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Abstract

As the size of communication networks keeps on growing, with more subscribers, faster
connections and competing and co-operating technologies and the divergence of
computers, data communications and telecommunications, the management of the
resulting networks gets more important and time-critical. More advanced tools are needed
to support this activity. In this report we have reviewed the published articles for the main
application areas of intelligent methods in the domain of communications network
management. With intelligent methods we mean various knowledge based reasoning
methods capturing the domain expertise and also methods capable of learning from past
experiences using statistical, data mining or artificial neural network methods and
combinations of these methods. In the study we have found that intelligent methods have
been most often applied to solve the alarm correlation task where the main target is to
filter redundant data from the overwhelming alarm data stream in order to make the
information understandable. Some work has also addressed repair management of faults
combining fault diagnosis and repair scheduling. Other application areas cover proactive
fault detection and the use of intelligent network management agents.

As better integration of alarm correlation, fault diagnosis and repair activity management
still seems to be a problem, the applicability of decision-theoretic troubleshooting and
Bayesian probabilistic reasoning has been studied more closely in this report. At first we
describe the repair management needs. Then decision-theoretic troubleshooting theory is
reviewed. Previous work using these methods in alarm management is also reviewed. We
have modeled three small problems using Bayesian networks and described example
troubleshooting sessions with these models to demonstrate the applicability of the models.
A maintenance support terminal concept has been sketched to help the maintenance
personel with decision-theoretic recommendations.

.
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1 Introduction

As communication networks and distributed processing systems are gaining importance
their reliable operation is getting vital to businesses. Networks are getting bigger and
more complex. Communication networks have a legacy problem as they have been built
over a long time and consist of very heterogeneous equipment which has to work
together. Public telecommunication and various cellular phone networks serve as
examples of telecommunications networks. Local-area networks and backbone networks
serve as examples of data communications networks. These two types of networks are
now rapidly converging so that voice data may be communicated over the Internet
protocol (VoIP) and data, images and multimedia may be transfered over the
telecommunications networks.

Network management is gaining importance. Previously each equipment manufacturer
created management systems for their own equipment but in the last decade network
management standards (called TMN = Telecommunications Management Network) were
specified making it easier to build unified network management systems for heterogenous
equipment. These standards define five functional areas of network management
(FCAPS):

� Fault management

� Configuration management

� Accounting management

� Performance management

� Security management.

Fault management consists of monitoring, detection, diagnosis and correction of
anomalous events that occur in the network. Currently used systems mainly deal with
monitoring the events (alarms and state changes) generated by the underlying equipment.
Most systems also provide tools to perform alarm correlation in order to filter the most
relevant information from the generated events.  However, troubleshooting and repair are
still broadly done manually by maintenance staff. Typically trouble tickets are generated
by the network management system to the maintenance staff who has the duty of
correcting the problems.

Configuration management deals with maintaining a model of the network,  planning for
changes (extensions) and implementing them.

Accounting management deals with keeping an accurate record of the various charges for
the services. It takes care of charging the customers and of distributing the payments to
the associated partners.
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Performance management deals with monitoring the performance of the network and
identifying deviations from normal behaviour and detecting bottlenecks in the design.

Security management takes care of the security administration of the network. It could
involve intrusion detection and fraud detection.

In modern network elements network management information is increasingly stored in a
distributed manner locally with the network elements into MIB databases. These
databases contain all relevant configuration data and the dynamic state data
(measurements and alarms) in a standardized format.

An effective fault management system should meet the following requirements [Haj00a]:

1) It should scale up well to growing networks.

2) It should perform non-intrusively.

The management activity should not interfere with normal operations of the network.
It must only intervene when necessary. Excessive polling wastes bandwidth that
could be used for other important services.

3) It should be robust.

Management applications should be able to perform even when the network is not
fully operational as management is mostly needed in abnormal situations, e.g. when
connections are broken.

Simple Network Management Protocol (SNMP) provides an example of a network
management system based on a platform-centric approach. Its organizational model
specifies that the active entities in the network are divided into two types: Network
Management Stations (NMS) and SNMP agents. NMS is typically a stand-alone machine
running the management application. The SNMP agent is a software process that runs on
all managed resources and maintains a set of parameters that reflect the state of the
resource. The SNMP information model specifies that the managed resources are
abstracted as managed objects. Each of these holds the parameters necessary to the
management functions. Internal details are hidden. The SNMP communication model
specifies that the NMS may query state of variables (GET-messages) and set variable
values (SET-messages). SNMP agents notify unusual events using the TRAP capability.

NMS handles all the monitoring and decision-making tasks and the SNMP agents are just
simple software processes that perform very limited processing on the MIB. This
becomes difficult with the increasing sizes of the networks. The NMS has to poll the
agents frequently for network statistics which consumes bandwidth and computation time
for the transfer and processing of the data mass. Fault management is especially needed
when the normal operation of the network is disabled. Local autonomous recovery
processing capability would be desirable. This is a problem with SNMP as all the
decisions are done centrally in the NMS – local activity is not supported.
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2 Research directions in applying intelligent techniques
to network management

Many rule-based systems, knowledge-based frame systems and expert systems shells
have been used to develop prototype fault diagnosis systems in the 1980's and early
1990's also in the network management domain. Often the execution performance was
considered a problem especially in domains dealing with high rates of events.

As alarm correlation has been found to be a very useful application for helping the
operator to make sense of a storm of related alarm events and it is easier than complete
fault diagnosis many systems have been developed to ease this task. Some model-based
reasoning systems have been developed for fault diagnosis.

Recently proactive fault detection systems have been developed trying to predict
developing problems in time to make adjustments in order to correct the situation before
systems turn inoperable.

As network management domain naturally consists of a distributed environment agents
technology has been developed to distribute control into the network elements. However,
standardization mostly deals with distributed management centers.

In operational use much work still needs to be done to integrate the various, often
heterogenous legacy networks and management systems together. Name space modeling
and topology development needs to be done to make the alarms homogenous so that
cross-domain correlation can take place.

2.1 Alarm correlation

Alarm correlation deals with reducing unnecessary alarm events and with enhancing the
information content of the alarms. Such systems are especially important when real
problems emerge as then a storm of events is often generated and the root-cause of failure
is easily lost in the mass of events. Many approaches have been developed to perform
some sort of alarm filtering or correlation. Commercial systems are also available.
However, research still continues on this topic.

The modeling needed depends heavily on the subproblem being solved. Some network
elements may produce transient alarms that are turned on and always cancelled after a
short while. These can be filtered by a delay timer and a counter system. On the other
hand, a broken cable or link may cause a huge amount of alarms coming from distant
network elements that may even be controlled by separate systems. In this case the
topological connections of the network need to be modeled in a suitable level (physical
connection, protocol layer, application layer) in order to be able to correlate the alarms
and diagnose the root cause of failure.

2.2 Decision-theoretic sequential troubleshooting

Early diagnostic systems were directed toward detecting the most likely fault hypothesis
and did not directly address the problem of supporting the repair process. Recently,
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attempts have been made to integrate diagnosis and repair [Frie92], [Bree96], [Jens01].
The aim is to create optimal (minimal expected cost) repair plans for the faulty system.
Such plans consist of observations and component-repair actions.

The basic idea of sequential troubleshooting is to allow a repair agent the possibility to
gather further information on the state of the system (called observations) or to perform
repair actions of the components most likely to be broken. Decisions are made one at a
time and between the decisions the agent has the chance of observing the environment
(monitoring new evidence, observing the effect of the repair actions and making new
decisions). Each action is considered to cause costs (measured in money or time) and one
has to try to determine an optimal sequence of actions.

Decision models have been created for situations where we know the potential faults and
have been able to assign failure probabilities to them (conditioned on the gathered
monitoring evidence) and have some observation actions available (questions of the
configuration, probes, monitoring samples) and also the choice of repairing or replacing
the failed components (repair costs associated).

Under various assumptions optimality criteria have been determined for sequencing the
actions. Often one aims at minimizing the expected cost of repair of the system. Some
papers have also suggested the importance of minimizing the risk of costs (they typically
take into account the variance of the failure probabilities and repair costs) [Shay00].
However, the calculations get much more difficult.

Decision-theoretic sequential troubleshooting systems have been reported by Microsoft to
assist the troubleshooting of printer problems [Heck95]. Microsoft has also created
prototypes for helping with operating system problems and information retrieval in help
systems (wizards). Hewlett-Packard has been co-operating with a Bayesian network tool
pioneer, Hugin, and Aalborg University in creating printing system troubleshooters for
HP products [Jens01].

In the domain of network management, AT&T Bell Labs has done some experiments
with probabilistic reasoning [Huar96] and Saitama University in Japan has used Bayesian
networks and decision theoretic troubleshooting in their network management agents
[Haj00a].

2.3 Proactive fault detection

Recently some attempts have been made to create network anomaly detectors that are able
to detect soft network faults (ie. performance degradations) before they lead to concrete
faults or problems. This enables one to fix the problems before they actually occur
[Ho99], [Hood97]. Such systems are typically based on directly observing the available
measurement variables and building models for the normal behaviour of the system.
Deviations from the normal behaviour can then be detected with some type of
abnormality detector. In some papers it has been reported that the parameters of video and
IP (Internet Protocol) traffic can be successfully modeled with certain wavelet models.
Separate traffic models are typically created for different time periods (such as for each
hour of a typical week) as the characteristics tend to vary according to the time of the day
and the day of the week.
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One could consider the Self-Organizing Map method as a potential abnormality detector
once the input features have been suitably preprocessed. For example, the wavelet
coefficients could be used as features for the SOM.
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3 Using decision-theoretic troubleshooting in
telecommunications fault management

In this chapter we describe some of our experiments with decision-theoretic
troubleshooting in the domain of telecommunications system diagnosis and repair. At first
we briefly describe the fault management function of TMN (Telecommunications
Management Network) formalism. Then we motivate the reader on the need to integrate
the alarm correlation and fault diagnosis activities with the repair activities and suggest
that decision-theoretic troubleshooting provides a theoretical framework for
accomplishing this. Next we introduce the reader to the decision-theoretic troubleshooting
theory and terminology. In the next chapter previous work applying probabilistic
reasoning and decision-theoretic reasoning in the fault management area is reviewed.
Next we describe some of our experiments with the decision-theoretic troubleshooting
methodology in this domain and give some guidelines on how to specify such models.
Finally the gained experiences are discussed.

