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Abstract -∗ We present a method for inducing a set of rules from time series data, which is originated
from a system monitoring process. The proposed method is called MAPS (Mining Aberrant Patterns
in Sequences) and it may be used in decision support or in control to identify faulty system states. It
consists of four parts: training, identification, mining and prediction. In order to improve the flexibility
of the event identification, we employ fuzzy sets and propose a method that extracts membership
functions from statistical measures of the time series. The proposed approach integrates fuzzy logic
and mining in a seamless ways. Some of the existing mining algorithms have been modified to
accommodate the need of discovering fuzzy event pattern.

Keywords: modelling behaviour, rule extraction, mining event structures Mining Aberrant Patterns in
Sequences

1. Introduction

An industrial process is a series of operations performed in manufacturing or some other industrial
activities. Monitoring is used in time dependent industrial processes in order to ensure that the process
is effective. Monitoring is particularly important in aligning the process with other processes and
ensuring that the process operates according to the specifications. Monitoring usually involves several
indicators, which are used to depict the level of a variety of temporal attributes of the process. Many
variables are measured during monitoring. Such variables may include pressure, temperature, humidity
etc. Measurements are made on some constituent parts of the industrial process, which are considered
critical for the operation and stability of the process. Those attributes participating in monitoring are
chosen carefully, so that the monitoring is effective and able to identify important aspects of the
process. The choice of the attributes, which need to be monitored, is critical and human experts mainly
perform it. The monitoring is accomplished by frequently sampling the values of the temporal
attributes. The frequency of sampling is user defined and it can range from a few milliseconds to many
days.

Suppose we are given such a process P with n temporal attributes a1, a2, ..., an, each of which is
sampled every τ time units (one time granule) at time points t1, t2, ..., tj, ..., where  tj=jτ. Then, the
observation data may be viewed as time series like the ones shown in Figure 1. Each attribute
observation constitutes a single time series. A data element d(i,j) indicates the value of the attribute ai

at time point tj.
One of the challenges is to discover important events hidden in this time series data. Consequently

the question becomes: how is it possible to utilise this time series data in such a way that we are able
(1) to identify abnormal events in a process and (2) to describe or predict the behaviour of a sequence
of such abnormal events that may lead to failures?

Therefore, the main goal focuses on the development of a systematic way to identify and predict
abnormal events and event patterns in time sequences. We are particular interested in methods that
require no a priori knowledge and allow us to obtain the above goal by studying monitoring
information acquired by measuring time varying attributes.

                                                     
∗ Research supported by the fellowship program of the European Research Consortium for Informatics and
Mathematics (ERCIM).
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Figure 1. Temporal data

This paper describes a method (named MAPS - Mining Aberrant Patterns in Sequences) that
determines the necessary steps, we need to perform, in order to develop a knowledge-based system,
which is able to identify abnormal events and deduce rules for describing or predicting the behaviour
of such abnormalities. The knowledge is acquired from observed (aberrant) behaviour during the
lifetime of the industrial process. No a priori knowledge is required. The proposed method provides
fully adapted mechanisms that allow the knowledge base to be enriched during the lifetime of the
process.

Our main goal focuses on discovering knowledge concerning abnormal behaviour of a process
from time series data. Towards this goal, we start directly with multiple data sequences, which
represent measurements of various attributes of the monitored process. Then, the data sequences are
sensed and abnormal events are identified. Most of previous works have assumed that row data are
somehow processed to generate event sequences. The MAPS method employs a fuzzy set technique to
identify aberrant events and generate event sequences. An event sequence is then mined for interesting
patterns and rules are extracted from these patterns. Prediction is obtained by matching the most recent
events of the sequence with the antecedent part of such rules.

The rest of the paper is organised as follows: Section 2 presents an outline of the MAPS method
and discusses briefly its constituent components. Section 3 discusses related work. In section 4, we
present how regular behaviour is captured in time series by employing fuzzy sets; and then how these
fuzzy sets are utilised for identifying abnormal events. Section 5 discusses the event mining technique
we use to discover frequent fuzzy event patterns as well as the method for extracting rules that involve
event patterns. Section 6 presents a method for predicting aberrant events. We conclude in section 7 by
summarising the contributions and pointing out some further work to be done.

