Working Papers No. 48/00

## A Bibliometric Study of Finnish Science

Olle Persson, Terttu Luukkonen and Sasu Hälikkä

ISSN 1239-0259

### Foreword

This report is one of the background studies commissioned by the expert group, appointed by the Ministry of Trade and Industry and the Ministry of Education, to assess the impact of the Government Additional Appropriation to Research Work, effective in 1997-99. The study was made as a joint effort by Olle Persson from Umeå University and Terttu Luukkonen and Sasu Hälikkä from VTT Group for Technology Studies.

The authors are grateful to Göran Marklund, Ingrid Petterson and Anna Sandström at NUTEK, Stockholm, for their kind assistance in providing additional data for international comparisons. The authors greatly appreciate the comments obtained throughout the work from the assessment expert group.

Olle Persson\*, Terttu Luukkonen\*\* and Sasu Hälikkä\*\*

<sup>\*</sup> Inforsk, Department of Sociology, Umeå University, SE-901 87 Umeå

<sup>\*\*</sup> VTT Group for Technology Studies, P.O.Box 10021, FIN-02044 VTT

### Abstract

This study is the most comprehensive bibliometric report of Finnish science carried out, and it is based on a long time series. It uses many types of bibliometric indicators to describe the scentific and technological activities of the Finnish research base. It draws attention to

- publication activities and the international visibility and impact of Finnish scientific research

- domestic and international collaboration patterns, and

- indicators of technological innovation activities.

The major findings of the report include the following. The report gives a very positive picture of Finnish science. The policy to strengthen the internationalisation of Finnish science seems to have been effective. Finland has increased its international publishing and has improved the international visibility and impact of its research publications. Overall, Finnish scientific publications are well above the world average in impact. The positive trend in the international impact of Finnish science is associated with a dramatic increase in international collaboration. Today, 40 % of the Finnish publications are co-authored with researchers from other countries, while the corresponding figure was only half that in 1986. Researchers from EU countries have become major collaboration partners for Finnish researchers. Twenty percent of Finnish papers are co-authored with researchers from the EU-countries, and the share has grown significantly faster than the share of papers co-authored with researchers from North America. EU research collaboration and the EU Framework Programme for research and development have probably played an important role in the increase of scientific collaboration with other EU countries.

The report further shows that, in the Finnish national research system, the Helsinki region dominates. To some extent, there has been a decentralisation process, which has reduced this dominance a little. The decentralisation of research into small units, however, is not advantageous for research impact - and quality, which impact is expected to reflect. Regions that produce small numbers of papers do less well in impact than other regions.

The study of Finnish US patents shows that Finland is active in producing technological innovations and has impact in telecommunications, industrial process equipment, and wood and paper. To some extent, Finland appears to be strong technologically and economically in the same fields (especially in telecommunications and wood and paper). However, in other fields, such as biotechnology and pharmaceuticals, the number of patents is increasing but is relatively small considering the strong national research base. The technological innovation base is much more nationally oriented than the Finnish science base, but there is a steady trend toward internationalisation in this area too.

When using bibliometric indicators, and particularly Science Citation Index (SCI) based data, we focus on basic research in natural sciences and medicine. The SCI uses scientific journals as source material, and publishing in journals plays a major role in basic science, while it is not true for applied areas of research or in fields such as the social sciences or humanities. In Finland, as in the other Nordic countries, medical fields dominate the country's publications in SCI based journals. This reflects particularly the fact that medical scientists have adopted the publication habits that fit the underlying assumptions of the SCI to a larger extent than other scientists have. Their frequent publications in the SCI based journals also reflect a greater degree of internationalisation of their fields of research compared with other fields.

The report also uses patent data, which is more relevant for industrial research. The report utilises the US patent system, which is used most in international

comparisons and is expected to provide a filter for measuring the importance of the patents. As a drawback, Finnish firms take fewer patents in this system than in the European or national system.

## **Table of Contents**

| Foreword                                                     | 3  |
|--------------------------------------------------------------|----|
| Abstract                                                     | 4  |
| 1 Introduction                                               | 9  |
| 2 Design of the study                                        | 12 |
| 3 Findings                                                   | 15 |
| 3.1 Overall output and impact of papers in all fields        | 15 |
| 3.2 Papers and citation impact by subfield                   | 19 |
| 3.3 International collaboration                              | 20 |
| 3.4 Finnish papers by geographical region                    | 23 |
| 3.5 Finnish papers by sector                                 | 25 |
| 3.6 Papers by main institution                               | 28 |
| 3.7 Overall output and impact of patents                     | 32 |
| 3.8 International collaboration in patents                   | 34 |
| 4 Conclusions                                                | 36 |
| References                                                   | 39 |
| Appendix 1. A more detailed description of the data material | 41 |
| Appendix 2. Tables                                           | 45 |
| Appendix 3. Note on productivity                             | 69 |
| Working Papers                                               |    |

### **1** Introduction

In Finland, R&D expenditures have increased dramatically in the last two decades and today they make up around three percent of Finland's GDP. This development is matched by a growing number of people and organisations engaged in R&D activities and in higher education. On the basis of the growth in the R&D endeavour, we can expect a sizeable increase in the output, too.

This report focuses on the output of Finland's growing R&D effort. We will use indicators generated from literature databases, which help monitor the growth and impact of Finnish science in relation to other countries. We can also analyse collaboration patterns among Finnish scientists across sectors, regions and organisations and across the borders of the country. Collaboration is important for information flows within the R&D system. It promotes the creation of new knowledge with a broader base.

In basic scientific research, knowledge production is reported in various types of documents such as journal articles, conference proceedings, research reports and books. There is, however, a substantial amount of knowledge that is not made public in documents. Non-documented knowledge is hard to study on a large scale and regular basis. In basic research, it is in the self-interest of researchers and research departments to report their research findings to the widest possible audience in order to ensure priority and recognition for the findings as well as to legitimise their performance to the research funding agencies. Furthermore, the editorial process of scientific publishing provides a filter that is expected to improve the quality of the knowledge presented.

In applied research and development, less knowledge is made public in documents. In many instances, it is in the self-interest of industrial actors not to publish since it could be beneficial for their competitors. On the other hand, sometimes firms do publish their research results to prevent competitors from patenting, or to attract eminent researchers to collaborate with the them. Publishing papers or patenting may thus reflect the business strategies of corporations rather than knowledge outputs. Still, assuming that publication and patenting strategies stay fairly similar over the years, the counting of papers and patents of industrial actors may reveal interesting trends in research and development activities.

In addition to the fact that documents are a partial indicator of knowledge outputs, there is no database that can fully cover the output of scientific documents produced by a country. Instead, databases cover segments of the publication markets. The task is to evaluate the extent to which such segments are relevant for analysing R&D activities. The scope of coverage is good in the *Science Citation Index*<sup>TM</sup> (*SCI*), since the most influential journals in the life sciences, natural sciences and engineering sciences are included. However, a large number of journals are not covered by the SCI. In addition, books and other types of documents are not included at all. The SCI thus reveals a segment of the publication market, a segment which can be assumed to be relevant for scientific research and in which it is of importance to be visible. There are also technical aspects about the coverage which have to be considered. A minimum criterion is that a document database must register all author addresses. This criterion is fulfilled only by the SCI.

If we look for patent databases, there are several possible candidates for representing national technological activities. Most patent databases, however, are heavily biased towards one country, which makes international comparisons less relevant. The US patent system represents the largest market for technological innovations and as such should be a representative base for comparing countries outside the USA. Another advantage is that the US patent system has developed standardised procedures, which are applied equally to all patent applications. It tends to filter out technologically trivial patents from non-US countries. Again, we are talking about a segment of the patent market, but maybe about the most relevant segment for studying and comparing the technological activities of countries.

Papers and patents contain a lot of information. When authors publish, they tell what they did, with whom they did it, and when and where the research was done. This also holds true for patents. Furthermore, the databases are fairly standardised and various classification systems can be applied to describe the contents of the papers and patents.

To sum up, bibliometric indicators may reveal interesting information about knowledge producers and their interactions. These indicators give a partial view in the sense that they reflect knowledge that is made public in certain segments of the publication market. Still, they are the best alternative when it comes to studying the volume and impact of basic research on a large scale.

In this report we will try to answer three major questions:

- How does Finnish science and technology compare with other nations in activity and impact?
- Which are the major actors in Finnish science?

• How is research collaboration developing in Finland and with foreign countries?

### 2 Design of the study

In this study we have used the following four sets of data (See Appendix 1 for a full description):

# 1. Detailed information about all Finnish papers in the Science Citation Index (SCI) 1986-1998

This dataset was constructed by downloading Finnish records from the SCI. All Finnish addresses were standardised according to main organization, sector, city and geographical region. In order to define scientific fields, articles were classified by the subject content of the journal in which they were published.

#### 2. Detailed information on all Finnish US-patents 1986-1998

All Finnish patents, either by inventor or assignee, were downloaded from the web server of the US patent office. The inventor and assignee addresses were standardized according to country and the patents were assigned to technical fields using the International Patent Classifications.

# 3. International summary data for papers based on the Science Citation Index(NSIOD)

This dataset was made by the *Institute for Scientific Information (ISI)* and can be used to make international comparisons. It is based on the SCI and has the number of papers and citations for all countries covering the period of 1981-1998. The paper and citation counts can also be distributed by subfield. We were able to use this dataset by courtesy of NUTEK in Sweden.

#### 4. International summary data for patents based on the US-patents (CHI-data)

This data set has been produced by *Computer Horizons Inc (CHI)*. For all countries it contains the number of US patents as well as the number of times other US patents have cited them in 1981-1998. This enables us to compare the patenting activity and the impact of Finnish patenting activity on other countries. The patents are classified into technical fields using the International Patent Classifications.

Various types of bibliometric measures are used in connection with these data sets. When counting papers one has to consider what to do when they are co-authored by several sectors, organizations, cities, authors or any other type of unit. If such papers are counted as one paper for each unit, we are using *whole counts*. For example, if a paper has been produced by two organizations, or classified into more than one subject category, each occurrence will be considered as one whole paper.

When whole counts are used, the data should be read as the number of papers in which a particular unit occurs. This procedure leads to double counting. We can avoid the double counting by dividing the number of papers into fractions according to the number of units that have produced them, that is, by using *fractional counts*. The sum of all fractions will be equal to the actual number of papers in the data set. This allows us to measure the percentage of all papers that has been produced by a particular unit.

There are several types of citation measure used. The NSIOD counts the number of times a paper has been cited by all other papers in the database. If the cited papers have been published by authors from several countries, the citations are not fractionalized, and all papers are also counted as whole counts. On the other hand, the CHI database uses fractional counts of patents and citations to patents. If a patent is co-invented by two countries and has been cited by ten other patents, each of the two countries will get half a patent and five citations. Although, we cannot manipulate these two types of data set in our study, we should keep in mind that whole counting hides the fact that the output and impact of a nation are increasingly the result of international collaboration. The difference between whole and fractional counts for a given unit, be they countries, institutions or individuals, is a measure of the degree of collaboration. For example, if the whole count gives an institution 100 papers and the fractional count 50 papers, we can say that the difference is the effect of collaboration.

The number of times papers and patents of a country are cited can be compared with the number of times all papers or all patents in the database are cited. A *relative citation impact* can thus be calculated by dividing the citations per paper for a country by the average number of citations per paper for all papers (the world output). In both the NSIOD and the CHI data, the citing year window is 1981-1998. This means that papers and patents published in 1981 have a much longer time period and a greater chance of being cited than those that are published towards the end of the period. Since one normally has to wait several years before a paper or a patent gets most of its citations, data for the last few years fluctuate. When comparing countries using fairly large numbers of papers and patents, even the short-term impact is interesting, since it can indicate trends in the relative standing of nations.

In this report, we use the *journal impact factor* as an alternative measure of impact, because we have no citation data for individual Finnish papers. The journal impact factor is calculated by dividing the number of times the articles of a journal are cited by the number of the articles the journal publishes. First of all, it is of

importance to publish in a journal with a certain level of reputation, which is fairly well indicated by the citation impact of the journal. Secondly, provided we have a fairly large number of papers, the mean journal impact of the papers should be a reasonably good predictor of future citation impact of the papers. Still, we have to consider the fact that some units, even whole countries, may perform significantly better or worse than expected, given the journal impact factor.

When calculating the journal impact factor, the cited and citing time window may vary. In the *Journal of Citations Reports (JCR)*, which is frequently used to rank journals by impact, the citing year is one year and the cited years the two previous years. In this longitudinal study we will use journal impact factors taken from a database called *Journal Performance Indicators on Diskette* (JPIOD). Here the journal impact factors are based on the average number of times the articles published in the journals in 1981-96 have been cited during the same time period.

### **3** Findings

The presentation of our findings is structured in the following way. We will start by comparing the output and impact of Finnish papers with those of other countries. Then we will examine the development of Finnish collaboration with other countries by analysing internationally co-authored papers. We will also study Finnish papers by region, sector and organisation. Finally, we will examine collaborative networks within Finland.

Technological activities are analysed by drawing on patent data. We will present data on the growth and impact of Finnish patents in relation to other countries, and we will also study collaboration by looking at internationally co-invented patents.

Most of the results from the study will be presented in figures in the text that follows. In addition, we also refer to tables in Appendix 2, which the reader may consult in order to get more information and explanations.

### 3.1 Overall output and impact of papers in all fields

Finnish scientific production shows a positive growth in terms of papers and their citation impact. Finland's share of world output has increased from 0.59 % in 1981 to 0.92 % in 1998. With the exception of Denmark, all the other Nordic countries show growth in publication numbers. This growth is strongest for Finland and Sweden (Figure 1; Table 1, Appendix 2). The Nordic countries serve as relevant benchmarks for Finland since they are relatively small countries, they have similar research profiles by scientific field, and the academic systems and traditions are quite similar.

Finland is the only Nordic country showing a marked increase in the relative citation level, particularly in the 1990s (Figure 2). Since 1991, the relative citation impact of Finnish papers (citations/paper for Finland divided by citations/paper for the world) has been above the world average, and in the late 90s, it was well above the world average and close to that of Sweden. Sweden's citation level is, however, decreasing.



*Figure 1. World percentage of papers published by the Scandinavian countries* Note: Based on Table 1 in Appendix 2



17

*Figure 2. Citation impact of the Scandinavian countries relative to the world average* 

Note: Based on Table 1 in Appendix 2. World average is equal to 1.

A word of caution, the citation figures for the last two years are unstable, since the papers have been there to be cited only for one or two years. However, if we compare the first five-year period with the last, Finland shows a significant increase in relative impact and is closing the gap with several leading nations (Figure 3). We can thus conclude that the Finnish positive trend is quite stable.





Figure 3. Citation impact relative to the world in 1981-85 and 1994-98

Note: Based on Table 2 in Appendix 2

One explanation for the rise of the relative citation impact of Finland is that Finnish papers are published in journals with a higher impact. Figure 4 shows that this is the case. The relative impact of the journals in which Finnish papers are published, shows a similar increase when compared with the growth of relative citation impact. Several international evaluations carried out on Finnish science have emphasised a need to publish in internationally highly-ranked journals. This has also been the policy of, for example, the Academy of Finland, which is the Finnish Research Council system. Another explanation for the increased impact of journals used for publication in Finland is international collaboration, which usually is associated with both higher journal impact (see figure 4), and higher citation impact (see for example, Glänzel, Schubert and Czerwon, 1999).



Figure 4. Relative journal impact factor and relative citation impact for Finnish papers 1986-1996

Note: Based on Table 3 in Appendix 2

#### 3.2 Papers and citation impact by subfield

As will be seen from the analysis below, medical sciences dominate Finnish scientific publications as reflected by the SCI. This is not unique for Finland, but similar for all Nordic countries, in which papers in clinical medicine represent about 40 percent of all papers. The dominance of the medical sciences in the ISI databases is due to several factors. One of them is the fact that the majority of the source items in the SCI (and other ISI databases) are scientific journals. Medical scientists have publication habits that correspond to the underlying assumptions of the SCI: they publish in refereed journals and a great deal in Anglo-American journals, which have a dominance in the SCI. In many other fields books, reports and, in general, publishing in non-English languages is much more prevalent, and therefore, the SCI covers the publication activity of such fields only to a limited degree. A good example is engineering and technology, a field in which reports and conference proceedings are quite common and poorly, if at all, covered by the SCI. In addition, in this field, many important research findings are not published at all.

The implication of the varying coverage across subfields is that comparisons between countries should primarily be made at the subfield level, where publication activity and citation impact are measured relative to world output and impact.

Considering subfields with at least 100 Finnish papers in 1981-1998, several show *a high and a growing relative impact as measured by their citation rates* compared with the world average in each field. Among the top fields are a number of medical specialities but also physics (Table 4, Appendix 2). Several of the top ranked fields have also significantly increased their relative impact during the last five years of the period studied. Since the field classification used here is based on the NSIOD-data set, which has quite lot of subfields, the classification of single journals might have significant effects on the citation impact of a given field. Ideally one should first evaluate the list of journals included before making definite conclusions about the strength of a subfield. It is also important to stress that journal subsets do not necessarily overlap with research departments within a discipline. It is a well-known fact that research departments often publish papers in several journal subfields and also in the multidisciplinary category.

### 3.3 International collaboration

The dramatic increase in scientific collaboration is a well-documented trend, which is especially obvious when one looks at the share of internationally co-authored papers. Generally speaking, relatively small science nations have a higher share of internationally co-authored papers compared to larger nations (Luukkonen, Persson, Sivertsen, 1992). In 1998, 40 percent of the Finnish papers were internationally co-authored, which means that 60 percent had only Finnish authors (Table 5, Appendix 2). In 1986 the share of internationally co-authored papers was only 19 percent. In Sweden, 22 percent of papers were internationally co-authored in 1986 and 40 percent in 1996. Thus, in fifteen years international knowledge co-production has doubled in both countries.

If we take a closer look at the geographical distribution of the papers, we can conclude that the share of papers co-authored with the EU countries has grown much faster than with North America (USA and Canada). Today, collaboration with the EU countries is twice as frequent as with North America (Figure 5). There is also a growth of papers that have authors from both the EU countries and North America.

Several studies have confirmed that the citation impact of internationally coauthored papers is generally much higher than that of papers produced by a single

country (see e.g. Glänzel, Schubert and Czerwon, 1999). The same tendency can be found in this study. If we multiply the Finnish papers by the journal impact factor, the mean impact level is generally higher for internationally co-authored papers. To put it slightly differently, if the distribution of papers is weighted by the journal impact factor, the contribution of national papers to the total impact decreases (Table 6, Appendix 2).

