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GPS Schedulers and Gaussian Traffic
Petteri Mannersalo, Ilkka Norros

Abstract— This article considers Gaussian flows which are fed
into a GPS (Generalized Processor Sharing) scheduler. The system
is analyzed using a most probable path approach. This method
gives quite good approximations for performance measures, like
queue length distributions in the full range of queue levels. The
approximations are based on the distinction whether it is more
probable that an aggregated queue consists of traffic from one
class only or whether it is a combination of several classes. The
approximate queue length distribution for a specific flow is then
calculated either using the Empty Buffer Approximation or the
authors’ Rough Full Link Approximation, respectively.

I. INTRODUCTION

TRAFFIC carried in a modern network is extremely com-
plex and flows are usually controlled by feedback loops.

Thus it is often fruitless — and also impossible — to use tradi-
tional performance analysis of simple queues. When observing
aggregated traffic (aggregation both in time and in number of
flows), Gaussian character seems to be always appearing when
the level of aggregation is large enough [1]. The reason for that
is, of course, the Central Limit Theorem which guarantees that
summing independent variables with finite variance is going to
converge to a Gaussian random variable.

The amount of aggregation which is needed in order to ac-
cept the Gaussian assumption varies a lot depending on the spe-
cific network environment. The appearance of Gaussian distri-
butions is seen clearly in access networks, like modem pools,
where access lines have limited capacities [2]. On the other
hand, in Differentiated Services networks, traffic management
operations are performed only on the level of traffic aggregates,
not for individual flows (see e.g. [3]). Gaussian models might
be justified in these both cases.

Service guarantees are playing an ever increasing role. This
calls for traffic differentiation. A basic mechanism for differ-
entiation is priority. Besides total precedence of one class be-
fore another, there are softer variants like drop precedences and
guaranteed minimal throughput for each class. The General-
ized processor sharing (GPS) discipline is a theoretical model
which isolates traffic flows and provides service differentiation.
Both deterministic and stochastic bounds (see e.g. [4], [5], [6])
have been derived for GPS systems. Moreover, large deviation
based approaches have been used to found asymptotical decay
rates of different performance measures (see e.g. [7], [8], [9],
[10], [11]).

The requirement that incoming traffic is infinitely divisible
makes the GPS scheduling policy unrealistic. However, there
are many practical implementations for packetized traffic (e.g.,
packet by packet GPS and virtual clock scheduling). Usually,
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the difference between a real-life implementation and the the-
oretical GPS is not very large. For the packet-by-packet GPS
schedulers, for example, it is easy to show that the extra delay
due to indivisibility of packets is never larger than the server
time of maximum sized packet served at the full server rate (see
[4], [12]).

This paper is a continuation to a series of studies on queues
with Gaussian input. The first papers studied a queue with frac-
tional Brownian motion (FBM) input through a trivial lower
bound in [13] and applying the generalized Schilder’s theorem
in [14]. The latter approach was extended to ordinary queues
with general Gaussian input in [15], [16], and further to prior-
ity queues in [17]. Here we apply a similar machinery to queues
served by a GPS scheduler.

Our main goal is to introduce approximations based on the
most probable paths for the queue length distributions of a
Gaussian GPS queueuing system. Moreover, we try to em-
phasize that this approach is easily implemented as an expert
tool which can be used in dimensioning without comprehen-
sive knowledge of the mathematics of Gaussian processes. As
a by-product of the examples, we show that the simple-minded
mean rate based resource sharing does not work with Gaussian
traffic.

The paper is structured as follows. GPS schedulers, Gaus-
sian traffic and the most probable paths are defined in Section
II. Approximations of the queue length distributions are intro-
duced in Section III. In Section IV, we show how the most
probable path approach can be applied in a specific GPS exam-
ple. Finally, some conclusions are drawn in Section V.

II. GPS QUEUEING SYSTEM

A. GPS scheduler

Generalized Processor Sharing is a work-conserving sched-
uling discipline defined under the assumption that sources are
described by fluid models. We consider k input classes sharing
a common server of capacity c. For each flow i = 1, . . . , k,
a guaranteed server rate µic is assigned. We assume µi > 0,
i = 1, . . . , k, and

k∑
i=i

µi = 1.