2. Outline of the Method

The proposed method employs fuzzy sets for identifying aberrant events and mining techniques for
extracting rules from the event sequences. The method is divided into four steps. Each step constitutes
a separate unit. The outline of the MAPS method is shown in Figure 2. The four units are as follows:

Training unit: It collects statistical information from measurements. Based on this information, the
training module defines the membership functions of fuzzy sets that describe the regularity of the
attribute values. The membership functions of the fuzzy set are stored in the database of the training
unit.

Identification unit: The membership functions of the fuzzy sets in the training unit are used to
identify abnormal values that may cause aberrant events. Each aberrant event is identified by its type,
its occurrence time and its intensity. An aberrant event is a fuzzy event whose intensity specifies the
level of abnormality. Sequences of such fuzzy events are stored in the database of the identification
unit.

Event mining unit: This unit has two constituent parts; the first one identifies frequent event
patterns in the event sequences stored in the identification unit and the second one extract rules from
the set of frequent patterns. Once the most frequent patterns are known, they are used to obtain rules
that associate close related event patterns. The rules are stored in the rule base of the event-mining
unit.

Prediction unit: It predicts a possible future event pattern by studying the occurrence of the event
patterns during the last few observation windows. That is, if an event pattern occurs in one of the most
recent windows, then the predicting module checks whether such a pattern matches the premise of a
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rule in the rule repository; and if so, it suggests the conclusion of the matched rule as a possible future
behaviour.

Industrial
Process

Industrial
Process

Training
Module

Event 
Identification
Module

Discovery of
frequent fuzzy 
event patterns

Prediction
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Fuzzy event 
identification 
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Sequences 
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Event Mining unit

Training unit

Identification unit
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Figure 2. Layout of the MAPS method.

The arrows in Figure 2 represent data or information flows. The dotted arrows depict temporal
flows, which are active only when the receiving module needs data for accomplishing its task.
Information does not continuously run over dotted flows.  For example, the flow connecting the
industrial process and the training unit is active only during a training session when measurement data
is used for determining the membership functions of the fuzzy sets. Upon completion of the training,
this flow becomes inactive. Data flows from the identification unit if further mining in event
sequences is necessary to update or refine the rule repository. Solid arrows depict continuous flow of
data between connected modules.

3. Related Work

A lot of work has been done in the area of Artificial Intelligence for discovering patterns in
sequential data (see for example [3, 6]). In the context of databases, the problem has been studied in a
number of recent papers [1, 8, 2]. Our work with respect to mining event sequence is more related to
[8] where event sequences are searched for frequent patterns. We use the same concept of windows for
estimating the frequency of the patterns. However, we have extended the notion of pattern occurrence
by introducing the concept of fuzzy events and fuzzy patterns. In order to deal with fuzzy patterns, we
have introduced a new definition of pattern frequency. Our algorithms for finding the set of the most
frequent patterns are based on those in [8]. However, the algorithms have been adapted to deal with
fuzzy events and fuzzy patterns. In [1] the problem of discovering sequential patterns is considered
over a customer transaction database. The strategy in [1] is similar to that in [8] and it starts with
simple sub-patterns and incrementally builds longer sequence candidates for the discovery process. In
[2] the discovery process considers more complex patterns where events may be in terms of different
granularities and patterns may include temporal distances between the events in the patterns.

In the context of event identification, there has been recently an effort in Knowledge Discovery and
Data mining (KDD) research area, which aims at generating such event sequences [4, 5, 7]. In [4], the
problem of activity monitoring is discussed and a framework for evaluating activity monitoring is
proposed for applications such as cellular phone fraud detection. However, in [4] the focus is to
defining the functions used for scoring false alarms. The proposed approach in [5] focuses on how to
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detect events from phenomena, which exhibit a dynamic behaviour. This seems to be close to our goal,
which focuses on identifying aberrant events. However, [5] investigates the potential to identify the
time points at which the behaviour changes (change-point detection). Towards this, [5] suggests that
there is a need to determine the number of change points and then to find the functions that match the
behaviour between two successive change-points. In our approach change points are identified
automatically by using the minimum, maximum and statistical mean values of an attribute, which are
obtained during a training session. The idea of using fuzzy sets for mining association rules and
frequent episodes is also discussed in [7]. However, the approach in [7] is based on attributing the
events in a similar way as a customer transaction is attributed by items. In that sense, an event is not
atomic, as in our approach, but rather a vector quantity whose attributes are assigned a membership
degree.  This approach is close to detecting abnormal behaviour (fraud or intrusion) over a customer
transaction database. Our approach considers the incoming data as time series data and assigns event
types to each time series. Then, an abnormal event is generated by the occurrence of an abnormal
value of a single attribute. This helps to quickly identify the abnormality in the industrial process by
studding the type of the event occurred and it may be used to suggest possible future abnormal events
that might be caused by abnormal values of the corresponding attributes.

