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1 Introduction

In the pose detection problem, there is a known object, which appears in
an image at an arbitrary distance and orientation from the camera. In this
paper, we only use one camera. With two cameras the problem is greatly
simplified [7]. The problem is calculating these six parameters (figure 1):

e Location of the object in reference to the camera. This gives three
parameters, x, y and z.

e The object’s normal vector @ = (n,,ny,n,). Normal vector needs two
parameters since n, = /1 —nl —nZ.

e Rotation of the object along the axis of its own normal (roll). One
more parameter for a total of six.

Applications of pose detection are numerous. For example, a marker could
be attached to one’s forehead, allowing a camera to track the location and
orientation of the head [8].

In cartography, the known object is the map, and the problem is finding the
current location from landmarks on the image.

Another important class of applications are the augmented reality-type ap-
plications, where virtual objects are added to a real scene. Pose information
is needed for correct registration of real and virtual objects.
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Figure 2: Simple 1D image capturing system
2 Pose Detection in One Dimension

Figure 2 shows a simple example of image capturing in one dimension. The
purpose of the image is to demonstrate, that with one-dimensional marker,
there are multiple solutions. Given an object of known size and ignoring
possible lighting effects, the object could be at an infinite number of locations:
These all project to same image on the CCD. To limit the number of possible
solutions to a finite set, we must use a two-dimensional object (at least three
points).

3 Pose Detection in Two Dimensions

In the following, lower-case roman characters are points in reference to cam-
era. Upper-case roman characters are points in pixel-coordinates (upper-case
X and Y are observables).

Possible two dimensional markers are e.g. square and equilateral triangle.
We will soon find out that three detected points and their relations from
a known object are enough to solve the pose detection problem. Arbitrary
triangles are not possible, since it is impossible to tell which edge is which
from the captured image. All four points are needed in square case; first,
opposing corners are found and then a triangle with known edge lengths
(1,13/2,1) is deduced. Figure 3 shows two different types of markers and how
they might appear in the CCD.

In figure 3, we know that
(1,91, 21) = (22, Y2, 22)

| |
I(xz,yz, 22) - (5E3,y3, Z3)|
|(x3,y3, 23) - (xlayla Z1)|

A
ly
3

where [, = [, = [3 = [ for equilateral triangle and I, = I3 = [,1ls = I\v/?2 for
square marker.
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Figure 3: Equilateral triangle and square markers

The three detected points, (X1,Y7), (X3,Y3), and (X3,Y3) originated from
directions @) = (X1, Y7, f), v = (X5, Y3, f), and U3 = (X3,Y3, f), where f is
the focal length.

Now it is possible to formulate the problem:

|C¥'171 — 5772| = ll
|8 — U] = I . (1)
|’)/773 - &771| = l3

This system of equations has three unknowns, «, /3, and v, and three linearly
independent equations, so it should have exactly one solution. Simplifying
this we get

(06771 — 5'172)2 = l%

(5172 - ’7173)2 = l%

(v — 6“71)2 = 132,
Oé2771 . 171 — 20[5771 . 772 + 52172 Uy = l%
[0y - Uy — 27Ty - U3 + 7203 - U3 = I3
V203 - U3 — 2yl - Uy + &Py - Uy = 13
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we arrive to the canonical format:

a’A —2aD + B =1?
(2B — 2BvE + 7*C = [2
V2C — 2yaF + o?A =12

These three quadratic equations in three unknowns can be compined to yield
one equation with one unknown of the fourth degree. Although fourth de-
gree equation is solvable, the derivation is too complex, and the method of
approximation was used to simplify this equation further.

4 Weak Perspective

Weak perspective transformation consists of scaling followed by orthogonal
projection. Other name for weak perspective is the scaled orthographic trans-
formation. This method takes the perspective between the camera and object
in consideration with the scaling term, but perspective effects inside the ob-
ject are lost. This is a close approximation to perspective transformation, if
the object size is much smaller than the distance from the camera.

The weak perspective formula can be seen as an approximation of the two
dimensional pose detection.

We first show that equation (1) is equivalent to equation (2):

|($1,y1, Zl) - ($2,y2, 22)| =1
(72, Y2, 22) — (73,93, 23)| = la . (2)
|($3ay3723) - ($1,y1,21)| =3

Here x, y, and z are the vertices’ coordinates in reference to the camera,
measured in arbitrary units (cm, mm), and [, lo, and I3 are the lengths of
the edges in the same units.