3.1  On the fault management function

Network fault management involves monitoring, detection, diagnosis and repair of
malfunctions in the network and its control subsystem. These activities are still broadly
handled manually by operation staff. There is a need to reduce operations cost by using
management software to simplify and automate the management tasks.

A fault is an abnormal operation that significantly degrades performance of an active
entity in the network or disrupts communication. All errors are not faults as protocols can
mostly handle them. Generally faults may be indicated by an abnormally high error rate.

In fault management different error rates and measures are commonly stored in MIB
(Management Information Base) records for each managed object. Typically these values
are scalar valued counters. MIB variables are often redundant partly measuring similar
behaviour from slightly different perspectives. Not all variables need to be tested in order
to detect abnormalities.

An observation is a test over MIB variables. It may be based on the nominal values of the
MIB variables or a function may be applied to the variable, like taking the time difference
in order to gain the rate of change over time of the counter.

An alarm is an event generated asynchronously whenever the value of some quality
indicator crosses a predefined threshold (either positively or negatively).

Detection mechanisms are usually implemented real-time and have been embedded with
the network elements (network protocols and devices). Finite-state machines may be used
to detect protocol errors. Fault localization is typically supported by algorithms that
compute a possible set of faults. Fault identification involves testing the hypothetical
faulty components. Repair is achieved by taking corrective actions.

The diagnosis process is sequential by nature. At any stage there are many observations,
tests and repairs that can be applied. It is useful to take advantage of the information
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gathered on the way by testing propositions that might reduce diagnosis costs or give us
higher confidence in potential failures.

3.2 Motivation to apply decision-theoretic troubleshooting

In current alarm management systems the main focus is on detecting the most likely fault
candidates and generating trouble tickets (repair orders) of these faults for the
maintenance staff to repair. The large volume of alarm messages is filtered using alarm
correlation tools that are typically based on detecting commonly occurring patterns using
rule bases and combining these alarms into more refined fault hypothesis. To our
knowledge no knowledge based support is provided for actually repairing the network.
The maintenance persons only have the trouble tickets at their disposal and many persons
may do partial tests to gather further information or to test possible repair actions during
the correction process before actual system recovery takes place. If the initial alarms are
falsely interpreted the correction of the faults may take a long time and involve many test
and repair operations by multiple persons.

We claim that it would be useful to combine alarm correlation and fault diagnosis with
the repair operations. By doing this a list of possible fault hypothesis could be ordered by
their likelihood and the supporting evidence could be made available also to the
maintenance personel via a troubleshooting guidance system. This system could also
contain knowledge about suitable repair operations and the associated cost estimates
(based on the needed time, money, supplies etc.) for the different fault types. The support
system could suggest the most cost efficient repair and observation actions to follow
based on all the available evidence. We believe that such support leads to more efficient
repair sequences, harmonizes the repair operations, supports knowledge transfer between
the involved personel and could be used for gathering feedback on the success of the
applied repair operations.

Decision-theoretic troubleshooting provides a probabilistically oriented framework for
building the core operations outlined above. Its potential is explored in the following
chapters.

3.3 Introduction to the Value-of-Information (VOI) principle

While making decisions under uncertainty there is a quest for more information to reduce
the uncertainty. Gathering and accessing information is usually not free but creates costs.
Therefore one would like to be able to evaluate beforehand whether it is worthwhile to
consult an information source and in which order should the data sources be consulted.
This data request problem has been studied formally in decision theory where utilities of
possible actions are used to guide the decisions. Also utility-free measures exist and
include Shannon's measure of mutual information and variance.

As the range of possible actions to perform is often large one has to set a bound to the
search space. Usually myopic data requests are used where one at each stage searches for
the best next action to perform. Also the search may be reduced by evaluating the state in
terms of the probability distribution of a hypothesis (the variable of interest, the one that
one needs to have accurate knowledge of). [Jens94]
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The expected value of performing test T is:

EV(T) = �t �T V (P(H | t) P(t)

The expected benefit is:

EV(T) = EV(T) – V(P(H))

The expected profit is:

EP(T) = EB(T) - CT

V  = value function that maps the given probability to a real-numbered value.
CT  = the cost of accessing information source T.

Different value functions may be used. Entropy of a distribution over H is defined as:

ENT (P(H)) = - �h �H P (h) log2 (P(h))
V(P(H)) = - ENT (P(H))

Entropy measures how much the probability mass is scattered around on the states. When
H has n states and the distribution is even the entropy gets its maximum value log2 n.
When the probability mass is concentrated in one state the entropy is 0.

When the states of H are numeric a variance measure may be used. Small variances are
preferred.

V(P(H)) = - �h �H (h - �h' �H h' P(h'))2 P(h)

In some cases the value of the hypothesis is due to a set A of actions which are taken
dependent on the state of the hypothesis. The expected utility is then:

EU(a) = � h �H U(h,a) P(h|a)
V(P(H)) = max a �A EU(a)

Also other types of value functions have been studied.

In some cases the myopic approach is not enough and one should consider more than one
information request at the same time. The search space gets exponentially larger and
typically this is tried only after the myopic approach has failed to suggest any actions and
often a simplifying assumption of the actions being conditional independent on each other
given the hypothesis.

3.4  Introduction to decision-theoretic troubleshooting

In traditional diagnostic systems the main objective has been to find out the set of fault
hypothesis that is consistent with the observations and arrange these hypothesis according
to their likelihood. In these systems the repair process has usually been assumed to be a
simple two-phase process where one is first charged with finding the most plausible
diagnosis candidate and then repairs the system according to these diagnostic results.
Attention has later turned to integrating diagnosis and repair together in order to restore
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the system to its functioning state as cost efficiently as possible [Frie92]. An alternating
sequence of diagnosis and repair actions is needed to accomplish this task. This
integration task has been approached using both logical model-based and decision-
theoretic cost-based approaches.

In [Frie92] a model-based diagnosis and repair process has been defined and a temporal
framework has been introduced where one models the system components, faults,
observations and repair actions in a logic-based formulation. Multiple system purposes
may be defined, i.e. for emergency recovery and for regular maintenance. Different
recovery actions may be selected to restore each purpose based on the same system
formulation. The sequencing of the actions uses utility computations based on costs of
downtime and costs of observation and repair actions.

Decision-theoretic formulations for selecting diagnostic tests and for guiding the repair
process have been formulated in [Kala90], [Heck95], [Huar96] and [Hajj98]. The primary
objective of the troubleshooting session is to repair the device not just determine what is
wrong. The main use of these formulations is to provide the diagnostician help with
troubleshooting the system by providing him with a recommendation list including the
most cost efficient actions to perform next. Possible actions include asking additional
questions about the behaviour of the device, testing or repairing individual components or
calling for outside help (typically modeled as an expensive service call). In order to use a
decision-theoretic approach the failure probabilities of the components conditioned on the
available evidence and the costs for observing new evidence, for testing and for repairing
a component and the costs for calling service need to be defined. Bayesian network
models are well suited for computing the marginal probabilities of dependent variables
conditioned on the available evidence. Fast algorithms exist for performing probability
propagation with relatively sparse discrete Bayesian networks. This computational boost
has revived interest in decision-theoretic troubleshooting methods.

Making a single fault assumption (only one component is believed to have failed at a
given time, faults are mutually exclusive) the expected cost of repairing the system (ECR)
using a test sequence (c1,..., ck) may be formulated in the following way:

ECR(c1, ..., ck) =

C1
o + p1 (C1

r + Cp)] + (1 - p1) [C2
o + p2 / (1 - p1) (C2

r + Cp)] +

 (1- p1 - p2) [C3
o + p3 / (1 - p1 - p2) (C3

r + Cp)] + ... +

 ( �j=k+1...n pj) CS

= �i=1...k [ (1 - �j=1...i-1 pj) Ci
o + pi (Ci

r + Cp)] + ( �j=k+1...n pj) CS

The ci stands for the component i.
The pi stands for the failure probability of component i.
The Ci

o stands for the observation cost of component i.
The Ci

r stands for the repair cost of component i.
The Cp stands for the observation cost of the problem defining node of the whole system.
The CS stands for the repair cost of the whole system (or the cost of a service call).

The formula has been formed by summing the expected costs of the component repairs. In
this formulation only binary states have been assumed for the nodes. The first component
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is at first observed with the cost C1
o. If the component is found faulty (with probability p1)

it needs to be repaired immediately and then the system status needs to be observed with
total cost (C1

r + Cp). If the component is found normal (with probability 1- p1) the testing
sequence needs to be continued with the next component C2. This sequence is continued
until the last component is tested or a service call is made (it has been modeled here to
take place after testing component Ck).

The most optimal position of the service call may be identified by evaluating the
minimum of the expected cost of repair including k components (k=0,...,n):

ns = min k [ ECR (c1, ..., ck) ]

An optimality criterium may be formulated for the optimal order of the actions by
considering a case where two actions have changed places (i=k and j = k+1). The
difference between the costs is then:

ECR(c1, ..., cn) - ECR(c1, ..., ck-1, ck+1, ck..., cn ) =

(1 - �j=1...k-1 pj) Ck
o + (1 - �j=1...k pj) Ck+1

o -

(1 - �j=1...k pj+ pk) Ck+1
o - (1 - �j=1...k-1 pj - pk+1) Ck

o =

pk+1 Ck
o - pk Ck+1

o

In order for the original order (c1, ..., cn) to be superior (k precedes k + 1) this difference
needs to be negative which leads to the following inequality:

pk / Ck
o  >  pk+1 / Ck+1

o

The term pk / Ck
o is called the efficiency of the action k. The optimal observation-repair

strategy is therefore produced by ordering the components according to the decreasing
efficiency.

The optimal plan can be approximated using the following algorithm:

1. Update the probabilities of the component faults given the current state of
information.

2. Observe the as yet unobserved component with the highest efficiency (ratio pi
/ Ci

o).
3. If the component is faulty then replace it.
4. Terminate if the device is working after replacing the faulty component.
5. Otherwise go to step 1.

This algorithm also supports repairing multiple faults but the plan may be suboptimal
because a single fault was assumed while computing the efficiencies used to select the
next action to perform.