However, in terms of journal impact, it seems to pay more to collaborate with North America than with the EU. This is found by dividing the corresponding percentages in Table 6 and 5 for 1998. For the EU we get 21.4/19.2=1.11 and for North America 11.0/7.7=1.41. This is also evident when comparing Figure 5 and Figure 6, since in Figure 6 the curve for papers co-authored with North America comes closer to the EU curve. We cannot interpret this finding by concluding that papers with an American co-author are of higher quality *per se*. Rather, it is likely to do with the journal markets and the fact that papers co-authored with American authors are often published in US journals. These are more highly-cited than other journals because of the larger US readership. There is a general phenomenon of a home-country bias in citation (Frame and Narin, 1988).



Figure 5. Percent of Finnish papers co-authored with different country groups Note: Based on Table 5 in Appendix 2.



*Figure 6*. *Percent of Finnish total journal impact by country group of the coauthor* 

Note: Based on Table 6 in Appendix 2.

With regard to collaboration with individual countries (Table 7, Appendix 2), Finnish international collaboration is growing fast with many countries. About ten percent of all Finnish papers are co-authored with authors from the US, but there has been a stagnation since 1995. Sweden occurs as collaborator in about 5 percent of Finnish papers. Collaboration with the EU-countries is dominated by Sweden, the UK, Germany, France, the Netherlands and Denmark.

Finland's collaboration with Spain, Portugal and Greece has increased dramatically. This is not surprising taking into account that there was very little collaboration with these countries at the beginning of the study period (see Table 7, Appendix 2). Collaboration has grown quite remarkably also with Austria, Italy, France, the Netherlands, and Belgium (Figure 7). Growth in collaboration with EU countries can be explained by an increased participation by Finland in projects financed by the EU.



23

Figure 7. Growth of Finnish papers co-authored with EU-countries and the USA

Note: Based on Table 7, Appendix 2.

### 3.4 Finnish papers by geographical region

The regional distribution of research activities in a country has become a major policy question. The socio-economic development of a region is influenced by its ability to attract research activities and higher education institutions. There are arguments against a development towards regionalisation. One of them concerns economics of scale, namely that the decentralisation of research will lead to higher costs, at least infrastructural ones, and to lower research quality. These questions can be studied to some extent by bibliometric data.

When studying papers by geographical region we can conclude that there is a decentralisation, however weak, at work in terms of knowledge output (Figure 8). About half of the Finnish publications come from the Uusimaa (Helsinki) region, but this region has lost about 3 percentage units to other regions, most of it to south western part of Finland. The northern Ostrobothnia (Oulu) region has also lost somewhat, while most other regions have increased their shares a little. We are using fractional counts, so that co-authorship among the regions will not influence paper counts.





Figure 8. Percent of Finnish papers by region 1986-1998.

Note: See Table 8, Appendix 2. Source: Inforsk/VTT data based on SCI CDE.

With regard to the impact of papers, we have no measure of actual citation impact by region. We can use the journal impact factor, which for large sets of papers can be a reasonably good estimate of citation impact. Since regional research profiles may vary a great deal by field, we are only looking at trends. From Table 9 (Appendix 2) we can conclude that regions with the largest number of papers show a positive trend in average journal impact factor. For smaller regions (smaller in terms of scientific papers), the value fluctuates considerably, and it is probably an effect of a single or a few papers with a high impact factor. However, the impact level is generally lower among smaller regions. Size and impact are thus positively correlated. Consequently there is a risk of a loss of research impact, and eventually also research quality, when research activities are decentralised to very small units. It seems that a volume of 250 or more papers per year is needed to reach a fairly high and stable impact level.

Another aspect of the regional dimension is collaboration among regions. In 1986-1998, 15 percent of Finnish papers had authors from two or more Finnish regions. This is about half as much as the share of Finnish papers co-authored with other countries in the same period. In that sense, intranational collaboration plays a minor role compared to international collaboration. Furthermore, the average journal impact of papers co-authored among Finnish regions is only slightly higher (10.8) than papers produced by only one region (10.6). By contrast, internationally coauthored papers have an average journal impact factor of 12.60. In conclusion, in terms of citation impact intranational collaboration does not pay as much as international collaboration.

We can expect that smaller regions have a higher tendency to collaborate with other regions than larger regions because researchers in small regions have most of their national colleagues in other regions, and vice versa for the large regions. A simple way to measure collaboration is to compare whole counts with fractional counts of papers by region. The more there is interregional collaboration, the lower is the fractional value compared with whole counts. Table 9 shows that for smaller regions, fractionalisation reduces the number of papers more than for larger regions. The smaller the region, the more it collaborates with other regions (Table 10, Appendix 2). In terms of impact, small regions will probably gain from collaborating with the larger regions since the latter have a higher journal impact (Table 9, Appendix 2).

### 3.5 Finnish papers by sector

In this study we have classified the institutional addresses of the Finnish papers into the following categories:

- Academia: Universities and other higher education institutions, with university hospitals included.
- Research institutes: Aside from public research institutes, this class includes some private research organisations that are not profit-oriented but owned either by foundations or by several companies together.
- Other: Non-profit organisations other than the ones mentioned above (hospitals that are independent of universities, associations, federations, foundations, administrative organs (other than research institutes) such as ministries,

municipalities, also municipal laboratories that do not research but do inspection, schools other than universities

• Industry: Firms including some small private, profit-oriented research organisations and consulting firms

Figure 9 gives the relative share of Finnish papers by sector. The education sector dominates with 77 percent of the papers, followed by research institutes with 12 percent. Industry answers for about four percent and the sector labelled 'others', containing mostly non-academic hospitals, have six percent of all Finnish papers. The miscellaneous category, that is with organisation unknown, which has published 0.2 percent of the papers, has been excluded from the analysis. The most obvious trend is the growth of the research institute sector, which has increased from 9 to 14 percent.



Figure 9. Percent of papers by sector

Note: Based on Table 11, Appendix 2

If we have a look at the research profiles by sector, the education sector is relatively more active in the natural sciences while industry is more active in engineering (Table 12, Appendix 2). One would expect universities to be strong in

basic research and industry in applied research. The research institutes are somewhere in between, with a stronger position in engineering compared to academia, but less strong compared to industry. Since the category 'others' mostly covers non-academic hospitals they have, and should have, a high activity in life sciences.

The mean journal impact factor is generally higher for publications authored by the academic sector in all fields. Variation by sector is quite low in life sciences, while in engineering and materials as well as in natural sciences, universities score much higher than industry and research institutes (Table 13, Appendix 2). Again, the dimension of basic and applied is the explanation, with basic science journals having higher impact factors. The different levels of journal impact by field cannot as such be interpreted as an indication of quality, since they reflect different citation habits and citation frequencies of fields.

Research policy makers in Finland, as in many other countries, have attempted to stimulate cross-sector collaboration. Figure 10 shows that there is indeed an increase in cross-sector collaboration (Table 14, Appendix 2). In 1986 the "intersector links per paper" ratio was 0.17 while in 1998 the corresponding figure was 0.20. However, most growth appears to have taken place between the academic sector and the research institutes.

Collaboration between academia and industry is more or less constant in absolute numbers, and decreasing relative to the whole Finnish paper output. Therefore, one might conclude that academic and industrial collaboration has not increased. However, we know from other sources of information that research collaboration between universities and industry has strongly increased in Finland in the 90s (Statistics Finland 1993 and 1999). This is evident in the fact that the funding of university research by industry has grown a great deal. The same is true for Tekes (National Technology Agency) funding, which usually has a condition that, in the projects to be funded, there is university - industry collaboration. Recent data from the Second Community Innovation Survey also confirms that there is considerable university-firm collaboration in R&D in Finland (see Luukkonen & Hälikkä, 2000). We can thus conclude that this increase in collaboration has resulted in publishing in non-SCI source journals or in non-publishable outcomes.



Figure 10. Percent of all Finnish papers co-authored across sectors

Note: Based on Table 14, Appendix 2. The classes are not exclusive.

However, when industry publishes papers, it publishes most of its papers in collaboration with academia. In 1986, 44 percent of the papers from industry were co-authored with the academic sector while in 1998 the figure was 56 percent and had thus increased. Most industrial papers are written by researchers in pharmaceutical companies and it follows that they dominate the collaboration between academia and industry.

### 3.6 Papers by main institution

So far we have studied numbers of papers and interregional and cross-sector collaboration. A large array of institutions are represented among the publishing organisations. In all, 940 organisations had produced at least one paper in 1986-1998. However, the distribution is very skewed. The most productive ten institutions account for 80 percent of the papers, 25 of the most productive for 90

percent, and 50 institutions account for 95 percent of the papers. The rest are occasional producers of papers with, at maximum, 4 papers per year. 500 institutions published only one paper.

Table 15 (Appendix 2) lists major Finnish institutions in the order of their publication output. In the university sector, the University of Helsinki has a leading role. The volume of output by the University of Helsinki is about as large as that of the Universities of Turku, Oulu and Kuopio taken together.

Orion Corporation (medical company) and Alko Limited (state monopoly of alcohol) dominate the industry sector (Table 15, Appendix 2). Neste Corporation (state-owned oil company), Farmos Group, Wallac and Leiras rank next. Among this group, aside from Neste, all other companies are involved in biomedical research.

Among the research institutes, the National Public Health Institute, again an institute in medicine, has a leading role followed by the Technical Research Centre of Finland and the Institute for Occupational Health. There is also a group of institutions that have a substantial output outside the above mentioned sectors. These include the Social Insurance Institute, The Red Cross and a number of medical institutions.

The mean journal impact factor varies by publishing institution (Table 16, Appendix 2). The National Public Health institute has the lead in life sciences and in the multidisciplinary category while Helsinki University scores quite high in the natural sciences. There might be specific research profiles that determine the impact figures and one should not pay too much attention to them unless we narrow down the study to specific subfield. If we limit the analysis to subfields, there does not seem to be systematic variation in impact by size (defined by the number of papers produced) (Table 17, Appendix 2). Physics is strong at Helsinki University but also quite strong at Åbo Academy, which has twenty times fewer papers. In biology and chemistry there are apparently no visible size effects.

We may assume that, in large samples of papers, actual citation impact will vary in a similar manner as does the journal impact factor. However, we must stress that we have studied publication activities at a fairly high aggregation level. There is probably much more variation at lower levels, at the level of departments or research groups and in smaller subfields. An important conclusion is, however, that it is hard to rank institutions without being able to control for research profiles or type of research activity. In order to discover centres of excellence, one should probably search for research groups which score highly in actual citation impact as compared with other national and foreign groups in specific research areas.

We strove to control for the influence of size on productivity and impact. Figures 31 - 33 and Table 22 in Appendix 3 give numbers of publications and average impact levels by academic institution in medical and non-medical fields. Number of person-years as reflected by the Kota database of the Ministry of Education has been used as a proxy for size.

These data show first that in medicine the trend upwards in publication numbers and relative citation impact hold for all universities despite size. The figure, which only includes journals with an impact factor higher than 10.0, attempts to control for the journal coverage change in the SCI. The database drops out journals that have low impact factors and includes new one with higher ones. Figure A33 shows that the upward trend is even more pronounced than when the data included all SCI journals, and that the position of the University of Helsinki was even more pronounced.

In non-medical fields, papers per staff are quite stable, but impact per staff fluctuates, probably because the journal impact factors vary a great deal from field to field. The data show that with a few exceptions, the University of Helsinki is publishing more than the other universities and has higher journal impact even when its size has been taken into account. The University of Kuopio publishes more in non-medical fields, but this is presumably due to one outstanding institute, the Virtanen institute in molecular biology.

Universities play an important role in research collaboration (Figure 10). The strong position of the universities is also quite clear when we look at a map of collaboration among institutions (Figure 11). The universities are in the centre closely interacting with the National Public Health Institute and the Institute for Occupational Health, both research institutes in the medical field. In the periphery there is a set of non-academic organisations. The medical sector is on the top of the map, while companies are found at the bottom right part, relatively close to the technical universities. In the bottom left part we find research institutes in agriculture and forestry. To a large extent this map is biased towards medicine and life sciences since these fields dominate the Finnish output.



Figure 11. Collaboration among main institutions

Note: The location of institutions on the map is estimated by applying a Multi-Dimensional-Scaling algorithm to a collaboration matrix. The size of the circles is proportional to the number of papers. The thickness of the lines between circles indicates the number of co-authored papers. Only institutions with more than 4 papers are included.

Quite another set of nodes and interactions appear if we specify the network to be the field of Materials Science & Engineering (Figure 12). Not surprisingly, the technical universities and industries now dominate. Since universities collaborate intensively with each other, there are many opportunities for indirect linkages between firms and universities.

32



Figure 12. Collaboration among main institutions in Materials Science & Engineering

Note: The location of institutions on the map is estimated by applying a Multi-Dimensional-Scaling algorithm to a collaboration matrix. The size of the circles is proportional to the number of papers, and the thickness of the lines between circles indicates the number of co-authored papers. Only institutions with more than 4 papers are included.

### 3.7 Overall output and impact of patents

If papers in the SCI represent output from basic research, patents in the US patent system mirror the output of technological innovations. The patent data from the CHI are based on the country of the inventor of patents issued in the US patent system. In 1986-1998, there were 4400 patents with at least one inventor with a Finnish address (Table 18, Appendix 2). This is 0.3 percent of all patents. Compared to Sweden, the SCI-paper/US-patent ratio is just about the same: for Finland 0.9/0.3=3.0, while for Sweden 1.9/0.6=3.1.

The most dynamic field of the last few years is telecommunications, which has by far the greatest number of patents. This is not surprising considering the exceptional success of the Nokia Group. Telecommunications technology shows an impressive trend upwards. However, it is a rapidly developing field, and companies in many countries patent intensively in this field.



*Figure 13. Number of patents with a Finnish address in the US patent system, 1980-1998* 

Note: Based on Table 18, Appendix 2

If we relate the share of Finnish patents in a field to the share of all US-patents in the same field, we find that Finland has the highest shares in the fields of wood and paper, medical equipment, industrial process equipment, glass, clay and cement (the relative activity index (RA) in Table 18, Appendix 2).

The impact of the patents, that is, other patents citing them, is above the world average in telecommunications and wood and paper (Table 19 Appendix 2). Electrical appliances and components is a field with a high impact, though a

somewhat lesser activity. The patent impact fluctuates a great deal in many fields, since these are small, and particular patents may have sudden citation peaks.

#### 3.8 International collaboration in patents

For a US patent, there may be inventors from several countries, in the same way as a paper may be internationally co-authored. Figure 14 shows that collaboration with the EU countries is growing. However, Finnish inventors collaborate with a North American inventor twice as often. In 1998, for patents taken by Finnish inventors, 3.5 % were co-invented with an EU and 7.7% with a US inventor. According to a corresponding study in Sweden, Swedish inventors had taken 4.6 % of their patents with an EU and 5.8 % with a North American inventor. Thus, for Finland, the balance is somewhat more in favour of the US. One must recall that we are counting patents with inventors having a Finnish home address. The company that owns the patent might be located elsewhere, for example a Nokia R&D unit in the USA.



Figure 14. Percent of Finnish invented US-patents 1980-1998 co-invented with other regions

Note: Based on Table 20, Appendix 2

A patent has both inventors and assignees. The assignee, mostly a company, owns the patent, while the inventor is either a company's employee or a collaborator from the outside, such as a university. If we study the extent to which patents with a Finnish assignee address have inventors from other countries we can get one indication of the internationalisation of a Finnish company. We find that an increasing share of the patents assigned to companies in Finland are invented by inventors with a foreign address. The national inventor base is still strong, around 90 percent, but it is tending to decrease. The share of patents with Finnish inventors who have assignees located outside Finland was about 10 percent at the end of the period (Table 21, Appendix 2). This proportion fluctuates somewhat. The interpretation of this piece of information is more difficult since the assignee can be a Finnish company with premises abroad or a foreign company that has inventor-employees in Finland.

For Sweden, the share of Swedish inventors in Swedish owned patents is about the same as for Finland, but the share of patents that have Swedish inventors but foreign assignees is about 20 percent.

### **4** Conclusions

The above set of bibliometric indicators provides a positive picture of Finnish science. Seen from the point of view of the international journal market, Finland has strengthened its position both in terms of papers produced and their citation impact. However, Finland continues to be a little behind Sweden and Denmark in terms of citation impact, though it has almost caught up with Sweden. The positive trend in Finnish citation impact is associated with publications in journals with higher impact factors. In some subfields, Finland is well above the world average in citation impact.

Much of the growth of Finnish papers and citation impact seems to be associated with a dramatic increase in international collaboration, which has doubled in relative terms since 1986. Today, 40 % of the Finnish papers are co-authored with other countries. The EU region has become the major source of collaborators for Finnish researchers, since 20 % of Finnish papers are co-authored with researchers from EU countries, and the share has grown significantly faster than the share of papers co-authored with researchers from North America. In terms of impact, it pays more to collaborate internationally than not, especially with North America. Thus, to some extent, the positive trend in the output and impact of Finnish scientific publications can be explained by international collaboration. Increasing international collaboration and a positive trend in output and impact can reflect a longer-term policy to reinforce international orientation in Finnish science and to improve scientific standards.

When it comes to technological innovations, the study of Finnish-US patents shows that Finland has strong activity and impact in telecommunications, industrial process equipment, and wood and paper. In other patent fields, such as biotechnology and pharmaceuticals, the number of patents are increasing but are relatively few considering the strong national research base. We have also found that Finnish inventors tend to collaborate increasingly with foreign inventors, but the share of patents co-invented with foreigners is much lower compared to papers, and we cannot find an EU effect of the same kind as in papers. The national inventor base for Finnish patents is still very strong although there is a steady trend towards internationalisation.

In this study we have made reference to a similar study of Swedish papers and patents. When it comes to internationalisation, there are many similarities. Finland has become an important actor internationally in the research world in the last
decade. Apparently this development has also been favourable in terms of research quality.

In the Finnish national research system, the Helsinki-region dominates with some 50 % of all papers, but there has been a decentralisation of activities, which has reduced this dominance somewhat. When it comes to impact, measured by the journal impact factor, the largest regions show a positive trend at a fairly high impact level, while papers from smaller regions have lower impact and a positive trend is harder to see. Interregional collaboration in Finland will not have significant quality effects in contrast to international collaboration.

We also have studied numbers of papers, their citation impact, and cross-sector collaboration. The university sector dominates the output with 77 % of the papers, the research institutes publish 12 % and industry about four percent. The most significant change is the growth of papers by research institutes. Collaboration between universities and research institutes has particularly increased. The number and proportion of papers co-authored by the universities and industry have stagnated. However, we know from other sources that this collaboration has increased. The results of this collaboration are either published in the so-called grey literature, or more likely they remain unpublished. Nevertheless, when industry does publish in scientific journals, it does so to a large extent in collaboration with universities. In general the university sector produces papers with higher journal impact, especially in engineering and materials and natural sciences. This is probably a reflection of the basic research orientation.