Let S{i}(s, t) be the amount class i traffic served in a time
interval [s, t]. Formally, the GPS scheduler guarantee can be
written as follows (see [4]):

S{i}(s, t)
S{j}(s, t)

≥ µi

µj
j = 1, . . . , k (1)

for all classes i which are backlogged throughout the interval
[s, t].
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B. Gaussian input traffic and queueing

Denote the cumulative arrival process of class i by A{i} =
{A{i}

t }t∈IR and the amount of class i arriving traffic in an in-
terval (s, t] by A{i}(s, t) = A

{i}
t −A

{i}
s . For the superposition

of classes i and j we write A
{i,j}
t = A

{i}
t +A

{j}
t , and the total

input is denoted as At =
∑k

i=1 A
{i}
t .

Assume that the arrival processes A{i} are independent con-
tinuous Gaussian processes with stationary increments. These
processes can be parameterized as

A
{i}
t = mit+ Z

{i}
t ,

where mi is the mean input rate and Z{i} is a centered con-
tinuous Gaussian process with variance vi(t) = VarZ{i}

t and
(necessarily continuous) covariance function

Γi(s, t) = Cov(Z{i}
s , Z

{i}
t ) =

1
2
(vi(s) + vi(t)− vi(s− t)).

Remark: From the point of view of queueing theory, the as-
sumption of Gaussian input is never fully acceptable. There is
always a positive probability of negative input, which is non-
sense from practical point of view and destroys many classical
arguments on the theoretical side.

An elegant definition which results in positive queue length
processes even in the Gaussian case was given by Massoulie
[11]. In a GPS system with unlimited buffers, the queue of
class i, Q{i}

t , and the total queue Qt =
∑k

i=1 Q
{i}
t satisfy

Q
{i}
t = sup

s≤t
(A{i}(s, t)− µicT (s, t)) (2)

Qt = sup
s≤t

(
k∑

i=1

A{i}(s, t)− c(t− s)), (3)

where T (s, t) = Tt − Ts and Tt is a non-decreasing stochas-
tic process with T0 ≡ 0. Thus, µicT (s, t) presents in a sense
the amount of potential service for each class i in time in-
terval (s, t]. If all the classes are queueing on interval [s, t],
then T (s, t) = t − s, i.e., everyone gets exactly its guaran-
teed service. Otherwise, we require that T (s, t) ≥ (t − s)
and its role is to redistribute the excess capacity. Note that a
negative input is considered as an extra service capacity. The
equations (2) and (3) uniquely define the k + 1 queueing pro-
cesses Q{1}, . . . , Q{k}, Q (see [11]). In order to define the
time change T uniquely, one should add an extra condition,
like T being the smallest process satisfying (2) and (3) with
T (s, t) ≥ t− s.

It is easy to show that these equations define a GPS queueing
system, i.e., if processes Q{1}, . . . , Q{k} satisfy equations (2)
and (3), then the corresponding input processes A{1}, . . . , A{k}

are served according to the GPS policy: If the queue of class
i traffic is non-empty throughout interval [s, t], then the total
amount of service it gets during that period is S{i}(s, t) =
µicT (s, t). On the other hand, this same number is the max-
imum service a class could get; backlogged or not. Thus we get
inequality (1). Equation (3) takes care of the work conservation.

If input traffic of some class has a continuous rate process,
i.e., it is differentiable, and its rate is smaller than the guaran-
teed minimum rate, then it should not queue at all. This is one

of the principal results for GPS queues and has been proved
long ago. However, in order to demonstrate the power of the
Massoulie’s definition and to show that a negative input does
not cause problems, we decided to write a proof.

Lemma 1: Consider the queueuing system defined by (2) and
(3). If a input process A

{i}
t is differentiable, d

dtA
{i}
t ≤ µic on

some interval [t1, t2], and Q
{i}
t1 = 0, then Q

{i}
t = 0 for all

t ∈ [t1, t2].
Proof: By the assumption

A{i}(s, t)
t− s

≤ µic if t1 ≤ s ≤ t ≤ t2.