Many assumptions have been made while formulating the above ECR in order to simplify
the problem and to keep the complexity time polynomial in terms of the number of
components:

1. Only one problem defining node (representing the functional status of the device)
is allowed for a troubleshooting session.



 INMAN  Intelligent Modeling Techniques in
Telecommunications Network Management

 2.0

VTT Information Technology  Modified on  17.01.0211

A separate diagnostic network may be defined for different tasks or
multiple problem defining nodes may be defined but only one may be
instantiated during a session.

2. The device is faulty at the onset of the troubleshooting session.
Typically this assumption is acceptable if the session is started after
some abnormal conditions have been detected. If the system is being
used by an automated system to do preventative maintenance the
assumption may not be valid. In this case the problem-defining node
should be tested before carrying out any repairs.

3. Only a single fault is assumed.
This assumption can typically be made when the system is being
monitored regularly. However, in the above discussion also multiple
faults have been supported but the optimality can not be guaranteed.

4. Immediately after any component repair the problem-defining node is observed
with cost Cp.

When the cost of testing the status of the system is expensive (like in
testing a jet engine) it could be better to fix multiple components at the
same time before testing. This assumption is also problematic in
situations where the corrective actions have a delayed impact as the
status can not be observed reliably before the delay time expires.

5. Components are either observable or unobservable. A component that is observed
to be abnormal must be repaired immediately.

Unobservable components can only be repaired. They can be modeled
by setting the repair cost to null (Ci

r  = 0) and the observation cost
equal to the cost of repairing the component. In the case of multiple
faults the immediate repair principle may not be optimal but it is a
good approximation.

6. Observations of the status of the component are assumed to be unambiguous.
Also the repair operations are assumed to be reliable (they never fail).

Perfect reliability is often difficult to achieve and retries should be
allowed.

7. Costs are independent of previous repair and observation actions.
The validity of this assumption is domain dependent. However, in
many cases there are preliminary operations required that are common
with many repair operations (e.g. opening a cover or having to
disassemble some equipment before accessing the component) that
should be also modeled.

Additional observations gathering more evidence (nonbase observations) could be
allowed if the expected cost of repair is lowered based on the expected new data. In order
to limit the search space one needs to make a myopic approximation where only one
nonbase observation can be made before the observation-repair sequence. This decision is
made after each action and therefore multiple nonbase observations may be made before
repairs. The expected cost of observing oi with background information I is:

ECO (I, oi) = Ci
o + � k = 1...ri  P(oi = k | I) ECR ( I  U { oi = k } )

If  ECR(I) < ECO (I, oi) for every nonbase observation oi then no nonbase observation is
made at this point of the troubleshooting session. Otherwise the nonbase observation (oi)
with the smallest ECO (I, oi) is chosen to be performed.



 INMAN  Intelligent Modeling Techniques in
Telecommunications Network Management

 2.0

VTT Information Technology  Modified on  17.01.0212

From a modeling point of view the assumption of independent costs for actions is
problematic as in some cases the costs of the repair actions are clearly dependent. While
performing such a dependent action one should also consider the possibility of
performing the dependent actions at the same time. Also delays in the process may cause
delays in the chance for observing the new system status. In such cases performing many
actions at the same time should be considered. It seems that in the network management
domain such problems are not common.

The assumptions of perfect observations and repair actions may also cause problems. It
should be possible to allow some uncertainty in the status of the repaired component
possibly allowing one to retry the repair action. Also the observation of the component
status may have some uncertainty involved.

3.5  Previous work using probabilistic reasoning and decision
theoretic troubleshooting in telecommunications alarm
management

In [Deng93] the authors use Bayesian networks to fault diagnosis in a network
management problem. The fault diagnosis of a linear lightwave network (LLN) is
investigated. The linear lightwave network constitutes the physical layer of ACORN
gigabit research network testbed. It is based on establishing controllable transparent
optical paths between network users. Its key element is a controllable linear
divider/combiner (LDC) which can be used to create optical paths (routes) on demand.
The routes run through the LDCs from its inputs to its outputs according to its
dynamically configurable routing table.

Bayesian networks are used as the knowledge base language to represent the diagnostic
knowledge. The used model is simple enough to be automatically updated from the LLN
configuration tables. Therefore topological changes do not require manual model
changes. The incoming and outgoing signal levels are measured regularly. When
abnormalities are detected in the outgoing signal levels a diagnostic session is started
where one tries to identify the faulty LDC components. In order to identify these
components additional (costly) power measurements can be made measuring the
incoming and outgoing power levels for each LDC route. Bayesian belief propagation is
used to find the most likely failed components and focusing additional tests to them. This
way only part of the components need to be tested.

Much of the reported work dealt with basic Bayesian network belief propagation
algorithms. Specialized decision algorithms were created to diagnose networks having t
simultaneous faults (t-fault diagnosis system). More powerful belief propagation
algorithms are now available than were used in this paper. The dynamic configuration
ideas were interesting.

In [Huar96] a test system applying Bayesian belief networks and decision-theoretic
troubleshooting to fault isolation in broadband networks has been described. During a
troubleshooting session the program recommends a sequence of tests believed to be the
most efficient in the current situation based on the fault probabilities conditioned on
gathered evidence about the state of the network (alarms and test results). The prototype
has been developed for a Gigabit testbed network, Xunet. [Fras92]
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Knowledge engineering has been done together with XUNET designers and managers.
Initially they identified a set of faults that occur regularly and for which the causality was
known. Then individual belief networks were composed for the identified subproblems
and at the last step a global belief network was contructed by combining the subnetworks
appropriately. Six example problems were considered and for four of them Bayesian
network models were constructed.

The guiding design principle was to identify problems with regularly occuring faults as
the dynamics was sufficiently well understood for them. While modeling much of the
details were ignored in order to keep the task manageable. At the next step the prior and
conditional probability matrices were estimated for the subnetworks. Qualitative
adjectives and adverbs were assigned to major probability intervals in order to ease the
assessment task. During this work some topology adjustments were performed (splitting
nodes having too many connections and clustering some other nodes). Also some
consistency tests were performed. Finally the subnetworks were combined into a single
large belief network containing 30 – 40 nodes.

The belief network was used to combine gathered evidence in order to update the beliefs
of the fault hypothesis. A decision engine was added capable of suggesting which
evidence to gather next (based on dynamic programming). During a decision-theoretic
troubleshooting session the network manager iterates between querying recommendations
on the best actions to perform and making decisions. The system derives a
recommendation list of most useful actions to perform at the current situation. Once new
evidence is gathered the situation is re-evaluated and the session is continued iteratively
until a good enough fault hypothesis has been identified.

The decision-theoretic approach was evaluated by simulating the success of different
decision making methods (against a heuristic troubleshooter, an omniscient
troubleshooter and a static troubleshooter). The decision-theoretic approach was found to
produce significant savings compared with the best static troubleshooters. The best
heuristic troubleshooters (with 4-step lookahead) performed almost as good as the
decision-theoretic approach in this test case.

The authors suggest that in general belief network approach is best suited for cases where
the dynamics is not well understood, e.g. cases where several layers of network protocols
are involved.

In [Haj00a] a framework is suggested for automating fault management using distributed
software agents. The main idea is to design intelligent agents that can perform advanced
reasoning activities on the local network domain. Together these agents are able to
implement the overall fault management function. Bayesian network modeling is used to
model the communications network domain. Each agent is capable of detecting abnormal
situations, correlating the gathered evidence and selectively seeking to derive a better
explanation of the alarms generated in its domain. The agents have the capability of
carrying out local recovery actions.

The network intelligent agents (NIA) consist of four modules: a knowledge base, a
reasoning engine, a learning engine and a communication engine. The reasoning engine
determines the most likely fault causing the abnormal behaviour indicated by the gathered
alarms. It is also responsible for invoking the appropriate action to repair the fault or to
report it to the Network management System (NMS). The knowledge base is used to
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model the managed objects, their possible errors, available measurement variables (MIB)
and the associated faults. The propagation patterns of the faults are modeled using
Bayesian network dependency models connecting the faults and the different fault
patterns associated with different measurements. The propagation patterns are partly
dependent on the dynamic physical and logical configuration of the network. It is claimed
that automatic network topology discovery would be beneficial for constructing and
maintaining the models. No implemented and generally applicable approaches were
presented for the learning task, just suggestions for future research.

The reasoning engine is activated by alarms and the activity continues until the most
likely fault has been detected and the fault has been recovered. The process involves an
iterative sequence of situation assessments followed by selecting further observations as
described in Figure 3.5-1.

Situation assessment

Observations selection

Action execution

Figure 3.5-1: Reasoning cycle of the agent

Situation assessment takes care of integrating the observed evidence into an overall
explanation of the state of the local network. In a Bayesian probabilistic environment this
amounts to estimate the probability distribution of the different network faults given the
raised alarms. The Bayesian network formalism is well suited for such inference.

The Bayesian network models of the local agents are loosely connected with the models
of the neighbouring agents with as few common nodes as possible. Such a distributed
inference with Bayesian networks is further studied in [Xian96].

Typically marginal probabilities of the fault hypothesis given the initial evidence are not
accurate enough for identifying proper repair actions and further evidence needs to be
gathered. Relevant variables need to be queried for necessary information in a goal-
directed manner. Observations are selected based on their degree of informativeness.

A mutual information criterion, I(P,O), is used to select the most influential observation.

I(P,O) = H(P) – H(P|O) mutual information measure

H(P) = - �j P(Fj) log P(Fj) an entropy measure

H(P | O) = - �i �j P(Fj | oi) log P(Fj | oi) an conditional entropy measure

The mutual information criterion is non-negative. It becomes null when O does not
contribute to any reduction in the uncertainty of the NIA. The entropy measure is largest
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when all the faults are equally probable. It becomes null when one of the faults is certain
(= 1). So a smaller number indicates a probabilistically better known situation.

The observations are evaluated myopically by only considering the selection of one
observation at a time. The observation with the highest mutual information score is added
to the list of selected observations (�) and then one detects the observations that are
independent of F given �. These independent observations are deleted from the network.
The search is continued until no further observations can be made.

Once a fault has been localized recovery actions can be taken locally. They can range
from conventional notifications of faults to the NMS using e.g. SNMP traps to local
recovery actions like a sequence a discrete changes in the states of the managed objects.