When we study the publications by single organisations, we find a pattern parallel to that in sectors and regions. Concentration on Helsinki is obvious. The University of Helsinki produces more papers than the Universities of Turku, Oulu and Kuopio together. Similarly, there are a few big producers of papers in the industry sector (Orion Corporation, Alko Ltd and Neste Corporation) and in the research institute sector (National Public Health Institute, Technical Research Centre of Finland and Institute of Occupational Health). When it comes to impact, we do not find major differences between the major actors. The collaboration networks among organisations are, because of size, dominated by universities, which interact intensively with each other. Universities have collaboration with researchers in other sectors, too, depending on their specific research profiles.

When using bibliometric indicators, and particularly SCI-based data, we introduce a bias towards basic research, since publishing and publishing in journals plays a major role in it. Using this information, we have witnessed a significant growth and impact of Finnish basic research combined with, and to some extent explained by, a fast growing internationalisation. It appears that international integration is a much stronger force at work than intranational integration, be that among regions or sectors.

When it comes to technological innovations, we have seen positive trends for Finland. Finland appears to be strong technologically and economically in the same fields, for example in wood and paper, and telecommunication. However, in our data there are no obvious connections found between scientific and technological activities in the sense that we could say that the fields in which Finnish science is strong are the same in which it is strong technologically or economically. The most probable reason for this lack of match may simply be the fact that our data on scientific publishing primarily reflects what is happening in basic, mostly academic research. In applied research the interactions and the match of academic and industrial activities are probably much closer.

## References

Frame, J.D. and F. Narin, The National Self-occupation of American Scientists: An Empirical View, Research Policy, 17 (1988) 203-212.

Glänzel, W., A. Schubert, and H.-J. Czerwon, A Bibliometric Analysis of International Scientific Cooperation of the European Union (1985-1995). Scientometrics, Vol. 45, No. 2 (1999) 185-202.

Luukkonen, Terttu and Sasu Hälikkä, Knowledge Creation and knowledge Diffusion Networks - Impacts in Finland of the EU's Fourth Framework Programme for Research and Development, Publications of the Secretariat for EU R&D 1/2000, Helsinki 2000.

Luukkonen, Terttu, Olle Persson, and Gunnar Sivertsen, Understanding Patterns of International Scientific Collaboration. Science, Technology, & Human Values, 17 (1992) 101-126.

Statistics Finland, 1993. Research and Development 1993: 1, Helsinki: Statistics Finland.

Statistics Finland, 1999. Research and Development 1999: 1, Helsinki: Statistics Finland.

# Appendix 1. A more detailed description of the data material

There are two types of bibliometric data that can be used for a study of the output of national R&D efforts, papers and patents. We have constructed one data set for Finnish papers and one for Finnish patents. We have also used ready-made indicators produced in the US for both papers and patents. These four data sets are described below.

#### Finnish papers in the Science Citation Index

The 1986-1999 *Science Citation Index*<sup>TM</sup> CD-ROM editions (SCI-CDE) were used to download all source items (genuine articles, notes, letters, reviews etc) with the word "Finland" in the address field. In all 83.771 records were found. Since the annual discs refer to the update period of the database rather than the publication year of the articles, the SCI-CDE period of 1986-1999 covers publication years 1986-1998 fully.

Each record has a set of fields, which starts with a tag, e.g. "TI" and ends with a spike "|" (Example 1). To improve the quality of the data and to enable various types of aggregation and analysis we had to produce new fields. These fields are shown in bold text in Example 1.

The address field ("CS") contains all author addresses. All Finnish addresses were standardised and converted into a new field. The NX-field gives the main organisation, sector, t city and geographical region. The GL-field has all country names of the addresses.

| FN- | Science Citation Index (Jan 98 - Dec 98)                      |  |  |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| GA- | 124WQ                                                         |  |  |  |  |  |  |  |  |  |  |
| TI- | Reaction of 1-Naphthyl Amine with Methyl Ketones - A Possible |  |  |  |  |  |  |  |  |  |  |
|     | Route to the One-Pot Syntheses of Substituted 1,2-            |  |  |  |  |  |  |  |  |  |  |
|     | Dihydrobenzo(H)Quinolines                                     |  |  |  |  |  |  |  |  |  |  |
| LA- | English                                                       |  |  |  |  |  |  |  |  |  |  |
| AU- | Leis J; Pihl A; Pihlaja K; Karelson C                         |  |  |  |  |  |  |  |  |  |  |
| GL- | ESTONIA; FINLAND                                              |  |  |  |  |  |  |  |  |  |  |
| NX- | TURKU UNIV TURKU EDU SW FINLAND                               |  |  |  |  |  |  |  |  |  |  |
| CS- | UNIV TURKU/DEPT CHEM/FIN 20014 TURKU//FINLAND; TARTU STATE    |  |  |  |  |  |  |  |  |  |  |
|     | UNIV/DEPT CHEM/EE 2400 TARTU//ESTONIA                         |  |  |  |  |  |  |  |  |  |  |
| NI- | ACT CHIM HU CHEMISTRY                                         |  |  |  |  |  |  |  |  |  |  |
| FI- | 2.53 DY CHM NATURAL                                           |  |  |  |  |  |  |  |  |  |  |
| JN- | ACH-MODELS IN CHEMISTRY, 1998, V135, N4, P573-581             |  |  |  |  |  |  |  |  |  |  |
| DT- | Article                                                       |  |  |  |  |  |  |  |  |  |  |
| NR- | 9                                                             |  |  |  |  |  |  |  |  |  |  |

#### **Example 1. A downloaded record from SCI-CDE**

In order to be able to identify research fields, the journal name ("JN") was classified into journal subject categories using different systems. The field entitled FI gives the journal categories used in one of the products of the ISI called *Journal Performance Indicators on Diskette* (JPIOD) and the journal categories taken from another classification created by *SPRU*, which has some 20 subfields and four major fields. In addition this field also gives the journal impact factor (JIF) obtained from JPIOD-1996. JIF is the average number of citations per paper for a given journal. The time window for calculating JIF may vary, both in terms of cited and citing years. In this study we have used a citing window starting in 1981 and ending in 1996.

When analysing our data we decided to test another classification system taken from *National Indicators on Diskette* (NSIOD), which has about 100 categories (See the NI field). This enables us to make some comparisons between the Finnish papers taken from SCI-CDE and the corresponding NSIOD-data.

#### Finnish patents in the US patent system

The www-server of US Patent Office (www.uspto.gov) was used to retrieve Finnish patents. In all we found 5.175 patents issued in 1986-1998 with a Finnish assignee

and/or inventor. The patents at the USPTO-server were downloaded as screen dumps meaning that we got the text versions of the front-pages of issued patents. We then converted these front pages into field delimited records.

The TP-field was added to the patent records (Example 2), based on the international classifications (ICL) used by Computer Horizons (CHI) for their national patent indicators. This enabled us to get a match between Finnish patents and international data in about the same way as we had for papers.

AA- US patent front page NO- 2| PN- 4,632,778 PY- 1986 TI- Procedure for ceramizing radioactive wastes IN- Lehto Jukka K. (Helsinki, FI); Miettinen Jorma K. (Helsinki, FI); Heinonen Olli (Helsinki, FI) AS- Imatran Voima Oy (FI) PF- 1983| **TP- POWER GENERATION AND DISTRIBUTION** IC- G21F 9/28, G21F 9/12, G21F 9/16 UC- 588/10; 588/7; 588/9; 976/DIG 383; 976/DIG 385| CP- 2,616,847/Apr., 1951/Ginell/252/629/; 3,093,593/Jun., 1963/Arrance/252/629/; 3,249,551/May, 1966/Bixby/252/629/; 4,297,304/Oct., 1981/Scheffler et al./252/629/ CD- Not Found||

#### Example 2. A downloaded record from USPTO

#### National Science Indicators (NSIOD)

ISI's National Science Indicators on Diskette (NSIOD) is a database of summary publication and citation statistics in 1981-1998 reflecting research performance by over 170 countries. It gives a data set of 105 fields in the sciences, social sciences, and arts and humanities corresponding to ISI's *Current Contents*<sup>®</sup> (*CC*<sup>®</sup>) categories. The database contains counts of publications and citations taken from the peer-reviewed journals indexed by the ISI from 1981 to 1998.

#### International Technology Indicators Database (CHI-data)

Computer Horizons (CHI) uses the US Patent system to count patens by technological field and the country of the inventor. This database also includes the number of patens citing patents The number of patents as well as patent citations are fractionalised by country. If a patent has been co-invented by two Swedish, one Finnish and one US inventor, that patent would be counted as half a patent for Sweden and one fourth of a patent for Finland and one forth for the USA.

The CHI-patent database uses the International Classification System (ICL) to group the patents into some thirty field of technology. Only the first listed ICL-code is used by the CHI.

#### A Swedish twin study

There is a similar study of Swedish papers and patents covering the years 1986-1996, reported by Olle Persson, that will be made avialable by Nutek (www.nutek.se).

#### Software

To analyse bibliometric raw data one usually needs specialised software, at least to start with. Typically we have a large number of cases and a set of variables that can take a large number of values. For example, taking 100.000 records by main organisation will produce a file of almost double size. Adding a field classification to each main organisation will increase the file further. Not many standard software packages can deal with such tasks easily enough. We also need special software to identify specific units in each field, to classify units into sectors or research fields, to calculate fractions of papers, to build co-authorship data and so forth. A beta version of a bibliometric toolbox called Bibexcel was found quite helpful in this task. Bibexcel can also be used to visualise the data using maps.

## **Appendix 2. Tables**

Table 1. Finnish output of papers and their relative citation impact in all fields of science.

Note: Relative citation impact is the number of citations per paper for Finland compared to the number of citations per paper for all countries (World). A value of 1.20 means that the Finnish papers are cited 20 percent above the world average. Percent of all papers should be read as the percent of all papers, which have at least one Finnish author address. The paper and citation counts are not fractionalalised according to the number of countries involved in producing the papers.

|      | Relative cit | ation impac | t       |        | Percentage of all papers |        |         |        |  |
|------|--------------|-------------|---------|--------|--------------------------|--------|---------|--------|--|
| Year | Finland      | Sweden      | Denmark | Norway | Finland                  | Sweden | Denmark | Norway |  |
| 1981 | 0.97         | 1.46        | 1.33    | 0.94   | 0.59                     | 1.54   | 0.86    | 0.52   |  |
| 1982 | 0.96         | 1.43        | 1.35    | 1.04   | 0.64                     | 1.64   | 0.86    | 0.55   |  |
| 1983 | 0.99         | 1.46        | 1.28    | 0.96   | 0.67                     | 1.65   | 0.84    | 0.55   |  |
| 1984 | 0.92         | 1.42        | 1.26    | 0.93   | 0.68                     | 1.71   | 0.83    | 0.54   |  |
| 1985 | 1.02         | 1.44        | 1.27    | 0.95   | 0.65                     | 1.73   | 0.82    | 0.56   |  |
| 1986 | 0.91         | 1.40        | 1.26    | 0.98   | 0.66                     | 1.73   | 0.86    | 0.52   |  |
| 1987 | 1.00         | 1.28        | 1.22    | 0.93   | 0.70                     | 1.72   | 0.84    | 0.53   |  |
| 1988 | 1.08         | 1.33        | 1.20    | 0.95   | 0.66                     | 1.72   | 0.80    | 0.52   |  |
| 1989 | 0.96         | 1.31        | 1.18    | 0.97   | 0.68                     | 1.77   | 0.83    | 0.51   |  |
| 1990 | 0.98         | 1.29        | 1.29    | 0.96   | 0.70                     | 1.76   | 0.83    | 0.54   |  |
| 1991 | 1.08         | 1.32        | 1.29    | 0.95   | 0.72                     | 1.74   | 0.84    | 0.54   |  |
| 1992 | 1.13         | 1.31        | 1.20    | 0.97   | 0.75                     | 1.75   | 0.91    | 0.58   |  |
| 1993 | 1.18         | 1.27        | 1.31    | 0.97   | 0.80                     | 1.85   | 0.91    | 0.58   |  |
| 1994 | 1.20         | 1.28        | 1.26    | 0.96   | 0.84                     | 1.87   | 0.96    | 0.60   |  |
| 1995 | 1.18         | 1.26        | 1.29    | 0.98   | 0.84                     | 1.89   | 0.95    | 0.64   |  |
| 1996 | 1.18         | 1.26        | 1.23    | 0.89   | 0.89                     | 1.97   | 0.96    | 0.63   |  |
| 1997 | 1.20         | 1.24        | 1.32    | 1.02   | 0.92                     | 1.98   | 0.98    | 0.65   |  |
| 1998 | 1.03         | 1.21        | 1.45    | 1.24   | 0.92                     | 2.01   | 1.04    | 0.66   |  |

Source: National Indicators based on SCI/SSCI produced by ISI

|      | Number of | citations |         |        | Number of papers |        |         |        |  |  |  |
|------|-----------|-----------|---------|--------|------------------|--------|---------|--------|--|--|--|
| Year | Finland   | Sweden    | Denmark | Norway | Finland          | Sweden | Denmark | Norway |  |  |  |
| 1981 | 38875     | 154226    | 78645   | 33751  | 2640             | 6940   | 3897    | 2348   |  |  |  |
| 1982 | 41791     | 159847    | 79245   | 38833  | 2954             | 7593   | 3988    | 2531   |  |  |  |
| 1983 | 46264     | 168526    | 75188   | 36726  | 3166             | 7789   | 3979    | 2587   |  |  |  |
| 1984 | 43822     | 169502    | 72357   | 34716  | 3212             | 8053   | 3887    | 2520   |  |  |  |
| 1985 | 48062     | 180243    | 75528   | 38488  | 3283             | 8708   | 4137    | 2797   |  |  |  |
| 1986 | 43633     | 175494    | 78652   | 37278  | 3437             | 9029   | 4471    | 2734   |  |  |  |
| 1987 | 51025     | 160771    | 74646   | 36097  | 3626             | 8935   | 4356    | 2753   |  |  |  |
| 1988 | 51804     | 165287    | 69879   | 36061  | 3558             | 9272   | 4323    | 2813   |  |  |  |
| 1989 | 46732     | 167029    | 70744   | 35323  | 3785             | 9887   | 4656    | 2826   |  |  |  |
| 1990 | 48662     | 161838    | 75700   | 36443  | 3990             | 10088  | 4731    | 3077   |  |  |  |
| 1991 | 52424     | 155271    | 72993   | 34379  | 4247             | 10283  | 4950    | 3162   |  |  |  |
| 1992 | 55201     | 148496    | 71059   | 36832  | 4712             | 10987  | 5716    | 3661   |  |  |  |
| 1993 | 54597     | 136318    | 69645   | 32710  | 4923             | 11402  | 5625    | 3591   |  |  |  |
| 1994 | 49847     | 118892    | 60152   | 28555  | 5474             | 12154  | 6254    | 3902   |  |  |  |
| 1995 | 39151     | 93125     | 47851   | 24525  | 5755             | 12890  | 6474    | 4338   |  |  |  |
| 1996 | 26205     | 62173     | 29807   | 14149  | 6125             | 13642  | 6658    | 4366   |  |  |  |
| 1997 | 13240     | 29410     | 15622   | 7940   | 6408             | 13758  | 6833    | 4502   |  |  |  |
| 1998 | 1980      | 4993      | 3107    | 1706   | 6623             | 14439  | 7448    | 4725   |  |  |  |

Table 2. Relative citation impact for a set of countries in 1981-85 and 1994-98

| Country     | Relative citation impact 1981-85 | Relative citation impact 1994-98 |
|-------------|----------------------------------|----------------------------------|
| Switzerland | 1.61                             | 1.62                             |
| USA         | 1.35                             | 1.42                             |
| Netherlands | 1.34                             | 1.28                             |
| Denmark     | 1.33                             | 1.25                             |
| Sweden      | 1.25                             | 1.24                             |
| UK          | 1.18                             | 1.18                             |
| Finland     | 0.98                             | 1.15                             |
| Germany     | 0.97                             | 1.09                             |
| France      | 0.95                             | 1.05                             |
| Italy       | 0.95                             | 1.01                             |
| Norway      | 0.87                             | 0.95                             |

Source: National Indicators based on SCI/SSCI produced by ISI

## *Table 3. Relative journal impact factor and relative citation impact for Finnish papers in 1986-1996*

Note: The calculation of relative journal impact factor (RJIF) is based on SCI-CDE downloads and JPIOD-1996. Fisrt, the mean journal impact factor (MJIF) is calculated by multiplying the number of papers by the corresponding journal impact factor, and then the sum of these products are divided by the number of papers. Finnish RJIF is the ratio of MJIF for Finnish papers and MJIF for all papers (World). The relative citation impact is taken from Table 1.

| Year | Relative journal impact factor | Relative citation impact |
|------|--------------------------------|--------------------------|
| 1986 | 1.11                           | 0.91                     |
| 1987 | 1.20                           | 1.00                     |
| 1988 | 1.14                           | 1.08                     |
| 1989 | 1.19                           | 0.96                     |
| 1990 | 1.12                           | 0.98                     |
| 1991 | 1.22                           | 1.08                     |
| 1992 | 1.29                           | 1.13                     |
| 1993 | 1.30                           | 1.18                     |
| 1994 | 1.33                           | 1.20                     |
| 1995 | 1.36                           | 1.18                     |
| 1996 | 1.34                           | 1.18                     |