Since T (s, t) ≥ t−s and Q
{i}
t1 = 0, we have for any t ∈ [t1, t2]

Q
{i}
t = sup

t1≤s≤t

(
A{i}(s, t)− µicT (s, t)

)

= sup
t1≤s≤t

(
(t− s)

A{i}(s, t)
t− s

− µicT (s, t)
)

≤ µic sup
t1≤s≤t

((t− s)− T (s, t)) = 0.

Gaussian processes with stationary increments are not
smooth if limt→0 v(t)/t2 = ∞. For example, realizations of
fractional Brownian motion are almost surely nowhere differ-
entiable. On the other hand, the most probable paths (defined
in the next subsection) are usually differentiable almost every-
where.

In teletraffic, the fractional Brownian motion model (see
[18]) has formed a focus of study for a while. But there is no
need to restrict to that small class of Gaussian processes. By
similar arguments as in [17], it can be shown that any Gaussian
process with stationary increments whose variance function sat-
isfies the asymptotic condition (4) below is feasible.

Proposition 1: Storage processes Q{i}, i = 1, . . . , k, are fi-
nite almost surely if

∑k
i=1 mi < c and there exists α < 2 such

that

lim
t→∞

vi(t)
tα

= 0, i = 1, . . . , k. (4)

Remark: An arbitrary function satisfying condition (4) is not
necessarily a valid variance function for a Gaussian process;
the corresponding covariance function must be positively semi-
definite.

C. Most probable paths and large deviations

A large deviation principle for Gaussian measures in Ba-
nach space is given by the generalized Schilder’s theorem (Ba-
hadur and Zabell [19], see also [20], [21]). Its use to the study
of queueing systems was introduced in the case of fractional
Brownian motion in [14] and extended to arbitrary Gaussian
traffic in [15], [16] and to priority queues in [17]. The present
paper applies it to processor sharing schedulers.

Let us consider a Banach space

Ω = {ω : ω is continuous IR → IR, ω(0) = 0,

lim
t→∞

ω(t)
1 + |t| = lim

t→−∞
ω(t)
1 + |t| = 0

}
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equipped with a norm

‖ω‖Ω = sup
{

ω(t)
1 + |t| : t ∈ IR

}
.

Let P be the unique probability measure on the Borel
sets of Ωk = Ω × · · · × Ω such that random variables
Z

{i}
t (ω1, . . . ωk) = ωi(t) form independent centered Gaus-

sian processes with covariance functions Γi(·, ·). Condition (4)
guarantees that limt→±∞ Z

{i}
t /|t| → 0 a.s. – see [16].

Furthermore, let R be the reproducing kernel Hilbert space of
Z = (Z{1}, . . . , Z{k}) (for more information about reproduc-
ing kernel Hilbert spaces see e.g. [22]). In our case of indepen-
dent processes Z{i}, R is a Hilbert space spanned by the covari-
ance functions (Γ1(t1, ·), . . . ,Γn(tk, ·)), ti ∈ IR, and having
the properties

〈(Γ1(t1, ·), . . . ,Γk(tk, ·)), (Γ1(s1, ·), . . . ,Γk(sk, ·))〉R
= Γ1(t1, s1) + . . .+ Γk(tk, sk).

and

〈(f1, . . . , fk), (Γ1(t1, ·), . . . ,Γk(tk, ·))〉R
= (f1(t1), . . . , f2(tk))

for all (f1, . . . , fk) ∈ R.
Theorem 1: (Generalized Schilder’s Theorem) The function

I : Ωk → IR ∪ {∞},

I(ω) =
{

1
2‖ω‖2

R, if ω ∈ R,
∞, otherwise,

is a good rate function for the centered Gaussian measure P ,
and P satisfies the large deviation principle:

for F closed in Ωk :

lim sup
k→∞

1
k
log P

(
Z√
k
∈ F

)
≤ − inf

ω∈F
I(ω);

for G open in Ωk :

lim inf
k→∞

1
k
log P

(
Z√
k
∈ G

)
≥ − inf

ω∈G
I(ω).

