s < 0 < t; t� s > 1g :To get the large deviations upper bound result, we also have to consider theclosed set K1.Proposition 4.2 K1 =[nQ�(s; t) : s � 0 � t; t� s � 1o ; (4.3)and Q�(s; t) = f! : !(u)� !(s) � u� s 8u 2 (s; t)g : (4.4)Proof We �rst prove (4.4). The inclusion ��� is obvious. To show ���, let! be an arbitrary element of the set at the right hand side. Then !n(u) =!(u) + ((u ^ t)� s)+=n de�nes a sequence in Q�(s; t) such that !n ! !.Let us then prove the inclusion ��� of (4.3). Taking into account (4.4) andits proof, it remains to show that any path ! 2 Q�(0; t) can be approximated bya sequence !n such that !n 2 Q�(�1=n; t) and k!n�!k
 ! 0. Such a sequencecan be de�ned simply by!n(u) = 8>>><>>>: !(u)� !(� 1n)� 1n; u � � 1n;u; u 2 (� 1n; 0];!(u); u > 0:Finally, we show ��� of (4.3). Let ! 2 K1 be arbitrary. There exists asequence !n 2 K1 such that k!n � !k ! 0. For each n, choose sn and tn suchthat !n 2 Q�(sn; tn) and tn � sn > 1. First note that the sequences sn and tnmust be bounded. Indeed, using the condition !n(tn) � !n(sn) � tn � sn, andthe de�nition of k � k
, we can deduce that!(tn)1 + tn � tn1 + tn + 1 + jsnj1 + tn � !(sn)1 + jsnj + jsnj1 + jsnj � k! � !nk
�� k! � !nk
:Since !(u)=(1 + juj) ! 0 when u!1, the right hand side would obtain largervalues than the left hand side if either of the sequences were unbounded. Thus,12



we can pick a subsequence such that there exist �nite limits snk ! s1 andtnk ! t1. Obviously t1 � s1 � 1.Now, the fact that ! 2 Q�(s1; t1) follows by taking limits in the inequality!nk(u)� !nk(snk) � u� snk ;which holds for every u 2 (s1; t1) for k su�ciently large. �It is no big surprise that the closure does not matter in I(Q�(0; 1)), as shownin the next proposition.Proposition 4.3 I(Q�(0; 1)) = I(Q�(0; 1)).Proof It is su�cient to show that I(Q�(0; 1) \R) � I(Q�(0; 1) \R). Take anyf 2 Q�(0; 1) \R and let � 2 R be as in Proposition 3.1. Then f + �� 2 Q�(0; 1)for every � > 0, and kf + ��k2R ! kfk2R as �! 0;which proves the claim. �Next we show that it is su�cient to consider paths on the interval [0; 1]. (Notethat this means that the huge di�erence between an on-going and an arbitrarybusy period, discussed in the Introduction, vanishes in the large deviations limit.)Proposition 4.4 I(K1) = 12 inf �kfk2R : f 2 Q�(0; 1) \R	and I(K1) = 12 inf nkfk2R : f 2 Q�(0; 1) \Ro :Proof We have to show thatI(K1) = infs<0<t; t�s>1 inff2Q�(s;t) I(f) = I(Q�(0; 1)):By the reproducing kernel property (2.1) and Lemma 2.1,I(Q�(s; t)) = 12 inf fkfk2R : f 2 R; hf;�(u; �)iR � hf;�(s; �)iR > u� s;8u 2 (s; t)g= 12 inf �kfk2R : f 2 R; hf; �s�(u; �)iR > u; 8u 2 (0; t� s)	= 12 inf �k��sfk2R : f 2 R; h��sf;�(u; �)iR > u; 8u 2 (0; t� s)	= I(Q�(0; t � s)): 13