## Table 4. Fields by size and impact

| Field                        | Relative impact<br>1994 - 1998<br>(compared with the<br>average citation<br>level of all papers<br>in field) | Relative activity<br>(percent of all<br>papers in field) | Relative impact<br>increase (1994-<br>1998 compared<br>with 1981-1998)* | Number of Finnish<br>papers |
|------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| General & Internal Medicine  | 1.92                                                                                                         | 0.88                                                     | 1.00                                                                    | 634                         |
| Physics                      | 1.76                                                                                                         | 0.75                                                     | 1.34                                                                    | 1129                        |
| Pharmacology/Toxicology      | 1.72                                                                                                         | 1.12                                                     | 1.41                                                                    | 196                         |
| Research/Lab Med & Med Techn | 1.56                                                                                                         | 1.60                                                     | 1.39                                                                    | 431                         |
| Animal Sciences              | 1.55                                                                                                         | 1.19                                                     | 1.42                                                                    | 556                         |
| Gastroenterol and Hepatology | 1.49                                                                                                         | 0.85                                                     | 1.19                                                                    | 230                         |
| Orthopedics & Sports Med     | 1.46                                                                                                         | 1.64                                                     | 0.93                                                                    | 352                         |
| Pediatrics                   | 1.44                                                                                                         | 1.36                                                     | 1.05                                                                    | 436                         |
| Cardiovasc & Respirat Syst   | 1.43                                                                                                         | 0.96                                                     | 1.51                                                                    | 668                         |
| Dentistry/Oral Surgery & Med | 1.42                                                                                                         | 2.80                                                     | 1.34                                                                    | 449                         |
| Dermatology                  | 1.37                                                                                                         | 1.37                                                     | 0.99                                                                    | 239                         |
| Endocrinol, Nutrit & Metab   | 1.36                                                                                                         | 1.71                                                     | 1.28                                                                    | 720                         |
| Experimental Biology         | 1.36                                                                                                         | 0.70                                                     | 1.48                                                                    | 144                         |
| Instrumentation/Measurement  | 1.35                                                                                                         | 1.07                                                     | 1.13                                                                    | 297                         |
| Neurology                    | 1.32                                                                                                         | 1.34                                                     | 1.31                                                                    | 494                         |
| Veterinary Med/Animal Health | 1.31                                                                                                         | 0.57                                                     | 1.12                                                                    | 210                         |
| Urology                      | 1.30                                                                                                         | 0.74                                                     | 1.30                                                                    | 213                         |
| Clin Immunol & Infect Dis    | 1.29                                                                                                         | 1.75                                                     | 1.22                                                                    | 464                         |
| Molecular Biology & Genetics | 1.27                                                                                                         | 1.17                                                     | 1.59                                                                    | 675                         |
| Oncology                     | 1.27                                                                                                         | 1.03                                                     | 1.22                                                                    | 348                         |
| Biotechnol & Appl Microbiol  | 1.27                                                                                                         | 0.92                                                     | 0.84                                                                    | 187                         |
| Oncogenesis & Cancer Res     | 1.25                                                                                                         | 1.32                                                     | 1.19                                                                    | 728                         |
| Environment/Ecology          | 1.24                                                                                                         | 1.57                                                     | 1.20                                                                    | 1239                        |
| Environmt Med & Public Hlth  | 1.22                                                                                                         | 2.74                                                     | 1.08                                                                    | 485                         |
| Food Science/Nutrition       | 1.22                                                                                                         | 1.06                                                     | 1.11                                                                    | 320                         |

Source: National Indicators based on SCI/SSCI produced by ISI

| Table 4. cont                | s le                                                                                                        |                                                          |                                                                         | q                          |
|------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|
| Field                        | Relative impact<br>1994 - 1998<br>(compared with th<br>average citation<br>level of all paper:<br>in field) | Relative activity<br>(percent of all<br>papers in field) | Relative impact<br>increase (1994-<br>1998 compared<br>with 1981-1998)* | Number of Finnis<br>papers |
| Medical Res, Diag & Treatmt  | 1.21                                                                                                        | 1.29                                                     | 1.19                                                                    | 1085                       |
| Endocrinol, Metab & Nutrit   | 1.20                                                                                                        | 2.68                                                     | 1.14                                                                    | 475                        |
| AI, Robotics & Auto Control  | 1.20                                                                                                        | 0.71                                                     | 1.13                                                                    | 175                        |
| Agricultural Chemistry       | 1.16                                                                                                        | 0.71                                                     | 1.26                                                                    | 152                        |
| Info Technol & Commun Syst   | 1.15                                                                                                        | 0.84                                                     | 1.16                                                                    | 135                        |
| Cardiovasc & Hematology Res  | 1.14                                                                                                        | 1.07                                                     | 1.44                                                                    | 689                        |
| Rheumatology                 | 1.13                                                                                                        | 2.73                                                     | 1.30                                                                    | 271                        |
| Anesthesia & Intensive Care  | 1.09                                                                                                        | 1.73                                                     | 1.07                                                                    | 401                        |
| Pharmacology & Toxicology    | 1.08                                                                                                        | 1.15                                                     | 1.33                                                                    | 913                        |
| Mathematics                  | 1.07                                                                                                        | 0.57                                                     | 1.10                                                                    | 320                        |
| Clin Psychology & Psychiatry | 1.07                                                                                                        | 1.84                                                     | 1.60                                                                    | 313                        |
| Engineering Mgmt/General     | 1.07                                                                                                        | 0.99                                                     | 1.24                                                                    | 157                        |
| Organic Chem/Polymer Sci     | 1.06                                                                                                        | 0.49                                                     | 1.47                                                                    | 459                        |
| Multidisciplinary            | 1.06                                                                                                        | 0.54                                                     | 0.94                                                                    | 264                        |
| Appl Phys/Cond Matt/Mat Sci  | 1.05                                                                                                        | 0.58                                                     | 1.08                                                                    | 1420                       |
| Optics & Acoustics           | 1.05                                                                                                        | 0.78                                                     | 1.17                                                                    | 318                        |
| Hematology                   | 1.05                                                                                                        | 0.71                                                     | 1.31                                                                    | 137                        |
| Chemical Engineering         | 1.04                                                                                                        | 0.89                                                     | 1.65                                                                    | 351                        |
| Spectrosc/Instrum/Analyt Sci | 1.02                                                                                                        | 0.97                                                     | 1.28                                                                    | 767                        |
| Elect & Electronic Engn      | 1.01                                                                                                        | 0.63                                                     | 1.07                                                                    | 360                        |
| Ophthalmology                | 1.01                                                                                                        | 1.14                                                     | 1.07                                                                    | 200                        |
| Medical Res, Organs & Syst   | 1.00                                                                                                        | 1.66                                                     | 1.10                                                                    | 1723                       |
| Microbiology                 | 0.99                                                                                                        | 0.93                                                     | 1.11                                                                    | 712                        |
| Agriculture/Agronomy         | 0.99                                                                                                        | 1.08                                                     | 1.24                                                                    | 295                        |
| Materials Sci and Engn       | 0.98                                                                                                        | 0.86                                                     | 1.44                                                                    | 834                        |
| Public Hlth & Hlth Care Sci  | 0.98                                                                                                        | 1.14                                                     | 1.34                                                                    | 408                        |
| Computer Sci & Engineering   | 0.98                                                                                                        | 0.84                                                     | 1.34                                                                    | 180                        |

| Table 4. cont                | impact<br>998<br>ed with the<br>citation<br>all papers                   | activity<br>of all<br>(field)     | impact<br>(1994-<br>npared<br>1-1998)*       | of Finnish       |
|------------------------------|--------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|------------------|
| Field                        | Relative<br>1994 - 19<br>(compare<br>average of<br>level of<br>in field) | Relative<br>(percent of papers in | Relative<br>increase<br>1998 con<br>with 198 | Number of papers |
| Environmt Engineering/Energy | 0.98                                                                     | 0.69                              | 0.91                                         | 129              |
| Biochemistry & Biophysics    | 0.97                                                                     | 0.70                              | 1.17                                         | 951              |
| Biology                      | 0.96                                                                     | 0.84                              | 0.96                                         | 251              |
| Medical Res, General Topics  | 0.95                                                                     | 1.71                              | 1.06                                         | 1363             |
| Animal & Plant Sciences      | 0.93                                                                     | 0.65                              | 1.39                                         | 191              |
| Otolaryngology               | 0.91                                                                     | 1.85                              | 0.92                                         | 264              |
| Inorganic & Nucl Chemistry   | 0.91                                                                     | 0.51                              | 1.17                                         | 157              |
| Psychiatry                   | 0.90                                                                     | 1.75                              | 1.55                                         | 396              |
| Radiol, Nucl Med & Imaging   | 0.90                                                                     | 0.89                              | 1.29                                         | 334              |
| Mechanical Engineering       | 0.90                                                                     | 0.27                              | 1.70                                         | 124              |
| Cell & Developmental Biol    | 0.89                                                                     | 0.67                              | 1.00                                         | 301              |
| Physical Chem/Chemical Phys  | 0.88                                                                     | 0.58                              | 1.28                                         | 714              |
| Surgery                      | 0.88                                                                     | 0.68                              | 0.98                                         | 294              |
| Chemistry                    | 0.87                                                                     | 0.39                              | 1.47                                         | 325              |
| Reproductive Medicine        | 0.86                                                                     | 2.29                              | 1.02                                         | 726              |
| Neurosciences & Behavior     | 0.85                                                                     | 1.28                              | 1.25                                         | 1676             |
| Plant Sciences               | 0.84                                                                     | 1.29                              | 1.25                                         | 873              |
| Aquatic Sciences             | 0.84                                                                     | 1.08                              | 1.14                                         | 410              |
| Psychology                   | 0.83                                                                     | 0.60                              | 1.12                                         | 442              |
| Earth Sciences               | 0.77                                                                     | 0.64                              | 1.26                                         | 511              |
| Space Science                | 0.76                                                                     | 1.13                              | 1.23                                         | 448              |
| Chemistry & Analysis         | 0.76                                                                     | 0.49                              | 1.29                                         | 442              |
| Immunology                   | 0.63                                                                     | 1.16                              | 0.97                                         | 670              |
| Physiology                   | 0.59                                                                     | 1.07                              | 1.18                                         | 249              |
| Economics                    | 0.49                                                                     | 0.67                              | 1.53                                         | 222              |
| Entomology/Pest Control      | 0.45                                                                     | 0.87                              | 0.92                                         | 170              |

\*An index figure. For example, 1.20 means a twenty-percent growth in relative citation level.

*Table 5. Percent of Finnish papers co-authored with different country groups* Source: Inforsk/VTT database based on SCI CDE.

|       | Country region | l                 |                                     |                  |               |        |
|-------|----------------|-------------------|-------------------------------------|------------------|---------------|--------|
| Year  | Finland        | European<br>Union | European Union and<br>North America | North<br>America | Other regions | Papers |
| 1986  | 81.4           | 8.0               | 1.4                                 | 5.6              | 3.5           | 3868   |
| 1987  | 78.3           | 9.3               | 1.5                                 | 6.7              | 4.2           | 3908   |
| 1988  | 78.0           | 9.6               | 1.6                                 | 6.1              | 4.6           | 3895   |
| 1989  | 76.1           | 9.9               | 1.6                                 | 6.7              | 5.6           | 3488   |
| 1990  | 73.4           | 10.9              | 1.7                                 | 7.7              | 6.3           | 3765   |
| 1991  | 70.3           | 12.4              | 2.4                                 | 7.8              | 7.1           | 3957   |
| 1992  | 68.9           | 13.1              | 2.8                                 | 7.9              | 7.3           | 4303   |
| 1993  | 69.0           | 13.4              | 3.3                                 | 7.8              | 6.5           | 4785   |
| 1994  | 66.8           | 13.1              | 3.7                                 | 9.1              | 7.3           | 5192   |
| 1995  | 64.8           | 13.9              | 4.3                                 | 9.3              | 7.7           | 5555   |
| 1996  | 63.9           | 15.1              | 4.7                                 | 8.3              | 7.9           | 5909   |
| 1997  | 61.7           | 16.2              | 4.3                                 | 9.1              | 8.6           | 6359   |
| 1998  | 59.8           | 19.2              | 4.2                                 | 7.7              | 9.2           | 6131   |
| Total | 68.95          | 13.19             | 3.13                                | 7.84             | 6.89          | 61115  |

*Table 6. Percent of Finnish total journal impact by country group of the co-author* Note: The total journal impact is calculated by adding the journal impact of each paper.

|      | Country region |          |                   |         |               |        |  |  |  |  |  |  |  |
|------|----------------|----------|-------------------|---------|---------------|--------|--|--|--|--|--|--|--|
| Year | Finland        | European | European Union    | North   | Other regions | Papers |  |  |  |  |  |  |  |
|      |                | Union    | and North America | America |               |        |  |  |  |  |  |  |  |
| 1986 | 76.6           | 9.5      | 2.0               | 8.3     | 3.6           | 3851   |  |  |  |  |  |  |  |
| 1987 | 73.8           | 10.8     | 2.0               | 9.5     | 3.9           | 3883   |  |  |  |  |  |  |  |
| 1988 | 74.2           | 10.2     | 2.4               | 9.0     | 4.1           | 3862   |  |  |  |  |  |  |  |
| 1989 | 71.9           | 11.1     | 2.8               | 9.5     | 4.6           | 3472   |  |  |  |  |  |  |  |
| 1990 | 67.1           | 12.5     | 2.6               | 11.9    | 5.9           | 3732   |  |  |  |  |  |  |  |
| 1991 | 65.8           | 14.0     | 3.6               | 10.1    | 6.5           | 3939   |  |  |  |  |  |  |  |
| 1992 | 63.6           | 14.6     | 4.3               | 11.6    | 5.9           | 4278   |  |  |  |  |  |  |  |
| 1993 | 62.9           | 15.7     | 5.0               | 11.3    | 5.2           | 4750   |  |  |  |  |  |  |  |
| 1994 | 60.6           | 15.1     | 5.0               | 13.0    | 6.3           | 5130   |  |  |  |  |  |  |  |
| 1995 | 59.0           | 15.7     | 6.0               | 13.3    | 6.0           | 5486   |  |  |  |  |  |  |  |
| 1996 | 59.0           | 16.6     | 7.3               | 11.4    | 5.6           | 5779   |  |  |  |  |  |  |  |
| 1997 | 56.2           | 17.5     | 6.6               | 12.2    | 7.5           | 6134   |  |  |  |  |  |  |  |
| 1998 | 53.3           | 21.4     | 6.1               | 11.0    | 8.2           | 5802   |  |  |  |  |  |  |  |

Source: Inforsk/VTT database based on SCI -CDE.

#### Table 7. Number of Finnish papers co-authored with other countries

Note: Numbers refer to the number of papers co-authored with a country, and these numbers are not fractionalised according to the number of countries involved in a paper. Growth is the percentage change between 1986 and 1998. N.a. in the growth column means not available because of zero values.

#### Source: Inforsk/VTT database based on SCI CDE.

*Table 8. Papers by region in 1986-1998. Percent of all Finnish papers (fractional counts)* 

Source: Inforsk/VTT database based on SCI CDE.

|                      | Year  |       |       |       |       |       |       |       |       |       |       |       |       |        |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Region               | 1986  | 1987  | 1988  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | Papers |
| Uusimaa              | 52.8  | 55.4  | 53.5  | 54.2  | 54.1  | 53.6  | 53.0  | 51.5  | 50.5  | 49.6  | 50.6  | 49.3  | 49.1  | 34973  |
| Sw Finland           | 15.0  | 14.1  | 15.8  | 16.0  | 15.8  | 14.8  | 14.4  | 15.5  | 16.8  | 16.1  | 15.6  | 16.2  | 15.9  | 11385  |
| N Ostrobothnia       | 11.2  | 9.9   | 9.9   | 10.2  | 9.3   | 9.8   | 9.5   | 9.7   | 9.7   | 9.8   | 9.7   | 9.7   | 9.9   | 7259   |
| N Savo               | 7.8   | 7.3   | 8.3   | 6.8   | 8.0   | 8.3   | 8.6   | 8.7   | 8.0   | 9.2   | 8.5   | 8.8   | 8.6   | 6350   |
| Pirkanmaa            | 6.1   | 6.0   | 5.5   | 5.3   | 6.0   | 6.0   | 6.6   | 6.1   | 6.6   | 6.1   | 6.0   | 6.6   | 6.7   | 5028   |
| Cent Finland         | 3.3   | 2.8   | 3.3   | 3.1   | 2.9   | 3.1   | 2.8   | 3.4   | 3.2   | 3.4   | 3.9   | 3.7   | 4.0   | 2528   |
| N Karelia            | 1.3   | 1.4   | 0.9   | 1.3   | 1.0   | 1.3   | 1.7   | 1.6   | 1.7   | 1.9   | 2.4   | 2.1   | 2.2   | 1312   |
| Inner Tavastia       | 0.2   | 0.5   | 0.5   | 0.6   | 0.6   | 0.8   | 0.8   | 0.6   | 0.7   | 0.8   | 0.7   | 0.6   | 0.7   | 566    |
| Lapland              | 0.3   | 0.3   | 0.2   | 0.2   | 0.3   | 0.3   | 0.3   | 0.4   | 0.6   | 0.5   | 0.6   | 0.7   | 0.8   | 420    |
| S Karelia            | 0.4   | 0.4   | 0.4   | 0.3   | 0.3   | 0.4   | 0.6   | 0.4   | 0.6   | 0.6   | 0.5   | 0.6   | 0.6   | 432    |
| Paijat-Hame          | 0.6   | 0.5   | 0.8   | 0.6   | 0.5   | 0.4   | 0.4   | 0.3   | 0.3   | 0.4   | 0.3   | 0.4   | 0.3   | 442    |
| E Uusimaa            | 0.4   | 0.3   | 0.3   | 0.4   | 0.3   | 0.3   | 0.2   | 0.7   | 0.4   | 0.4   | 0.3   | 0.3   | 0.1   | 285    |
| Cent<br>Ostrobothnia | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   | 0.3   | 0.2   | 0.2   | 0.1   | 0.1   | 0.2   | 0.2   | 0.1   | 273    |
| S Savo               | 0.2   | 0.1   | 0.1   | 0.2   | 0.2   | 0.2   | 0.3   | 0.2   | 0.3   | 0.2   | 0.2   | 0.3   | 0.3   | 179    |
| Satakunta            | 0.1   | 0.3   | 0.2   | 0.2   | 0.2   | 0.1   | 0.2   | 0.2   | 0.1   | 0.2   | 0.1   | 0.2   | 0.1   | 159    |
| Kainuu               | 0.1   | 0.0   | 0.1   | 0.1   | 0.1   | 0.0   | 0.0   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 145    |
| Kymenlaakso          | 0.1   | 0.1   | 0.0   | 0.1   | 0.1   | 0.1   | 0.2   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 129    |
| Ostrobothnia         | 0.1   | 0.2   | 0.1   | 0.0   | 0.1   | 0.1   | 0.2   | 0.1   | 0.1   | 0.1   | 0.2   | 0.1   | 0.2   | 101    |
| S Ostrobothnia       | 0.1   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 82     |
| Aland                | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 18     |
| Total                | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 72066  |

## Table 9. Average journal impact by region, 1986-1998.

Source: Inforsk/VTT database based on SCI CDE.

