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Abstract
We describe work aimed at applying neural network methods to detect abnormal
conditions in quality measurements of an industrial chemical process. The methods
predict the future values of the target variables based on multivariable histories of past
sensor readings. A waste water cleaning plant using an activated sludge cleaning method
served as our test environment for the methods.

Our aim has been to develop methods that may be implemented as online analysis tools at
the process control environments and are capable of being interfaced with existing data
sources. Previously we have tested Multi-Layered Perceptron networks on this problem
and have described a demonstration system indicating how the measurements can be
stored in a RapidBase main memory active database and how the neural network models
may be used online for creating predictions for future values [Hii00a]. In this report we
continue the previously reported analysis work with extended measurement data series
and investigate especially the suitability of the Self-Organizing Map (SOM) architecture.

We have used a time-lagged delay line for embedding the temporal histories of the
measurement time series and correlation analysis and statistical independency testing for
detecting the most useful input variables for the analysis. Correlation analysis suggests
that typically only the most recent measurements correlate with the future values.

In order to detect abnormal behaviour we have tought a SOM with data describing
normally operating process.  The learned map has been used to detect abnormalities in
new data by monitoring the shortest distance of these new samples from the learned SOM
codebook. Calibration data is used to select an optimal classification threshold.
Experimental tests suggest that typically only short term predictions are possible in the
case of the studied process. The best classification accuracies reach 80-90% levels.

Additionally we have used SOM to predict the future values by teaching it with a random
sample of all the measurements and then creating an index from the SOM neurons to the
list of teaching samples best matching that neuron. This index is used for nearest
neighbour prediction while monitoring new data samples. In experimental tests the
predictions were found to be promising for short intervals but lost accuracy when the
prediction interval was made larger. The classification accuracies achieved were a little
better than with the previously mentioned QE-monitoring results but the false positive
rates were condiderably more severe.
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Tiivistelmä
Käsittelemme laatukriteerien poikkeamien ennustamiseen tarkoitettujen
hermoverkkomallien kehittämistyötä. Käytetyt menetelmät ennustavat tavoitemuuttujien
tulevat arvot vanhojen mittausten monimuuttujaisiin aikasarjoihin pohjautuen.
Menetelmien testiympäristönä on ollut teollisuuden biologista aktiivilieteprosessia
käyttävä jätevesien puhdistuslaitos.

Tavoitteenamme on ollut kehittää menetelmiä, jotka voidaan toteuttaa tosiaikaisina
analyysityökaluina prosessin valvontaympäristössä ja jotka voidaan liittää olemassa
oleviin tietovarastoihin. Aiemmin olemme kokeilleet monikerros Perceptron
hermoverkkoarkkitehtuuria tähän ongelmaan ja kehittäneet mallisovelluksen, joka
osoittaa, miten luodut ennustemallit voidaan liittää RapidBase keskusmuistipohjaisen
aktiivisen tietokannan yhteyteen ja miten hermoverkkomalleja voidaan käyttää
tosiaikaisesti tulevien arvojen ennustamiseen [Hii00a]. Tässä raportissa jatkamme tätä
aiemmin raportoitua analyysityötä tutkimalla laajennettua mittausaikasarjaa ja keskittyen
Itseorganisoivan Kartan (SOM) soveltuvuuden selvittämiseen.

Olemme käyttäneet aikaviivästettyä viivelinjaa mittausaikasarjan ajallisten piirteiden
upottamiseen näytteisiin ja korrelaatioanalyysiä ja tilastollista riippumattomuustestausta
hyödyllisimpien syötemuuttujien tunnistamiseen. Korrelaatioanalyysin mukaan
tyypillisesti vain aivan viimeisimmät mittaukset korreloivat tulevien arvojen kanssa.

Epänormaalin käyttäytymisen tunnistamiseksi olemme opettaneet SOM-kartan normaalia
prosessitilaa kuvaavalla aineistolla. Opittua karttaa on käytetty epänormaalin
käyttäytymisen tunnistamiseen uusista testinäytteistä monitoroimalla näiden näytteiden
lyhintä etäisyyttä opituista SOM-kartan koodikirjavektoreista. Optimaalisin luokitusraja
on valittu kalibrointijoukkoa käyttämällä. Testitulokset osoittavat, että tyypillisesti vain
lyhyen aikavälin ennusteet ovat mahdollisia tutkitun prosessin tapauksessa. Parhaat
saavutetut luokitustarkkuudet ovat 80-90% luokkaa.

SOM-mallia käytetään myös ennustamiseen opettamalla se satunnaisnäytteellä koko
aineistosta ja indeksoimalla kuhunkin SOM neuroniin ne opetusnäytteet, jotka sopivat
parhaiten juuri tähän kartan neuroniin. Tätä indeksointia käytetään lähimmän naapurin
menetelmään perustuvaan ennustamiseen, kun monitoroidaan uusia näytteitä.
Testitulokset osoittavat, että lyhyillä ennusteaikaväleillä ennusteet ovat lupaavia, mutta
tarkkuus heikkenee nopeasti pidemmillä ennusteaikaväleillä. Saavutetut
luokitustarkkuudet olivat hieman parempia kuin edellisellä menetelmällä, mutta tällä
menetelmällä ei pystytty kontrolloimaan väärien hälytysten tiheyttä.
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1 Introduction

We consider the problem of predicting abnormal situations in advance so that corrective
actions can be taken in time. The prediction task is considered more thoroughly in the
case of an activated sludge waste water cleaning system. In the next chapter we describe
alternative approaches to detect abnormalities. Then we describe the industrial process
under study.

1.1  Problem formulation

The problem of detecting abnormal situations may be formulated in different manners
motivating alternative approaches to the problem:

•  Often in process environments normal behaviour clearly dominates the available
process data and information of abnormal states is not available. Here one may try to
model the normal behaviour of the system by clustering the measurement data
records into similar prototype vectors which then describe the typical states of the
system. Then one may monitor the distance of each new state from the closest
prototype and if the distance is above a given threshold value an abnormal state has
been identified and more detailed analysis methods may be started. [Iiva97]

•  Another possibility is to cluster the temporal states into typical prototypes using a
topology preserving clustering algorithm like SOM and then to label these prototypes
according to the portion of abnormal states in the system. Such a SOM map may be
used to visualize the trajectory of the system states while monitoring the system and
also an alarm may be issued when a critical state is reached. [Alho99]

•  Also clustering may be used to divide the system states into typical ones and then to
create a local prediction model for future situations based on the examples assigned
to the typical states. Based on the amount of examples available the models may
range from simple nearest neighbour averaging methods or linear regression models
to nonlinear  neural network models.

•  One approach is to build a classifier assigning each of the process conditions into
typical process states based on the historical measurement records available at the
time of the classification task. This way the system could warn the user about
potential problems before the quality indicators show problems. Examples of good
and bad behaviour are needed for building classifiers. The state labels could be
normal or abnormal states identified based on the value of the desired quality
indicators after the prediction time interval has passed (future values).

•  Another approach is to try to predict the continuous-valued outputs of the time series
variables a few time steps into the future using time series prediction methods. If the
predictions are reliable enough one may build decision support tools on top of such
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prediction capability for simulating the process and for making "What-If"-scenarios
of the process behaviour when some of the values have been changed.

1.2 Description of the activated sludge cleaning process

Our test case concerns two biological subprocesses of an activated sludge waste water
cleaning system being used at the Kirkniemi factory of M-Real company. Here we shall
briefly describe the relevant aspects of the process studied.

Activated sludge waste water cleaning is a complex process consisting of mechanical,
biological and chemical subprocesses. The waste water is continuously fed into the
process and then flows through the process for several days. The considered process
consists of two partly connected cleaning lines both containing an aeration basin and a
sedimentation basin. Before entering these lines the waste water has been mechanically
cleaned and its acidity has been neutralized and additional nutritions have been added to
the system. The cleaning is based on allowing the bacteria, protozoans and other micro-
organisms to eat organic waste as nutrition.