The authors claim that the described methods have been prototyped in a working
prototype implementation. A trouble ticket database has been used to generate the
Bayesian network models. One of the identified problems with Bayesian network
modeling is the availability of experts capable of expressing the dependencies. The
authors have also researched continuous network monitoring automatically detect
performance degradation in IP-Networks [Haj00b].

3.6 Fault management experiments with decision-theoretic
troubleshooting

3.6.1 Overview

In this chapter we describe some of our experiments with decision-theoretic
troubleshooting and Bayesian network modeling in the domain of fault management. We
start with guidelines for modeling using these methods. At first a Bayesian network for
diagnosing TCP connectivity problems is presented. An example session of decision-
theoretic troubleshooting is first presented and then a session using Value-of-Information
criterion for recommending actions is presented. This first experiment deals with a local
troubleshooting problem. Additionally two experiments are presented dealing with more
global views of the network: the first one diagnoses microwave link problems in the GSM
access network, the second deals with a dynamically configurable diagnosis model based
on the routing table information. These examples have been produced to demonstrate the
capabilities provided by probabilistic reasoning and decision-theoretic troubleshooting.
The models have not been validated by domain experts. The experimental sessions have
been carried out with a research tool called MSBNx (see Appendix A for more details).
Finally we discuss the experiences and the applicability of these modelling techniques.

3.6.2 Guidelines for applying Bayesian network modeling and decision-theoretic
troubleshooting

Selection of a promising domain requiring uncertain reasoning and giving a high payback
for better solutions and where domain knowledge is available is the cornerstone for
successful knowledge based system development. Also one should focus ones attention
and only model the necessary entities in the domain.

At first one has to identify the set of relevant entities that have a clear grounding in the
problem domain. These should be descriptively named to allow easy communication with
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domain experts. Next one specifies discrete states for the variables – these states have to
be suitable for the planned inferences. Often the used entities have a continuous valued
domain. Most Bayesian network methods support only variables with discrete states.
Therefore the continuous values have to be discretized in a meaningful way.

If the modeling entities are not directly available one has to define how these values can
be computed for decision making. Some preprocessing may need to be done to map the
available objects to the ones used in the model. New variables may be formed by
functional transformations involving more than one raw measurements or by
differentiating the values to get the rate of change estimates. New variables may also be
assigned to past values of the entities by lagging the data with the desired amount e.g.
ifInOctets(-10 mins) is the counter value 10 minutes ago. These steps need to be
performed by an intermediary driver system controlling the inference.

Next dependencies between the selected variables are identified. This is usually done with
a graphical graph editor by drawing directed arcs between the variables, typically
following the causal order from the cause to the consequence. The causal direction is
recommended as it is usually easier to define the conditional probabilities in this
direction. Alternatively a causal structure learning algorithm may be used to datamine a
preprocessed measurement database of the selected variables. The generated graph can be
later modified manually. In order to get real computational benefits from using Bayesian
network inference algorithms mutual independencies have to be identified between the
chosen variables.

Finally the quantitative probability matrices (both prior and conditional ones) need to be
defined. If data is available initial matrices can be estimated statistically from the data.
Expert justification is typically needed. There are ways to combine the expert opinions
with the data-based estimates therefore adjusting the expert opinions with data.
Simplifying assumptions can be made: The parents may be considered mutually
independent and the dependence of each one can be estimated separately (conditional
independence of the parent nodes). Alternatively the state space may be divided into
regions with decision trees by iteratively dividing the space according to the states of the
parents. This is called asymmetric evaluation.

When using decision-theoretic troubleshooting one needs to estimate observation and
repair costs for the repairable components and observation costs for informational nodes.
Also a repair cost needs to be estimated for replacing the whole system (a service call
cost). The troubleshooting engine does not understand the actual repair procedures – it
makes recommendations based on the given cost estimates. All costs have to be
summarized in the single number per component.
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Figure 3.6.2 A schematic diagram showing how to integrate the troubleshooting engine
with the controlled process.

An intermediary driver system is needed to control the decision-theoretic troubleshooting
session. The session may be initiated by an event monitoring system when it detects
unexplained abnormalities. A decision engine program loads the appropriate diagnostic
model and starts the troubleshooting session by providing the diagnostician a
recommmendation list if running interactively or by automatically initiating the best
troubleshooting action if running in automated mode. A data mediator takes care of
retrieving the variable states that the decision engine queries from the raw database. It
takes care of the required data transformations and preprocessing. Some form of user
interface is typically required to communicate with the human diagnostician. See Figure
3.6.2 for a schematic diagram of the integration.

3.6.3 A decision-theoretic troubleshooting session dealing with TCP problems

This example deals with diagnosing the sources of TCP (Transmission Control Protocol)
problems in the router interface of a host. It is based on a previously published network
[Haj00a]. The Bayesian network model contains four primary problem types: Line_UP
(indicates whether the communication line is working), Interface_Problem (indicates
whether the interface hardware has problems), BufferSize_Too_Small (indicates whether
the TCP buffer is too small) and CPU_overloaded (indicates whether the CPU on the
connection card has been overloaded). Most of the evidence nodes included into the
model are locally stored MIB counters that count incoming, outgoing and rejected packet
levels in the host interface. Instant temporal behaviour has been modeled with the rate
nodes (Input_frame_rate and Delivers_datagram_rate) that measure the rate of change
(time differenced) of the appropriate counter. The used MIB variable definitions have
been summarized in Appendix B. The dependency structure of the Bayesian network is
depected in Figure 3.6.3-1. The textual description of the used Bayesian network has been
included as Appendix C.



 INMAN  Intelligent Modeling Techniques in
Telecommunications Network Management

 2.0

VTT Information Technology  Modified on  17.01.0218

Figure 3.6.3-1. A troubleshooting Bayesian network model for TCP problems of a host
interface. (In this figure, informational nodes are marked with the green/light grey color,
unobservable but repairable nodes have the violet/dark grey color and repairable and
observable nodes have the yellow/white color, the problem identifying node has the
red/black color).

In [Haj00a] this network serves as a Bayesian knowledge base of a single network
intelligent agent (NIA) which is connected to other local NIAs according to the physical
configuration of the underlying local area network. This host NIA is connected to a router
NIA and shares a common replicated node with that model (input_frame_rate in this
model is equal to the output_frame_rate in the router model). These models could be
connected into a large network model for the whole LAN but the model would still be
useable and inferences could be performed efficiently as the nodes are not too densely
connected.

The qualitative dependency structure of the diagram has been slightly modified to better
follow the causality principle. Therefore evidence node TcpCurrEstab has been made a
child of fault node CPU_overloaded.

Some modifications have also been made to conform with the MSBNx tool (see
Appendix A for details) and decision-theoretic modeling requirements: All the faults have
been made root nodes. A special problem defining node has been added as a child of all
the possible faults. Observation costs have been specified for all the  observable nodes
and repair costs for all the nodes that can be fixed or replaced. Also a system level repair
cost has been defined. In this example a cost of 5 units is allocated to observing most of
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the MIB variables (the loopback test has a cost of 25 units) and a cost of 7 units to the
observation of the rate-of-change variables. The primary faults were assigned repair costs
of 70 units for the bufferSize_Too_Small, 100 units for CPU_overloaded, 200 units for
the Interface_Problem and 30 units for the Line_UP problem. The observation of
Line_UP status was assigned the cost of 15 units. The replacement of the whole system
was assigned the cost of 1000 units.

All nodes have been assigned discrete states (mostly 2 but some have 3). An intermediary
system needs to assign the continuous values to the appropriate discrete states. All the
required probability matrices (the prior and the conditional probabilities) have been
manually defined for this demonstration and do not reflect real beliefs tuned to expert
knowledge or measurement data. Conditional independence assumption is used in the
problem defining node – it is assumed that any failure can cause the problem-defining
node to get into the error state. Also there is a small chance of being in the abnormal state
even if the known faults are all normal (the leak probability) caused by the chance of
unmodeled errors. While defining the conditional probabilities of the node
input_frame_rate we have used asymmetric evaluation mode (see Figure 3.6.3-2) where
we have defined that when the line is not up (Line_UP = No) the probabilities are
independent of the Interface_Problem states. In the case that the line is up the
probabilities are normally conditioned on the states of the node Interface_Problem. The
following prior probabilities were assigned to the primary faults: for Line_UP 0.02, for
node BufferSize_Too_Small 0.01, for CPU_overloaded 0.004 and for Interface_Problem
0.001.

Figure 3.6.3-2. Asymmetric evaluation of the conditional probabilities when the state of
Line_UP is No.

The following troubleshooting session is initiated by assigning the problem-defining node
to an abnormal state (HostConnectionError = Yes). In this example session we have also
added the evidence that the fraction of TCP segments being reset is high (TcpOutResets
= High). In Figure 3.6.3-3 the marginal probabilities of the different nodes are shown
given the evidence. One can see that the fault probabilities are still very small. In this
phase the CPU_overloaded is the most probable fault.
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Figure 3.6.3-3. Marginal probabilities for the nodes given the assigned evidence.

Figure 3.6.3-4. A recommendation list of actions to perform next.
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Figure 3.6.3-5. Marginal probabilities for the nodes given the new evidence
(TcpCurrEstab = High).

Figure 3.6.3-6. A recommendation list of actions to perform next given the new evidence
(TcpCurrEstab = High).
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In Figure 3.6.3-4 the most cost efficient actions to perform next are listed. It is suggested
that one should first check the status of node TcpCurrEstab as it gives much information
on the fault hypothesis CPU_overloaded. The suggested node is inspected and its state is
found to be High. In Figure 3.6.3-5 we see that the next recommendation is to try to fix
the CPU_overloaded problem. Its fault probability has risen 20-fold from 0.027 to 0.56 as
indicated in Figure 3.6.3-6.

In Figure 3.6.3-7 we see that as the Cpu was not found overloaded the next recommended
action is to observe the node IpInDiscards which gives strong evidence on the failure
BufferSize_Too_Small. In Figure 3.6.3-8 and Figure 3.6.3-9 we see that when we
observed IpInDiscards to be High the belief in BufferSize_Too_Small increased 70 fold
(0.004 -> 0.287). It is also recommended to be fixed as the next action (see Figure
3.6.3-10). Now this node is found to have a fault and the troubleshooting session
terminates.