|                      | Year |      |      |      |      |      |      |      |      |      |      |      |      |       |
|----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Region               | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Uusimaa              | 10.3 | 10.8 | 10.2 | 10.6 | 11.0 | 10.7 | 11.7 | 11.6 | 11.0 | 11.2 | 11.0 | 11.6 | 11.7 | 11.1  |
| Sw Finland           | 9.3  | 9.7  | 9.7  | 10.3 | 10.4 | 10.6 | 11.3 | 10.8 | 10.3 | 11.2 | 10.7 | 11.5 | 11.4 | 10.7  |
| N Ostrobothnia       | 9.4  | 10.7 | 11.4 | 10.6 | 11.4 | 11.1 | 12.7 | 12.2 | 12.0 | 11.7 | 11.2 | 11.9 | 11.4 | 11.4  |
| N Savo               | 8.6  | 11.0 | 9.7  | 8.9  | 10.1 | 10.1 | 11.0 | 12.1 | 11.2 | 11.6 | 11.4 | 12.2 | 12.6 | 11.1  |
| Pirkanmaa            | 9.7  | 10.6 | 9.4  | 9.0  | 10.0 | 8.8  | 10.3 | 10.4 | 10.4 | 10.8 | 11.2 | 11.2 | 10.6 | 10.4  |
| Cent Finland         | 9.2  | 8.4  | 8.3  | 8.6  | 8.1  | 9.2  | 9.3  | 9.2  | 9.7  | 9.2  | 8.6  | 10.2 | 10.6 | 9.3   |
| N Karelia            | 8.0  | 8.0  | 7.4  | 7.2  | 9.0  | 9.1  | 7.8  | 9.4  | 8.6  | 7.2  | 7.7  | 7.5  | 7.9  | 8.0   |
| Inner Tavastia       | 5.0  | 5.7  | 6.0  | 6.1  | 5.4  | 9.7  | 5.4  | 11.1 | 9.0  | 6.5  | 5.9  | 7.9  | 7.7  | 7.3   |
| Lapland              | 7.5  | 6.0  | 10.0 | 8.8  | 7.1  | 6.7  | 12.3 | 12.1 | 6.4  | 9.3  | 7.8  | 10.4 | 6.9  | 8.5   |
| S Karelia            | 7.4  | 7.4  | 5.9  | 6.9  | 7.1  | 9.5  | 5.4  | 7.8  | 6.9  | 5.2  | 4.7  | 7.7  | 6.9  | 6.7   |
| Paijat-Hame          | 7.9  | 6.5  | 7.0  | 9.9  | 9.0  | 9.0  | 8.7  | 9.6  | 11.8 | 9.1  | 7.2  | 11.9 | 7.5  | 8.8   |
| E Uusimaa            | 6.2  | 6.1  | 7.9  | 6.2  | 7.0  | 6.1  | 5.9  | 7.3  | 9.8  | 6.4  | 6.3  | 5.9  | 4.4  | 6.8   |
| Cent<br>Ostrobothnia | 9.0  | 5.5  | 7.2  | 5.2  | 3.8  | 4.6  | 5.1  | 4.3  | 3.4  | 5.2  | 3.7  | 5.9  | 4.7  | 5.3   |
| S Savo               | 7.3  | 7.3  | 8.0  | 9.2  | 9.5  | 10.5 | 7.1  | 11.2 | 5.1  | 9.2  | 6.9  | 10.6 | 9.0  | 8.6   |
| Satakunta            | 3.6  | 4.4  | 6.4  | 5.0  | 4.8  | 5.2  | 6.9  | 7.6  | 6.3  | 8.3  | 8.2  | 13.8 | 6.1  | 7.1   |
| Kainuu               | 4.5  | 6.5  | 3.9  | 5.6  | 4.4  | 11.7 | 5.4  | 4.5  | 13.6 | 13.0 | 10.0 | 14.3 | 18.9 | 10.6  |
| Kymenlaakso          | 4.9  | 5.6  | 12.1 | 6.8  | 10.2 | 6.8  | 11.7 | 6.9  | 15.9 | 10.1 | 5.3  | 19.1 | 12.5 | 10.3  |
| Ostrobothnia         | 3.7  | 10.1 | 8.2  | 6.5  | 5.2  | 6.0  | 7.4  | 16.2 | 4.7  | 10.2 | 8.7  | 18.4 | 8.1  | 9.3   |
| S Ostrobothnia       | 12.6 | 11.5 | 9.5  | 15.5 | 7.2  | 6.1  | 28.8 | 6.9  | 21.0 | 11.5 | 6.7  | 17.5 | 8.9  | 12.2  |
| Aland                | 0.0  | 0.0  | 0.0  | 6.3  | 36.8 | 4.4  | 5.9  | 20.4 | 16.4 | 0.0  | 14.8 | 12.7 | 0.0  | 18.1  |
| Total                | 9.7  | 10.4 | 10.0 | 10.1 | 10.5 | 10.4 | 11.2 | 11.2 | 10.8 | 11.0 | 10.6 | 11.4 | 11.3 | 10.7  |

## Table 10. Tendency for interregional collaboration

Note: The lower the fractional/whole count ratio, the more the region collaborates with other regions.

| Region            | Whole counts | Fractional count | Fractional/Whole counts |
|-------------------|--------------|------------------|-------------------------|
| Uusimaa           | 34973        | 31584            | 0.9                     |
| Sw Finland        | 11385        | 9530             | 0.8                     |
| N Ostrobothnia    | 7259         | 6018             | 0.8                     |
| N Savo            | 6350         | 5071             | 0.8                     |
| Pirkanmaa         | 5028         | 3781             | 0.8                     |
| Cent Finland      | 2528         | 2053             | 0.8                     |
| N Karelia         | 1312         | 1029             | 0.8                     |
| Inner Tavastia    | 566          | 393              | 0.7                     |
| S Karelia         | 420          | 295              | 0.7                     |
| Lapland           | 432          | 288              | 0.7                     |
| Paijat-Hame       | 442          | 263              | 0.6                     |
| E Uusimaa         | 285          | 205              | 0.7                     |
| S Savo            | 273          | 141              | 0.5                     |
| Satakunta         | 179          | 105              | 0.6                     |
| Cent Ostrobothnia | 159          | 103              | 0.7                     |
| Ostrobothnia      | 145          | 77               | 0.5                     |
| Kymenlaakso       | 129          | 63               | 0.5                     |
| S Ostrobothnia    | 101          | 42               | 0.4                     |
| Kainuu            | 82           | 41               | 0.5                     |
| Aland             | 18           | 11               | 0.6                     |
| All papers        | 72066        | 61093            | 0.8                     |

Source: Inforsk/VTT database based on SCI CDE.

Table 11. Percent of papers by sector (fractional counts)Source: Inforsk/VTT database based on SCI CDE

|           | Sector |      |      |       |        |
|-----------|--------|------|------|-------|--------|
| Year      | EDU    | IND  | OTH  | ROR   | Papers |
| 1986      | 79.12  | 4.90 | 7.19 | 8.79  | 3860   |
| 1987      | 78.98  | 4.52 | 6.95 | 9.55  | 3901   |
| 1988      | 76.30  | 5.59 | 7.24 | 10.87 | 3884   |
| 1989      | 78.47  | 4.55 | 5.96 | 11.02 | 3482   |
| 1990      | 78.75  | 5.36 | 5.55 | 10.34 | 3761   |
| 1991      | 75.60  | 4.81 | 6.20 | 13.39 | 3951   |
| 1992      | 76.08  | 5.04 | 5.83 | 13.06 | 4298   |
| 1993      | 75.84  | 4.87 | 6.02 | 13.27 | 4774   |
| 1994      | 77.67  | 4.32 | 5.50 | 12.51 | 5183   |
| 1995      | 76.60  | 4.21 | 5.07 | 14.12 | 5545   |
| 1996      | 78.33  | 3.44 | 4.77 | 13.46 | 5898   |
| 1997      | 77.37  | 3.70 | 5.27 | 13.66 | 6342   |
| 1998      | 77.91  | 3.44 | 4.87 | 13.78 | 6122   |
| 1986-1998 | 77.44  | 4.41 | 5.75 | 12.40 |        |
| Papers    | 47240  | 2687 | 3510 | 7566  | 61002  |

Note: EDU: Higher education institutions with university hospitals included

ROR: Only organisations that are independent of universities. This class includes also some private research organisations that are not profit-oriented but owned either by foundations or by several companies together

OTH: Organisations other than ones mentioned above (hospitals that are independent of universities, associations, federations, foundations, administrative organs (other than research institutes) such as ministries, municipalities, also municipal laboratories that do not research but do inspection, schools other than universities

IND: Firms including some small private, profit-oriented research organisations and consultant agencies.

MIS: Organisation unknown

#### Table 12. Publication activity of sectors by major field.

Source: Inforsk/VTT database based on SCI CDE.

Note: Percent of papers that a sector has in different fields. See Table 11 for definitions of sectors.

|                         | Sector |        |        |        |        |
|-------------------------|--------|--------|--------|--------|--------|
| Field                   | EDU    | IND    | OTH    | ROR    | Total  |
| Engineering & Materials | 3.16   | 14.50  | 0.82   | 5.17   | 3.88   |
| Life                    | 69.67  | 58.36  | 92.71  | 69.24  | 70.82  |
| Multidisciplinary       | 8.89   | 14.24  | 4.34   | 14.01  | 9.55   |
| Natural                 | 18.28  | 12.90  | 2.13   | 11.58  | 15.75  |
| Total                   | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
|                         |        |        |        |        |        |

#### Table 13. Mean journal impact of papers by sector and major field

Source: Inforsk/VTT database based on SCI CDE. See Table 11 for definitions of sectors.

|                         | Sector |      |      |      |       |
|-------------------------|--------|------|------|------|-------|
| Field                   | EDU    | IND  | OTH  | ROR  | Total |
| Engineering & Materials | 4.2    | 2.3  | 3.6  | 2.9  | 3.5   |
| Life                    | 11.8   | 10.7 | 10.9 | 11.7 | 11.6  |
| Multidisciplinary       | 10.5   | 6.8  | 10.1 | 8.2  | 9.7   |
| Natural                 | 9.2    | 7.5  | 6.7  | 8.0  | 9.0   |
| Total                   | 11.0   | 8.5  | 10.7 | 10.3 | 10.7  |

## Table 14. Co-authorships among sectors by year

Source: Inforsk/VTT database based on SCI CDE. See Table 11 for definitions of sectors.

|       | Pair            |                 |                 |                 |                 |                 |                |                 |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|
| Year  | EDU with<br>IND | EDU with<br>OTH | EDU with<br>ROR | IND with<br>OTH | IND with<br>ROR | OTH with<br>ROR | Total<br>pairs | Total<br>papers |
| 1986  | 117             | 240             | 199             | 23              | 21              | 51              | 651            | 3860            |
| 1987  | 131             | 249             | 216             | 20              | 22              | 54              | 692            | 3901            |
| 1988  | 139             | 275             | 222             | 17              | 15              | 61              | 729            | 3884            |
| 1989  | 103             | 210             | 227             | 13              | 22              | 42              | 617            | 3482            |
| 1990  | 162             | 200             | 226             | 16              | 27              | 29              | 660            | 3761            |
| 1991  | 146             | 242             | 277             | 25              | 31              | 43              | 764            | 3951            |
| 1992  | 164             | 273             | 291             | 22              | 40              | 58              | 848            | 4298            |
| 1993  | 192             | 312             | 333             | 32              | 45              | 65              | 979            | 4774            |
| 1994  | 207             | 280             | 392             | 23              | 35              | 57              | 994            | 5183            |
| 1995  | 184             | 307             | 423             | 27              | 35              | 92              | 1068           | 5545            |
| 1996  | 217             | 325             | 508             | 18              | 36              | 91              | 1195           | 5898            |
| 1997  | 234             | 393             | 547             | 31              | 47              | 108             | 1360           | 6342            |
| 1998  | 191             | 375             | 499             | 31              | 41              | 79              | 1216           | 6122            |
| Total | 2187            | 3681            | 4360            | 298             | 417             | 830             | 11773          | 61002           |

Table 15. Number of papers by institution in all fields (whole counts)

Source: Inforsk/VTT database based on SCI CDE. Institutions with fewer than 50 papers excluded.

| Education                      | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Helsinki Univ                  | 1626 | 1600 | 1593 | 1401 | 1541 | 1526 | 1633 | 1768 | 1964 | 2013 | 2236 | 2384 | 2312 | 23597 |
| Turku Univ                     | 522  | 541  | 544  | 533  | 545  | 541  | 598  | 690  | 807  | 835  | 874  | 1019 | 961  | 9010  |
| Oulu Univ                      | 476  | 453  | 437  | 417  | 410  | 467  | 450  | 553  | 555  | 658  | 648  | 698  | 710  | 6932  |
| Kuopio Univ                    | 299  | 357  | 346  | 278  | 331  | 397  | 403  | 492  | 489  | 564  | 596  | 644  | 628  | 5824  |
| Tampere Univ                   | 261  | 249  | 259  | 226  | 242  | 263  | 312  | 285  | 329  | 343  | 348  | 434  | 412  | 3963  |
| Helsinki Univ<br>Tech          | 163  | 164  | 157  | 193  | 215  | 227  | 258  | 243  | 318  | 351  | 413  | 395  | 395  | 3492  |
| Jyvaskyla<br>Univ              | 120  | 131  | 119  | 101  | 108  | 128  | 136  | 160  | 183  | 202  | 233  | 252  | 252  | 2125  |
| Åbo Acad<br>Univ               | 91   | 77   | 70   | 77   | 104  | 94   | 99   | 157  | 185  | 153  | 197  | 207  | 197  | 1708  |
| Joensuu Univ                   | 50   | 50   | 36   | 45   | 46   | 60   | 74   | 76   | 111  | 130  | 137  | 157  | 152  | 1124  |
| Tampere Univ<br>Tech*          | 27   | 2    | 4    | 2    | 0    | 2    | 10   | 84   | 95   | 78   | 108  | 97   | 108  | 617   |
| Lappeenranta<br>Univ Tech      | 3    | 8    | 7    | 7    | 7    | 12   | 26   | 21   | 27   | 31   | 24   | 34   | 39   | 246   |
| Industry                       | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Orion Corp                     | 44   | 42   | 49   | 27   | 47   | 56   | 69   | 56   | 64   | 47   | 53   | 85   | 63   | 702   |
| Alko Ltd                       | 31   | 41   | 51   | 30   | 34   | 29   | 41   | 44   | 49   | 38   | 23   | 17   | 6    | 434   |
| Neste Corp                     | 9    | 13   | 14   | 21   | 12   | 13   | 21   | 40   | 28   | 24   | 20   | 29   | 10   | 254   |
| Farmos Group                   | 22   | 29   | 30   | 28   | 58   | 17   | 3    | 0    | 1    | 0    | 0    | 0    | 0    | 188   |
| Leiras Ltd                     | 10   | 13   | 2    | 14   | 11   | 13   | 13   | 14   | 22   | 22   | 16   | 16   | 16   | 182   |
| Wallac Ltd                     | 11   | 13   | 15   | 10   | 15   | 12   | 15   | 18   | 15   | 18   | 8    | 13   | 11   | 174   |
| Nokia Group                    | 2    | 4    | 3    | 0    | 4    | 11   | 6    | 6    | 11   | 12   | 15   | 14   | 28   | 116   |
| Valio Ltd                      | 7    | 3    | 7    | 3    | 11   | 3    | 10   | 12   | 6    | 7    | 9    | 19   | 12   | 109   |
| Outokumpu<br>Ltd               | 15   | 10   | 13   | 4    | 9    | 4    | 12   | 4    | 8    | 9    | 8    | 7    | 6    | 109   |
| Kemira Ltd                     | 3    | 3    | 5    | 6    | 4    | 4    | 9    | 13   | 6    | 6    | 8    | 11   | 7    | 85    |
| Imatran<br>Voima Ltd           | 4    | 4    | 8    | 1    | 4    | 2    | 13   | 9    | 11   | 8    | 7    | 6    | 3    | 80    |
| Cultor Ltd                     | 0    | 0    | 0    | 5    | 8    | 5    | 7    | 4    | 4    | 6    | 11   | 9    | 5    | 64    |
| Yhtyneet La-<br>boratoriot Ltd | 4    | 5    | 3    | 2    | 2    | 8    | 4    | 7    | 7    | 8    | 2    | 4    | 3    | 59    |
| Valmet Corp                    | 5    | 2    | 3    | 1    | 6    | 6    | 4    | 5    | 3    | 4    | 4    | 3    | 12   | 58    |
| Labsyst Ltd                    | 7    | 8    | 8    | 6    | 4    | 7    | 6    | 4    | 0    | 1    | 4    | 1    | 0    | 56    |
| A Ahlstrom<br>Corp             | 2    | 3    | 4    | 4    | 4    | 2    | 2    | 9    | 6    | 6    | 5    | 3    | 3    | 53    |
| Enso Gutzeit<br>Ltd            | 2    | 4    | 5    | 2    | 6    | 6    | 4    | 2    | 3    | 5    | 2    | 7    | 2    | 50    |

\*) The classification of papers from Tamper Univ Tech are incorrect in the SCI-records, which explains the low numbers for some years.

| cont |
|------|
|      |

| Research<br>Institutes           | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
|----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Natl Publ Hlth<br>Inst           | 161  | 175  | 155  | 163  | 181  | 213  | 242  | 282  | 283  | 391  | 419  | 466  | 432  | 3563  |
| Tech Res Ctr<br>Finland          | 83   | 84   | 103  | 122  | 111  | 148  | 169  | 193  | 173  | 202  | 193  | 193  | 203  | 1977  |
| Inst Occupat Hlth                | 121  | 135  | 123  | 99   | 84   | 119  | 114  | 108  | 111  | 133  | 134  | 130  | 143  | 1554  |
| Forest Res Inst                  | 8    | 25   | 16   | 19   | 26   | 24   | 31   | 52   | 69   | 84   | 92   | 77   | 111  | 634   |
| Meteorol Inst                    | 13   | 21   | 12   | 20   | 27   | 33   | 16   | 35   | 56   | 38   | 60   | 59   | 66   | 456   |
| Agr Res Ctr                      | 10   | 16   | 20   | 17   | 19   | 35   | 35   | 31   | 42   | 48   | 49   | 55   | 61   | 438   |
| Game & Fish Res<br>Inst          | 7    | 6    | 8    | 19   | 13   | 16   | 37   | 15   | 29   | 24   | 41   | 58   | 46   | 319   |
| Geol Survey<br>Finland           | 13   | 22   | 12   | 22   | 12   | 27   | 18   | 21   | 21   | 20   | 30   | 44   | 31   | 293   |
| Inst Med Res<br>Minerva          | 14   | 19   | 22   | 18   | 22   | 22   | 18   | 11   | 21   | 22   | 10   | 20   | 12   | 231   |
| Finnish Environm<br>Inst         | 6    | 4    | 10   | 10   | 8    | 15   | 15   | 9    | 22   | 28   | 20   | 25   | 21   | 193   |
| Kcl Pulp & Paper<br>Res Inst     | 25   | 13   | 20   | 11   | 17   | 10   | 12   | 20   | 29   | 16   | 16   | 13   | 9    | 211   |
| Vet Med & Food<br>Inst           | 14   | 3    | 11   | 21   | 14   | 9    | 16   | 18   | 16   | 16   | 16   | 19   | 19   | 192   |
| Ctr Radiat & Nucl<br>Safety      | 9    | 13   | 5    | 6    | 5    | 5    | 5    | 17   | 22   | 20   | 25   | 29   | 18   | 179   |
| Wihuri Res Inst                  | 7    | 6    | 9    | 11   | 4    | 9    | 10   | 9    | 7    | 12   | 11   | 26   | 15   | 136   |
| Inst Marine Res                  | 10   | 4    | 4    | 1    | 6    | 5    | 15   | 8    | 9    | 14   | 16   | 15   | 18   | 125   |
| Biocity                          | 0    | 0    | 0    | 0    | 0    | 5    | 15   | 13   | 17   | 26   | 23   | 13   | 4    | 116   |
| Natl Res & Dev<br>Ctr Wel & Hlth | 5    | 4    | 5    | 10   | 2    | 7    | 11   | 13   | 13   | 16   | 19   | 24   | 31   | 160   |