In the aeration basins additional oxygen is dissolved into the water so as to keep the
process aerobic and so to allow and accelerate the process. The micro-organisms and the
organic waste form a biosludge, which is extracted from the water in the sedimentation
phase. A selected part of the sedimented sludge is circulated through the process back to
the aeration basin to be reactivated in order to reach a predefined sludge age (meaning
the average amount of time that a particle is kept in the circulation). To maintain stability
of the process and good quality of the sludge, excess sludge is periodically removed from
the process and dried. Removing the sludge too soon may produce too much waste to be
dried and to be transported to a dumping place. Also cycling the waste water too long in
the system consumes excess cleaning capacity.

The circulation process is slow, a typical delay between beginning and end of the
circulation process is 2-3 days. Furthermore, the biological aspects of the process have
longer delays, typically 10-15 days. An overview of the considered process is presented
in Figure 1-1.

Aeration SedimentationIncoming
water

Cleaned
water

Sludge
circulation

Excess sludge
removal

Figure 1-1 Biological waste water cleaning process.
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The process operators control the process based on process measurements, such as BOD1

and COD2 levels, and prior knowledge. In normal situations, when quantity and quality
of the incoming water is stable, control of the process is easy and well known. In
abnormal situations, for example, when chemical concentrations of the input water
change rapidly, the process can go out of balance. The biology reacts slowly to changes
in water quality and quantity, therefore out-of-balance situation in the waste water
treatment plant occur several days after the actual cause has occurred. Furthermore,
corrective actions are also slow and the results are usually observable only after quite a
long delay period.

Process measurements are divided into two basic types: online meterings and laboratory
analysis. Online meterings are obtained using sensors and the values from online
meterings are available instantly, together with a timestamp. Sometimes online meterings
may produce erroneous indications. This is due to fouling of the sensors and drifting of
sensor calibration. Typically values from online meterings are available with a time
resolution of several seconds, but in this case study averaged values of one hour are used.

Most process quality results are obtained using laboratory analysis. Analysis are
performed by taking a sample which is then analyzed in laboratory by chemical experts.
Results of the laboratory analysis are entered to the computer system manually with a
timestamp characterizing the time when the sample was taken. Most of the laboratory
analysis are performed in-house, but some analysis are performed in external neutral
laboratories. Typically, results of in-house analysis are available within hours (by late
afternoon) after the sample period has ended, but external laboratory results can have a
delay of several weeks. The sample period may extend for several days.

1.3 Related research

In [West00] the problem of identifying process conditions in an urban wastewater
treatment plant (an activated sludge process) is discussed. Both parametric (Fisher's
discriminant analysis, multivariable regression and two-stage regression) and
nonparametric (k-nearest neighbours and kernel density) statistical methods are compared
with artificial neural network models (Multi Layered Perceptron (MLP) network, Radial
Basis Function (RBF) network and Fuzzy ARTMAP) are compared on the problem of
classifying a given process state to a predefined set of normal states. Very good results
are reported on the ability to discriminate between  abnormal and normal situations with
RBF and MLP networks and also with Fisher's discriminant analysis. They investigated
the false positive rate (Type I error) and false negative rate (Type II error) and with the
best models they achived nearly perfect success (97-100%). The ability to discriminate
between 13 typical states was about 90% accurate with the best methods. Their data
consisted of 527 daily measurements of 38 sensor readings from one urban wastewater
treatment plant. They used 10-fold crossvalidation in order to validate the produced
models. However, it remained unclear how the different system states were determined -
it seems that they were acquired by some type of manual classification. Also it was not

                                                     
1 The biological demand for oxygen (BOD) is a measure of the amount of oxygen used by micro-
organisms to decompose the organic matter in the wastewater.
2 The chemical demand for oxygen (COD) is a measure of the amount of oxygen used to oxidize
organic matter and to convert it to carbon dioxide and water.
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stated what the time span for the forecasts was in the experiments – therefore one would
assume that they produced one day forecasts. The authors considered RBF networks as
slightly more robust and accurate than the other methods including MLP networks. The
other methods were not considered robust enough with the amount of data available.

SOM based clustering and local linear models have been applied in [Vesa97] in
predicting a univariate chaotic time series. Their method is based on first embedding the
temporal dimension using a time window of historical values as a delay line. Then SOM
clustering is applied to identify a representable prototype set for the delay line feature
vectors. Next each of the data records is assigned to their BMUs (best matching units)
and a local linear model is calculated for each prototype using the assigned data records
or by expanding the context by considering the data records of the topologically
neighbouring units as well.  Also more complex local models, like MLP networks or
splines, could be developed if the amount of local data records is large enough. Good
results were reported for the selected chaotic time series test case.

In [Kosk97] a similar approach is described but in this case a temporal version of SOM,
called Recurrect SOM (RSOM), was used for the clustering and linear regression for the
local models. The method was applied to three test cases including a Mackey-Glass
chaotic time series test problem, a laser time series and electricity time series forecasting.
The method was compared to a MLP network solution and to AR model. The test results
indicate that in this case the RSOM method was not as successful as ordinary SOM in
[Vesa97] and MLP was typically the best performing method is these test cases and AR
only better than RSOM with the electricity forecasting case. These problems may be due
to implementation problems in the RSOM algorithm.

In [Simu99] various ways of using the Self Organizing map (SOM) technology are
described. It is indicated that SOM maps may be used to visualize the operating point
(the BMU of the current measurement) or the trajectory (formed as the set of BMUs of
the latest measurements). If the SOM map has been created using all measurement data
the map units may be labeled according to the abnormality ratio of the measurements
whose BMU it is. In this way the visualisation will indicate if one gets to an abnormal
state (assuming that some of the prototypes show a clear abnormality level).

In order to detect abnormalities in the process behaviour (fault detection) one may teach
the SOM using only measurement vectors describing the normal behaviour therefore
creating a mapping of the "normal operation".  A faulty situation may be detected by
monitoring the quantization error (distance between the input vector and the BMU).
Large errors indicate that the process behaviour is different from the normal data that was
used for training the map. By defining a suitable threshold we can select the sensitivity
for the failure (novelty) detector.

2  Outline of the performed analysis work
In this case study real process data was used as the basis for building the models. It
consisted of operational data stored in history databases during the normal system
operation. No planned tests were performed with the controls of the system.
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It was decided to gather relevant online measurements and results from laboratory
experiments for two partly connected aeration lines and the task was set to develop
models for predicting undesirable, abnormal conditions in the target variables. The
required raw measurement data was specified together with the customer and it was
extracted from the factory process database occasionally and delivered to analysis. The
data was combined into a multivariable time series. The target variables include the
following 3 indicators: LiukP3 (dissolved phosphorus in the cleaned waste water),
CODOUT3 (chemical oxygen comsumption of the cleaned waste water) and JSSAK3
(thickness of the cleaned waste water).

In our previous studies we have described analysis work performed on similar but shorter
data set. We previously developed time series prediction methods based on Multi-
Layered Perceptron (MLP) neural network models [Hii00a] and Bayesian belief network
[Hii00b] models for predicting the future values of the target variables and for classifying
the future states into normal and abnormal ones. However, the achieved prediction and
classification accuracies were not adequate for applying the results in an operational
environment. Therefore, it was decided to try methods based on Self-Organizing Maps
(SOM) for abnormality detection.

raw
measurement
data

preprocessing

delay line
creation

feature
selection

alarms

teaching SOM
for all states

teaching
SOM for
normal states

determine the
threshold for
the QE using
calibration data

monitor the
quantization
error (QE) of a
new sample

thresholding the
predicted value ->
classification

search the
BMU for a new
sample and
predict the
future value

search the BMU
for new samples
and visualize the
trajectory

graphical
monitoring

Figure 2-1 The steps taken in the analysis.