Equation (2) has nine unknowns, but luckily there is simple relation between
pixel coordinates and camera coordinates. We transform real-world coordi-
nates into pixel coordinates with X; = f%, and Y; = f% Solving for z; and
y; and substituting we get

Zle, 21Y1 21 ) — Z2X2, ZQYQ,Z =1
23X3 23Y3 23) — 21Xy 2y 2| =15
A o r
Now we can take 27 as common factor from all and get
[ [2(X0,0, ) = 20,7, /)| =1
2(X2, Y2, f) — 2(X5, Y5, f)| =1
| |G, Y5, f) = (XN, )| =1

Now, introducing oo = 271, B = 272, and v = z73, we get exactly equation (1).
«, 3, and v were treated as arbitrary variables in equation (1). Through
this derivation we gained some insight to the nature of these variables. This
derivation was also necessary because we can now approximate the weak
perspective formula from equation (2) rather than equation (1).

We start with equation (2) and rewrite it with the equations X; = fZ%,
Y; = f% and Z; = f2:

%(Xb}/lazl) ZTZ(X27YV2722) — ll
272(X2;1/2;Z2) Z73(X37}/Ei723) = l2
z73(X3;1/3;Z3) ZTI(XD}/DZI) = l3

Next comes the clever approximation step. We assume that the object is far
away from the camera, that is, z1, 2, and 23 are large. Further, that object
dimensions, that is, |21 — 23], |22 — 23], and |z3 — 21|, are small compared to
21, 29, and z3. Thus we can assume that z; ~ 2o & 23 = z. This doesn’t get
rid of depth information altogether, since we still have Z;, Z5, and Z3, but
it compresses «, (3, and v under one multiplier. Substituting s = f we get

(X1, Y1, 7)) — (X2, Y2, Zy)| = sl
|(X2, Yo, Z2) - (X3, Y3, Z3)| =sly . (3)
(X3, Y3, Z3) — (X1, Y1, Z1)| = sl

Equation (3) is the weak perspective formula, and an equation which we can
now solve for Z; and s. s contains large scale depth information, and 7;, 25,
and Z3 local depth information. Although Z; were equal to f before, we now
allow them to be take arbitrary values so we don’t lose depth information.
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4.1 Solving the weak perspective equation

Since equations (3) have four unknowns (7, Z5, Z3, s), and only three equa-
tions, we set Z; = 0. We lose absolute distance from the object, but get 7,
and Z3 relative to Z;, which is enough to get pose information:

|(X17}/17 ) (X2;1/2122)| Sll
|(X27}/27ZZ) (X37}/Ei7 3)| - 812 .
|(X37}/37Z3) (Xh}/la )| - Sl3

Raising both sides to second power we get

(X1 —X0)? + (Y7 — V)2 + Z7 = $°13
(Xo = X3)2+ (Yo = Y3)2 + (2o — Z3)? = %15 .
(X3 = X1)2+ (Y3 —Y1)* + ZF = 5°13

Substituting

(X1 —Xo)? + (Y1 - Y5)* =d}
(Xo — X3)? + (Y2 = Y5)> =d3
(X5 — X1)? + (Y3 — Y1)* = d3

we can simplify to get

&2+ 72 = 2
B+ (Zy— Z3)? = 212 .
&4 72 = 522

Expanding and moving all Zs to left hand side we get

222 = (Sl1)2 - d%
73 = (sl3)? — dj

Multiplying first and third equation with —1 and adding to the second equa-

tion yields

—27,73 = —(s11)2+(sly)* = (sl3)? +-d? —da4-d2 = *(—12+12—12)+d> —d2+d>.
(5)

Squaring equation (5) again and using Z, and Z3 from equations (4), we get

4(s0)? = &) [(sL) — &) = [P(-B+B-B) + &~ &3+ &)



ABBs" — Ald3s® — Ald3s® + Adids = s* (=17 + 15 — [5)*+
25° (=17 + Iy — I3)(d} — d3 + d5) + (df — d + d3)?,

which is a fourth degree equation in one unknown, with third and first de-
gree terms missing, that is, bi-quadratic or quartic equation. Collecting all
similars together we get