#### Table 15. cont

| Other                             | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Soc Insurance Inst                | 29   | 62   | 35   | 22   | 31   | 43   | 41   | 39   | 39   | 35   | 45   | 34   | 24   | 479   |
| Red Cross                         | 34   | 29   | 32   | 21   | 18   | 47   | 29   | 50   | 36   | 55   | 43   | 31   | 43   | 468   |
| Aurora Hosp                       | 27   | 43   | 38   | 20   | 21   | 22   | 20   | 27   | 25   | 26   | 11   | 13   | 10   | 303   |
| Finnish Canc<br>Registry          | 19   | 13   | 9    | 12   | 15   | 14   | 8    | 18   | 29   | 26   | 31   | 35   | 32   | 261   |
| Hosp Invalid Fdn                  | 17   | 23   | 27   | 24   | 16   | 15   | 18   | 24   | 20   | 12   | 28   | 9    | 10   | 243   |
| Jorvi Hosp                        | 15   | 25   | 15   | 13   | 19   | 31   | 11   | 11   | 12   | 14   | 20   | 30   | 22   | 238   |
| Rheumat Fdn Hosp                  | 21   | 12   | 33   | 19   | 14   | 9    | 11   | 15   | 16   | 13   | 15   | 23   | 14   | 215   |
| Cent Hosp Cent<br>Finland         | 16   | 13   | 17   | 11   | 9    | 11   | 11   | 21   | 18   | 12   | 12   | 20   | 16   | 187   |
| Ukk Sport Inst                    | 5    | 5    | 13   | 11   | 4    | 6    | 12   | 8    | 19   | 15   | 27   | 26   | 27   | 178   |
| Cent Mil Hosp                     | 17   | 19   | 20   | 12   | 8    | 16   | 12   | 10   | 9    | 10   | 14   | 18   | 10   | 175   |
| Family Fed                        | 2    | 3    | 2    | 8    | 8    | 9    | 10   | 16   | 12   | 17   | 22   | 27   | 23   | 159   |
| Cent Hosp Paijat<br>Hame          | 8    | 8    | 9    | 8    | 11   | 9    | 14   | 6    | 8    | 11   | 8    | 10   | 9    | 119   |
| Lastenlinna Hosp                  | 14   | 12   | 10   | 9    | 10   | 7    | 12   | 12   | 6    | 6    | 5    | 6    | 2    | 111   |
| Def Forces                        | 15   | 5    | 3    | 6    | 1    | 6    | 3    | 11   | 7    | 13   | 15   | 12   | 13   | 110   |
| Cent Hosp N Karelia               | 10   | 4    | 7    | 6    | 1    | 11   | 8    | 11   | 9    | 8    | 7    | 14   | 8    | 104   |
| Cent Hosp Mikkeli                 | 7    | 5    | 5    | 4    | 7    | 12   | 14   | 14   | 3    | 11   | 4    | 8    | 9    | 103   |
| Cent Hosp Cent<br>Ostrobothnia    | 12   | 12   | 10   | 5    | 4    | 11   | 11   | 15   | 4    | 2    | 5    | 7    | 3    | 101   |
| Assoc Folkhalsan                  | 5    | 2    | 11   | 4    | 7    | 12   | 8    | 10   | 4    | 2    | 5    | 6    | 19   | 95    |
| Vaajasalo Hosp                    | 9    | 9    | 26   | 9    | 8    | 4    | 9    | 7    | 1    | 5    | 0    | 0    | 0    | 87    |
| Deaconess Inst Hosp<br>Oulu       | 10   | 7    | 3    | 4    | 6    | 6    | 10   | 3    | 5    | 6    | 8    | 10   | 5    | 83    |
| Municipal Hosp<br>Helsinki        | 1    | 0    | 5    | 7    | 2    | 4    | 2    | 2    | 6    | 11   | 19   | 8    | 15   | 82    |
| Cent Hosp Vaasa                   | 3    | 3    | 2    | 1    | 3    | 5    | 4    | 6    | 4    | 5    | 7    | 7    | 17   | 67    |
| Municipal Hosp<br>Turku           | 8    | 3    | 4    | 5    | 7    | 6    | 1    | 4    | 5    | 2    | 10   | 7    | 4    | 66    |
| Cent Hosp Jyvaskyla               | 0    | 1    | 0    | 1    | 1    | 5    | 6    | 10   | 11   | 6    | 5    | 9    | 10   | 65    |
| Cent Hosp S<br>Ostrobothnia       | 6    | 7    | 3    | 1    | 2    | 4    | 1    | 5    | 5    | 13   | 6    | 7    | 5    | 65    |
| Acad Finland                      | 4    | 5    | 3    | 4    | 6    | 1    | 3    | 9    | 5    | 8    | 7    | 4    | 3    | 62    |
| Meltola Hosp                      | 6    | 3    | 4    | 2    | 6    | 5    | 3    | 3    | 8    | 10   | 8    | 0    | 4    | 62    |
| Cent Hosp S Karelia               | 2    | 5    | 2    | 3    | 2    | 1    | 3    | 4    | 5    | 9    | 6    | 10   | 9    | 61    |
| Deaconess Inst Hosp<br>Helsinki   | 3    | 2    | 3    | 2    | 6    | 5    | 4    | 8    | 7    | 5    | 4    | 8    | 3    | 60    |
| Maria Hosp                        | 2    | 2    | 6    | 1    | 3    | 3    | 4    | 3    | 5    | 9    | 2    | 8    | 10   | 58    |
| Kivela Municipal<br>Hosp Helsinki | 1    | 1    | 7    | 2    | 9    | 5    | 7    | 14   | 4    | 3    | 2    | 1    | 1    | 57    |
| Canc Soc Finland                  | 7    | 8    | 6    | 6    | 3    | 2    | 2    | 6    | 1    | 1    | 4    | 3    | 2    | 51    |

## *Table 16. Average journal impact of papers by institution and major field.* Source: Inforsk/VTT database based on SCI CDE.

|                      | Major field             |               |                   |                  |
|----------------------|-------------------------|---------------|-------------------|------------------|
| Institution          | Engineering & Materials | Life sciences | Multidisciplinary | Natural sciences |
| Helsinki Univ        | 4.9                     | 12.3          | 13.8              | 10.2             |
| Turku Univ           |                         | 11.8          | 10.7              | 8.4              |
| Oulu Univ            | 4.1                     | 12.5          | 10.5              | 9.0              |
| Kuopio Univ          |                         | 11.4          | 10.9              | 8.0              |
| Tampere Univ         | 5.0                     | 11.8          | 10.4              | 8.7              |
| Helsinki Univ Tech   | 3.8                     | 10.0          | 7.5               | 9.1              |
| Natl Publ Hlth Inst  |                         | 14.7          | 15.1              |                  |
| Jyvaskyla Univ       |                         | 9.3           | 8.7               | 9.3              |
| Tech Res Ctr Finland | 3.4                     | 10.4          | 6.0               | 7.5              |
| Åbo Acad Univ        | 4.2                     | 11.5          | 8.8               | 8.0              |
| Inst Occupat Hlth    |                         | 9.2           | 8.5               | 7.9              |
| Joensuu Univ         |                         | 7.9           | 7.2               | 7.6              |
| Orion Corp           |                         | 12.1          |                   |                  |
| Tampere Univ Tech    | 4.3                     | 6.8           | 4.5               | 9.4              |
| Forest Res Inst      |                         | 6.2           | 12.1              |                  |
| Red Cross            |                         | 14.5          |                   |                  |

Note: Cells with less than 100 papers are excluded.

Table 17. Average journal impact of papers by institution and subfield.

| Physics              | Papers | Sum of journal impact factors | Mean journal impact factor |
|----------------------|--------|-------------------------------|----------------------------|
| Helsinki Univ        | 1883   | 23668                         | 12.6                       |
| Helsinki Univ Tech   | 1242   | 12586                         | 10.1                       |
| Turku Univ           | 632    | 6278                          | 9.9                        |
| Jyvaskyla Univ       | 547    | 6178                          | 11.3                       |
| Oulu Univ            | 463    | 5408                          | 11.7                       |
| Tech Res Ctr Finland | 243    | 1868                          | 7.7                        |
| Joensuu Univ         | 199    | 1322                          | 6.6                        |
| Tampere Univ Tech    | 161    | 1573                          | 9.8                        |
| Åbo Acad Univ        | 108    | 1172                          | 10.9                       |
| Tampere Univ         | 107    | 1091                          | 10.2                       |
| Biology              |        |                               |                            |
| Helsinki Univ        | 3029   | 44746                         | 14.8                       |
| Turku Univ           | 1115   | 15247                         | 13.7                       |
| Oulu Univ            | 925    | 15845                         | 17.1                       |
| Natl Publ Hlth Inst  | 396    | 7389                          | 18.7                       |
| Kuopio Univ          | 371    | 5212.2                        | 14                         |
| Jyvaskyla Univ       | 311    | 3130.6                        | 10.1                       |
| Joensuu Univ         | 245    | 2339.6                        | 9.55                       |
| Åbo Acad Univ        | 217    | 2211.4                        | 10.2                       |
| Tampere Univ         | 216    | 3549.6                        | 16.4                       |
| Forest Res Inst      | 180    | 1407.7                        | 7.82                       |
| Tech Res Ctr Finland | 176    | 3176.9                        | 18.1                       |
| Game & Fish Res Inst | 153    | 1165.6                        | 7.62                       |
| Chemistry            |        |                               |                            |
| Helsinki Univ        | 911    | 6780.6                        | 7.44                       |
| Turku Univ           | 574    | 4466.7                        | 7.78                       |
| Helsinki Univ Tech   | 466    | 3499.9                        | 7.51                       |
| Åbo Acad Univ        | 290    | 2207.7                        | 7.61                       |
| Jyvaskyla Univ       | 265    | 1868.1                        | 7.05                       |
| Joensuu Univ         | 252    | 2166                          | 8.6                        |
| Oulu Univ            | 222    | 1465.2                        | 6.6                        |
| Tech Res Ctr Finland | 190    | 1402.3                        | 7.38                       |
| Kuopio Univ          | 101    | 771.02                        | 7.63                       |

Note: Cells with less than 100 papers are excluded.

## Table 18. Number of Finnish invented US patents 1980-1998

Source: CHI-data. Relative activity (RA) in the column on the right hand side is the field's share of all Finnish patents divided by the corresponding share for all patents

| Technological field                     | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Tot. | RA  |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| Telecommunications                      | 2    | 3    | 3    | 6    | 8    | 13   | 23   | 23   | 56   | 64   | 77   | 79   | 156  | 512  | 1.8 |
| Industrial Process<br>Equipment         | 20   | 24   | 20   | 26   | 41   | 34   | 37   | 36   | 26   | 35   | 42   | 43   | 39   | 421  | 2.5 |
| Wood And Paper                          | 25   | 16   | 21   | 17   | 35   | 31   | 41   | 22   | 19   | 30   | 37   | 46   | 51   | 392  | 5.2 |
| Miscellaneous<br>Machinery              | 26   | 23   | 29   | 18   | 30   | 34   | 27   | 21   | 17   | 20   | 29   | 30   | 65   | 368  | 1.6 |
| Chemicals                               | 21   | 27   | 20   | 17   | 28   | 27   | 22   | 24   | 16   | 34   | 41   | 39   | 26   | 342  | 0.9 |
| Industrial Machinery<br>And Tools       | 8    | 25   | 31   | 23   | 20   | 21   | 24   | 17   | 17   | 24   | 26   | 19   | 19   | 273  | 1.0 |
| Miscellaneous<br>Manufacturing          | 18   | 23   | 8    | 15   | 15   | 20   | 24   | 16   | 11   | 13   | 30   | 24   | 28   | 245  | 0.8 |
| Measuring And Control<br>Equipment      | 8    | 22   | 14   | 7    | 14   | 19   | 17   | 23   | 23   | 12   | 19   | 20   | 19   | 216  | 1.0 |
| Electrical Appliances<br>And Components | 10   | 10   | 8    | 9    | 11   | 10   | 10   | 14   | 13   | 16   | 11   | 18   | 14   | 154  | 0.7 |
| Plastics, Polymers And<br>Rubber        | 5    | 8    | 11   | 8    | 8    | 6    | 8    | 11   | 12   | 13   | 4    | 15   | 11   | 118  | 0.6 |
| Other                                   | 5    | 10   | 3    | 10   | 11   | 13   | 4    | 9    | 9    | 6    | 8    | 5    | 12   | 104  | 0.8 |
| Medical Electronics                     | 3    | 7    | 4    | 6    | 2    | 9    | 8    | 5    | 11   | 8    | 11   | 9    | 16   | 98   | 2.2 |
| Fabricated Metals                       | 1    | 3    | 11   | 9    | 9    | 13   | 13   | 7    | 2    | 4    | 7    | 10   | 10   | 98   | 1.5 |
| Pharmaceuticals                         | 4    | 7    | 2    | 3    | 4    | 3    | 7    | 2    | 9    | 7    | 17   | 11   | 14   | 91   | 0.8 |
| Glass, Clay And Cement                  | 6    | 6    | 6    | 6    | 8    | 13   | 12   | 5    | 10   | 6    | 2    | 2    | 3    | 84   | 2.3 |
| Other Transport                         | 7    | 13   | 10   | 4    | 5    | 8    | 4    | 1    | 5    | 4    | 3    | 14   | 7    | 84   | 1.3 |
| Agriculture                             | 12   | 11   | 4    | 4    | 6    | 7    | 10   | 4    | 0    | 2    | 9    | 2    | 13   | 83   | 0.9 |
| Biotechnology                           | 1    | 4    | 2    | 1    | 6    | 4    | 7    | 6    | 3    | 9    | 8    | 11   | 20   | 82   | 1.4 |
| Oil And Gas                             | 9    | 8    | 10   | 5    | 5    | 2    | 7    | 5    | 9    | 4    | 4    | 7    | 6    | 81   | 1.3 |
| Medical Equipment                       | 1    | 2    | 1    | 4    | 4    | 6    | 8    | 2    | 4    | 10   | 10   | 13   | 10   | 76   | 0.5 |
| Motor Vehicles And<br>Parts             | 1    | 5    | 1    | 9    | 10   | 4    | 8    | 4    | 5    | 5    | 6    | 7    | 9    | 73   | 0.4 |
| Textiles And Apparel                    | 4    | 2    | 1    | 6    | 5    | 6    | 8    | 2    | 7    | 7    | 6    | 3    | 6    | 62   | 0.6 |
| Food And Tobacco                        | 2    | 2    | 3    | 5    | 7    | 8    | 11   | 4    | 3    | 2    | 8    | 2    | 5    | 61   | 1.1 |
| Computers And<br>Peripherals            | 1    | 2    | 1    | 2    | 1    | 2    | 2    | 3    | 6    | 8    | 7    | 8    | 15   | 58   | 0.2 |
| Semiconductors And<br>Electronics       | 6    | 2    | 1    | 4    | 2    | 5    | 6    | 4    | 2    | 1    | 7    | 5    | 9    | 54   | 0.2 |
| Power Generation And Distribution       | 2    | 3    | 2    | 1    | 2    | 2    | 3    | 4    | 6    | 4    | 6    | 4    | 7    | 45   | 0.8 |
| Primary Metals                          | 1    | 4    | 4    | 0    | 2    | 1    | 4    | 3    | 6    | 8    | 5    | 3    | 2    | 42   | 1.5 |
| Heating And Ventilation                 | 1    | 4    | 2    | 5    | 3    | 7    | 0    | 2    | 4    | 2    | 3    | 4    | 3    | 40   | 1.1 |
| Office Equipment And<br>Cameras         | 0    | 0    | 0    | 0    | 4    | 2    | 4    | 6    | 5    | 1    | 3    | 2    | 4    | 31   | 0.1 |
| Aerospace And Parts                     | 0    | 0    | 1    | 3    | 0    | 1    | 2    | 1    | 1    | 1    | 3    | 1    | 0    | 15   | 0.6 |
| All                                     | 209  | 275  | 233  | 231  | 304  | 330  | 358  | 286  | 315  | 358  | 447  | 455  | 599  | 4400 | 1.0 |

## Table 19. Relative citation impact of Finnish US-patents

Source: CHI-data. Relative citation impact is Finnish citation impact relative to the citation impact of all patents. The years are citing years and the values are based on citations from a given year to patens issued five years earlier.