The main steps of the analysis work are outlined in the attached diagram in Figure 2-1. At
first the raw measurement data is preprocessed as explained in chapter 3. The temporal
behaviour is captured by lagging the variables for some days thereby creating a delay line
of inputs. The most influential features are selected as explained in chapter 4. Then
various modeling tasks are performed with the Self-Organizing Map (SOM). At first a
SOM is tought to model the normal operation of the process by using only normal
samples as teaching data. Then the level of abnormality is monitored for new samples by
computing the quantization error. If this is above a selected threshold (can be objectively
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estimated by using separate calibration data) the sample is classified as abnormal which
may be notified to an operator via an alarm system. In another experiment, a SOM is
tought the whole process dynamics by using a sample of the whole data. Then for new
data one may determine the best matching unit (BMU) and visualize the traversal of the
system state by visualizing the successive BMUs as a trajectory. In another approach an
index is formed linking the SOM neurons to the teaching samples that best match that
neuron. Then for new samples the BMU can be determined and the target variable mean
value over all the teaching samples of that BMU can be used as the predicted value.
These are better explained in chapter 5.

3 About the measurement data and its preprocessing

The required raw measurement data was specified together with the customer and it was
extracted from the factory process database occasionally and delivered to analysis. The
data was combined into a multivariable time series which finally contained 700 daily
measurement values starting from 1.4.1999 and lasting until 28.2.2001. The gathered
variables had varying sampling periods ranging from hourly measurements to twice a
week measurements. It was decided to harmonize the sampling interval to a daily basis.
The customer provided the daily values. After the preprocessing 615 samples remained
for analysis. In the Ilmas3 aeration line there are five online measurements (such as
temperature, water flow, oxygen contents) and eight laboratory measurements (measured
2-5 times per week) and also four descriptive calculated values (available after the
laboratory values are available).

Due to the harmonization to a daily sampling period, the harmonized data contained
missing values for the measurements performed more seldom. These were estimated by
linear interpolation from the data in the preprocessing stage. Suspicious outliers were
removed and also these had to be interpolated from the remaining values. Smoothing
operations were applied to the time series values in order to reduce the measurement
noise.

The smoothing operations were selected for each variable separately and verified with a
domain expert. The operations included computing moving averages with different
spanning intervals and applying median filtering with different spanning intervals.

Once the measurement values were harmonized into complete time series additional
characteristic figures (derived variables) were computed based on the harmonized
measurements. The harmonized measurements were divided into two partly overlaping
sets each containing the relevant values for the two aeration lines. The preprocessing
operations were implemented using the Matlab programming environment.

In Appendix A, we have characterized the preprocessed variables used for Ilmas3
analysis with some statistical figures (mean, standard deviation, minimum and maximum
values). In Appendix B, we have included the raw measurements and the corrected values
after preprocessing as time series plots.

From these tables and figures it is possible to draw some preliminary conclusions on the
problem. The target variables of interest are LiukP3 in Figure B.2, JSsak3 in Figure B.6
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and CODout3 in Figure B.8. LiukP3 has frequent peeks rising well above the desired
maximum level of 0.5; even the average value is above that level. The peaks typically last
a few days but some last longer and also have multiple subpeaks. JSsak3 has few very
large peaks (very much above the desired maximum of 50) hiding the smaller variation.
This variable should be log-scaled before analysis. CODout3 seems to have very
consistent behaviour and the consecutive values do not have very large differences. The
desired maximum level of 200 is crossed especially during the start of the analyzed time
period.

The time series plots may be used to search for possible causes of the temporal behaviour
of the target variables – the cases with too high values are of particular interest. It seems
that the shutdowns (VIRTA3 dips) can explain 7 of the 18 major peaks of LiukP3 time
series. Actually all the shutdowns cause a sharp rise in LiukP3 level. One of the
remaining peaks seems to correlate with a CODin dip around day 330. However, 10
unexplained peaks remain which do not seem to have a clear explanation. In the oxygen
level time series (Happi4) there seems to be at least 2 dips (at days 170 and 330) from the
usual level which seem to co-occur with some of the unexplained Liuk_P3 peaks. These
dips indicate that the oxygen consumption during the aeration has been exceptionally
high. On the other hand between days 420 and 480 there are many peaks in Happi4 which
co-occur with many unexplained LiukP3 peaks. While examining the flocking load
variable (Fkuorma3 in Figure B.9) one notices that the peaks between days 320 and 500
somewhat co-occur with the unstable behaviour of LiukP3.

The nitrogen levels (Typpi3 in Figure B.3) have frequent peaks possibly suggesting that
the nutrition is given in bursts.

In Figure B.1, we see that the water flow of Ilmas3 line (VIRTA3) has some clear dips
caused by factory shutdowns (typically the process is running continuously but during
certain holidays (Mid Summer day, Independence day and Christmas) the factory may be
shutdown. Visually one can see that these dips seem to cause changes in (correlate with)
some of the variables: the water temperature (Lampo) drops, the waste content in the
water (CODin) drops, the levels of oxygen at the start and end of the aeration line in
Ilmas3 line (Happi3 and Happi4) rise. It also explains many of the peaks of variable
LiukP3 as explained above.

From the above discussion one may notice how difficult it is to find explaining causes for
the behaviour of the target variables using the data alone. Also there seem to be many
weak influences which manifest differently in different situations due to mutual
influences (the explanatory variables are not independent). It also seems that many of the
more rare causes are only represented by few instances in the database making there
learning difficult.

4 Identification of the most influential explanatory
variables

In order to model a large chemical process using neural networks one needs to have a
large data set which adequately covers the phenomena to be analyzed or predicted and
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also has sufficient variation in the parameters. Typically production data is used in such
studies as it is often automatically gathered and stored and is therefore readily available.
It has been suggested that using experiment design methods could provide a better basis
for gathering the required training data. However, this is seldom done due to the time
delays and disturbances to the process. We have also used production data. This is also
related to the fact that the data needs to contain the desired dependencies as no
mathematical method may find one if it does not exist. [Taip99]

The analyzed system is complicated by strong dynamic feedback loops and a large
amount of available measurements. However, the behaviour of the process is not well
known and the status of the biological process is not possible to measure online.

Irrelevant and redundant variables disturb the teaching of the neural networks. Ideally the
inputs should be highly relevant to the task (prediction, regression, classification) and
mutually non-dependent. Neural networks are justified by allowing one to capture the
nonlinear dependencies in the training data automatically. Dependencies may show up
different in different environmental conditions (e.g. when the temperature or its
derivative cross a critical threshold). Also the phenomena may have hysteretic behaviour
where the process status does not return to the normal state once the environment
variables stabilize [Rita98]. The behaviour of the waste water cleaning process seems to
have such a phenomena when the status of the biological cleaning process gets disturbed.

In order to support modelling one needs to concentrate on the most relevant explanatory
variables by selecting the best subset of the variables. Ideally this could be done by
testing different combinations of the input variables by generating the desired models on
that information and then evaluating the performance based on an independent validation
data set. A genetic algorithm based stochastic search algorithm could guide the search for
the best models. This was tested with our previous tests using the NGO (NeuroGenetic
Optimizer) tool. However, it is a computationally heavy approach and gives little
knowledge on the cause of the suggested dependencies. Using simple correlation analysis
one may detect linear dependencies between a couple of variables. At least these should
be included into the model but nonlinear dependencies remain undetected. Also detecting
the redundant variables is difficult. Statistical dependency testing (using contingency
tables) may reveal more dependencies than the correlations. Also entropy based mutual
information measures could be used to select a proper variable set.

Correlation tests are suitable for detecting linear dependencies between random
variables. Nonlinear dependencies may be missed. Anyhow, one should at least include
those variables found by correlation analysis.

Statistical dependency testing may be used when there are enough samples. However, in
our case we found that they only allowed us to eliminate the most clearly independant
connections. Therefore more pruning would be needed.

4.1 Correlation analysis

We have created a small utility program for searching correlations between the desired
variables and their previous values. At first the original data set is expanded by adding
new columns for each variable corresponding to its delayed values (1-to-N steps). Then
the correlation matrix is formed and the desired dependencies are plotted on a figure with
a grey-scale format on the left and a thresholded (>= given threshold) one on the right
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(see Figure C.1 in Appendix C). Also the dependencies that have a larger correlation as
the threshold are reported in a textual format (see Listing C.1 in Appendix C).