From this example session one can see that the provided recommendations seem to be
reasonable and focus the troubleshooting session at each step to the most cost efficient
direction. The user interface of the used tool is rather basic but provides the necessary
information for testing.

Figure 3.6.3-7. A recommendation list of actions to perform next given the new evidence
(CPU_overloaded = No).
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.

Figure 3.6.3-8. . Marginal probabilities for the nodes given the new evidence
(CPU_overloaded = No).
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Figure 3.6.3-9. Marginal probabilities for the nodes given the new evidence
(IpInDiscards = High).

Figure 3.6.3-10. A recommendation list of actions to perform next given the new evidence
(IpInDiscards = High).
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3.6.4 A Value-of-Information (VOI) guided diagnostic session dealing with TCP
problems

This example is similar to the previous one (see Figure 3.6.4-1). The probability matrices
are the same. The only modifications deal with the MSBNx tool requirements: the
problem defining node has been removed, the primary fault nodes have been labeled
hypothesis nodes and all other nodes informational. The aim of this session is to show
how Value-of-Information (VOI) computations can be used to make recommendations for
the next evidence to gather. The textual description of the used Bayesian network has
been included as Appendix D.

Figure 3.6.4-1. A Bayesian network model for diagnosing TCP problems of a host
interface. (In this figure, informational nodes are marked with the yellow/white color,
hypothesis nodes have the red/dark grey  color).

In Figure 3.6.4-2 we have plotted the initial probabilities for the nodes before any
evidence has been made available. In Figure 3.6.4-3 we notice that the input_frame_rate
is considered the most valuable next observation as it can separate Line_UP and
Interface_Problem faults. In Figure 3.6.4-4 the new node probabilities indicate that the
fault hypothesis, Line_UP and Interface_Problem have been eliminated because high
input_frame_rate is very rare with these faults. In Figure 3.6.4-5 the new best
recommendation is to test node IpInDiscards which gives evidence on the likelihood of
BufferSize_Too_Small fault. In Figure 3.6.4-6 we notice that the new evidence with high
IP packet discarding level supports the fault hypothesis BufferSize_Too_Small whose
probability has risen 50-fold (0.01 -> 0.50). According to Figure 3.6.4-7 the next
observable node would be node Delivers_datagram_rate as it gives further knowledge on
the previous fault hypothesis. This node is found to be in the Low state which makes the
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fault hypothesis BufferSize_Too_Small almost certain as indicated in Figure 3.6.4-8. This
was accomplished with only three observations from eight possible ones.

Figure 3.6.4-2. Marginal probabilities before any evidence has been inserted.

Figure 3.6.4-3. Recommendations for the best observations to make in order to make
diagnosis more accurate.
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Figure 3.6.4-4. Marginal probabilities given the new evidence (Input_frame_rate =
High).

Figure 3.6.4-5. Recommendations for the best observations to make in order to make
diagnosis more accurate.
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Figure 3.6.4-6. Marginal probabilities given the new evidence (IpInDiscards = High).

Figure 3.6.4-7. Recommendations for the next observation given the new evidence
(IpInDiscards = High).
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Figure 3.6.4-8. Marginal probabilities given the new evidence (Delivers_datagram_rate
= Low).

3.6.5 Diagnosing microwave link problems in a GSM access network

In this example we briefly study an alarm correlation example concerning a GSM access
network which has been described in [Wiet97]. Here the Base Station Controller (BSC)
takes care of interfacing a set of Base Stations (BS) to the traditional switched network.
The BSs are responsible for the mobile phone traffic at their cell area. These stations are
typically connected to the BSC via cable links or microwave links (MWL). The network
topology is logically a star and physically a tree where the traffic to several base stations
is distributed over a chain of microwave links and leased lines (see Figure 3.6.5-1).

BSC

BS2

BS3 BS4 BS5

BS1

MWL1

MWL2

MWL3 MWL4 MWL5

Figure 3.6.5-1 Topology of the studied GSM access network

When a link fails a number of alarms is generated and passed to the OMC (Operations
and Maintenance Center). One has to reason based on the network topology to correlate
the alarms and detect the root cause of the failure. As the topology is subject to frequent
changes the models should be easy to adapt to the changed configuration.
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In the given example the network elements send various types of alarms upon detecting
abnormal behaviour. When a microwave link fails the BSC can send alarms like
incoming_signal_missing, D_channel_failure, BER_over_limit etc and the BS may send
PCM_failure, LAPD_failure, BCCH_missing when the connection to the BSC is broken.
Some of the alarms may be missing or additional alarms may be included constituting
noise.

Next we shall show how to model the situation with a Bayesian network. In this case we
only model the effect of the microwave links on the BS and BSC alarms (only one type of
alarm is modeled for both network elements: whether the connection to the nearest BS is
broken for BSC and whether the upstream BS or BSC connection is broken for the BS)
(see Figure 3.6.5-2). The textual description of the used Bayesian network has been
included as Appendix E. According to the model the failure of an upstream microwave
link causes all downstream base stations to alarm. The BSC alarms are explained by the
connection to all the base stations getting disconnected – only microwave link 1 can
explain that.

Figure 3.6.5-2 A Bayesian network for detecting the failed microwave link based on the
BS and BSC alarms received

We test the model by inserting some alarms into the system. At first (see Figure 3.6.5-3)
we observe that BS4 is alarming which raises suspicion of a fault in microwave links 4, 3
and 1 as each of them may explain this alarm. Also the expectation of an alarm in BS  1, 3
and 5 has risen because of the suspected faults.
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Figure 3.6.5-3  Marginal probabilities of the nodes given that BS4 is alarming.

Next we insert new evidence (BS1 is alarming) which makes the failure of microwave
link 1 almost certain given the evidence as it is the only fault hypothesis that can explain
both of the alarms. See Figure 3.6.5-4.

Adding more alarm types to the base stations could be easily modeled by making the
BSn_alarm node a parent node with its children being the associated alarm types. The
conditional probabilities would be defined so that observing more alarm types makes one
more certain on the alarming status of the base station. This would also allow some noise
in the observations.

All the base stations may be reasonably modeled with similar conditional probability
tables using the conditional independence assumption which makes it possible to
dynamically adjust the diagnostic model based on the changed topology.
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Figure 3.6.5-4 Marginal probabilities of the nodes given that both BS1 and BS4 are
alarming

3.6.6 A diagnostic model for a Linear Lightwave Network (LLN) case

The following example exemplifies how network topology information (routing
information in this case) may be used to dynamically update a diagnostic Bayesian
network when changes are made. This is possible as the model is composed of many
similar submodels that have similar probability tables which allows automated network
construction.

Our example is based on the LLN (Linear Lightwave Network) problem described in
[Deng93]. In this case controllable transparent optical paths are established among
network users by routing them through linear divider/combiner units (LDC). Many such
key elements are combined together to implement the desired routing function. The
diagnostic task is to detect the most likely failed LDCs when abnormality is detected in
the output signal levels of the network. While monitoring the network only incoming and
outgoing signals are measured. If failures are detected the inputs and outputs of each LDC



 INMAN  Intelligent Modeling Techniques in
Telecommunications Network Management

 2.0

VTT Information Technology  Modified on  17.01.0233

can also be measured but this is a costly operation. The aim is to detect the failures while
minimizing the number of required additional tests.

Input1

LDC2 LDC3

LDC4 LDC5

LDC1

Input2

i11

i21 i31

i52i51

i41 i42

o11

o21 o22 o31 o32

o52
o41 o42

Op1 Op2 Op3

Ap

Bp Bp' Cp Cp'

Figure 3.6.6-1 The example LLN network

Our example network is simple (see Figure 3.6.6-1). The LDC units are described with
the rectangles. Different routes through them are marked with dashed lines. The route
information has been stored in the LLN routing tables. The output of the LDC is
considered erroneous when either the input is abnormal or the LDC unit has failed. The
inputs and the outputs are measured during the normal operation of the network. There
states are categorized to normal or abnormal. If problems are detected new measurements
may be performed by exploring the intermediary power levels (Ap, Bp, Cp). The task is
to detect the failing LDC units with as few additional tests as possible.

A Bayesian network model has been created for the problem (see Figure 3.6.6-2). The
textual description of the used Bayesian network has been included as Appendix F. The
prior probabilities of failure for all the inputs have been estimated to be 0.0001 and for the
LDC failures 0.001. In [Deng93] deterministic conditional probabilities were used but we
have added some uncertainty to them in order to allow unmodeled failure sources. The
conditional probabilities for the outputs of the LDCs have been defined as conditionally
independent from the parents with a chance of failure 0.999 in case the input or the LDC
has failed. The leak probability for failure is 0.001 (having an abnormal output although
all the inputs and the LDC are normal). This allows one to dynamically build the LLN
diagnostic models based on the routing table information.
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Figure 3.6.6-2 A Bayesian network model for the LLN example.

As an example we consider the case where all the inputs have been found to be normal
and the outputs O1 and O3 have been measured to be faulty and the output O2 normal. In
Figure 3.6.6-3 we have plotted the marginal probabilities given this initial evidence. We
can see that LDC4 and signal level C are believed to be normal as they are direct parents
of the normal output O2 which almost certainly requires them to be normal. On the other
hand signal level B is almost certainly believed to be abnormal as it would explain both
abnormal outputs. Both LDC1 and LDC2 are good candidates for the failures. Knowing
the signal level A (which is now completely undecided) would tell us whether LDC1 is
faulty. In Figure 3.6.6-4 we see that the Value-of-Information based recommendation is to
observe node A.

In Figure 3.6.6-5 we see that the new observation (A=OK) makes us certain on LDC1's
normal operation and doubles our concern on LDC2 being faulty. (The relatively large
remaining uncertainty on LDC2 is due to the small prior probability of LDC2 being failed
(0.001) and on the possibility of an output power level being abnormal even when the
LDC and the inputs are normal (leak probability = 0.001) which cancel each others effect
in this case.)