| Technological field                     | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Tot. | Patents |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
| Telecommunications                      | 0.9  | 0.2  | 0.2  | 0.9  | 0.9  | 0.6  | 0.7  | 0.7  | 0.7  | 0.7  | 0.9  | 0.8  | 1.1  | 0.8  | 512     |
| Industrial Process Equipment            | 1.2  | 0.8  | 0.8  | 1.1  | 1.2  | 0.9  | 0.9  | 0.8  | 0.9  | 0.8  | 1.2  | 0.8  | 0.9  | 0.9  | 421     |
| Wood And Paper                          | 0.6  | 1.1  | 0.8  | 0.8  | 1.3  | 0.8  | 0.7  | 0.9  | 0.5  | 0.7  | 1.0  | 0.9  | 1.1  | 0.9  | 392     |
| Miscellaneous Machinery                 | 0.8  | 0.7  | 0.7  | 0.6  | 0.9  | 0.8  | 0.7  | 0.7  | 0.9  | 0.8  | 0.8  | 0.7  | 0.8  | 0.7  | 368     |
| Chemicals                               | 0.9  | 1.5  | 1.0  | 0.8  | 0.7  | 0.7  | 0.6  | 0.6  | 0.7  | 0.5  | 0.8  | 0.3  | 0.7  | 0.7  | 342     |
| Industrial Machinery And<br>Tools       | 0.5  | 1.0  | 0.6  | 0.7  | 0.8  | 0.8  | 0.8  | 0.7  | 0.6  | 0.8  | 0.6  | 0.8  | 0.8  | 0.7  | 273     |
| Miscellaneous Manufacturing             | 0.6  | 1.0  | 0.6  | 0.6  | 0.3  | 0.5  | 0.6  | 0.6  | 0.5  | 0.8  | 0.7  | 0.6  | 0.8  | 0.6  | 245     |
| Measuring And Control<br>Equipment      | 0.7  | 0.5  | 0.9  | 0.6  | 0.7  | 0.8  | 1.0  | 0.8  | 0.9  | 0.5  | 0.5  | 0.4  | 0.3  | 0.6  | 216     |
| Electrical Appliances And<br>Components | 0.8  | 1.0  | 1.2  | 0.6  | 0.9  | 0.4  | 0.3  | 0.5  | 0.9  | 0.7  | 0.9  | 1.0  | 1.2  | 0.8  | 154     |
| Plastics, Polymers And<br>Rubber        | 2.5  | 1.7  | 1.3  | 0.9  | 0.6  | 0.6  | 0.4  | 0.4  | 0.8  | 0.6  | 0.4  | 0.5  | 0.4  | 0.7  | 118     |
| Other                                   | 1.0  | 1.1  | 1.0  | 1.0  | 0.9  | 1.1  | 0.9  | 0.5  | 0.7  | 0.5  | 0.6  | 0.6  | 0.3  | 0.7  | 104     |
| Medical Electronics                     | 1.3  | 1.1  | 0.6  | 1.0  | 0.4  | 0.8  | 0.6  | 0.6  | 0.8  | 0.5  | 0.3  | 0.5  | 0.6  | 0.6  | 98      |
| Fabricated Metals                       | 0.2  | 0.6  | 0.2  | 0.5  | 0.8  | 1.0  | 1.1  | 1.2  | 0.7  | 1.1  | 0.8  | 1.0  | 0.6  | 0.8  | 98      |
| Pharmaceuticals                         | 0.2  | 2.0  | 0.2  | 0.5  | 0.3  | 0.7  | 2.0  | 0.3  | 1.3  | 0.8  | 0.6  | 0.3  | 0.4  | 0.7  | 91      |
| Glass, Clay And Cement                  | 0.0  | 0.4  | 3.2  | 0.6  | 0.9  | 0.6  | 1.0  | 0.5  | 0.3  | 0.4  | 0.1  | 0.9  | 0.3  | 0.6  | 84      |
| Other Transport                         | 0.5  | 0.6  | 0.3  | 0.3  | 0.4  | 0.4  | 0.8  | 0.3  | 0.1  | 0.6  | 1.0  | 1.1  | 0.5  | 0.5  | 84      |
| Agriculture                             | 0.7  | 0.5  | 0.6  | 0.7  | 0.7  | 0.7  | 1.2  | 0.7  | 1.3  | 0.6  | 1.0  | 0.8  | 1.7  | 0.8  | 83      |
| Biotechnology                           | 0.0  | 2.0  | 2.9  | 2.8  | 1.0  | 0.6  | 0.2  | 1.3  | 0.6  | 1.3  | 0.2  | 0.8  | 0.7  | 0.9  | 82      |
| Oil And Gas                             | 0.2  | 0.6  | 1.1  | 0.1  | 0.4  | 0.8  | 0.9  | 0.8  | 0.5  | 0.7  | 0.7  | 0.2  | 0.3  | 0.6  | 81      |
| Medical Equipment                       | 0.2  | 0.2  | 0.3  | 0.2  | 0.5  | 0.5  | 0.6  | 0.8  | 0.6  | 0.8  | 0.7  | 0.8  | 0.2  | 0.6  | 76      |
| Motor Vehicles And Parts                | 0.4  | 0.5  | 0.7  | 0.7  | 1.1  | 0.2  | 0.3  | 0.5  | 0.6  | 0.4  | 0.5  | 0.4  | 0.5  | 0.5  | 73      |
| Textiles And Apparel                    | 0.3  | 0.5  | 1.0  | 0.4  | 0.7  | 1.0  | 1.2  | 0.4  | 1.0  | 0.8  | 1.2  | 1.0  | 0.5  | 0.8  | 62      |
| Food And Tobacco                        | 0.0  | 0.8  | 0.0  | 0.4  | 0.6  | 0.6  | 1.2  | 0.7  | 1.2  | 0.6  | 1.1  | 1.1  | 1.0  | 0.8  | 61      |
| Computers And Peripherals               | 0.0  | 0.2  | 0.7  | 0.6  | 0.2  | 0.1  | 0.2  | 0.9  | 0.6  | 0.4  | 0.9  | 0.9  | 0.8  | 0.6  | 58      |
| Semiconductors And<br>Electronics       | 0.0  | 0.5  | 0.4  | 0.8  | 0.6  | 0.7  | 0.8  | 0.6  | 0.6  | 0.4  | 0.5  | 0.5  | 1.1  | 0.6  | 54      |
| Power Generation And<br>Distribution    | 0.0  | 0.0  | 0.7  | 0.2  | 0.5  | 0.2  | 0.5  | 0.8  | 1.6  | 0.9  | 1.4  | 1.2  | 0.6  | 0.8  | 45      |
| Primary Metals                          | 0.6  | 0.0  | 0.1  | 0.2  | 0.0  | 0.2  | 0.0  | 0.2  | 0.7  | 0.8  | 1.3  | 0.4  | 0.4  | 0.4  | 42      |
| Heating And Ventilation                 | 0.0  | 0.0  | 0.0  | 0.4  | 0.2  | 1.2  | 0.4  | 0.3  | 0.6  | 0.6  | 0.1  | 0.2  | 0.5  | 0.4  | 40      |
| Office Equipment And<br>Cameras         | 0.1  | 0.8  | 0.6  | 0.0  | 0.6  | 0.0  | 0.4  | 0.5  | 0.6  | 0.7  | 0.5  | 0.1  | 0.2  | 0.4  | 31      |
| Aerospace And Parts                     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.7  | 1.5  | 1.4  | 0.2  | 1.5  | 1.2  | 0.7  | 0.7  | 15      |
| All                                     | 0.6  | 0.7  | 0.7  | 0.6  | 0.7  | 0.6  | 0.7  | 0.6  | 0.7  | 0.6  | 0.7  | 0.7  | 0.8  | 0.7  | 4400    |

*Table 20. Percent of Finnish invented US-patents in 1980-1998 co-invented with other regions* 

| Year  | Domestic | European Union | and North America | North America | Other regions |
|-------|----------|----------------|-------------------|---------------|---------------|
| 1986  | 97.4     | 1.8            | 0.0               | 5.6           | 0.4           |
| 1987  | 95.3     | 2.0            | 0.0               | 6.7           | 0.0           |
| 1988  | 97.1     | 0.8            | 0.4               | 6.1           | 0.0           |
| 1989  | 96.1     | 0.8            | 0.0               | 6.7           | 0.4           |
| 1990  | 93.6     | 3.1            | 0.0               | 7.7           | 0.6           |
| 1991  | 96.0     | 1.7            | 0.3               | 7.8           | 0.6           |
| 1992  | 94.3     | 2.8            | 0.3               | 7.9           | 0.5           |
| 1993  | 92.9     | 4.0            | 0.0               | 7.8           | 0.6           |
| 1994  | 90.6     | 2.5            | 0.6               | 9.1           | 0.3           |
| 1995  | 93.3     | 2.5            | 0.0               | 9.3           | 0.7           |
| 1996  | 92.2     | 3.0            | 0.4               | 8.3           | 0.8           |
| 1997  | 92.3     | 3.3            | 0.0               | 9.1           | 0.2           |
| 1998  | 92.4     | 3.5            | 0.0               | 7.7           | 0.9           |
| Total | 93.7     | 2.6            | 0.1               | 7.84          | 0.5           |

Note: Based on USPTO downloads

Table 21. Finnish US-patents by country address of assignee and inventor in 1986-1998

#### Note: Based on USPTO downloads

| Issue year | Percent of patents with Finnish assignees that have Finnish inventors | Percent of patents with Finnish inventors that have non-Finnish assignees |
|------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1986       | 97.8                                                                  | 3.9                                                                       |
| 1987       | 97.1                                                                  | 11.1                                                                      |
| 1988       | 94.3                                                                  | 8.5                                                                       |
| 1989       | 93.6                                                                  | 8.3                                                                       |
| 1990       | 93.2                                                                  | 5.9                                                                       |
| 1991       | 92.9                                                                  | 9.1                                                                       |
| 1992       | 94.3                                                                  | 10.2                                                                      |
| 1993       | 89.5                                                                  | 9.5                                                                       |
| 1994       | 87.9                                                                  | 12.0                                                                      |
| 1995       | 89.8                                                                  | 9.6                                                                       |
| 1996       | 94.0                                                                  | 8.5                                                                       |
| 1997       | 91.3                                                                  | 7.5                                                                       |
| 1998       | 86.8                                                                  | 9.7                                                                       |



Appendix 3. Note on productivity

Figure A31. Papers per staff in medicine



Figure A32. Journal impact per staff in medicine



Figure A33. Papers per staff in medicine in journals with impact  $\geq 10.0$ 

Journals with a journal impact  $\geq$  10.0, medical fields

| Medical research staff | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Helsinki Univ          | 455  | 443  | 469  | 463  | 471  | 486  | 473  | 472  | 466  | 489  | 510  |
| Turku Univ             | 209  | 236  | 233  | 223  | 230  | 253  | 269  | 269  | 281  | 282  | 299  |
| Kuopio Univ            | 224  | 247  | 234  | 261  | 254  | 256  | 242  | 249  | 262  | 294  | 281  |
| Oulu Univ              | 207  | 223  | 244  | 243  | 238  | 266  | 239  | 227  | 242  | 265  | 291  |
| Tampere Univ           | 117  | 124  | 132  | 143  | 140  | 144  | 141  | 142  | 146  | 124  | 108  |
| Jyväskylä Univ         | 12   | 16   | 18   | 20   | 22   | 21   | 21   | 25   | 24   | 25   | 32   |
| Åbo Acad Univ          | 6    | 9    | 10   | 12   | 11   | 11   | 11   | 10   | 11   | 10   | 11   |
| Papers                 |      |      |      |      |      |      |      |      |      |      |      |
| Helsinki Univ          | 407  | 412  | 385  | 325  | 385  | 340  | 473  | 462  | 526  | 578  | 605  |
| Turku Univ             | 120  | 127  | 117  | 130  | 136  | 122  | 143  | 150  | 211  | 210  | 245  |
| Kuopio Univ            | 93   | 92   | 78   | 71   | 103  | 103  | 134  | 159  | 150  | 217  | 199  |
| Oulu Univ              | 109  | 110  | 100  | 87   | 107  | 102  | 120  | 165  | 156  | 189  | 198  |
| Tampere Univ           | 78   | 75   | 68   | 57   | 81   | 63   | 84   | 105  | 128  | 112  | 131  |
| Jyvaäkylä Univ         | 12   | 8    | 13   | 5    | 5    | 4    | 4    | 9    | 12   | 5    | 12   |
| Åbo Acad Univ          | 4    | 4    | 4    | 9    | 6    | 4    | 6    | 11   | 13   | 13   | 16   |
| Papers per staff       | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
| Helsinki Univ          | 0.9  | 0.9  | 0.8  | 0.7  | 0.8  | 0.7  | 1.0  | 1.0  | 1.1  | 1.2  | 1.2  |
| Turku Univ             | 0.6  | 0.5  | 0.5  | 0.6  | 0.6  | 0.5  | 0.5  | 0.6  | 0.8  | 0.7  | 0.8  |
| Kuopio Univ            | 0.4  | 0.4  | 0.3  | 0.3  | 0.4  | 0.4  | 0.6  | 0.6  | 0.6  | 0.7  | 0.7  |
| Oulu Univ              | 0.5  | 0.5  | 0.4  | 0.4  | 0.4  | 0.4  | 0.5  | 0.7  | 0.6  | 0.7  | 0.7  |
| Tampere Univ           | 0.7  | 0.6  | 0.5  | 0.4  | 0.6  | 0.4  | 0.6  | 0.7  | 0.9  | 0.9  | 1.2  |
| Jyväskylä Univ         | 1.0  | 0.5  | 0.7  | 0.3  | 0.2  | 0.2  | 0.2  | 0.4  | 0.5  | 0.2  | 0.4  |
| Åbo Acad Univ          | 0.7  | 0.4  | 0.4  | 0.8  | 0.5  | 0.4  | 0.5  | 1.1  | 1.2  | 1.3  | 1.5  |

## Table 22. Research staff, papers and journal impact

Note: Data on staff was retrieved from the Kota database of the Ministry of Education. The data give person-years.

Papers/staff was obtained by dividing the numbers of papers by person-years and journal impact/staff by dividing the sum of journal impact factors with staff.

| Medical research staff | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Helsinki Univ          | 455  | 443  | 469  | 463  | 471  | 486  | 473  | 472  | 466  | 489  | 510  | 514  | 465  | 6176  |
| Turku Univ             | 209  | 236  | 233  | 223  | 230  | 253  | 269  | 269  | 281  | 282  | 299  | 305  | 282  | 3371  |
| Kuopio Univ            | 224  | 247  | 234  | 261  | 254  | 256  | 242  | 249  | 262  | 294  | 281  | 287  | 247  | 3338  |
| Oulu Univ              | 207  | 223  | 244  | 243  | 238  | 266  | 239  | 227  | 242  | 265  | 291  | 297  | 265  | 3247  |
| Tampere Univ           | 117  | 124  | 132  | 143  | 140  | 144  | 141  | 142  | 146  | 124  | 108  | 159  | 144  | 1764  |
| Jyväskylä Univ         | 12   | 16   | 18   | 20   | 22   | 21   | 21   | 25   | 24   | 25   | 32   | 37   | 26   | 299   |
| Åbo Acad<br>Univ       | 6    | 9    | 10   | 12   | 11   | 11   | 11   | 10   | 11   | 10   | 11   | 12   | 12   | 136   |
| Medical papers         | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ          | 964  | 978  | 905  | 794  | 874  | 801  | 928  | 910  | 1042 | 1083 | 1198 | 1263 | 1147 | 12887 |
| Turku Univ             | 342  | 320  | 329  | 353  | 301  | 307  | 320  | 372  | 443  | 422  | 456  | 560  | 478  | 5003  |
| Kuopio Univ            | 265  | 244  | 244  | 205  | 250  | 266  | 338  | 365  | 353  | 433  | 424  | 476  | 453  | 4316  |
| Oulu Univ              | 295  | 251  | 248  | 215  | 224  | 252  | 256  | 291  | 325  | 361  | 361  | 403  | 384  | 3866  |
| Tampere Univ           | 214  | 186  | 178  | 150  | 173  | 161  | 191  | 235  | 277  | 260  | 255  | 358  | 306  | 2944  |
| Jyväskylä Univ         | 27   | 43   | 32   | 15   | 14   | 20   | 14   | 22   | 35   | 30   | 42   | 37   | 34   | 365   |
| Åbo Acad<br>Univ       | 13   | 6    | 7    | 11   | 11   | 6    | 14   | 16   | 22   | 24   | 26   | 28   | 36   | 220   |
| Papers/Staff           | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ          | 2.1  | 2.2  | 1.9  | 1.7  | 1.9  | 1.6  | 2.0  | 1.9  | 2.2  | 2.2  | 2.3  | 2.5  | 2.5  | 2.1   |
| Turku Univ             | 1.6  | 1.4  | 1.4  | 1.6  | 1.3  | 1.2  | 1.2  | 1.4  | 1.6  | 1.5  | 1.5  | 1.8  | 1.7  | 1.5   |
| Kuopio Univ            | 1.2  | 1.0  | 1.0  | 0.8  | 1.0  | 1.0  | 1.4  | 1.5  | 1.3  | 1.5  | 1.5  | 1.7  | 1.8  | 1.3   |
| Oulu Univ              | 1.4  | 1.1  | 1.0  | 0.9  | 0.9  | 0.9  | 1.1  | 1.3  | 1.3  | 1.4  | 1.2  | 1.4  | 1.4  | 1.2   |
| Tampere Univ           | 1.8  | 1.5  | 1.3  | 1.0  | 1.2  | 1.1  | 1.4  | 1.7  | 1.9  | 2.1  | 2.4  | 2.3  | 2.1  | 1.7   |
| Jyväskylä Univ         | 2.3  | 2.7  | 1.8  | 0.8  | 0.6  | 1.0  | 0.7  | 0.9  | 1.5  | 1.2  | 1.3  | 1.0  | 1.3  | 1.2   |
| Åbo Acad<br>Univ       | 2.2  | 0.7  | 0.7  | 0.9  | 1.0  | 0.5  | 1.3  | 1.6  | 2.0  | 2.4  | 2.4  | 2.3  | 3.0  | 1.6   |
| Table 22                  | 2. con | t    |      |      |      |      |      |      |      |      |      |      |      |       |
|---------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Journal<br>impact/Staff   | 1986   | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ             | 11.1   | 11.1 | 11.5 | 11.4 | 11.8 | 11.6 | 13.3 | 13.1 | 12.4 | 12.6 | 12.7 | 13.6 | 13.6 | 12.4  |
| Turku Univ                | 9.6    | 10.0 | 9.2  | 10.7 | 11.3 | 10.9 | 11.7 | 11.5 | 11.6 | 12.6 | 12.7 | 13.2 | 13.5 | 11.6  |
| Kuopio Univ               | 8.8    | 10.3 | 10.0 | 9.0  | 10.4 | 9.9  | 11.0 | 12.4 | 11.5 | 12.5 | 12.1 | 12.9 | 13.3 | 11.4  |
| Oulu Univ                 | 9.0    | 11.0 | 10.6 | 10.8 | 11.2 | 10.4 | 12.3 | 13.3 | 12.4 | 12.2 | 12.1 | 12.2 | 11.9 | 11.6  |
| Tampere Univ              | 10.2   | 11.1 | 10.2 | 9.6  | 11.3 | 10.9 | 12.5 | 11.3 | 11.5 | 11.5 | 13.5 | 12.0 | 12.2 | 11.5  |
| Jyväskylä Univ            | 10.3   | 7.9  | 9.6  | 9.3  | 9.0  | 7.5  | 9.7  | 9.1  | 9.1  | 8.1  | 7.6  | 10.8 | 9.9  | 9.0   |
| Åbo Acad<br>Univ          | 8.2    | 14.3 | 13.3 | 14.3 | 14.2 | 14.0 | 12.6 | 15.2 | 15.3 | 15.0 | 15.7 | 9.4  | 16.4 | 13.9  |
| Non-Medical<br>staff      | 1986   | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ             | 1529   | 1464 | 1492 | 1513 | 1558 | 1569 | 1587 | 1632 | 1593 | 1789 | 1861 | 1891 | 1776 | 21254 |
| Turku Univ                | 528    | 708  | 675  | 586  | 604  | 630  | 750  | 726  | 708  | 762  | 795  | 812  | 785  | 9069  |
| Helsinki Univ<br>Tech     | 750    | 745  | 801  | 792  | 861  | 849  | 834  | 876  | 973  | 1151 | 1270 | 1332 | 1202 | 12436 |
| Oulu Univ                 | 648    | 699  | 729  | 752  | 713  | 728  | 738  | 721  | 754  | 854  | 963  | 954  | 884  | 10137 |
| Jyväskylä Univ            | 494    | 551  | 561  | 583  | 590  | 581  | 638  | 650  | 638  | 735  | 818  | 840  | 719  | 8398  |
| Åbo Acad<br>Univ          | 285    | 361  | 363  | 400  | 413  | 422  | 402  | 389  | 421  | 469  | 490  | 497  | 482  | 5394  |
| Kuopio Univ               | 91     | 114  | 119  | 121  | 117  | 115  | 119  | 116  | 125  | 136  | 146  | 166  | 153  | 1638  |
| Joensuu Univ              | 325    | 368  | 368  | 372  | 398  | 406  | 426  | 392  | 445  | 473  | 465  | 499  | 479  | 5416  |
| Tampere Univ              | 421    | 428  | 438  | 497  | 462  | 467  | 479  | 467  | 459  | 501  | 527  | 581  | 556  | 6283  |
| Tampere<br>Univ Tech      | 263    | 412  | 440  | 411  | 463  | 490  | 490  | 495  | 545  | 622  | 672  | 682  | 675  | 6660  |
| Lappeenranta<br>Univ Tech | 170    | 195  | 171  | 188  | 201  | 218  | 204  | 230  | 254  | 261  | 274  | 289  | 303  | 2958  |
| Lapland Univ              | 84     | 81   | 100  | 101  | 104  | 109  | 108  | 104  | 122  | 117  | 137  | 129  | 133  | 1429  |
| Non-Medical papers        | 1986   | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ             | 586    | 671  | 650  | 639  | 671  | 709  | 702  | 860  | 887  | 927  | 986  | 1032 | 1021 | 10341 |
| Turku Univ                | 189    | 190  | 244  | 196  | 225  | 241  | 266  | 303  | 372  | 396  | 400  | 443  | 437  | 3902  |
| Helsinki Univ<br>Tech     | 141    | 177  | 129  | 179  | 198  | 210  | 239  | 221  | 305  | 307  | 373  | 350  | 349  | 3178  |
| Oulu Univ                 | 203    | 186  | 187  | 196  | 171  | 197  | 204  | 239  | 260  | 246  | 291  | 308  | 310  | 2998  |
| Jyväskylä Univ            | 98     | 68   | 102  | 88   | 93   | 106  | 107  | 146  | 141  | 165  | 199  | 202  | 184  | 1699  |
| Åbo Acad<br>Univ          | 69     | 68   | 69   | 60   | 93   | 92   | 86   | 132  | 151  | 147  | 159  | 158  | 158  | 1442  |
| Kuopio Univ               | 68     | 86   | 102  | 78   | 80   | 108  | 83   | 115  | 118  | 134  | 150  | 150  | 168  | 1440  |
| Joensuu Univ              | 44     | 57   | 30   | 51   | 39   | 56   | 75   | 75   | 100  | 123  | 144  | 144  | 141  | 1079  |
| Tampere Univ              | 38     | 38   | 36   | 32   | 41   | 39   | 57   | 43   | 56   | 58   | 67   | 82   | 93   | 680   |
| Tampere Univ<br>Tech      | 26     | 41   | 27   | 34   | 46   | 65   | 64   | 74   | 78   | 83   | 96   | 79   | 97   | 810   |
| Lappeenranta<br>Univ Tech | 5      | 6    | 7    | 6    | 7    | 12   | 24   | 18   | 28   | 32   | 30   | 32   | 34   | 241   |
| Lapland Univ              |        |      |      |      | 1    |      |      | 2    | 3    | 7    | 5    | 5    | 10   | 33    |