One often distinguishes between two kinds of large devia-
tion asymptotic regimes for queueing systems. In “large buffer”
asymptotics one studies the probability that a very large buffer
level is exceeded: P(Q > x), x → ∞. In “many sources”
asymptotics, one lets the input be a superposition of n indepen-
dent, identically distributed streams, and multiplies the server
capacity c and the considered buffer level x by n as well. Our
asymptotics are of the latter type, as seen in the next lemma.

Lemma 2: (Many source LDP) Consider a GPS queue de-
fined by (2) and (3) but replace the input process vector by a
superposition of n i.i.d. copies of (A{1}, . . . , A{k}) and server
capacity c by nc. Denote the corresponding class-wise queue
length process vectors by (Q(1,n), . . . , Q(k,n)). Then, for any
n,

P
(
Q

(1,n)
0 ≥ nx1, . . . , Q

(k,n)
0 ≥ nxk

)
= P

(
Z√
n
∈ B

)
,

where
B =

{
Q

{1}
0 ≥ x1, . . . , Q

{k}
0 ≥ xk

}
.

Proof: Note first that in our Gaussian case we can equiv-
alently use

√
nZt + nt(m1, . . . ,mk) as the input process. The

result is then seen by writing the implicit queueing process def-
initions (2) and (3), and dividing by n.

The essential problem is to find a path ω that minimizes I(ω)
in a given set. We call it the most probable path in that set. In
most cases of interest, the most probable path is unique. Iden-
tifying most probable paths is interesting with its own rights
— it is like “seeing what really happens” when the rare event
occurs. For ordinary queues, this has mainly heuristic value,
but we shall see that finding these paths has an essential role in
choosing a good approximation in the case of GPS queues. Fur-
ther, it is shown in [15], [16] by examples of ordinary queues
that the large deviation estimate is often a reasonable approxi-
mation for the whole queue length distribution, not only for the
tail behavior.

Definition 1: Let E ⊂ Ωk be a set. A most probable path
ωE ∈ E (closure of E) satisfies I(ωE) ≤ I(ω), ∀ω ∈ E,
and the corresponding basic approximation is given by P(E) ≈
e−I(ωE).

Remark: The most probable paths correspond to the most
probable paths of centered Gaussian processes! The determin-
istic trends mit must be added afterwards.

III. APPROXIMATIONS FOR THE QUEUE LENGTH

DISTRIBUTIONS

A. Aggregated queue

In this paper, we consider sets of the form E = {Q{i}
0 ≥ x},

that is, threshold exceedance events. The simplest problem is
to find the most probable class-wise paths for which the total
queue exceeds a value x. Since a superposition of independent
Gaussian processes is still a Gaussian process, this problem can
be reduced to a FIFO queue and the class-wise paths are the
only extra information we are seeking here compared to [15],
[16].

Proposition 2: The most probable path vectors in the set
{Q{1,...,k}

0 ≥ x} have the form

f∗
x(·) = −x+ (c−∑k

i=1 mi)(−tx)∑k
i=1 vi(tx)

(Γ1(tx, ·), . . . ,Γk(tx, ·)),

where tx < 0 is the value of t which minimizes

h(t) =
(x+ (c−∑k

i=1 mi)(−t))2∑k
i=1 vi(t)

. (5)

If vi is differentiable, then the minimizing problem is equivalent
to finding solutions of

∑k
i=1 vi(t)∑k
i=1 v

′
i(t)

=
1
2

(
t− x

c−∑k
i=1 mi

)
.

Proof: Note that{
Q

{1,...,k}
0 ≥ x

}
=
⋃

t≤0

{
A{1,...,k}(t, 0)− c(0− t) ≥ x

}
=
⋃

t≤0

{
Z{1,...,k}(t, 0) + (c−m)t ≥ x

}
,
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and, by the reproducing kernel property,

f ∈
{
Z{1,...,k}(t, 0) ≥ x− (c−m)t

}
∩R ⇔

f ∈ R, f1(t) + · · ·+ fk(t) ≤ −x+ (c−m)t ⇔
〈f, (Γ1(t, ·), . . . ,Γk(t, ·)〉R ≤ −x+ (c−m)t.