4. Fuzzy identification of abnormal behaviour

The identification of abnormal events is obtained by way of training the system using measurement
data. The result of a training session is a group of fuzzy sets used to identify abnormal values. The
membership functions of the fuzzy sets are particularly employed for identifying these abnormal
values, which consequently yield the occurrence of aberrant fuzzy events whose membership values
determines the level of abnormality.

4.1. Training the system for event identification

The aim of training is to extract fuzzy sets from observation data. Each fuzzy set describes the
normal behaviour of an attribute of the industrial process. The method described in this section
constitutes the main procedure of the training module in Figure 2. The observation data of each
attribute is viewed as a time series. The duration of the training period is M time granules and it is
called training session. During the training session every single value of each attribute is observed and
registered in a time sequence. Figure 3 shows the time series obtained by observing the attribute ai

during a training session of M time granules. For each attribute ai, three values are maintained at the
end of the training session. These are the minimum value (ai

min), the maximum value (ai
max) and the

mean value (ai
mean) of the attribute ai, which are defined as follows:
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These values form an indicator that is used to identify acceptable values of an attribute. In some
industrial processes we encounter cases where some exceptional values occur beyond the maximum or
below the minimum value. These exceptional values are called outliers and they are treated as noise in
our case. A pre-processing is needed to remove this noise during the training session. The set of values
{ai

min, ai
max, ai

mean} of an attribute ai is called the index of ai. Each attribute index is stored as an entry
in a relation in the database of the training unit (see Figure 2). The schema of the relation, which is
used for storing attribute indices is the following:

 AIndex(a:AttributeName, amin:AttributeMinimum, amax:AttributeMaximum, amean:AttributeMean).
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Figure 3. Observation of the attribute ai during a training session of M time granules.

The index of the attribute ai is used to describe acceptable values of ai. For example, values of ai,
which are within the interval [ai

min, ai
max] are considered perfectly normal, while other values of ai are

consider abnormal. The level of abnormality is expressed by a fuzzy membership function, which
assigns a number between 0 and 1 to such an abnormal value of ai. The more distant the value of ai is
from the interval [ai

min, ai
max], the more abnormal the value of ai is. The generation of such a

membership function is performed as follows:
First, a fuzzy set that describes the normal behaviour of the attribute ai is defined by using the

index of the attribute ai and a threshold 0≤ϑ≤1. The threshold ϑ determines how the intensity that
characterises abnormal values changes with respect to ai. Knowing the index of an attribute ai (i.e.
ai

min, ai
max, ai

mean) and the threshold ϑ, one can form a fuzzy set Ai, which describes the regularity of the
values of the attribute ai. Figure 4 shows a triangular membership function of the fuzzy set Ai. In fact,
the membership function of the fuzzy set Ai may be any unimodal function like trapezoidal or bell
typed. For the sake of clarity we employ only triangular membership functions in this paper. The
triangle Ai is formed by considering the following points: (ai

min, ϑ), (ai
mean,1) and (ai

max, ϑ).

ϑ

1

ai
min ai

max ai

Ai Ii

ai
mean

Fuzzy set Ai describes the regularity
of the values of the attribute ai

Fuzzy set Ii describes the intensity
of aberrant values of the attribute ai

0

Figure 4. Fuzzy sets Ai and Ii when 0< ϑ < 1. Ii is used to identify abnormal values of the
attribute ai . The majority of regular values of ai is between ai

min and ai
max . The more distant a

value of ai is from the interval [ai
min ,  ai

max], the more intense the aberrant event is.
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Figure 5. Fuzzy sets Ai and Ii when (a) ϑ=0 and (b) ϑ=1.