The report in Listing C.1 reports the correlation based dependencies of the target
variables (values 3 days into the future) with a maximum delay of 21 days. One can see
that with the moderate threshold (0.5) LiukP3_F3 is only dependent on the current value
of LiukP3 and three past values of the flow variable (Virta3). The same matters can be
seen in Figure C.1 where the first row in the figures shows the dependencies for
LiukP3_F3, the second for JSsak3_F3 and the third one for CODout3_F3.

In Figure C.2 and the listing C.2 we have also shown the dependencies for the whole data
set with a larger threshold (0.7) and a maximum delay of 21 days. From the left side plot
(in Figure C.2) we can see that there are temporal and intervariable dependencies in the
data but few are larger than the selected threshold 0.7. This is also confirmed by listing
C.2.

4.2 Statistical dependency detection using contingency tables

In order to be more conservative in eliminating explanatory variables we evaluated
statistical dependencies between the potential pairs of explanatory and target variables.
The delayed data columns were first discretized into bins with equal amounts of samples.
Then a binned table (the contingency table) was formed for each pair of potential
variables (the explanatory candidate and the target variable) and it was tested with the
CHI2 statistical test how big the risk of these variables not being independent is (i.e. it
was tested whether P(A,B) == P(A) * P(B)).

In Figure D.1 in Appendix D we have plotted the probability of the pairwise
dependencies in the left plot and those probabilities being above the 0.1% risk level in
the right plot. By viewing the Listing D.1 we see that only few of the possible
dependencies could be pruned using this approach.

5 Using SOM to analyze the waste water data set
We have applied the Self-Organizing Map (SOM) neural network method to the waste
water data in two different ways: First we have tested how well a SOM, that has been
tought with normal data, can be used to detect abnormalities in previously unseen testing
data. Next we have tested how a SOM, that has been tought with a random sample of all
the gathered data, can be used to predict the response on new unseen samples. We have
run the SOM tests in the Matlab mathematical programming environment using the SOM
toolbox [Vesa00]. The basic principles of the SOM algorithm has already been well
described in another Modus-project report [Rint00].

5.1 Abnormality detection using SOM
Abnormality detection or novelty detection using SOM is based on the idea of
approximating the probability distribution of the data samples representing the normal
system behaviour. The prototype vectors in the trained SOM neurons represent these
approximations compactly. The degree of novelty of new samples may be monitored by
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measuring their distance (usually Euclidean) to the closest unit (BMU, the Best Matching
Unit). This distance is also called the quantization error. For normal samples, this
quantization error is typically smaller than for the abnormal ones which enables one to
build a classifier to predict novel states in advance. Similar approaches have been
described in [Alan91], [Alho99] and [Simu99]. The justification for using this approach
is that when modeling real processes normal data is typically much more common than
abnormal failure data. Therefore a good approach to detect failures is to monitor any
differences from the normal behaviour and then examine such cases more carefully with
some other means.

In our test environment the sample data was first enriched by embedding some of the past
input values into the feature vectors, thus creating a delay line of inputs. A maximum
delay interval of 21 days was used. Next the most influential features were identified
using correlation analysis tests and the selected ones were included into the final feature
vector. The normal data was selected based on certain process conditions being normal
(the incoming water flow VIRTA3 being above a critical level, >= µ - 2 * σ) and the
target variable being below a critical level supplied by a process expert. The data samples
were then divided into different sets of data: only normal data (60% of the normal data
samples) were assigned into the learning data set. A mixture of normal (25%) and
abnormal data (60%) was assigned into the testing data set. A mixture of normal (15%)
and abnormal data (40%) was assigned into the calibration data set. The teaching data
was used to teach the SOM mapping.

Figure 5-1 The effect of process shutdowns (Virta3 with the green line) on the target
variable LiukP3 levels (the blue line).
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In Figures 5-1, 5-2 and 5-3, we show the effect of process shutdowns on the target
variable values. In Figure 5-1, we can see that low values of Virta3 co-occur with most of
the LiukP3 largest peaks therefore explaining these cases. In some occasions the peak is
not very high if the shutdown has lasted for only a short while. This clearly indicates that
the shutdown data should be handled differently. Predicting their effects gives no
information as they are prescheduled and planned.

From Figure 5-2, we can see that the process shutdowns do not have an immediate effect
on the target variable CODout3. However, it seems that there may be a delayed rise in
this target variable a few days after the incident.

From Figure 5-3, we can see that the process shutdowns do not have an immediate effect
on the target variable JS_sak3 and at least the large values are not explained by this
incident.

Figure 5-2 The effect of process shutdowns (Virta3 with the green line) on the target
variable CODout3 levels (the blue line)..
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Figure 5-3 The effect of process shutdowns (Virta3 with the green line) on the target
variable JSsak3 levels (the blue line).

The SOM was used to detect the abnormality in the testing data by monitoring the
quantization error (QE) to the best matching unit (BMU, the closest unit). As the
quantization errors for normal and abnormal samples are partly overlapping (see Figure
5-4) a threshold value has to be defined to optimally divide the new samples into normal
and abnormal ones. Calibration data was used to select the threshold value for the
quantization error by searching for the threshold value producing the best classification
accuracy. Alternatively, a more advanced cost function for misclassification costs could
be optimized by assigning different misclassification costs to the different classification
errors. In Figure 5-5, we can see an example of the compromise between classification
accuracy and the false positive and the false negative rates. We can see that as the
threshold value increases (one is classifying samples to an abnormal category if the QE
value is larger than the threshold) the rate of false negatives increases and the rate of
false positives decreases. The optimal classification accuracy is typically achieved when
the false positive and false negative rates are approximately equal. [Moze00] provides
further advice on choosing the appropriate threshold value for classification purposes.
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Figure 5-4 An example of the Quantization Errors for a mixture of normal and abnormal
data comprising the calibration data set that is independent of the teaching data set. The
crosses indicate the QE-values (red ones mark the QE-values for abnormal states and the
green ones the QE-values for normal states). The blue line plots the target values. We can
see that in this case the QE-values for the different states are highly overlapping thereby
preventing perfect classification.
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Figure 5-5 An example of the effect of the threshold value on quantization error (QE) to
the classification accuracy and the false positive and false negative rates.

In Table 5.1, we see that for short prediction intervals (1 or 2 days) the prediction
accuracy is fairly good for variable LiukP3. But with longer periods the accuracy quickly
deteriorates. (The 50 % level is equal to random guessing performance). Figure xx.3
shows an example of the performance of the predictions on testing data with 70.9%
accuracy. We see that there are quite a lot of errors all over the time series.

F1 F2 F2 F3 F5
min correlation 0.6 0.6 0.3 0.3 0.3
# inputs 6 4 31 21 7
accuracy 83.2% 73.2% 70.9% 55.7% 53.1%
FP 20.3% 19.4% 29.3% 44.2% 44.9%
FN 10.5% 33.0% 28.8% 45.8% 54.4%

Table 5.1: Accuracy of the SOM QE-based classifiers for different prediction tasks of
variable LiukP3 (1, 2, 3 and 5 days ahead) (FP = false positive rate, FN = false negative
rate).
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Figure 5-6 A plot showing predictions two days ahead in  time for the testing data of time
series LiukP3_F2. The prediction task is to try to predict whether the future value (2 days
ahead) is going to be high (> 0.5) or low (<= 0.5). The crosses represent real target
values. The circles mark cases where the predictive classification has failed.

In Table 5.2, we see that for short prediction intervals (1 day) the prediction accuracy is
good for variable COD_out3. Even with longer periods (10 days) the accuracy is fairly
good. Figure 5-7 shows an example of the performance of the predictions on testing data
with 1 day prediction. We see that there are some errors especially when rapid changes
occur in the target values.