| 74 |  |
|----|--|
|    |  |
|    |  |
|    |  |

| Τ | ab | le | 22. | cont |
|---|----|----|-----|------|
|   |    |    |     |      |

| Non-Medical papers/staff               | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
|----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Helsinki Univ                          | 0.4  | 0.5  | 0.4  | 0.4  | 0.4  | 0.5  | 0.4  | 0.5  | 0.6  | 0.5  | 0.5  | 0.5  | 0.6  | 0.5   |
| Turku Univ                             | 0.4  | 0.3  | 0.4  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.5  | 0.5  | 0.5  | 0.5  | 0.6  | 0.4   |
| Helsinki Univ<br>Tech                  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3   |
| Oulu Univ                              | 0.3  | 0.3  | 0.3  | 0.3  | 0.2  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.4  | 0.3   |
| Jyväskylä Univ                         | 0.2  | 0.1  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.3  | 0.2   |
| Åbo Acad<br>Univ                       | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.3  | 0.4  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3   |
| Kuopio Univ                            | 0.7  | 0.8  | 0.9  | 0.6  | 0.7  | 0.9  | 0.7  | 1.0  | 0.9  | 1.0  | 1.0  | 0.9  | 1.1  | 0.9   |
| Joensuu Univ                           | 0.1  | 0.2  | 0.1  | 0.1  | 0.1  | 0.1  | 0.2  | 0.2  | 0.2  | 0.3  | 0.3  | 0.3  | 0.3  | 0.2   |
| Tampere Univ                           | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.2  | 0.1   |
| Tampere Univ<br>Tech                   | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1   |
| Lappeenranta<br>Univ Tech              | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1   |
| Lapland Univ                           | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.1  | 0.0   |
| Non-Medical<br>Journal<br>impact/staff | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | Total |
| Helsinki Univ                          | 4.2  | 5.4  | 4.3  | 4.7  | 4.7  | 5.3  | 5.3  | 6.5  | 6.2  | 6.2  | 6.0  | 6.2  | 7.0  | 5.6   |
| Turku Univ                             | 3.5  | 2.5  | 3.9  | 3.6  | 4.0  | 4.6  | 4.2  | 4.3  | 4.9  | 5.6  | 4.7  | 5.8  | 5.9  | 4.5   |
| Helsinki Univ<br>Tech                  | 1.6  | 2.1  | 1.2  | 1.7  | 1.9  | 1.7  | 2.1  | 2.1  | 2.5  | 1.9  | 2.1  | 2.2  | 2.2  | 2.0   |
| Oulu Univ                              | 3.1  | 2.8  | 3.3  | 2.8  | 2.9  | 3.3  | 3.7  | 3.8  | 4.1  | 3.5  | 3.2  | 3.8  | 3.8  | 3.4   |
| Jyväskylä Univ                         | 1.8  | 1.1  | 1.4  | 1.3  | 1.3  | 1.7  | 1.4  | 1.9  | 2.0  | 2.2  | 2.2  | 2.4  | 2.6  | 1.8   |
| Åbo Acad<br>Univ                       | 1.9  | 1.7  | 1.4  | 1.2  | 1.7  | 1.4  | 1.7  | 3.1  | 2.9  | 2.4  | 2.2  | 2.7  | 2.9  | 2.1   |
| Kuopio Univ                            | 5.5  | 9.2  | 8.3  | 5.9  | 6.6  | 10.1 | 7.3  | 11.3 | 9.7  | 10.6 | 9.7  | 10.5 | 12.9 | 9.3   |
| Joensuu Univ                           | 0.9  | 1.2  | 0.6  | 0.9  | 1.0  | 1.1  | 1.1  | 1.7  | 1.8  | 1.8  | 2.4  | 2.0  | 2.1  | 1.5   |
| Tampere Univ                           | 1.0  | 1.9  | 1.2  | 1.1  | 1.6  | 1.6  | 1.8  | 1.4  | 1.6  | 2.2  | 1.5  | 2.3  | 2.2  | 1.7   |
| Tampere Univ<br>Tech                   | 0.7  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 1.0  | 1.0  | 0.7  | 0.9  | 0.6  | 0.8  | 0.5   |
| Lappeenranta                           |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
| Univ Tech                              | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.6  | 0.3  | 0.4  | 0.6  | 0.5  | 0.5  | 0.6  | 0.4   |

## **Working Papers**

- No. 1 *Miettinen Reijo and Loikkanen Torsti*, Teknologiapolitiikasta yritysten teknologiastrategioihin (From technology policy to company technology strategies). Espoo 1993.
- No. 2 *Numminen-Guevara Sirkka*, Katsaus teknologiaohjelmien arviointiin (Review of the evaluations of national technology programmes). Espoo 1993.
- No. 3 Kivisaari Sirkku and Lovio Raimo, Suomen elektroniikkateollisuuden merkittävien innovatiivisten liiketoimintojen menestyminen 1986-1992 (Success of the major innovative businesses in the Finnish electronics industry 1986-1992). Espoo 1993.
- No. 4 *Miettinen Reijo*, Methodological issues of studying innovation-related networks. Espoo 1993.
- No. 5 *Numminen-Guevara Sirkka*, Yhteenveto VTT:n tutkimusohjelmien arvioinneista (A summary of the evaluations of VTT's research programs). Espoo 1993.
- No. 6 Hölsä Tuomas, Ulkomaiset T&K-yksiköt Valmetin paperikoneteollisuudessa ja Ahlströmin konepajateollisuudessa 1983-1993 (Foreign R&D units in Valmet paper machinery and Ahlstrom engineering industries 1983-1993). Espoo 1994.
- No. 7 *Halme Kimmo and Ahola Eija*, Pkt-yritykset ja innovaatioiden tukijärjestelmä Suomessa (SME's and innovation support system in Finland). Espoo 1994.
- No. 8 *Ahola Eija and Halme Kimmo*, Innovaatiotoiminta pktyritysten strategiana (Innovations as a strategy for the SME's). Espoo 1994.
- No. 9 Luukkanen Harri, Ulkomaiset teollisuusyritykset ja niiden tutkimustoiminta Suomessa 1984-1991 (Foreign industrial firms and their R&D in Finland 1984-1991). Espoo 1994.

- No. 10 *Hölsä Tuomas*, Suomalaisten suuryritysten ulkomainen T&K-toiminta. Espoo 1994 (Foreign R&D of Finnish multinational corporations). Espoo 1994
- No. 11 *Halme Kimmo*, Uudet yritykset biotekniikkasektorilla 1994 (New firms in the biotechnology sector 1994). Espoo 1994.
- No. 12 *Kivisaari Sirkku*, Terveydenhuollon elektroniikan liiketoimintojen kehitys Suomessa (Development of health care technology in Finland). Espoo 1994.
- No. 13 *Miettinen Reijo*, Sosiologian ja toiminnan teorian näkökulma teknologiatutkimukseen (A sosiological and activity theoretical approach to technology studies). Espoo 1994.
- No. 14 *Kivisaari Sirkku*, Management of continuity and change in Finnish health care technology: the Datex and Polar Electro cases. Espoo 1995.
- No. 15 *Miettinen Reijo*, Finnish biotechnology innovations in the 1980s and the 1990s: A preliminary study on innovative activity of the Finnish biotechnology sector. Espoo 1995.
- No. 16 Kuisma Mika, Pölypäästöistä kasvihuoneilmiöön: energiantuotantoon liittyvien ilmansuojeluliiketoimintojen kehityksestä ja kehitysmahdollisuuksista Suomessa. (From local dust emissions to global warming: the development and potential of the Finnish air pollution control and air quality measurement business and their relation to energy sector). Espoo 1995.
- No. 17 *Lievonen Jorma*, Teknologia ja työllisyys (Technology and employment). Espoo 1995.
- No. 18 *Ahola Eija and Siivonen Timo*, VTT tuotekehittäjänä. Kertomus automaattisen sivuntaitto-ohjelmiston kehittämisestä VTT:ssä (Product development at VTT: the case of automated paper making system). Espoo 1995.

- No. 19 *Kuisma Mika*, Kasvihuonekaasut Suomen energian tuotannossa: haasteita uuden teknologian kehittämiselle (Green house gases in the Finnish energy production: challenges for the new technology development). Espoo 1995.
- No. 20 *Luukkainen Sakari*, Toimialan arvoketjun rakenteen ja kehitysdynamiikan vaikutus suomalaisen tietoliikenneteollisuuden kansainväliseen kilpailukykyyn vuosina 1990-1995 (Value chains in Finnish telecommunications industry). Espoo 1996.
- No. 21 *Luukkonen Terttu and Niskanen Pirjo*, EU:n toinen tutkimuksen puiteohjelma: yhteenveto arvioinneista (The second framework programme of the EU: summary of the evaluations carried out). Espoo 1996.
- No. 22 *Lievonen Jorma*, Euroopan telealan yritysten innovatiivisuuden vertailu patenttiaineiston avulla (Patents of European telecommunication equipment manufacturers in comparison). Espoo 1996.
- No. 23 *Lemola Tarmo and Kivisaari Sirkku* (eds), Muoteja ja murroksia (Trends and discontinuities). Espoo 1996.
- No. 24 *Halme Kimmo*, Biotekniikka uusien yritysten toimialana. Espoo 1996.
- No. 25 *Numminen Sirkka*, National innovation systems: pilot case study of the knowledge distribution power of Finland. Report of the first phase of the project for the OECD and for the Ministry of Trade and Industry of Finland. Espoo 1996.
- No. 26 *Lievonen Jorma*, Kansainvälisiä tekniikan kehitysarvioita (International science and technology foresight). Espoo 1996.
- No. 27 *Miettinen Reijo*, Julkista päätöksentekoa palveleva teknologian arviointitoiminta Euroopan maissa: ehdotus teknologian arviointitoiminnan järjestämiseksi eduskunnassa (Technology assessment serving public decision-making in European countries: parliamentary proposal for the organisation of technology assessment). Espoo 1996.

- No. 28 *Palmberg Christopher*, Public technology procurement as a policy instrument? Selected cases from the Finnish telecommunications industry. Espoo 1997.
- No. 29 *Palmberg Christopher*, Public technology procurement in the Finnish telecommunications industry - a case study of the DX 200, the NMT and the KAUHA paging network. Espoo 1997.
- No. 30 *Kortelainen Sami*, Kivisaari Sirkku & Saranummi Niilo, Uusi teknologia diabeteksen hoidossa (New technology in the treatment of diabetes). Espoo 1998.
- No. 31 Kortelainen Sami, Kivisaari Sirkku & Saranummi Niilo, Etälääketiede ortopedisessä hoidossa (Telemedicine in ortopaedic treatment). Espoo 1998.
- No. 32 *Kortelainen Sami, Kivisaari Sirkku & Saranummi Niilo*, Uusi teknologia kohonneen verenpaineen hoidossa (New technology in the treatment of high blood pressure). Espoo 1998.
- No. 33 *Lemola Tarmo and Kivisaari Sirkku* (eds.). Muoteja ja murroksia II (Trends and discontinuities). Espoo 1998.
- No. 34 *Mika Kuisma*, Teknologian siirron ja kaupallistamisen nykytilanne Suomessa (The present state of technology transfer and commercialisation in Finland). Espoo 1998.
- No. 35 *Jorma Lievonen*, Tekniikan mahdollisuudet erikoistapauksena televiestintä. (Technological opportunities case telecommunications). Espoo 1998
- No. 36 *Jorma Lievonen*, Innovaatiot ja infrastruktuurit. Esimerkkinä internet-innovaatiot (Innovations and infrastructures. Internet innovations as an example). Espoo 1998.
- No. 37 *Ahti Salo*, Kokemuksia teknologian arvioinnista: kasvigeenitekniikka ravinnontuotannossa (Experiences in technology assessment: plant genetics in food production). Espoo 1998.

- No. 38 Sini Molin and Eija Ahola, Keksintöjen kiihdyttäjä: Keksintösäätiön toiminnan arviointi (An accelerator for inventions. The evaluation of the Foundation for Finnish Inventions). Espoo 1998.
- No. 39 *Ville Räsänen*, Internationalization of R&D in Finnish Multinational Companies 1993-1998. Espoo 1998.
- No. 40 *Kenneth Lönnqvist and Panu Nykänen*, Teknologiapolitiikan alkuvaiheet Suomessa 1940-1970 -luvuilla (The early stage of technology policy in Finland). Espoo 1999.
- No. 41 *Christopher Palmberg, Ari Leppälahti, Tarmo Lemola and Hannes Toivanen,* Towards a better understanding of innovation and industrial renewal in Finland a new perspective. Espoo 1999.
- No. 42 *Sami Kortelainen*, Tuotekehityksen ympäristöt ja tuotteen laatu - esimerkkinä elektroninen resepti (R&D environments and product quality - case electronic prescription). Espoo 1999.
- No. 43 *Jorma Lievonen*, Technological opportunities in biotechnology. Espoo 1999.
- No. 44 *Sirkka Numminen*, Tekesin tuotekehitysrahoituksen vaikutukset PK-yrityksissä - kyselytutkimuksen loppuraportti (The effects of Tekes R&D funding in small and medium sized companies). Espoo 1999.
- No. 45 *Mikko Rask, Riikka Eela, Topi Heikkerö and Aleksi Neuvonen,* Teknologian arviointi ja osallistuminen kokemuksia geenitekniikka-arvioista (Values and participation in technology assessment - experiences of assessing gene technology). Espoo 1999.
- No. 46 *Sakari Luukkainen & Petri Niininen*, Teknologiaintensiiviset palvelut ja kansallinen kilpailukyky. Espoo 2000.

- No. 47 *Christopher Palmberg, Petri Niininen, Hannes Toivanen & Tanja Wahlberg*, Industrial Innovation in Finland. Espoo 2000.
- No. 48 *Olle Persson, Terttu Luukonen & Sasu Hälikkä*, A Bibliometric Study of Finnish Science. Espoo 2000.

The working papers in this series can be obtained, on request, from

VTT, Group for Technology Studies

P.O.Box 10021, FIN-02044 VTT, Finland

Tel. +358-9-456 4255, Telefax + 358-9-456 7014

This study is the most comprehensive bibliometric report of Finnish science carried out, and it is based on a long time series. It uses many types of bibliometric indicators to describe the scentific and technological activities of the Finnish research base. It draws attention to publication activities and the international visibility and impact of Finnish scientific research, domestic and international collaboration patterns, and indicators of technological innovation activities.

The report gives a very positive picture of Finnish science. The policy to strengthen the internationalisation of Finnish science seems to have been effective. Finland has increased its international publishing and has improved the international visibility and impact of its research publications. The study of Finnish US patents shows that Finland is active in producing technological innovations and has impact in telecommunications, industrial process equipment, and wood and paper. To some extent, Finland appears to be strong technologically and economically in the same fields (especially in telecommunications and wood and paper). The technological innovation base is much more nationally oriented than the Finnish science base, but there is a steady trend toward internationalisation in this area too.