Then, a second fuzzy set Ii that describes the intensity of an abnormal value of ai is defined by
using the following membership function:
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Where, ai(t) is the value of the attribute ai at time t, Ii(ai(t)) is the membership value that expresses
the level of abnormality of ai(t), and Ai(ai(t)) is the membership value that expresses the level of
regularity of ai(t). The above definition is for 0< ϑ < 1. In case ϑ =0, Ii(ai(t)) is given by
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Figure 5-a shows the membership functions of Ai and Ii when ϑ =0. In this particular case, Ii fuzzy
set converges into a crisp set, which identifies all the values of ai, which are outside of the interval
[ai

min, ai
max] as fully abnormal (with membership value equal to 1).

If ϑ =1, then constantly, for all t, Ai(ai(t))=1 and consequently Ii(ai(t))=0 (see Figure 5-b). This
means that none of the values of ai is abnormal when ϑ =1. The parameter ϑ specifies the sensitivity
of the system in identifying abnormal values. When ϑ =1 the system is fully indifferent; none of the
values is identified as abnormal, no matter how far away from the normal level the value is. When ϑ
=0 the system is fully sensitive, which means that if a value of the attribute ai appears to be outside the
interval [ai

min ,  ai
max], no matter  how far away, then  the value of ai is considered abnormal with

maximum intensity ( i.e. 1). The value of ϑ usually is between 0 and 1 excluding the end points.
As we have previously mentioned, the aim of the training module is to observe the attribute time

sequences for a given time period (training session) and then derive the attribute indices at the end of
the training session. The threshold ϑ and the attribute indices are then used to define the membership
functions of the fuzzy sets Ai and Ii (1≤i≤n). The fuzzy set Ii is then used to identify the intensity of
abnormal events associated with the attribute ai. The following section discuses how this identification
is performed.

4.2. Event identification

Let’s assume that the industrial process can be observed by monitoring a set of n temporal attributes
A={a1, a2, ..., an}. At the end of the training session, we are able to specify a set of membership
functions I={I1, I2, ..., In}, where Ii (1≤i≤n) describes the extent to which a value of ai is abnormal. Let
E={e1, e2, ..., em} be a set of event types, which represent distinct kinds of abnormal behaviour. We
may define a mapping f from A to E that assigns one or more attributes to one or more events. For
example, if f={(a1, e3), (a1, e4), (a2, e3), (a3, e2), ...}, it means that an abnormal value of a1 causes a
concurrent occurrence of the events e3, e4 and the event e3 may occur due to an abnormal value of
either a1 or a2. A fuzzy event is identified by using the following criterion:

The threshold ω indicates the minimum intensity that an abnormal value must have in order to
cause the occurrence of an event. This has been introduced to disallow the occurrence of events of a
very low intensity. However, if we want to allow the occurrence of events of any intensity level, then
we may define ω=0. Upon the occurrence of an event, the system registers the data relevant to the
event in a database in the identification unit (see Figure 2). The event record includes the following
data: (ai, ej, t, Ie), where ai is the attribute whose abnormal value causes the occurrence of the event of
type ej (i.e. ej=f(ai) ),  t is the time of occurrence, which may be an integer indicating the time granule
at which the event occurred and Ie= Ii(ai(t)) is the event intensity. It suffices to represent such a fuzzy
event as a triple (ej, t, Ie). The database in the identification unit stores all the event occurrences
forming in that way sequences of fuzzy events. Each event in a sequence has occurred due to abnormal
attribute measurements of the industrial process.

The next step is to examine this sequence of events and extract useful knowledge from it by
identifying frequent event patterns. This is discussed in the following section.

5. Event Mining Unit

The event-mining unit concerns itself with the discovering of rules that associate fuzzy event
patterns. It is divided into two parts; the first one deals with the discovering of the most frequent fuzzy
event patterns and the second one deals with the extraction of rules that associate close related fizzy
event patterns.

A value ai(t) of the attribute ai causes the occurrence of an event ej if only if (ai, ej)∈ f and
Ii(ai(t))>ω, where 0≤ω≤1.