F1 F1 F5 F10
min correlation 0.6 0.7 0.7 0.7
# inputs 32 22 18 9
accuracy 87.3% 90.1% 74,6% 70.8%
FP 7.4% 7.0% 15.4% 29.2%
FN 19.2% 14.0% 34.8% 29.0%

Table 5.2: Accuracy of the SOM QE-based classifiers for different prediction tasks of
variable COD_out3 (1, and 10 days ahead) (FP = false positive rate, FN = false negative
rate).
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Figure 5-7 A plot showing predictions two days ahead in time for the testing data of time
series CODout3. The prediction task is to try to predict whether the future value (1 day
ahead) is going to be high (> 200) or low (<= 200). The crosses represent real target
values. The circles mark cases where the predictive classification has failed.

In Table 5.3, we see that for short prediction intervals (1 days) the prediction accuracy is
good for variable JSsak3. But for longer periods (3 days) the accuracy quickly
deteriorates. We can see that the values for this variable only contain very few
explanatory variables (in this case only the two previous values of the target variable)
which makes prediction very hard.

F1 F3
min correlation 0.6 0.4
# inputs 2 1
accuracy 88.0% 72.6%
FP 19.2% 39.1%
FN 8.9% 25.7%

Table 5.3: Accuracy of the SOM QE-based classifiers for different prediction tasks of
variable JSsak3 (1, and 3 days ahead) (FP = false positive rate, FN = false negative rate).

To summarize the classification performance using this method is not very reliable. The
performance is better especially with the CODout3 variables partly because the adjacent
values tend to change slowly. With variable JSsak3 the classification performance is high
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but it seems that most of the test values have been low ones and the false positive rate is
very bad. Also only few explanatory variables were found for this variable. It only tended
to self-correlate with its previous values. There were quite a few explanatory variables
for LiukP3 levels (such as CODin, VIRTA3, LiukP3) but the long term prediction did not
succeed well. Only short term prediction was feasible.

5.2 Using SOM to model the overall process behaviour
In another test we have tought SOM with a random sample of all the available test data.
In this case the prototype vectors of the SOM neurons specify a compacted vector
quantization of the sample space. Next, each of the teaching samples have been assigned
to the best matching SOM neurons (BMUs) so that each such neuron has a list of the
samples best matching it. These lists may be used for assigning labels to the units
indicating the number of samples with different categories assigned to them. The
frequencies of such labels may be used as classification probabilities for new data
samples. Therefore, one may classify new samples to high and low values based on the
portion of the categories in the training set.  Alternatively one may build classification or
prediction models locally based on the set of learning samples assigned to each neuron.
The prototypes may also be grouped together. This allows one to assign enough samples
to the cluster nodes in order to build more accurate models. Such approach was used for
time series prediction in [Vesa97].

In our testing environment we have assigned a random sample (60%) of the available and
time-lagged data set to training and the rest to testing purposes. The data was clustered
using a 2-dimensional SOM map. The BMUs were determined for each of the training
samples and they were indexed so that for each SOM neuron we had a list of the training
samples whose BMU the neuron was.

F1 F2 F3 F5
min correlation 0.5 0.5 0.5 0.3
# inputs 13 9 5 7
thresholded
accuracy

84.0% 82.7% 69.1% 63.0%

FP 25.0% 27.1% 49.4% 49.4%
FN 11.6% 11.6% 19.6% 29.1%

majority vote
accuracy

51.5 63.7% 48.7 60.9

FP 71.3 83.3% 68.9 53.3
FN 34.7 32.7% 31.5 34.1

RMS error 0.31 0.38 0.57 0.73

Table 5.4: Accuracy of the SOM based predictions for different prediction intervals for
variable LiukP3 (1, 2, 3 and 5 days ahead) (FP = false positive rate, FN = false negative
rate, RMS error = Root Mean Squared error).

These indices were used to produce predictions for testing data samples. In order to
produce regression estimates of the target variables the best matching unit was
determined for each test sample and then the mean value of the target variable among the
training samples assigned to this neuron was used as the estimate. For classification
predictions the regression estimate was thresholded in order to get the category
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prediction. Alternatively the category was determined by performing a majority vote
among the training samples of the BMU neuron.

In Tables 5.4, 5.5 and 5.6, we have gathered some model performance metrics for various
tasks. In Table 5.4, we see that the performance in predicting the abnormally high values
is fairly good for short term predictions but deteriorates fast with longer term predictions.
Also the false positive rates are fairly high in all the predictions thereby causing false
alarms.

In Figure 5-8, we have plotted the classification accuracy for a mean value prediction
using threshold classification approach. We can see that still quite many
misclassifications occur especially near the maximum allowed normal value.

Figure 5-8. An example of the classification performance for variable LiukP3_F2. The
blue crosses and the green line mark the desired values and the read circles indicate that
the thresholded prediction has been erroneous in that case.

However, the regression predictions seem to work fairly well with the same data. In
Figure 5-9, we have plotted an example of the values produced by the mean value
predictions for unseen test data. We can see that with this variable the regression
predictions follow the desired values quite well. Although, in some cases the predictions
lag behind by even 2 or more days, even a lag of 1 day gives some predictive value in this
case.
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Figure 5-9 An example of the mean value predictions for LiukP3_F2 prediction.

F3 F7
min correlation 0.8 0.8
# inputs 7 3
thresholded
accuracy

85.2% 74.7%

FP 7.4% 38.9%
FN 17.9% 16.6%

majority vote
accuracy

48.3% 66.8%

FP 75.4% 41.8%
FN 44.6% 21.9%

RMS error 19.0 30.2

Table 5.5: Accuracy of the SOM based predictions for different prediction intervals for
variable CODout3 (3 and 7 days ahead) (FP = false positive rate, FN = false negative
rate, RMS error = Root Mean Squared error).

In Table 5.5, we see that while using the thresholded classification on the mean value
predictions the performance in predicting the abnormally high values of CODout3 is very
good with 3 day predictions and fair even with 7 day predictions.



 MODUS-project
 WasteWater Case Study

Abnormality detection using SOM modeling 1.1-1

VTT Information Technology  Modified on  18.12.0120

In Table 5.6, we see that predictions for JSsak3_F3 are poor because of the very large
false positive rate. Also only autoregressive dependence has been found by the feature
selector. It seems that these methods are not applicable to this task.

F3
min correlation 0.5
# inputs 1
thresholded
accuracy

80.8%

FP 73.1%
FN 12.2%

majority vote
accuracy

86.1%

FP 50.0%
FN 10.5%

RMS error 282

Table 5.6: Accuracy of the SOM based predictions for 3-day prediction interval for
variable JSsak3 (FP = false positive rate, FN = false negative rate, RMS error = Root
Mean Squared error).

In general, it seems that the majority voting based approach does not work well.
Classification based on thresholding the regression results works fairly well with short
prediction intervals – however the high false positive rates indicate that the models
perform worse than the QE-monitoring methods in identifying abnormal situations
reliably.

Another approach to use the SOM map is to visualize the state of the process by drawing
a trajectory of the BMUs for the monitored samples on top of the map grid. In Figure
xx1, we have plotted the 2-dimensional SOM map which was tought to predict
LiukP3_F2 values. For each attribute (variable) in the feature vector the attribute value of
the appropriate neuron is plotted on the map grid (component planes). By looking for
similarities between the component planes one may identify dependencies in the data.
For example, the highest values of LiukP3_F3 seem to correlate with the process
shutdowns (Virta3 variables having the lowest values). Also the variables Lkuorma3 and
CODin have there low values in the same areas and correlate with the other variables as
well. The U-matrix shows graphically the Euclidean distances between the neighbouring
SOM neurons. In some situations clear clusters are formed in this view by rims of high
distances separating clusters with low mutual distances. In this case the only clear rim of
high distances is on the left lower corner where the water flow has very low values. All
the other values seem to be very similar.
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Figure 5-10 A component planes plot of a SOM map created to predict LiukP3_F2
values.