Thus, I(K1) = infu>1 I(Q�(0; u)). Since u 7! I(Q�(0; u)) is increasing, it su�cesto note that for any f 2 Q�(0; 1) and n > 0 there is a number un > 1 such thatf + 1n� 2 Q�(0; un) (cf. the proof of Proposition 4.3).Thanks to Proposition 4.2, the proof for K1 is similar, except for replacingcertain strict inequalities by non-strict ones. �We can now state our main result.Theorem 4.5 limT!1 1T 2�2H logP (Z 2 KT ) = �I(Q�(0; 1)):The number I(Q�(0; 1)) is 1=2 for H = 1=2 and lies in the interval (12 ; c222 ) forH 6= 1=2, where c2 = c2(H) is the number given in Theorem 1.1.Proof We have shown everything except the bounds for I(Q�(0; 1)). First,I(Q�(0; 1)) � c22=2 because (1 + �)� 2 Q�(0; 1) for every �. On the other hand,I(Q�(0; 1)) � I(Q(0; 1)) = I(�(1; �)) = 12 : (4.5)For H = 1=2, we have c2(1=2) = 1. It remains to assume H 6= 1=2 and showthat the interval in the assertion is open.Consider �rst the left endpoint. Here the essential observation is that the setQ�(0; 1) is convex (by the way, note that K1 is not convex!) and the level setsof I are strictly convex and compact. Since �(1; �) 62 Q�(0; 1) (by (4.4) and thefact illustrated in Figure 3.1), the lower bound in (4.5) must be strict.Finally, we show that the bound c22=2 can be improved by �nding a function 2 R such that  (t) � 0 for t 2 [0; 1] and k� +  kR < k�kR. Let t 2 (0; 1)and denote by  (t; �) the function with minimal R-norm satisfying  (t; t) = 1, (t; 1) = 0, identi�ed in Section 3. As shown there, it has the expression (t; �) = 1�(t; t)� �(1; t)2 (�(t; �)� �(1; t)�(1; �)) :Now, h�; (t; �)iR = t� �(1; t)�(t; t)� �(1; t)2 ;which is negative when t > 1=2 for H > 1=2 and negative when t < 1=2 forH < 1=2. Fix any t 2 (1=2; 1) if H > 1=2 and any t 2 (0; 1=2) if H < 1=2. Sincethe minimum ofk�+ a (t; �)k2R = k�k2R + 2ah�; (t; �)iR + a2k (t; �)k2R ; (4.6)14



with respect to a is obtained witha = �h�; (t; �)iRk (t; �)k2R = �(1; t)� t > 0; (4.7)k�+ a (t; �)k2R < k�k2R. �Substituting (4.7) into (4.6), we can further minimize with respect to t and�nd that the minimal norm is obtained witht = argmint�� (t� �(1; t))2�(t; t)� �(1; t)2� : (4.8)Further, this approach can be extended to any �nite number of points ti and mul-tipliers ai. Thus, one can obtain arbitrarily good approximations to I(Q�(0; 1))and to the most probable busy period path by solving minimization problemsnumerically.For H > 1=2, c2 is very close to 1 (see Figure 4.1) so in practice one can usethe approximation I(Q�(0; 1)) � 1=2. For H < 1=2, this estimate is less good.
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Figure 4.1: The constant c22 as a function of H. The right plot shows the valuesfor H 2 (0:3; 1) in higher resolution.The exact value of I(Q�(0; 1)) remains unknown in the present paper. Wehave shown, however, that there exists a non-trivial most probable busy periodpath, whose identi�cation is an interesting problem for further study.5 The e�ect of tra�c parameters on the busy perioddistributionIt is now straightforward to obtain the large deviations asymptotics of busyperiods of a fractional Brownian storage with parameters m, a and c as de�ned15