Thus, the problem reduces to minimizing the Hilbert norm
when the inner product with a fixed element is given, and the
solution is a proper multiple of that element. It remains to min-
imize the norm of

−x− (c−m)t∑
vi(t)

(Γ1(t, ·), . . . ,Γk(t, ·))

with respect to t.
A lower bound for the aggregated queue distribution can be

derived using the 1-dimensional normal distribution:

P
(
Q

{1,...,k}
0 ≥ x

)

≥ P

(
A

{1,...,k}
−tx

≥ x− (c−
k∑

i=1

mi)tx

)

= Φ


x− (c−∑k

i=1 mi)tx√∑k
i=1 vi(tx)


 , (6)

where tx < 0 is again the value of t which minimizes (5).

B. Class 1 queue

Consider next the queueing process of class 1. Since classes
have a symmetric role in a GPS queue, this restricts nothing.

Let f∗
x be the most probable path vector in the set

{Q{1,...,k}
0 ≥ x} given by Proposition 2. There are two dif-

ferent ways how the class 1 queue can build up.
Case 1:

Q
{2,...,k}
0 (f∗

x) = 0

(implying that Q{1}
0 (f∗

x) ≥ x). Then the combined queue
equals the queue of class 1, and it follows that this path is
also the most probable one to achieve level x in the class
1 queue alone. (This is equivalent to the “Empty buffer
approximation” introduced by Berger and Whitt in [23],
[24].)
Case 2:

Q
{1}
0 (f∗

x) < x.

The situation is more difficult, and the most probable paths
remain unknown, except for the 2 class Brownian case dis-
cussed in the next example.

Note that no more than one class can belong to Case 1 at a time.
Example 1: If a GPS queue has two independent Brownian

motions as input, i.e., vi(t) = Cit, with Ci constant, i = 1, 2,
and the parameters are such that the system belongs to Case
2, then it can be shown that the most probable paths in the set
{Q{1}

0 ≥ x} satisfy the following:
• Class 1: f{1}(tx, 0) = x+ (µ1c−m1)(−tx)
• Class 2: d

dtf
{2}
t = µ2c if t ∈ (tx, 0), i.e., the input rate of

class 2 is exactly its guaranteed rate.

• tx < 0 is the optimal time under the previous conditions.
Motivated by the Brownian example, it might be reasonable

to use an approximation where the other classes do not queue
at all, albeit they use their reserved capacity fully (Full Link
Approximation). Unfortunately, this is usually uncomputable
too. Thus we suggest to relax the exact rate demand and replace
it by a condition for the total amount of traffic offered (Rough
Full Link Approximation).

Definition 2: The Rough Full Link Approximation (RFLA)
for a GPS queue with two input classes. During [t, 0], t < 0,

• class 1 offers in total the amount x + µ1c|t| of traffic:
A{1}(t, 0) = x+ µ1c|t|,

• class 2 offers in total the amount µ2c|t| of traffic:
A{2}(t, 0) = µ2c|t|,

• [tx, 0] is the most probable interval under the above condi-
tions.

In principle, the idea above could be extended to a larger
number of classes, but the details would be much more compli-
cated and, moreover, the heuristic probability estimates would
be less reliable.

It is an easy Hilbert space exercise to determine the most
probable paths in RFLA.

Proposition 3: The most probable paths satisfying the RFLA
conditions are of the form

f{1}
x (·) =

( −x+(µ1c−m1)tx

v1(tx) Γ1(tx, ·)
(µ2c−m2)tx

v2(tx) Γ2(tx, ·)

)

where tx < 0 is the value of t which minimizes the expression

g1(t) =
(x− (µ1c−m1)t)

2

v2(t)
+

(µ2c−m2)2t2

v2(t)
Proof: If (f1, f2) ∈ R and they satisfy the RFLA condi-

tions, then by the reproducing kernel property

〈f1,Γ1(t, ·)〉R1 = f1(t) = (µ1c−m1) t− x

〈f2,Γ(t, ·)〉R2 = f2(t) = (µ2c−m2) t.