 INMAN  Intelligent Modeling Techniques in
Telecommunications Network Management

 2.0

VTT Information Technology  Modified on  17.01.0235

Figure 3.6.6-3 Marginal probabilities after entering the input and output node states.
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Figure 3.6.6-4 Value-of-Information based recommendations given the initial evidence.
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Figure 3.6.6-5  Marginal probabilities after entering the observation that A is normal.
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3.7 How to use decision-theoretic troubleshooting to guide the
repair activities to correct trouble-ticketed problems

In Figure 3.7-1, we have sketched one way of using decision-theoretic troubleshooting in
fault management. In this scenario the traditional network monitoring system works as
usual interpreting the gathered alarms and ordinary trouble tickets are generated. The
maintenance personel is provided a maintenance support terminal (could be a handheld or
mobile terminal) which provides customized help for at least some of the hardest problem
types. Our scenario is that the maintainer is assigned the next problem from the trouble
ticket database and asks for help from the troubleshooter that loads the appropriate
decision-theoretic model from a model library and retrieves the relevant alarm evidence
from the alarm database and based on this information computes the component fault
probabilities and provides a prioritized list of action recommendations (repairs or
observations). The user makes the desired observations and may attempt repairs or
configuration changes and then enters the new observations to the terminal and gets an
updated list of recommendations and component fault probabilities. The user could also
have access to a digital service manual describing the recommended repair operations in
detail. All the recommendations and selections could be stored into a troubleshooting
session log. Also the success of the repair activities should be recorded into a
maintenance log. This makes it possible to measure the success of the recommendations
and identify problems in the knowledge base.

DTT
model1

network
monitoring

troubleticket

maintenance
support
terminal (UI)

trouble-
ticket
DB

trouble-
shooting
session
log

maintenance
log

alarm
DB

problem specific DTT model libraries

DTT
model2

DTT
model3

DTT
model4

DTT
modeln

DTT troubleshooter

load model

start session <n>

-update recommendations list
-update probabilities
-update session costs

-selections
-new observations

get problem

get evidence

digital service
manual

get documentation
on fault repair
operations

Figure 3.7-1 How to use DTT to guide maintenance persons in repair activity
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3.8 Results and discussion

The troubleshooting algorithm only uses the given cost information and the marginal fault
probabilities to make recommendations. It is the task of the modeler to identify all the
relevant repairable components and repair operations for them. If a digital service manual
exists at least the core information should be readily available. Once the repair operations
are known one has to estimate a number for repair costs quantifying the different related
costs (time, money, delays etc.). Component fault probabilities, repair costs and
observation costs need to be known to carry out the troubleshooting activity.

Bayesian networks provide an efficient model for representing probabilistic dependencies
between selected random variables. Fast algorithms exist for calculating marginal
probabilities of the variables conditioned on the available evidence. This has made
decision-theoretic troubleshooting feasible even for large problems.

Although the decision-theoretic troubleshooting engine only deals with the abstracted cost
and probability numbers, a troubleshooting guidance application may be built which
makes recommendations and has also connections to a digital service manual describing
the appropriate recovery operations to perform to fix a suspected fault.

Bayesian network modeling is well suited to model dependencies between related
variables when the relations are at least partly probabilistic (have some uncertainty
attached). One clear advantage of Bayesian network modeling is that the modeler is able
to outline these probabilistic dependencies in a qualitative level using the directed acyclic
dependency graph which allows him to identify direct causal independencies which make
belief propagation feasible. Uncertainty can then be modeled by specifying the
conditional probability matrices.

In well defined application areas the topology of the underlying communications network
can be used to automatically adjust the Bayesian network model [Deng93]. In special
problems Bayesian network modeling may be used as a local diagnostic model allowing
an intelligent agent to perform selected recovery actions automatically without human
guidance [Haj00b]. As indicated in our first example one possible application is to model
the local dependences of various, partly redundant MIB measurements.

With the previous examples we have tried to show how decision-theoretic troubleshooting
can be used to guide repair operations also in the fault management area. However, it is
open how well the Bayesian network modeling could be applied to model huge
communication networks. Real world modeling in a promising subproblem would be
needed to determine this. In a metropolitan network there can be at least 100000 alarms
per day and many network elements are involved. Some of the elements contain hundreds
or even thousands of types of alarm messages. Also the provided information tends to be
unstructured and heterogenous between systems. Clearly building any single model to
diagnose such a situation would be a large effort. The best approach is to identify the
most useful subproblems and to build real-world troubleshooting methods for them. A
monitoring system could then take care of activating the required diagnostic models for
the different cases. The previous chapter identified one scenario.
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4 Summary

In this report we have reviewed the main published application areas of intelligent
methods in the domain of communications network management. We have found that
various intelligent methods have been applied to solve the alarm correlation task where
the main target is to filter redundant data from the overwhelming alarm data stream in
order to make the information understandable. Some work has also addressed repair
management of faults combining fault diagnosis and repair scheduling. Other application
areas cover proactive fault detection and the use of intelligent network management
agents.

As better integration of alarm correlation, fault diagnosis and repair activity management
still seems to be a problem, the applicability of decision-theoretic troubleshooting and
Bayesian probabilistic reasoning has been studied more closely in this report. At first we
have described the repair management needs. Then decision-theoretic troubleshooting
theory has been reviewed. Previous work using these methods in alarm management has
also been reviewed. We have modeled three small problems using Bayesian networks and
described example troubleshooting sessions with these models to demonstrate the
applicability of the models. A maintenance support terminal was sketched to help the
maintenance personel with decision-theoretic recommendations.

When applying decision-theoretic troubleshooting we need both failure probabilities of
the repairable components conditioned on the gathered evidence and numeric cost
information for making observations and for carrying out repair operations. Bayesian
networks provide an efficient formalism to represent probabilistic dependencies between
fault hypothesis nodes and informational evidence nodes. They also provide fast
algorithms to compute the marginal probabilities of nodes conditioned on instanced
evidence nodes. Therefore Bayesian networks are often used for knowledge
representation in decision-theoretic troubleshooting models and typically much of the
effort needs to be spent on modeling the domain to create the Bayesian network model.

When using decision-theoretic troubleshooting one needs to estimate observation and
repair costs for the repairable components and observation costs for informational nodes.
Also a repair cost needs to be estimated for replacing the whole system (a service call
cost). The troubleshooting engine does not understand the actual repair procedures – it
makes recommendations based only on the given cost estimates. All costs have to be
summarized in a single number per component.

While constructing Bayesian network models the terminology needs to be defined
carefully as random variables and meaningful discrete states need to be defined for these
variables. Dependencies are first defined qualitatively by drawing a directed acyclic graph
with the random variables as nodes. The dependencies are then quantified by editing the
prior and conditional probability matrices of the nodes. The models may be manually
defined or they may be learned at least partially from available measurement data.

In monitoring Bayesian networks are easiest to use for local data quantifying the
uncertain dependencies between the fault hypothesis and the evidence. In some special
tasks the network topology may be utilised to dynamically adjust the Bayesian network
model. Bayesian networks have also been used as the modelling language of the
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knowledge base of intelligent network management agents. This allows the possibility to
distribute reasoning among multiple co-operating intelligent agents.

We did not have the chance to test the suitability of decision-theoretic troubleshooting
and Bayesian network modeling to large network management problems as it would have
required a real industrial test case with domain expertise. In medical domains Bayesian
network models have been built with large diagnostic networks containing hundreds of
nodes. Also considering the extension of our first example network of chapter 3.6.3 to
cover the whole LAN troubleshooting would create a fairly challenging problem
[Haj00a]. In order to determine the suitability of these methods in large network
management problems the methods should be evaluated with a test case having good
payback for better solutions and which is understood well enough.
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Appendix A: MSBNx tool features

In our demonstrations we have used MSBNx, a research tool made available by Microsoft
Research (see http://research.microsoft.com/adapt/msbnx/). It provides a user interface
and a programming library for Bayesian network reasoning with discrete random
variables and also supports Value-of-Information computations and cost-based decision-
theoretic troubleshooting.

Mutual information based recommendations tell what new evidence would most
effectively lead to a clear diagnosis in the current evidence setting. The model needs some
additional definitions to be compatible with this tool:

� At least one node needs to be assigned the role of a hypothesis. This is a primary
fault node and the target is to find out its belief (a probability distribution).

� At least two nodes need to be made informational. They are candidates for the
recommendation list.

Mutual information score determines the amount of weight or "lift" that evidence about
the state of each information node would bring to each hypothesis variable.

Decision-theoretic troubleshooting is supported for specially crafted Bayesian network
models. The idea is to choose a problem type and then iterate between requesting
recommendations for next actions and making observations or repairs. While making
recommendations the algorithm considers alternative actions and arranges the actions
according to their efficiency (likelihood to succeed divided by its cost).

Single-fault hypothesis is assumed - only one fixable component is supposed to be broken
during one session.

The network nodes need to be assigned certain roles and costs (fix/observation):
� At least one problem-defining node needs to be defined. It is the primary

symptom of a failure and the target of the diagnosis. The first state has to define
the normal operation.

� Evidence is defined as informational.
� Primary faults are defined as fixable. They have to be root nodes.
� All fixable nodes have to be root nodes in order for the troubleshooting to work.
� A problem–defining node cannot be a root node. It has to be a child of some

fixable nodes in order to run the troubleshooting session.

One initiates the session by setting the desired problem-defining node to an abnormal
state and then gets a list of recommendation of actions to follow (both observations and
fix attempts). Only one problem-defining node is considered during a certain
troubleshooting session.