in [5]. That is, the input in an interval (s; t] is m(t� s)+pma(Zt�Zs) and theleak rate is c. The following proposition is easily proved by a scaling argument(cf. Theorem 3.1 of [5]).Proposition 5.1 Denote by eVt the storage occupancy process of a fractionalBrownian storage with parameters m, a, H and c. Then�eVt�t2IR D= �c�m� V�t�t2IR; where � = �c�mpma �1=(1�H) :In particular, limt!1 1T 2�2H logP �[busy period of eV containing 0] � T�= �(c�m)2ma I(Q�(0; 1)):6 The typical path to high bu�er occupancyIn a similar way, we can derive the large deviation asymptotics of the stationarystorage occupancy distribution. As a by-product, we obtain the �typical path�to reach a high bu�er level x. We restrict to a heuristic presentation, since itis straightforward to write the analog of the detailed reasoning of the previoussection in this considerably simpler case.So, reaching level x in the bu�er at time 0 means that for some T > 0 wehave (0 � Z�T ) � (0 � (�T )) � x. Using stationarity and self-similarity, this istransformed to an equiprobable event on time interval [0; 1]: Z1 � T 1�H+xT�H .The most probable path to realize this is (T 1�H +xT�H)�(1; �), and its R-normis (T 1�H + xT�H). Minimizing this with respect to T givesT � = H1�Hx:Substituting this, re-scaling and translating the big queue back to the origin,yields that the most probable way to reach x is that Zt follows the path T �Hf(1+t=T �) de�ned by f(s) = x1�H�(H)�(1; s); s 2 IR;where �(H) = HH(1 � H)1�H , and the probability of doing this is, in theexponential large deviation asymptotics, roughlyP (V0 > x) � exp(�12kfk2R) = exp�� x2�2H2�(H)2� :16



This is (as it should!) the same Weibull distribution which was obtained asasymptotics of a lower bound in [5] and with full one-dimensional large deviationsapproach in [2].7 Comparison with simulation resultsWe have made some comparisons of the large deviations estimates with resultsobtained by simulation. For H = 0:7, 0.9 and 0.2, ten simulation runs of length220 time points were made in each case. More precisely, discrete time queueswith normalised fractional Gaussian noise Xn as input sequence and unit ser-vice capacity were simulated, starting with empty queue and determining queuelength Vn+1 at time n+1 by Vn+1 = (Vn+Xn+1)+. From these realizations, theconditional probabilitiesP[we are in busy period with length � n j we are in busy period]were estimated. The results are shown in Figure 7.1. For H = 0:7 and H = 0:2,the large deviations estimate is surprisingly good indeed. Note, however, that thediscretization makes part of the busy periods shrink or disappear (there are longidle periods also, unlike the continuous time system), so the true distribution inthe continuous time case may deviate from the large deviations estimate morethan the simulations.As regards H = 0:9, it is also somewhat surprising to note that in this casea simulation with one million time points is clearly too little for estimating thedistribution of busy period length.8 Concluding remarksThe results of this paper show that the fractional Brownian storage can quitewell be analysed with large deviation techniques in path space. Simple and usefulapproximate results are obtained relatively easily, and simulations indicate thatthey are usable not only for extremely rare events but for �moderate rarity�as well. Determining the most probable busy period path remains a nice openproblem. However, we indicated a method for approximating the asymptoticsnumerically.Finally, it is worth of noting that this approach can also be applied to thecase of a general Gaussian input process. Without self-similarity, it is then notsu�cient to �nd the typical busy period of length 1, but some other technicalideas of this paper, like the important role of the counterpart of the function �,can be expected to be useful in the more general setting as well.17
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Figure 7.1: Plots of logP (busy period containing 0 longer than T ) for a discretetime version of fractional Brownian storage. ForH = 0:7 (top), H = 0:9 (middle)and H = 0:2 (bottom), estimates from 10 simulated realizations of fractionalGaussian noise (sequence length 220) and the large deviations estimates (thicklines) are presented. Both approximations I(Q�(0; 1)) � c22=2 and I(Q�(0; 1)) �1=2 are shown. 18
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