S8+ 13— 1) = ARB) + 87 [2(=1F + 15 — B)(d} — d3 + dF) + L33 + 413d7] +
[(d — d} + d3)* — 4d7d3] =0,
which can be written as
as* +bs* + ¢ =0,

with

a=(=13+12—12)?— 4132

b=2(—12+13—13)(d? — d}+ d3) + 413d3 + 4l3d3

c=(d? — d3+ d3)? — 4d3d>

This of course has the solutions

2 _ —b £+ Vb? — dac

2a

S

S_i\/—bi\/bZ—élac

2a

Since we raised equations two times to the second power during the deriva-
tion, only one of these four solutions is a solution to the original equation.
From equations (3) we see that if [, lo, and [3 are positive, as they are, then
s must also be positive. Therefore we can replace the first & with a +. Since
we don’t want imaginary solutions, we also pick from the remaining two so-
lutions the one that is real. From experimentation we know that the correct

solution always is
B \/—b —Vb? — 4dac
°= 2a ’
but at this point we don’t have a proof for this.

Now that s has been solved, Z; and Z3 can be solved from equations (4):

Zz =+ (811)2 - d%
Z3 =+ (313)2 - d%

9



From equation (5) we see that Z, and Z3 hold a certain relation. That is, if
s?(=1? +12—12) + d? — d3 + d? is positive, then Z, and Z3 must be oppositely
signed, and if negative, Z, and Z3 must be both positive or both negative.
By introducing helper variable o :

b

—1 Jifs*(-B+B-013)+d—d5+d3>0
o= .
1, otherwise

we can write the Z; as

Zg =0 (Sl1)2 — d% \/ Z2 = —0 (811)2 — d%
Z3 =/ (sl3)? — d3 Zz = —\/(sl3)* = d3 .

These two solutions are the final Z;. Selecting the correct one is not possible
using only weak-perspective information, but we do not have a proof for this
(it just makes sense, if you flip a rectangular marker around the x-axis, it
will look the same, ignoring lighting and perspective effects). This duality
can be removed in practical applications using perspective information, e.g.
checking which edge of a rectangular marker is shorter. Another possibility is
to always choose the other one and require the application to be symmetrical
in respect to these two solutions.

Now we have enough information to solve two degrees of freedom: the direc-
tion of the normal vector of the marker. First we have the two base vectors:

bl - ( 2 D2 D 2) = (b117b217b31)7
VX = X024+ (Y, -2+ 23
and X X, Y--Y,. 7
by = (Xs - Xy ¥s — Wi, %) — (b1, bg, bsy).

VX = X102+ (Vs -2+ 23

These vectors should be at 90 degree angle to each other, in the weak per-
spective model. However, since some perspective is always present, the angle
might not be exactly 90 degrees and could add some error to calculations.

From the two base vectors we can now calculate via the cross product the
third base:
bs = by X by = (by3, o3, b33).

With a complete base,

bll b12 b13
B = b21 b22 b23 )
b31 b32 b33

10



it is now possible to travel in the marker coordinate system with linear com-
binations, and do transformations between image and marker coordinate sys-
tems.

Algorithm 1 shows reference matlab implementation of the pose detection
algorithm.

4.2 Calculating depth information using weak perspec-
tive

Although sometimes it is not required to know the distance of the marker
from the camera, it can be useful. Now that we know 7;, i.e. the marker
depth in image coordinates, we can solve the approximate distance to the
camera in real coordinates quite simply. Of course the distance is an approx-
imation of an approximation, so it is not necessarily very accurate. The only
extra information we need is the focal length of the camera. The distance
from the camera can be solved from the following system of equations:

{ (X2, Yo, f) — a(X3, Y3, f)| = Lo (6)
t-f—q-f=22—273 .
Here L, = s - [y, since we decide to solve the problem in image space first.
Remember that multiplying by s is approximately same as multiplying by f,
that is, it transforms real world coordinates to image coordinates. The first
equation requires that the distance between two principal rays is the same as
the corresponding edge length, and the second requires that the Z difference
is the previously calculated Z difference. Solving ¢ =t — % =t—k, with

k= % from the second equation and substituting to the first we get

t(Xo, Yo, f) — (t = k)(X3, Y3, f)]| = Lo
[t(Xo — X3) + k- X5,t(Ya—Y3) + k- Y5,k f| = Lo

|ta + b, tc + d, e| = Lo,
with
a=X; — Xy
b:kXQ
c=Y—-Y
d=Fk- Y,
e=k-f

11



Algorithm 1 Pose detection reference implementation
tol=1e-3;