In Figure 5-11, we have plotted predictions for the last 20 values of the available data
(validation data in this case). We can see that in this case the predictions seem to be too
high for normal situations and fail to predict the last peak. However, this peak was
caused by a shutdown period of the factory according to the Virta3 values which makes
its forecasting impossible given the time frame.

In Figure 5-12, we have plotted the trajectory of the best matching units (BMUs) for the
same calibration data set. The numbers on the neurons indicate the time steps during
which the process status best matched that neuron. The idea is that in suitable conditions
the SOM map could be used as a monitoring system that shows the system status on the
SOM map visually. Some of the map areas would be marked as undesirable alarming
states (like the left lower corner as indicated by the high value area of the LiukP3_F2
variable in Figure 5-10). We can see that while the values are normal the trajectory stays
in the neutral area and when the values start to rise it moves toward the alarming area and
again leaves it when the situation stabilizes. Possibly a better example period would have
produced a better proof.
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Figure 5-11 A time series plot of the real values for the LiukP3_F2 variable for 20 days.
Green values indicate the desired values and the red ones the predictions.

Figure 5-12 Validation data trajectory of predicted for 20 daily measurements of
LiukP3_F2. The text labels indicate the days when the process was in this state (neuron).
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6 Possibilities to operationalize the generated models

As none of the generated models produced perfect prediction results for new data one
may need to combine different models in order to get the best performance. In Figure 6.1
we have outlined some of the possibilities. A calendar based filtering system is used to
prune predictions for periods of known abnormal operation (planned production
shutdowns should be eliminated as their impact on the target variables is faster than the
prediction interval). For identifying the abnormal conditions one might use both the
normal state SOM and the overall SOM models and calculate a certainty on the
predictions based on their consistency.

new raw
data sample

preprocessing
and computation
of new features

QE-monitoring with the
normal-state SOM

thresholding the
prediction ->
classification

plotting the
BMUs for the
new samples as a
trajectory

calendar based
identification of
shutdowns

predicting the new value
based on the overall-states
SOM

alarms prediction
time series

trajectory plot

filtering

filtering

Figure 6-1 A potential way of combining different models to predict abnormalities

7 Summary
In this report we extend our previous work [Hii00a] aimed at applying neural network
methods to detect abnormal conditions in quality measurements of an industrial chemical
process. This time we have analyzed a larger set of data and have created various Self
Organizing Map (SOM) based models for identifying emerging abnormal states of the
process and for predicting the future values of some target variables.

It has been found that only short term predictions are possible with the available process
data. Even for short term predictions the accuracy of the predictions is not perfect - the
best models reach a level of 80-90% classification accuracy in predicting abnormal
situations in advance. So using these methods one can not totally avoid the occasional
false alarms and undetected abnormalities.
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Appendix A. Statistical descriptors for the
preprocessed variables of Ilmas3 line

Statistics

615 615 615 615 615 615
0 0 0 0 0 0

36.1939 1691.4407 .1829 101.0081 5.0001 6.7899
4.8101 356.7145 2.6913 23.4061 .7104 1.1489

13.70 25.00 -52.67 -.30 3.31 2.10
42.90 2240.00 .81 143.40 7.20 11.11

33.3000 1586.6700 .3267 93.3000 4.4307 5.9400
36.2400 1708.5320 .3544 101.6000 4.8147 6.3613
38.2000 1823.4680 .3794 109.6600 5.1473 6.8203
39.9000 1923.2000 .4078 115.4800 5.5800 7.5440

Valid
Missing

N

Mean
Std. Deviation
Minimum
Maximum

20
40
60
80

Percentiles

LAMPO CODIN PK3OSUUS VIRTA3 SAKEUS3 LIETEP3

Table A.1 Statistics of the preprocessed variables in Ilmas3 line, A

Statistics

615 615 615 615 615 615
0 0 0 0 0 0

2.6148 4.3358 139.2456 4.3697 .3072 .2208
1.7497 1.8721 182.1204 5.4892 9.506E-02 .1713

.40 .50 20.71 .50 .00 -.09
10.90 10.90 780.23 53.10 .54 1.86

1.5000 2.7000 32.0457 2.0000 .2629 .1562
1.9000 3.7000 42.6476 2.3000 .3054 .1885
2.5000 4.6000 71.4000 3.1000 .3396 .2153
3.3800 5.5800 202.0286 4.6000 .3679 .2521

Valid
Missing

N

Mean
Std. Deviation
Minimum
Maximum

20
40
60
80

Percentiles

HAPPI3 HAPPI4 LIEIND3 TYPPI3 LKUORMA3 FKUORMA3

Table A.2 Statistics of the preprocessed variables in Ilmas3 line, B

Statistics

610 615 615 615 615 615
5 0 0 0 0 0

624.9118 19.3294 .6281 68.6634 195.0846 .6273
1375.1304 4.7108 .9840 262.6751 46.0297 .9843

12.49 4.71 .06 .00 117.00 .06
3861.00 29.42 7.70 2866.00 328.00 7.70
24.6352 15.4875 .1037 6.8000 154.0000 .1033
31.3300 17.9182 .1900 14.8800 176.0000 .1900
38.8826 20.8232 .4667 26.2500 195.9000 .4640
69.3857 23.6438 .8700 40.7400 235.5336 .8700

Valid
Missing

N

Mean
Std. Deviation
Minimum
Maximum

20
40
60
80

Percentiles

KIERTOL3 LIKA3 LIUKP3 JSSAK3 CODOUT3 LIUKP3_1

Table A.3 Statistics of the preprocessed variables in Ilmas3 line, C
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Appendix B. Time series plots of the
preprocessed variable values

Figure B.1 Time series plots of the raw and preprocessed variables in Ilmas3 line, A.
Blue crosses mark the raw measurements and the red line marks the preprocessed
value.2
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Figure B.2 Time series plots of the raw and preprocessed variables in Ilmas3 line, B.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.3 Time series plots of the raw and preprocessed variables in Ilmas3 line, C.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.4 Time series plots of the raw and preprocessed variables in Ilmas3 line, D.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.5 Time series plots of the raw and preprocessed variables in Ilmas3 line, E.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.6 Time series plots of the raw and preprocessed variables in Ilmas3 line, F.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.7 Time series plots of the raw and preprocessed variables in Ilmas3 line, G.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.8 Time series plots of the raw and preprocessed variables in Ilmas3 line, H.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Figure B.9 Time series plots of the raw and preprocessed variables in Ilmas3 line, I. Blue
crosses mark the raw measurements and the red line marks the preprocessed value



 MODUS-project
 WasteWater Case Study

Abnormality detection using SOM modeling 1.1-1

VTT Information Technology  Modified on  18.12.0136

0 100 200 300 400 500 600 700
0

20

40
Lika3

Figure B.10 Time series plots of the raw and preprocessed variables in Ilmas3 line, J.
Blue crosses mark the raw measurements and the red line marks the preprocessed value
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Appendix  C: Correlation analysis results

Figure C.1 Correlation matrix for the variables in Ilmas3 line using 21 day delay line
reporting only the target variablesto be predicted

Listing C.1 Correlation report for given variables with threshold >= 0.50.

LiukP3_F3 (#18):
Virta3 (#4), with lags = (0-2).
LiukP3 (#15), with lags = (0).
LiukP3_F3 (#18), with lags = (0-3).

JSsak3_F3 (#19):
JSsak3 (#16), with lags = (0).
JSsak3_F3 (#19), with lags = (0-3).

CODout3_F3 (#20):
Lieind3 (#9), with lags = (0-21).
CODout3 (#17), with lags = (0-21).
CODout3_F3 (#20), with lags = (0-21).
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Figure C.2 Correlation matrix for the variables in Ilmas3 line using 21 day delay line

Listing C.2 Correlation report for given variables with threshold >= 0.70.

Lampo (#1):
Lampo (#1), with lags = (0-3).