The usability of the prototyping tool, MSBNx, was found fairly good. However, it would
have been useful if the tool had provided support for logging the selected actions and had
calculated the total repair cost for the whole session. It would also have been useful to
have a facility to emphasize the largest differences in the beliefs from their previous state.
These changes can be made in a customized user interface using the programming API.
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Appendix B: Descriptions for the MIB
variables used in the examples

MIB stands for Management Information Base and it is a local storage place for managed
element specific data values. By monitoring these values, it is possible to maintain an up-
to-date status of the (ethernet-like) interfaces of the monitored host.

ifSpeed
The current operational speed of the interface in bits per second.

ifInOctets
The number of octets in valid MAC frames received on this interface.

ifOutOctets
The number of octets in valid MAC frames transmitted from this
interface.

ifInErrors
The sum of errors for this interface related to incoming traffic

ifOutErrors
The sum of errors for this interface related to outgoing traffic

ifInNUcastPkts
The number of non-unicast (i.e., subnetwork- broadcast or
subnetwork-multicast) packets delivered to a higher-layer protocol.

ifOutQLen
The length of the output packet queue (in packets).

ifOutDiscards
The number of outbound packets which were chosen to be discarded
even though no errors had been detected to prevent their being
transmitted. One possible reason for discarding such a packet could be
to free up buffer space.

dot3StatsFrameTooLong
Number of received frames that were bigger than the maximum size
permitted.

ipInDiscards
The number of input IP datagrams for which no problems were
encountered to prevent their continued processing, but which were
discarded (e.g., for lack of buffer space).  Note that this counter does
not include any datagrams discarded while waiting re-assembly.

tcpCurrEstab
The number of TCP connections for which the current state is either
ESTABLISHED or CLOSE-WAIT.

tcpInDupSegs
The number of TCP input partial duplicate segments.

tcpOutRsts
The number of TCP segments sent containing the RST flag.
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Appendix C: The Bayesian network
description for the TCP problem: the

troubleshooting case
network "bndefault"
{

version is 1;
creator is "";
format is "DSC";

}

properties
{

type DTASDG_Notes = array of string,
"Notes on the diagram";

type DTAS_ColorType = string;
type MS_Addins = array of string;
type MS_Asym = string,

"Asymmetric assessment information stored as a string";
type MS_cost_fix = real,

"Cost To Fix";
type MS_cost_observe = real,

"Cost To observe";
type MS_label = choice of

[other,informational,problem,fixunobs,fixobs],
"Troubleshooting Network Node Types";

DTAS_ColorType = "MS_label";
MS_cost_fix = 1000;

}

node BufferSize_Too_Small
{

name = "BufferSize_Too_Small";
type = discrete[2]
{

"No",
"Yes"

};

position = (7330, 3810);
MS_cost_fix = 70;
MS_label = fixunobs;

}

node CPU_overloaded
{

name = "Is the CPU overloaded?";
type = discrete[2]
{

"No",
"Yes"

};

position = (847, 9498);
MS_cost_fix = 100;
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MS_label = fixunobs;
}

node Delivers_datagram_rate
{

name = "delivers_datagram_rate";
type = discrete[3]
{

"Low",
"Normal",
"High"

};

position = (12754, 7938);
MS_cost_observe = 7;
MS_label = informational;

}

node HostConnectionError
{

name = "HostConnectionError";
type = discrete[2]
{

"No",
"Yes"

};

position = (7197, -2990);
MS_label = problem;

}

node IfInOctets
{

name = "ifInOctets: The number of octets in valid MAC frames
received on this interface";

type = discrete[3]
{

"low",
"normal",
"high"

};

position = (20055, 7091);
MS_cost_observe = 5;
MS_label = informational;

}

node IfLoopBackTest
{

name = "Indicates whether the interface has problems using a
loopback test.";

type = discrete[2]
{

"No",
"Yes"

};

position = (20797, 3174);
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MS_cost_observe = 25;
MS_label = informational;

}

node Input_frame_rate
{

name = "input_frame_rate";
type = discrete[3]
{

"Low",
"Normal",
"High"

};

position = (14156, 4180);
MS_Asym = "(Line_UP (((\"No\") ())((\"Yes\")

(Interface_Problem (((\"No\") ())((\"Yes\") ()))))))";
MS_cost_observe = 7;
MS_label = informational;

}

node Interface_Problem
{

name = "Indicates whether Interface has hardware or software
problems.";

type = discrete[2]
{

"No",
"Yes"

};

position = (17569, 397);
MS_cost_fix = 200;
MS_label = fixunobs;

}

node IpInDiscards
{

name = "IpInDiscards: The number of input IP datagrams for
which no problems were encountere"

"d to prevent their continued processing but were
discarded";

type = discrete[2]
{

"Normal",
"High"

};

position = (6297, 7275);
MS_cost_observe = 5;
MS_label = informational;

}

node Line_UP
{

name = "Indicates whether the line is up.";
type = discrete[2]
{
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"Yes",
"No"

};

position = (10424, 609);
MS_cost_fix = 30;
MS_cost_observe = 15;
MS_label = fixobs;

}

node TcpCurrEstab
{

name = "tcpCurrEstab: The number of TCP connections for which
the current state is either ES"

"TABLISHED or CLOSE-WAIT.";
type = discrete[2]
{

"Normal",
"High"

};

position = (873, 14314);
MS_cost_observe = 5;
MS_label = informational;

}

node TcpInDupSegs
{

name = "TcpInDupSegs: The number of TCP input partial
duplicate segments";

type = discrete[2]
{

"Normal",
"High"

};

position = (17674, 12171);
MS_cost_observe = 5;
MS_label = informational;

}

node TcpOutResets
{

name = "tcpOutRsts: The number of TCP segments sent
containing the RST flag";

type = discrete[2]
{

"Normal",
"High"

};

position = (11536, 14790);
MS_cost_observe = 5;
MS_label = informational;

}

probability(BufferSize_Too_Small)
{
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0.99, 0.01;
}

probability(CPU_overloaded)
{

0.996, 0.004;
}

probability(Delivers_datagram_rate|BufferSize_Too_Small,Input_fram
e_rate)
{

default = 0.333333, 0.333333, 0.333333;
(0, 0) = 0.8, 0.17, 0.03;
(0, 1) = 0.1, 0.8, 0.1;
(0, 2) = 0.01, 0.09, 0.9;
(1, 0) = 0.999, 0.0001, 0;
(1, 1) = 0.99, 0.009, 0.001;
(1, 2) = 0.9, 0.09, 0.01;

}

probability(HostConnectionError|Line_UP,Interface_Problem,BufferSi
ze_Too_Small,CPU_overloaded)
{

function = max;
(0, 0, 0, 0) = 0.999, 0.001;
(1, 0, 0, 0) = 1, 0;
(0, 1, 0, 0) = 1, 0;
(0, 0, 1, 0) = 1, 0;
(0, 0, 0, 1) = 1, 0;

}

probability(IfInOctets|Input_frame_rate)
{

default = 0.333333, 0.333333, 0.333333;
(0) = 0.95, 0.045, 0.005;
(1) = 0.025, 0.95, 0.025;
(2) = 0.0001, 0.0049, 0.95;

}

probability(IfLoopBackTest|Interface_Problem)
{

(0) = 0.99, 0.01;
(1) = 0.001, 0.999;

}

probability(Input_frame_rate|Line_UP,Interface_Problem)
{

default = 0.333333, 0.333333, 0.333333;
(0, 0) = 0.001, 0.90901, 0.08999;
(0, 1) = 0.969903, 0.029997, 9.999e-005;
(1, 0) = 0.990001, 0.00989901, 0.0001;
(1, 1) = 0.990001, 0.00989901, 0.0001;

}

probability(Interface_Problem)
{

0.999, 0.001;
}
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probability(IpInDiscards|BufferSize_Too_Small)
{

(0) = 0.99, 0.01;
(1) = 0.001, 0.999;

}

probability(Line_UP)
{

0.98, 0.02;
}

probability(TcpCurrEstab|CPU_overloaded)
{

(0) = 0.98, 0.02;
(1) = 0.1, 0.9;

}

probability(TcpInDupSegs|Delivers_datagram_rate)
{

(0) = 0.9, 0.1;
(1) = 0.6, 0.4;
(2) = 0.15, 0.85;

}

probability(TcpOutResets|Delivers_datagram_rate,CPU_overloaded)
{

(0, 0) = 0.95, 0.05;
(0, 1) = 0.3, 0.7;
(1, 0) = 0.9, 0.1;
(1, 1) = 0.1, 0.9;
(2, 0) = 0.7, 0.3;
(2, 1) = 0.05, 0.95;

}
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Appendix D: The Bayesian network
description for the TCP problem: the

diagnostic case

network "bndefault"
{

version is 1;
creator is "";
format is "DSC";

}

properties
{

type DTASDG_Notes = array of string,
"Notes on the diagram";

type DTAS_ColorType = string;
type MS_Addins = array of string;
type MS_Asym = string,

"Asymmetric assessment information stored as a string";
type MS_label = choice of

[other,hypothesis,informational,problem,fixobs,fixunobs,unfix
able,configuration],

"Diagnostic Network Node Types";
DTAS_ColorType = "MS_label";

}

node BufferSize_Too_Small
{

name = "BufferSize_Too_Small";
type = discrete[2]
{

"No",
"Yes"

};

position = (7330, 3810);
MS_label = hypothesis;

}

node CPU_overloaded
{

name = "Is the CPU overloaded?";
type = discrete[2]
{

"No",
"Yes"

};

position = (847, 9498);
MS_label = hypothesis;

}

node Delivers_datagram_rate
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{
name = "delivers_datagram_rate";
type = discrete[3]
{

"Low",
"Normal",
"High"

};

position = (12754, 7938);
MS_label = informational;

}

node IfInOctets
{

name = "ifInOctets: The number of octets in valid MAC frames
received on this interface";

type = discrete[3]
{

"low",
"normal",
"high"

};

position = (20055, 7091);
MS_label = informational;

}

node IfLoopBackTest
{

name = "Indicates whether the interface has problems using a
loopback test.";

type = discrete[2]
{

"No",
"Yes"

};

position = (20797, 3174);
MS_label = informational;

}

node Input_frame_rate
{

name = "input_frame_rate";
type = discrete[3]
{

"Low",
"Normal",
"High"

};

position = (14156, 4180);
MS_Asym = "(Line_UP (((\"No\") ())((\"Yes\")

(Interface_Problem (((\"No\") ())((\"Yes\") ()))))))";
MS_label = informational;

}
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node Interface_Problem
{

name = "Indicates whether Interface has hardware or software
problems.";

type = discrete[2]
{

"No",
"Yes"

};

position = (17569, 397);
MS_label = hypothesis;

}

node IpInDiscards
{

name = "IpInDiscards: The number of input IP datagrams for
which no problems were encountere"

"d to prevent their continued processing but were
discarded";

type = discrete[2]
{

"Normal",
"High"

};

position = (6297, 7275);
MS_label = informational;

}

node Line_UP
{

name = "Indicates whether the line is up.";
type = discrete[2]
{

"Yes",
"No"

};

position = (10424, 609);
MS_label = hypothesis;

}

node TcpCurrEstab
{

name = "tcpCurrEstab: The number of TCP connections for which
the current state is either ES"

"TABLISHED or CLOSE-WAIT.";
type = discrete[2]
{

"Normal",
"High"

};

position = (873, 14314);
MS_label = informational;

}
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node TcpInDupSegs
{

name = "TcpInDupSegs: The number of TCP input partial
duplicate segments";

type = discrete[2]
{

"Normal",
"High"