% 11 is distance between vertex (X1,Y1) and (X2,Y2) in arbitraty units
(cm,mm). 12 is distance between (X2,Y2) and (X3,Y3), and 13 between
(X3,Y3) and (X1,Y1)

11=1;

12=sqrt(2);

13=1;

% Detected marker vertices from the image are X1,Y1,X2,Y2,X3,Y3. These
demonstrate a marker facing the camera far away at 640x480 resolution
X1=320;Y1=240;

X2=321;Y2-240;

X3=320;Y3=241;

% calculate pose detection

dl=sqrt((X2-X1)"2+(Y2-Y1)"2);

d2=sqrt((X3-X2)"2+(Y3-Y2)"2);

d3=sqrt((X1-X3)"2+(Y1-Y3)"2);

a—(-117212°2-13°2) " 2-4%11~2*13"2;
b=2%(-11°2+12"2-13"2)*(d1°2-d2~2-+d3 " 2)+4*11~ 2*d3" 2+ 4¥13~2%d 1~ 2;
c=(d172-d2"2+d3"2)"2-4*d1°2*d3"2;
s=sqrt((-b-sqrt(b~2-4*a*c))/2/a);

if abs(imag(s))>tol,error('no solution’),end

if $72%(-1172+41272-1372)+d1"2-d2"2+d3"2>0,si—=1;else,si—=1;end

Z2=-si*sqrt((s*11) "~ 2-d1"2);
Z3=-sqrt((s*13)~2-d3"2);

if imag(Z2)>tol | imag(Z3)>tol,error(’no solution’),end
B1=[X2-X1,Y2-Y1,72| /sqrt((X2-X1) "2+ (Y2-Y1) "2+ Z2"2);
B2—[X3-X1,Y3-Y1,Z3] /sqrt((X3-X1) "2+ (Y3-Y1) "2+ Z3"2);
B3=cross(B1,B2)

% B3 is the normal vector of the marker in camera coordinate system

12



Solving this we get a quadratic equation in one variable:

(ta+b)*> + (tc +d)* +e* = L3
t2a® + 2tab + b* + t*¢® + 2ted + d* + €* = L}

t*(a® + ) + 2t(ab + cd) + (b + d* + €* — L3) = 0.

t will once again have two solutions, but only the other is correct. The
correct one can be selected by substituting them to the original equation
(6). After correct ¢ is found, the z depth for the second vertex can be found
with 29 = % Dividing with s transforms image coordinates (approximately)

to world coordinates. z3 can be found with 23 = W z1 can be found
by repeating this procedure e.g. with vertices one and two. The global x

and y coordinates can also be calculated in this manner, i.e. x5 = %, and
Yo = % Now we have solved another three degrees of freedom: global z, ¥,

and z coordinates.

If only average distance to the marker is needed, we can use the relation
s = E and solve for z = f, but this is not distance to any particular vertex.
Instead it is some sort of average.

4.3 Other pose calculation methods

There exists a variety of different methods for pose calculation. Some are
analytic, others iterative. Exact perspective or different simplifications of
perspective can be used. The number of points can be varied. Some al-
gorithms require camera calibration, others don’t. The algorithm presented
above is an analytic Perspective-3-Point (P3P) method with weak perspective
simplication, and doesn’t require camera calibration. An analytic solution
for exact PAP method is presented in [4|. Different P3P, P4P, and PnP al-
gorithms are derived in [10]. Iterative method using Newton’s method to
iterate correct solution is described in [5|. Another iterative method solving
linear system of equations is shown in [9]. A geometrical proof for uniqueness
of pose under weak perspective up to a reflection is shown in [6]. Article [11]
discusses that the distance-based PnP-problem (finding a distance to each
object), is different than the transformation- based PnP-problem (finding
transformation from object to camera coordinates).