CODin (#2):
CODin (#2), with lags = (0-1).
Happi3 (#7), with lags = (0).
Lkuorma3 (#11), with lags = (0).

PK3osuus (#3):
PK3osuus (#3), with lags = (0).

Virta3 (#4):
Virta3 (#4), with lags = (0-2).

Sakeus3 (#5):
Sakeus3 (#5), with lags = (0-3).

LieteP3 (#6):
LieteP3 (#6), with lags = (0-4).

Happi3 (#7):
CODin (#2), with lags = (0).
Happi3 (#7), with lags = (0-1).

Happi4 (#8):
Happi4 (#8), with lags = (0-2).

Lieind3 (#9):
Lieind3 (#9), with lags = (0-21).
CODout3 (#17), with lags = (0-21).
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CODout3_F3 (#20), with lags = (0-21).

Typpi3 (#10):
Typpi3 (#10), with lags = (0-2).

Lkuorma3 (#11):
CODin (#2), with lags = (0).
Lkuorma3 (#11), with lags = (0-1).

Fkuorma3 (#12):
Fkuorma3 (#12), with lags = (0-1).

Kiertol3 (#13):
Kiertol3 (#13), with lags = (0).

Lika3 (#14):
Lika3 (#14), with lags = (0-7).

LiukP3 (#15):
LiukP3 (#15), with lags = (0-2).
LiukP3_F3 (#18), with lags = (1-5).

JSsak3 (#16):
JSsak3 (#16), with lags = (0-2).
JSsak3_F3 (#19), with lags = (1-5).

CODout3 (#17):
Lieind3 (#9), with lags = (0-7).
CODout3 (#17), with lags = (0-19).
CODout3_F3 (#20), with lags = (0-21).

LiukP3_F3 (#18):
LiukP3_F3 (#18), with lags = (0-2).

JSsak3_F3 (#19):
JSsak3_F3 (#19), with lags = (0-2).

CODout3_F3 (#20):
Lieind3 (#9), with lags = (0-5).
CODout3 (#17), with lags = (0-15).
CODout3_F3 (#20), with lags = (0-18).
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Appendix D: Statistical independency detection results

Figure D.1 Statistical independency plotshowing the detected independencies on the
given risk level

Listing D.1 Statistical dependency report for given variables with threshold <= 0.0010.

Lampo (#1):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-10).
PK3osuus (#3), with lags = (0-7, 9-20).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-8, 11).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-8, 11-18).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-21).
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CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-21).
CODout3_F3 (#20), with lags = (0-21).

CODin (#2):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-8, 16-17).
PK3osuus (#3), with lags = (0-11, 14-15).
Virta3 (#4), with lags = (0-4, 13, 16-17).
Sakeus3 (#5), with lags = (17, 21).
LieteP3 (#6), with lags = (5-6, 13, 19-21).
Happi3 (#7), with lags = (0-7, 14, 18-19, 21).
Happi4 (#8), with lags = (0-3, 9-18, 21).
Lieind3 (#9), with lags = (0-6, 16-17, 19-21).
Typpi3 (#10), with lags = (0-2).
Lkuorma3 (#11), with lags = (0-3, 20).
Fkuorma3 (#12), with lags = (0-16).
Kiertol3 (#13), with lags = (0-1).
Lika3 (#14), with lags = (0-11, 15).
LiukP3 (#15), with lags = (0-4, 6, 19).
JSsak3 (#16), with lags = (0-1, 5, 14, 17-21).
CODout3 (#17), with lags = (0-5, 7-21).
LiukP3_F3 (#18), with lags = (0-7, 9).
JSsak3_F3 (#19), with lags = (2-4, 8, 17, 20-21).
CODout3_F3 (#20), with lags = (0-8, 10-21).

PK3osuus (#3):
Lampo (#1), with lags = (0-4, 14-18).
CODin (#2), with lags = (0-9, 11, 18-19).
PK3osuus (#3), with lags = (0-12, 16).
Virta3 (#4), with lags = (0-4, 15).
LieteP3 (#6), with lags = (7-12).
Happi3 (#7), with lags = (0-4, 6-7, 19).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0).
Lkuorma3 (#11), with lags = (0-1, 5, 17).
Fkuorma3 (#12), with lags = (0-13).
Kiertol3 (#13), with lags = (0, 11, 14).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (18).
JSsak3 (#16), with lags = (0-2, 16-21).
CODout3 (#17), with lags = (0-7, 9-21).
LiukP3_F3 (#18), with lags = (2, 21).
JSsak3_F3 (#19), with lags = (2-5, 19-21).
CODout3_F3 (#20), with lags = (0-10, 12-21).

Virta3 (#4):
Lampo (#1), with lags = (0-21).



 MODUS-project
 WasteWater Case Study

Abnormality detection using SOM modeling 1.1-1

VTT Information Technology  Modified on  18.12.0142

CODin (#2), with lags = (0-4, 6).
PK3osuus (#3), with lags = (0-4, 6).
Virta3 (#4), with lags = (0-17, 19, 21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-5).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-4, 6-21).
Lkuorma3 (#11), with lags = (0-5, 10-11, 16-17).
Fkuorma3 (#12), with lags = (0-20).
Kiertol3 (#13), with lags = (5).
Lika3 (#14), with lags = (0-5, 13-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-4, 7, 11-15, 17-18).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (3-7, 10, 14-18, 20-21).
CODout3_F3 (#20), with lags = (0-21).

Sakeus3 (#5):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (11-21).
PK3osuus (#3), with lags = (13-16).
Virta3 (#4), with lags = (0-18).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-4, 8-21).
Happi3 (#7), with lags = (0-7, 13-21).
Happi4 (#8), with lags = (0-11, 13-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-5, 9-11, 13-21).
Lkuorma3 (#11), with lags = (0-20).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0, 2-21).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (8-15, 18-20).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-1, 11-18, 21).
CODout3_F3 (#20), with lags = (0-21).

LieteP3 (#6):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (9, 13-21).
PK3osuus (#3), with lags = (11-13, 19-21).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
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Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-1, 4-5, 12, 15, 19-20).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0, 8-13).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0, 12-18, 21).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-1, 3, 15-21).
CODout3_F3 (#20), with lags = (0-21).

Happi3 (#7):
Lampo (#1), with lags = (0-5, 8, 16, 18).
CODin (#2), with lags = (0-5, 16).
PK3osuus (#3), with lags = (0-1, 5, 8-9, 15).
Virta3 (#4), with lags = (0-4, 8).
Sakeus3 (#5), with lags = (0-14, 16-17).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-7).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-15, 19-21).
Lkuorma3 (#11), with lags = (0-4, 20-21).
Fkuorma3 (#12), with lags = (0-21).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0, 14-17, 21).
JSsak3 (#16), with lags = (0, 5, 7, 11-19).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-3, 17-20).
JSsak3_F3 (#19), with lags = (1-3, 8, 10, 14-21).
CODout3_F3 (#20), with lags = (0-21).

Happi4 (#8):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-18).
PK3osuus (#3), with lags = (0-21).
Virta3 (#4), with lags = (0-7, 14-21).
Sakeus3 (#5), with lags = (0-3, 7-8, 15-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-11, 14, 18-21).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-8, 15-18, 20).
Lika3 (#14), with lags = (0-21).
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LiukP3 (#15), with lags = (0, 9, 14-19).
JSsak3 (#16), with lags = (0-2, 14-18).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-3, 12, 17-21).
JSsak3_F3 (#19), with lags = (0-5, 17-21).
CODout3_F3 (#20), with lags = (0-21).

Lieind3 (#9):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-21).
PK3osuus (#3), with lags = (0-21).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-15, 17-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (3, 5, 16-20).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-21).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-14, 16-21).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-17, 19-21).
CODout3_F3 (#20), with lags = (0-21).