8

5.1. Discovering frequent event patterns

A fuzzy event is a triple (ej, t, I(ej)), where ej∈E is an event type, such that ej=f(ai), t is the time at
which the event occurs and I(ej)=Ii(ai(t)) is the intensity of the event. An event sequence is a triple (s,
Ts, Te), where s is an ordered set of events whose first event occurs at Ts and the last event occurs at Te

(Te≥Ts). An event pattern p is a partial order (B,<), where B⊆E. A pattern p matches a sequence s, if all
of the events in p occur in s in an order respecting the partial order. The event sequence (s1, Ts1, Te1) is
contained in the sequence (s2, Ts2, Te2) if only if Ts1≥Ts2, Te1≤Te2 and s1⊆s2. Two typical sequences of
events, which one contains the other are shown in Figure 6.

The algorithms used to identify frequent event patterns in an event sequence are based on the
sliding window algorithms [8]. However, we use a different definition of the frequency of the event
patterns. Our definition takes in to account the intensity of the fuzzy events. In [8], the events are crisp
(there is no indication of the event intensity, an event is fully present if it occurs) and consequently the
frequency of an event pattern (episode) is defined as the fraction of the windows in which the pattern
occurs. Our definition aims at estimating the uncertainty introduced by the occurrence of the fuzzy
events. In our case, the events are not crisp, but they occur with an intensity, which is a measure of the
abnormality of the attribute value. So, consecutive events appearing in two different patterns may have
different effects if they occur with different intensities. It is obvious that the definition of the pattern
frequency as the fraction of the windows in which the pattern occurs, does not suffices in the case of
patterns consisting of fuzzy events. Therefore, we propose a new definition of pattern frequency,
which is based on the intensity of the fuzzy events. Given a window of width l, the frequency of a
pattern p in a sequence of fuzzy events s is defined as follows:

),(

)(

),(
lsW

wI

lsfr iw

ip

p

∑
=

Where wi is the i-th window in s, Ip(wi) is the intensity of the pattern in the i-th window and |W(s,l)| is
the total number of windows on the sequence s. The width l of the window is an  integer specifying the
number of time granules  The intensity of a pattern p is given by
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)()(

j
wepe

ip eIwI Min
ijj ∈∧∈

=

Where I(ej) is the intensity of the event ej in the pattern p in the window wi. This means that the
intensity of a pattern, which occurs in a window wi is equal to the minimum intensity of the events,
which occur in the pattern of this window. In the case where the fuzzy events are crisp (i.e. ϑ=0), then
the above definition converges to the one given in [8], since the numerator converges to the number of
the windows where the pattern occurs. In this sense, the above definition is viewed as a more general
one that extends the notion of pattern occurrence in order to deal with uncertainty, which is expressed
through the pattern intensity.

time

e2

e1e3 e4

time

e2

e1e3 e4

e5

e6

(a) (b)

Figure 6. Two event sequences. Sequence (b) contains sequence (a)
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An event pattern p is considered frequent if its frequency frp is greater than or equal to a threshold σ,
which is known as the minimal support. The identification of frequent event patterns is based on the
principle that if an event pattern p is frequent, then all of its sub-patterns are frequent as well with a
frequency, which is greater than or equal to that of the pattern p.  For example, if the frequency of the
pattern in Figure 6-b is fb≥σ, then the pattern in Figure 6-a is also frequent and its frequency fa≥ fb≥σ.
This principle is used to prune out non-frequent event patterns. The following algorithm is used to
extract the set of frequent event patterns from a sequence of fuzzy event.

Algorithm 1. Extraction of frequent patterns

Input: An event sequence S
Output: The set F containing all frequent fuzzy event patterns in S
Method:

Let T be a temporary set of fuzzy event patterns.
Let Ci be the candidate set of fuzzy event patterns containing i fuzzy events. First i=1 and
C1 is the set containing singleton fuzzy event patterns. Each of such a singleton fuzzy event
patterns contains an event type occurring in the sequence S.
While Ci ≠∅ do

T=∅
for all x∈Ci do

compute frx in S and if frx≥σ  then
find all the pattern that extend x by a single event and add these patterns in T.