13



5 Accuracy

5.1 Pose accuracy

Figure 4 shows results obtained from synthetic accuracy analysis. A camera
system was simulated in matlab to first obtain the projected points on the
simulated CCD. After this, algorithms discussed in previous sections were
used to obtain the direction of the normal vector. After this the angle between
the calculated and real normal vector was calculated in degrees, and plotted
as a function of pitch and roll. Pitch goes from 0 to 90 degrees and Roll from
0 to 360 degrees, but the quadrants are symmetric (flipping of the image)
and therefore roll is plotted from 0 to 90 degrees.

With Pitch=0 and Roll=0, the marker is facing the camera. Then the marker
is rotated Pitch degrees around the x-axis (of the marker), and then Roll
degrees around the normal vector of the marker.

Figures 4a and 4b show that accuracy is only a function of pitch, assuming
infinite resolution. Infinite resolution means that after the virtual marker
was projected on the virtual CCD, no rounding to nearest integer was done.
The average accuracy of figure 4b is about 10 times as much as that of figure
4a. This comes from the fact that in figure 4b the marker is 10 times as far as
in figure 4a. As was discussed before, the algorithm assumes that the marker
is sufficiently far from the camera so that there is no perspective inside the
object. Thus with increased distance we gain more accuracy, if resolution
is not a problem. Same effect can be gained by reducing the size of the
marker to 1 cm. We can also see that when Pitch=0, we always get correct
results. Then, as the pitch is increased, there is a sharp increase in error.
The error maxes around 10 degrees, and then starts to gradually decrease
as the marker is rotated away from the camera. Error is zero again when
the marker is reduced to a line. The figures 4a and 4b show the minimum
possible error. With real world cameras the error must always be larger than
this.

Figure 4c shows how the CCD resolution affects detection error. Now the
marker’s projections on the virtual CCD were rounded to nearest integer,
simulating a real-world camera. The maximum error jumped from figure
4a’s 4.5 degrees to 11.1 degrees, but the average error only showed slight
increase from 2.7 to 3.0. Again we see that error is largest, when the marker
is facing or nearly facing the camera. As the marker is rotated away from the
camera, the error drops fast. The first 20 degrees are the most difficult to
detect correctly, after that it is easier. What we also see in figure 4c is that

14
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lution. Normally distributed error with
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Figure 4: Pose Accuracy



there are spots of zero or near-zero error between the areas of large error.
This can show as irritating ’jitter’ in the detection. I.e. the marker is only
moved a little, but the difference in the pose detection can be much larger.

Figures 4d&e show how uniformly distributed random numbers in the detec-
tion affect the calculation. Figure 4d has +2 pixel error and figure 4e +4
pixel error. The maximum and average errors go up accordingly. The error
is still highest when the marker is facing the camera. We conjecture that this
comes from the fact that if the marker is pitched a little when it is facing
the camera, there will be very little change in the observables, i.e. the vertex
positions. On the other hand when the marker is at over 45 degree angle
to the camera, pitching the marker yields much larger changes in the vertex
positions. Figure 4f has normally distributed error.

Figure 5 shows how CCD resolution affects pose detection. Generally error
goes up as resolution goes down. Figure 5d is exactly the same as 5c¢c. This
demonstrates that accuracy can be preserved with lower resolutions, as long
as field of view is decreased accordinly. Figure 5d has same focal length as
5c but lower resolution, which means narrower field of view.

Accuracy can always be increased by using more resolution on the CCD, or
using better algorithms to detect the vertices from the CCD. If resolution is
not a bottleneck, then accuracy can be increased by using smaller marker,
larger field of view, or taking the marker further from the camera. On the
other hand if resolution is the bottleneck, then the opposite is true. On the
algorithm level small is good, but if we can’t get reasonable detection on the
CCD the algorithm level accuracy is wasted. Increasing/decreasing marker
size has both good and bad effects and those must be weighted when using
these algorithms in a specific situation. There is probably even an optimum
distance from the camera where detection is most accurate.