};

position = (17674, 12171);
MS_label = informational;

}

node TcpOutResets
{

name = "tcpOutRsts: The number of TCP segments sent
containing the RST flag";

type = discrete[2]
{

"Normal",
"High"

};

position = (11536, 14790);
MS_label = informational;

}

probability(BufferSize_Too_Small)
{

0.99, 0.01;
}

probability(CPU_overloaded)
{

0.996, 0.004;
}

probability(Delivers_datagram_rate|BufferSize_Too_Small,Input_fram
e_rate)
{

default = 0.333333, 0.333333, 0.333333;
(0, 0) = 0.8, 0.17, 0.03;
(0, 1) = 0.1, 0.8, 0.1;
(0, 2) = 0.01, 0.09, 0.9;
(1, 0) = 0.999, 0.0001, 0;
(1, 1) = 0.99, 0.009, 0.001;
(1, 2) = 0.9, 0.09, 0.01;

}

probability(IfInOctets|Input_frame_rate)
{

default = 0.333333, 0.333333, 0.333333;
(0) = 0.95, 0.045, 0.005;
(1) = 0.025, 0.95, 0.025;
(2) = 0.0001, 0.0049, 0.95;

}
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probability(IfLoopBackTest|Interface_Problem)
{

(0) = 0.99, 0.01;
(1) = 0.001, 0.999;

}

probability(Input_frame_rate|Line_UP,Interface_Problem)
{

default = 0.333333, 0.333333, 0.333333;
(0, 0) = 0.001, 0.90901, 0.08999;
(0, 1) = 0.969903, 0.029997, 9.999e-005;
(1, 0) = 0.990001, 0.00989901, 0.0001;
(1, 1) = 0.990001, 0.00989901, 0.0001;

}

probability(Interface_Problem)
{

0.999, 0.001;
}

probability(IpInDiscards|BufferSize_Too_Small)
{

(0) = 0.99, 0.01;
(1) = 0.001, 0.999;

}

probability(Line_UP)
{

0.98, 0.02;
}

probability(TcpCurrEstab|CPU_overloaded)
{

(0) = 0.98, 0.02;
(1) = 0.1, 0.9;

}

probability(TcpInDupSegs|Delivers_datagram_rate)
{

(0) = 0.9, 0.1;
(1) = 0.6, 0.4;
(2) = 0.15, 0.85;

}

probability(TcpOutResets|Delivers_datagram_rate,CPU_overloaded)
{

(0, 0) = 0.95, 0.05;
(0, 1) = 0.3, 0.7;
(1, 0) = 0.9, 0.1;
(1, 1) = 0.1, 0.9;
(2, 0) = 0.7, 0.3;
(2, 1) = 0.05, 0.95;

}
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Appendix E: The Bayesian network
description for the microwave link problem in

a GSM access network
network
{
}

properties
{

type DTASDG_Notes = array of string,
"Notes on the diagram";

type MS_Addins = array of string;
type MS_label = choice of

[other,hypothesis,informational,problem,fixobs,fixunobs,unfix
able,configuration],

"Diagnostic Network Node Types";
}

node BS1_alarm
{

name = "BS1_alarm";
type = discrete[2]
{

"Yes",
"No"

};

position = (19236, 2955);
MS_label = informational;

}

node BS2_alarm
{

name = "BS2_alarm";
type = discrete[2]
{

"Yes",
"No"

};

position = (19271, 5345);
MS_label = informational;

}

node BS3_alarm
{

name = "BS3_alarm";
type = discrete[2]
{

"Yes",
"No"

};
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position = (19386, 7735);
MS_label = informational;

}

node BS4_alarm
{

name = "BS4_alarm";
type = discrete[2]
{

"Yes",
"No"

};

position = (19393, 10019);
MS_label = informational;

}

node BS5_alarm
{

name = "BS5_alarm";
type = discrete[2]
{

"Yes",
"No"

};

position = (19507, 12119);
MS_label = informational;

}

node BSC_conn_alarm
{

name = "BSC_conn_alarm";
type = discrete[2]
{

"Yes",
"No"

};

position = (19236, 476);
MS_label = informational;

}

node MWLink1_OK
{

name = "MWLink1_OK";
type = discrete[2]
{

"Yes",
"No"

};

position = (633, 925);
MS_label = hypothesis;

}

node MWLink2_OK
{
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name = "MWLink2_OK";
type = discrete[2]
{

"Yes",
"No"

};

position = (694, 3978);
MS_label = hypothesis;

}

node MWLink3_OK
{

name = "MWLink3_OK";
type = discrete[2]
{

"Yes",
"No"

};

position = (615, 6200);
MS_label = hypothesis;

}

node MWLink4_OK
{

name = "MWLink4_OK";
type = discrete[2]
{

"Yes",
"No"

};

position = (598, 8749);
MS_label = hypothesis;

}

node MWLink5_OK
{

name = "MWLink5_OK";
type = discrete[2]
{

"Yes",
"No"

};

position = (554, 11219);
MS_label = hypothesis;

}

probability(BS1_alarm|MWLink1_OK)
{

(0) = 0.0001, 0.9999;
(1) = 0.999, 0.001;

}

probability(BS2_alarm|MWLink1_OK,MWLink2_OK)
{
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default = 0.999, 0.001;
(0, 0) = 0.001, 0.999;

}

probability(BS3_alarm|MWLink1_OK,MWLink3_OK)
{

default = 0.999, 0.001;
(0, 0) = 0.0001, 0.9999;

}

probability(BS4_alarm|MWLink1_OK,MWLink4_OK,MWLink3_OK)
{

default = 0.999, 0.001;
(0, 0, 0) = 0.0001, 0.9999;

}

probability(BS5_alarm|MWLink1_OK,MWLink5_OK,MWLink4_OK,MWLink3_OK)
{

default = 0.999, 0.001;
(0, 0, 0, 0) = 0.0001, 0.9999;

}

probability(BSC_conn_alarm|MWLink1_OK)
{

(0) = 0.0002, 0.9998;
(1) = 0.999, 0.001;

}

probability(MWLink1_OK)
{

0.99, 0.01;
}

probability(MWLink2_OK)
{

0.99, 0.01;
}

probability(MWLink3_OK)
{

0.99, 0.01;
}

probability(MWLink4_OK)
{

0.99, 0.01;
}

probability(MWLink5_OK)
{

0.99, 0.01;
}
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Appendix F: The Bayesian network
description for the Linear Lightwave Network

(LLN) case

network
{
}

properties
{

type DTASDG_Notes = array of string,
"Notes on the diagram";

type MS_Addins = array of string;
type MS_label = choice of

[other,hypothesis,informational,problem,fixobs,fixunobs,unfix
able,configuration],

"Diagnostic Network Node Types";
}

node A
{

name = "A";
type = discrete[2]
{

"OK",
"No"

};

position = (7117, 5398);
MS_label = informational;

}

node B
{

name = "B";
type = discrete[2]
{

"OK",
"No"

};

position = (7039, 9656);
MS_label = informational;

}

node C
{

name = "C";
type = discrete[2]
{

"OK",
"No"

};
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position = (16035, 8017);
MS_label = informational;

}

node Input1
{

name = "Input1";
type = discrete[2]
{

"OK",
"No"

};

position = (6721, 1481);
MS_label = informational;

}

node Input2
{

name = "Input2";
type = discrete[2]
{

"OK",
"No"

};

position = (16404, 1747);
MS_label = informational;

}

node LDC1
{

name = "LDC1";
type = discrete[2]
{

"OK",
"No"

};

position = (1112, 2938);
MS_label = hypothesis;

}

node LDC2
{

name = "LDC2";
type = discrete[2]
{

"OK",
"No"

};

position = (1165, 6958);
MS_label = hypothesis;

}

node LDC3
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{
name = "LDC3";
type = discrete[2]
{

"OK",
"No"

};

position = (22489, 3413);
MS_label = hypothesis;

}

node LDC4
{

name = "LDC4";
type = discrete[2]
{

"OK",
"No"

};

position = (1447, 11642);
MS_label = hypothesis;

}

node LDC5
{

name = "LDC5";
type = discrete[2]
{

"OK",
"No"

};

position = (22861, 9578);
MS_label = hypothesis;

}

node O1
{

name = "O1";
type = discrete[2]
{

"OK",
"No"

};

position = (4103, 15345);
MS_label = informational;

}

node O2
{

name = "O2";
type = discrete[2]
{

"OK",
"No"
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};

position = (12463, 15345);
MS_label = informational;

}

node O3
{

name = "O3";
type = discrete[2]
{

"OK",
"No"

};

position = (20745, 15319);
MS_label = informational;

}

probability(A|Input1,LDC1)
{

function = max;
(0, 0) = 0.999, 0.001;
(1, 0) = 0.001, 0.999;
(0, 1) = 0.001, 0.999;

}

probability(B|A,LDC2)
{

function = max;
(0, 0) = 0.999, 0.001;
(1, 0) = 0.001, 0.999;
(0, 1) = 0.001, 0.999;

}

probability(C|Input2,LDC3)
{

function = max;
(0, 0) = 0.999, 0.001;
(1, 0) = 0.001, 0.999;
(0, 1) = 0.001, 0.999;

}

probability(Input1)
{

0.9999, 0.0001;
}

probability(Input2)
{

0.9999, 0.0001;
}

probability(LDC1)
{

0.999, 0.001;
}
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probability(LDC2)
{

0.999, 0.001;
}

probability(LDC3)
{

0.999, 0.001;
}

probability(LDC4)
{

0.999, 0.001;
}

probability(LDC5)
{

0.999, 0.001;
}

probability(O1|LDC4,B)
{

function = max;
(0, 0) = 0.999, 0.001;
(1, 0) = 0.001, 0.999;
(0, 1) = 0.001, 0.999;

}

probability(O2|C,LDC4)
{

function = max;
(0, 0) = 0.999, 0.001;
(1, 0) = 0.001, 0.999;
(0, 1) = 0.001, 0.999;

}

probability(O3|C,LDC5,B)
{

function = max;
(0, 0, 0) = 0.999, 0.001;
(1, 0, 0) = 0.001, 0.999;
(0, 1, 0) = 0.001, 0.999;
(0, 0, 1) = 0.001, 0.999;

}