Thus, the most probable path must be of the form(
f1(t)
v1(t)

Γ1(t, ·), f2(t)
v2(t)

Γ2(t, ·)
)
.

Minimizing the R-norm with respect to t concludes the proof.

Now, we have the following approximations for the class 1
queue length distribution:
Case 1: The basic approximation

P
(
Q{1} ≥ x

)
≈ P

(
Q{1,2} ≥ x

)
≈ exp

(
−1

2
h(tx)

)

and the corresponding lower bound (6).
Case 2: The basic approximation

P
(
Q{1} ≥ x

)
≈ P(RFLA(x)) ≈ exp

(
−1

2
g1(tx)

)
.

and a lower bound for the RFLA

P(RFLA(x)) ≥

Φ

(
x− (µ1 −m1)tx√

v1(tx)

)
Φ

(
− (µ2c−m2)tx√

v2(tx)

)
.
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Simulations of many cases indicate that the basic approxi-
mations for the tail distributions may in fact be general up-
per bounds (see Section IV). Unfortunately, no proof of this
is known, not even in the FIFO case.

C. Improving approximations by rescaling

If a system is such that the buffer is empty most of the time
(which is typical for most telecommunication systems), the ba-
sic approximations overestimate quite much. Moreover, if we
compare approximations with empirical distributions from dis-
crete simulations, there is an extra gap because of the discretiza-
tion. A natural approach would be to rescale the basic approx-
imations so that the non-emptiness probabilities P

(
Q{i} > 0

)
are estimated as well as possible.

In [15], [16], upper and lower bounds of P(Q > 0) were
derived in the case of ordinary queues. It was found that a
good approximation for non-priority queues is P(Q > 0) ≈
2P(A∆t > c∆t), where ∆t can be interpreted as a limit, a dis-
cretization step or the smallest time scale to approve a Gaussian
model. The idea of the approximation is that when A∆t > c∆t
then the buffer is non-empty and going up, and since the buffer
is roughly as often non-empty and going down, we multiply the
probability by 2.

Unfortunately, the corresponding approximations are not
known for GPS systems. In order to maintain the (heuristic)
upper bound characteristic of the basic approximations, we con-
sider the following worst-case scenario. Class i queue cannot
be larger than the total queue. On the other hand, class i queue
is always smaller than the queue of a single class system with
input A{i} and server rate µic. Applying the non-emptiness
approximation into these two non-priority queues gives

P
(
Q{i} > 0

)
�

2min

{
Φ

(
(c−∑mj)∆t√∑

vj(∆t)

)
,Φ

(
(µic−mj)∆t√

vi(∆t)

)}

= pi(∆t),

where Φ denotes the complementary normal distribution.
Thus the rescaled basic approximations having approxi-

mately correct non-emptiness probabilities can be written as
follows.
Case 1:

P
(
Q{i} ≥ x

)
≈ pi(∆t) exp

(
−1

2
(h(tx)− lim

x→0
h(tx))

)

Case 2:

P
(
Q{i} ≥ x

)
≈ pi(∆t) exp

(
−1

2
(gi(tx)− lim

x→0
gi(tx))

)
.

IV. EXAMPLE OF A GPS SYSTEM ANALYSIS

In this section, we show how the approach introduced above
can be used to analyze a GPS system. In real-life applications,
one should be able to measure mean rates, validate the Gaussian
assumption and fit proper Gaussian models to each class. How
to perform the two last steps is far from trivial. A preliminary

solution is given in [2]. Here, we start from Gaussian traffic and
do not bother about the practical issues of Gaussian modeling.

In addition to demonstrating the applicability of the perfor-
mance estimates, we want to stress the following important as-
pects of GPS schedulers with Gaussian input that came out in
our study:

• The system is very sensitive; is some regions small
changes of parameters may change performance a lot.