Ci=T

The set of frequent patterns is used to obtain rules. The following section discusses how a rule base
may be constructed by a set of frequent patterns.

5.2. Rule Extraction

Once the frequent patterns are known, they are used to obtain rules. A rule associates two close related
event patterns where one contains the other. Let F be the set of frequent event patterns. The frequency
of a pattern p∈F is greater than or equal to the minimal support σ. Let A and B be two frequent event
patterns, A∈F and B∈F, such that A is contained in B (i.e. A⊆B). Then the confidence of the rule A→B

is given by the fraction 
A

B
BA fr

fr
c =→ . Literally, cA→B is the strength of the rule and it is an estimate of the

conditional probability of occurrence of B in a window, given that A occurs in this window. The rule is
considered valid and it is added to the rule base if its confidence is greater than or equal to a
confidence threshold ε, which is known as the minimal confidence. The following algorithm is used to
extract rules from the set of frequent event patterns F.

Algorithm 2. Rule extraction

Input: set of frequent patterns F
Output: set of rules R (rule base)
Method:

R=∅
for all p∈F and q∈F such that p⊆q do

cp→q =frq/frp

if cp→q ≥ε  then
add the rule p→q to the set R with confidence cp→q

od
The set of rules R is stored in the rule repository in the event mining unit (see Figure 2). The
prediction unit guesses future events by using the rules of this repository. The prediction of future
events is discussed in the following section.
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6. Predicting aberrant events

Given a set of rules and a recent event sequence of k windows width, the goal is to guess future
possible event patterns and to form a fuzzy set whose membership function assigns a likelihood value
to each of the possible future event patterns. Let’s denote antecedent(rj) the premise of the rule ri,
consequence(rj) the conclusion of rj and c(rj) the confidence of the rule rj. The algorithm for predicting
event patterns is the following:

Algorithm 3. Prediction of event patterns

Input: the most recent k windows in the sequence
Output:  the fuzzy set G of event patterns that are likely to occur in the future
Method:

for all the most recent windows wi do
for all rules rj in the rule base do

if the antecedent(rj) is present in the window wi then
add the pattern consequence(rj) to G with confidence c(rj).

The members of the fuzzy set G are the event patterns guessed whose membership values represent the
likelihood that the event pattern will occur.

7. Conclusions

Given a time series, whose data is originated from an industrial monitoring process, MAPS method
is able to identify marginal cases in the sequential data and automatically extract the fuzzy sets that
describes the regularity of data. These fuzzy sets are then used to identify aberrant behaviour and
generate relevant events. Such events are registered and they usually form event sequences. Event
mining is then used over these sequences to discover frequent fuzzy event patterns and deduce rules
that associate close related frequent fuzzy event patterns. The antecedent part of such rules is used as a
knowledge pattern that may match current event sequences. In case of a matching, we are able to
predict future sequences of aberrant events that may affect the industrial process. The MAPS method
employs fuzzy sets and seamlessly integrates fuzzy logic and data mining providing a more flexible
way for identifying and predicting abnormal events. The contributions of this paper are summarised as
follows:
• It introduces fuzzy logic for identifying abnormal events in observation data
• It provides a new definition for frequent event patterns, which is based on the intensity of the

event patterns. The intensity of events defined as a membership value of the fuzzy set that
describes the abnormal behaviour.

• It points out the way to define fuzzy membership functions in terms of some statistical measures
(minimum, maximum and mean) of the sequential data.

• It modifies existing event pattern mining algorithms in order to accommodate the fuzzy metrics.
• It shows how prediction may be applied by utilising the rule base obtained from mining and the

most recent event patterns in the sequence.
• It seamlessly integrates event identification, event pattern mining and event pattern prediction into

a single system.

In this paper, we have utilised some statistical measures to construct fuzzy sets that describe the
regularity of a sequence. However, other statistical measures such as standard deviation and variance
may be also used in shaping the membership functions.  Another important issue that may be
considered in extracting such fuzzy sets is the utilisation of higher order metrics of the sequence (first
derivative etc.). In rapidly changing time sequences, we may need to take into account such metrics in
order to capture more accurately the regular behaviour of the sequence.
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