Typpi3 (#10):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-4, 11-13, 15-17).
PK3osuus (#3), with lags = (0-1, 14-18, 21).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-19, 21).
LieteP3 (#6), with lags = (0-12, 14-19, 21).
Happi3 (#7), with lags = (0-19).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-4, 6-16, 19-21).
Fkuorma3 (#12), with lags = (0-19).
Kiertol3 (#13), with lags = (0-14).
Lika3 (#14), with lags = (1-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0, 2, 21).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-3, 5).
CODout3_F3 (#20), with lags = (0-21).
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Lkuorma3 (#11):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-7, 14-20).
PK3osuus (#3), with lags = (0-1, 6, 8, 11-12, 15-18).
Virta3 (#4), with lags = (0-3, 7, 14-15, 18-21).
Sakeus3 (#5), with lags = (0-10, 16, 18).
LieteP3 (#6), with lags = (0-4).
Happi3 (#7), with lags = (0-3, 6, 8, 11, 15-21).
Happi4 (#8), with lags = (0-11, 16-21).
Lieind3 (#9), with lags = (4, 7-14).
Typpi3 (#10), with lags = (0, 2-4, 13).
Lkuorma3 (#11), with lags = (0-10).
Fkuorma3 (#12), with lags = (0-12, 15-16, 18).
Kiertol3 (#13), with lags = (0-16).
Lika3 (#14), with lags = (0-13, 15-21).
LiukP3 (#15), with lags = (0-1, 14-18).
JSsak3 (#16), with lags = (0).
CODout3 (#17), with lags = (0-5, 11-21).
LiukP3_F3 (#18), with lags = (0-4, 17-21).
JSsak3_F3 (#19), with lags = (2-3).
CODout3_F3 (#20), with lags = (0-8, 14-21).

Fkuorma3 (#12):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-18).
PK3osuus (#3), with lags = (0-4, 6-9, 17-19).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-10, 13-17).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-7, 11-16, 18-21).
Happi4 (#8), with lags = (0-6, 9-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-6, 8-12, 18-20).
Lkuorma3 (#11), with lags = (0-7, 14).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-9, 12-14).
Lika3 (#14), with lags = (0, 2-21).
LiukP3 (#15), with lags = (0-11, 13-16, 18-21).
JSsak3 (#16), with lags = (0, 13-17).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-14, 16-19, 21).
JSsak3_F3 (#19), with lags = (0-3, 16-20).
CODout3_F3 (#20), with lags = (0-21).

Kiertol3 (#13):
Lampo (#1), with lags = (0-11, 13).
CODin (#2), with lags = (0-8).
PK3osuus (#3), with lags = (0, 2, 10).
Virta3 (#4), with lags = (14-21).
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Sakeus3 (#5), with lags = (0-8).
LieteP3 (#6), with lags = (0-3, 5-6, 16-19, 21).
Happi3 (#7), with lags = (2-6).
Happi4 (#8), with lags = (0-1, 4-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-3, 16-17).
Lkuorma3 (#11), with lags = (0-3, 16-17, 19).
Fkuorma3 (#12), with lags = (0-4, 7).
Kiertol3 (#13), with lags = (0-5, 9-10).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-2).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-5).
CODout3_F3 (#20), with lags = (0-21).

Lika3 (#14):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-10, 19).
PK3osuus (#3), with lags = (0-21).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (1-13, 18-21).
Lkuorma3 (#11), with lags = (0-14, 16-21).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-17).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-21).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-21).
CODout3_F3 (#20), with lags = (0-21).

LiukP3 (#15):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-3).
PK3osuus (#3), with lags = (1, 16).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-16).
Happi3 (#7), with lags = (0-3, 10-11, 19).
Happi4 (#8), with lags = (0-5, 17-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-8, 13-21).
Lkuorma3 (#11), with lags = (0-7).
Fkuorma3 (#12), with lags = (0-19).
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Kiertol3 (#13), with lags = (0-9, 11-12).
Lika3 (#14), with lags = (0-12, 14-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-2, 4-6, 10-19, 21).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-5, 7-9, 13-21).
CODout3_F3 (#20), with lags = (0-21).

JSsak3 (#16):
Lampo (#1), with lags = (0-6, 8-21).
CODin (#2), with lags = (0-1, 10-11, 15-19).
PK3osuus (#3), with lags = (0-1).
Virta3 (#4), with lags = (0, 9-16).
Sakeus3 (#5), with lags = (2-6, 8-11).
LieteP3 (#6), with lags = (0, 2-21).
Happi3 (#7), with lags = (0-2, 15).
Happi4 (#8), with lags = (0-5, 14).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-3, 6, 10-11, 17-21).
Lkuorma3 (#11), with lags = (0-1, 11-13).
Fkuorma3 (#12), with lags = (0-3, 6, 10-13, 19-21).
Kiertol3 (#13), with lags = (4, 12-19, 21).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-2, 4, 14-16).
JSsak3 (#16), with lags = (0-21).
CODout3 (#17), with lags = (6-7, 11-12, 15-21).
LiukP3_F3 (#18), with lags = (0-5, 7, 17-19).
JSsak3_F3 (#19), with lags = (0-21).
CODout3_F3 (#20), with lags = (9-10, 14-15, 18-21).

CODout3 (#17):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-21).
PK3osuus (#3), with lags = (0-21).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-10, 12-21).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-21).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (17, 20).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
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JSsak3_F3 (#19), with lags = (20).
CODout3_F3 (#20), with lags = (0-21).

LiukP3_F3 (#18):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-1).
PK3osuus (#3), with lags = (13).
Virta3 (#4), with lags = (0-21).
Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-12, 21).
Happi3 (#7), with lags = (0, 7-9, 12, 14, 16-17).
Happi4 (#8), with lags = (0-1, 14-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-5, 10-21).
Lkuorma3 (#11), with lags = (0-4).
Fkuorma3 (#12), with lags = (0-19).
Kiertol3 (#13), with lags = (0-6, 8-9).
Lika3 (#14), with lags = (0-10, 12-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (0-1, 8-16).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (0-4, 11-19).
CODout3_F3 (#20), with lags = (0-21).

JSsak3_F3 (#19):
Lampo (#1), with lags = (0-3, 5-21).
CODin (#2), with lags = (6-8, 13-16).
Virta3 (#4), with lags = (5-13).
Sakeus3 (#5), with lags = (0-3, 5-8).
LieteP3 (#6), with lags = (0-21).
Happi4 (#8), with lags = (0-2, 11).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-1, 3, 7-9, 14-17, 21).
Lkuorma3 (#11), with lags = (8-10, 20-21).
Fkuorma3 (#12), with lags = (0, 7-10, 16-19, 21).
Kiertol3 (#13), with lags = (1, 3, 7, 9-16, 18).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-1, 11-13, 20-21).
JSsak3 (#16), with lags = (0-16, 18-19).
CODout3 (#17), with lags = (3, 6, 12-21).
LiukP3_F3 (#18), with lags = (0-4, 14-16).
JSsak3_F3 (#19), with lags = (0-19, 21).
CODout3_F3 (#20), with lags = (6, 9, 15-21).

CODout3_F3 (#20):
Lampo (#1), with lags = (0-21).
CODin (#2), with lags = (0-21).
PK3osuus (#3), with lags = (0-21).
Virta3 (#4), with lags = (0-21).
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Sakeus3 (#5), with lags = (0-21).
LieteP3 (#6), with lags = (0-21).
Happi3 (#7), with lags = (0-21).
Happi4 (#8), with lags = (0-21).
Lieind3 (#9), with lags = (0-21).
Typpi3 (#10), with lags = (0-21).
Lkuorma3 (#11), with lags = (0-7, 11-21).
Fkuorma3 (#12), with lags = (0-21).
Kiertol3 (#13), with lags = (0-6, 9-18).
Lika3 (#14), with lags = (0-21).
LiukP3 (#15), with lags = (0-21).
JSsak3 (#16), with lags = (14-15, 17, 19-20).
CODout3 (#17), with lags = (0-21).
LiukP3_F3 (#18), with lags = (0-21).
JSsak3_F3 (#19), with lags = (17-18, 20).
CODout3_F3 (#20), with lags = (0-21).