• Mean rate based weight assignments do not usually give
desired results. It is important to take into account the
variance structure carefully.

• Fairness is difficult to obtain/define; one can not assume
similar queueing behavior – not even qualitatively – for
processes which have different types of variances.

A. Input traffic

Let us consider a GPS node serving two independent Gaus-
sian flows which are characterized by mean rates

m1 = m2 = 2

and variance functions

v1(t) = 4(t− 1 + e−t), v2(t) = t
3
2 .

Assume unlimited buffers and the total server rate c = 5. In
this example, class 1 traffic is short-range dependent and class
2 traffic is long-range dependent.

20 40 60 80
t

100

200

300

400

500

600

700

v1(t)

v2(t)

Fig. 1. Variance functions.

The variance functions are shown in Figure 1. The order
of variances depends on the value of t: v1 is larger than v2

on [0.3, 13.8], otherwise v2 majorizes. We should expect that
the very smallest and the largest queues are more likely built
by class 2 traffic, since the larger the variance the “easier” it
is to create bursts. In the intermediate region we have a kind
of mixed situation. Naturally, the GPS weights affect on the
proportion of the classes in the total queue, but qualitatively the
above reasoning should hold for all weight pairs. This can be
seen also in the most probable path approach and simulations
shown in the next subsections.

B. Most probable input rates and storage paths

As already mentioned, the most probable paths leading to
certain total queue level do not depend on the GPS weights at
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Fig. 2. {Q{1,2}
0 ≥ 1}. The most probable input rates, the corresponding total

and class-wise queues.

all. The most probable input rates in {Q{1,2}
0 ≥ 1} and the

aggregated queue are plotted in Figure 2. On the other hand,
the weights have a strong effect on the queueing behavior of
different classes. The most probable storage paths correspond-
ing to two slightly different weight vectors are also shown in
Figure 2. We see that the most probable storage paths have
changed quite a lot: class 1 dominates the aggregated queue if
µ = (0.50, 0.50), whereas class 2 queue is the larger one if
µ = (0.55, 0.45).
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Fig. 3. The most probable input rates and corresponding queueing processes
in the RFLA for x = 1 and µ = (0.55, 0.45). The dashed lines correspond to
the service guarantees.

Figure 2 shows that both classes belong to Case 2 when x =
1 and µ = (0.55, 0.45) or µ = (0.50, 0.50). Thus, in order to
approximate class-wise tail distributions we have to use RFLA.

The most probable input rates and the corresponding queues in
the RFLA’s for the both classes are shown in Figure 3. The
approximate character of the RFLA conditions is clearly seen
here; the target queue does not usually reach quite the buffer
level x, and, moreover, the other class has often a small queue
left at t = 0.

C. Comparison to simulations

10 20 30 40 50 60 70 80
x1. × 10−6

0.00001

0.0001

0.001

0.01

0.1

1

P(Q{1}>x)

µ1=0.5

10 20 30 40 50 60 70 80
x1. × 10−6

0.00001

0.0001

0.001

0.01

0.1

1

P(Q{1}>x)

µ1=0.5

Fig. 4. Simulation results for the class 1 queue and the corresponding basic
approximations: µ1 = 0.0, 0.1, 0.2, . . . , 1.0. Simulation lengths 223 steps at
resolution 0.125.

In order to check how well the approximations work we com-
pare them with simulations. The Gaussian traces were gener-
ated using an extension of the conditionalized random midpoint
displacement algorithm (RMDmn, see [25]).

First we study the qualitative behavior of the basic approxi-
mations. Let us consider the weights µ1 = 0, 0.1, . . . , 0.9, 1.0.
Note that the pure priorities are included. By examining the
most probable storage paths, we determine which formulae to
apply. The approximations are calculated for buffer lengths
x ∈ [0.5, 80]. Class 1: RFLA if µ1 ≤ 0.5 or µ1 = 0.6 and
x > 25, otherwise the Case 1 approximations. Class 2: RFLA
if µ2 ≤ 0.4 or µ2 = 0.5 and x < 32, otherwise the Case 1
approximations. The simulation results and the corresponding
basic approximations are shows in Figures 4 and 5. The ap-
proximations perform surprisingly well. Only when µ2 = 0.5
the empirical measure and the approximation have a bit differ-
ent flavor, since the RFLA based estimate is indistinguishable
from the total queue estimate.

In Figure 6, we have plotted all the approximations for two
different setups. The empirical values stay well in between our
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Fig. 5. Simulation results for the class 2 queue and the corresponding basic
approximations: µ2 = 0.0, 0.1, 0.2, . . . , 1.0. Simulation lengths were 223

steps at the resolution 0.125.

estimates until the typical drops at the ends, caused by finite-
ness of the simulations. The accuracy is not extremely good in
the sense of closeness between upper and lower estimates, but
certainly sufficient for finding essential differences in the queue
length distributions.

When considering the behavior of Gaussian GPS queues, the
immediate lesson we get from Figures 4 and 5 is that the sys-
tem can be very sensitive with respect to the weights. If the
parameters are such that the class does not belong to Case 1,
small changes may alter its behavior radically. Whereas classes
in Case 1 may need a remarkable increase of the service guar-
antee in order to get better performance.

Another property is that the variances have a great effect on
the performance. In our examples, Class 2 traffic suffers clearly
from the long range dependence. E.g., the mean rate based fair
share of the server, i.e., µ1 = µ2 = 0.5, does not result in fair
queueing as seen in the figures.

How to determine weights fairly? Because of the different
correlation ranges, the queue length distributions are always
qualitatively different. One solution could be to determine the
weights so that the total queue of size x is built equally by
both classes. In Figure 7, it is shown what is the most prob-
able way to build a total queue of size x = 30. If we have
equal weights, the queue consists almost only of Class 2 traffic,
whereas weight pair µ = (0.45, 0.55) results in equal queue
lengths. How does this affect on the queue length distributions?
The only thing that can be said before plotting the approxima-
tions is that the intersection point should be somewhere with
x < 30. In this case, the basic estimates suggest that the inter-
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Fig. 6. Approximations of the queue length distributions. The thick curves are
the empirical distributions from the simulations. The approximations from top
down: the basic approximation, the rescaled version of it and the corresponding
(heuristic) lower bound. The simulation length was 224 steps at the resolution
0.25.
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Fig. 7. The most probable storage paths in {Q{1,2}
0 ≥ 30} for µ = (0.5, 0.5)

and µ = (0.45, 0.55).

section happens around x = 25, which is in accordance with
the results from the simulation (see Figure 8).

V. CONCLUDING REMARKS

We have introduced a most probable path approach which
can be used to analyze GPS schedulers with Gaussian input.
Although the method is computationally quite simple, it gives
crucial information about the behavior of the queueing sys-
tems. Especially, relating queue length distributions with GPS
weights can be done easily with this machinery.

The example we analyzed shows that a GPS system is very
sensitive and a mild modification of the parameters may pro-
duce large changes in the queueing behavior. Moreover, there
are many limitations how fairly the classes can be served. For
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Fig. 8. Approximations of the queue length distributions. The thick curves
are the empirical distributions from the simulation. The approximations from
top down: the basic approximation, rescaled version of it and the correspond-
ing (heuristic) lower bound. In the lowest figure, only the simulations and the
basic approximations are shown. The simulation length 224 was steps at the
resolution 0.25.

example, giving all classes an identical minimum rate guarantee
may effect that the waiting time distributions are totally unfair.

This small study strengthens criticism about using methods
that require fine-tuning of parameters for resource allocations
in Differentiated Services Networks. It will be very hard to
build complex systems with several service classes and to be
still able to give QoS guarantees which can be confirmed. Even
if the traffic characteristics were known exactly, the specifica-
tion of the service parameters can be very difficult. However,
in real networks we can only hope that our models are some-
what near to real traffic, and as shown also in this paper, the
resource allocation systems may be quite unstable. Thus, sim-
ple self-adjusting control schemes, like Kalevi Kilkki’s SIMA
[26], should be taken into consideration when designing future
networks.
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