The pose detection is the same regardless of the marker’s position on the
CCD, since all calculations are done using relative distances. But, if a marker
that is at a zero degree angle in front of the camera, i.e. it appears at
a line, is moved to edges of the image, it is no longer a line. A marker
that is not at the center will thus give more erroneous normal vectors than
a marker at the center. However, for image augmenting purposes(section
7.4), this is the desired behavior. If a marker is at zero degree angle in
absolute coordinates, but does not appear as a line in the image, then we
should augment based on how the marker looks in the image, and not based
on absolute coordinates. Figure 6a shows how the normal vector directions
become much more erraneous compared to 4a. But, as said before, it doesn’t
matter for image augmenting purposes. Figure 6b shows that compared to

16
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¢) 10 cm marker at 100 cm distance. d) 10 cm marker at 100 cm distance. 53
90 degree field of view. 160x120 resolu- degree field of view. 80x60 resolution.
tion. Max: 28.0 deg Avg: 5.3 deg Max: 28.0 deg Avg: 5.3 deg

Figure 5: Effect of resolution on accuracy
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a) Angle accuracy of off-center marker. b) Depth accuracy of off-center marker.
10 cm marker at 100 cm distance and 10 ¢cm marker at 100 cm distance and
20 cm+20 cm off center. 90 degree field 20 cm+20 cm off center. 90 degree field
of view. Infinite resolution. Max: 35.7 of view. Infinite resolution. Max: 5.0
deg Avg: 19.1 deg. cm Avg: 2.7 cm

Figure 6: Off center marker accuracy

Ta, depth accuracy is about the same, but error distribution is different.

The camera system can have different optical properties on different regions of
the CCD, such as quadratic distortions. Distortions should or should not be
removed before the pose is calculated, depending on the situation. For image
augmenting purposes, the distortions probably don’t need to be removed, but
if absolute values are needed, then distortions should be corrected before the
pose is calculated.

5.2 Depth accuracy

Figure 7 shows depth calculation using the relation z = f Error is the
distance between calculated and actual depth. Depth accuracy follows an
exact opposite trend than pose accuracy. When the marker is facing the
camera, we get error-free depth information, and as the marker is turned, the
error increases. Biggest error comes when the marker is reduced to a line,
which is easy to understand, since the line’s width depends on the rotation
as well. Figure 7d shows this particularly well. The depth is correct at 0
and 90 degrees, and the error varies in between. The average error is quite
constant over various resolutions (3.0 cm at infinite and 3.3 cm 160x120),
but the maximum error increases a lot (4.9 cm at infinite and 12.8 c¢cm at
160x120).
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a) 10 cm marker at 100 cm distance. 90 b) 10 cm marker at 100 cm distance.
degree field of view. Infinite resolution. 90 degree field of view. 640x480 resolu-
Max: 4.9 cm Avg: 3.0 cm tion. Max: 6.7 cm Avg: 3.0 cm

¢) 10 cm marker at 100 cm distance. d) 10 cm marker at 100 cm distance.
90 degree field of view. 640x480 reso- 90 degree field of view. 160x120 resolu-
lution. +2 pixel error. Max: 12.9 cm tion. Max: 12.8 cm Avg: 3.3 cm

Avg: 3.4 cm

Figure 7: Depth accuracy
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Figure 8: Circuit diagram for LED marker

6 Designing the Marker

We decided to make a square marker, with four bright white LEDs as vertices.
This has the advantage of having high signal-to-noise ratio, if CCD’s shutter
is set almost close. The effect is that only the LEDs are seen in the raw
image, even without any processing.

Circuit diagram (figure 8 ) shows the design that was used. With 3 volt
high efficiency white leds, current can be adjusted with a trimmer from a
maximum of 20 mA to about 1 mA (Iled = vaf;gg) If lower voltage leds are
used, bigger resistors should be used or the leds might burn out. Leds were
placed parallel instead of series, because 9 V battery can’t power four 3 V
leds. Series placement is otherwise advantageous since it saves power and led
intensities will be more stable, although we haven’t noticed any fluctuations

in intensities so far.

The components were soldered into an IC breadboard with copper connects.
Figure 9 shows our realization of the circuit. The second picture shows an

20



Figure 9: LED marker realization

a) Shutter set to auto b) Shutter manually set to almost closed

Figure 10: LED marker detection

active circuit. Notice how the battery compartment doubles as a stand. The
LED separation is 10 cm.

7 Results

Figure 10 shows the effect shutter has on the image. The surroundings vanish
completely leaving only the LEDs visible. This means that no processing
needs to be to done to extract the LEDs from the image.
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Figure 11: Two color markers

7.1 Other markers

The marker can also be passive — colorful piece of paper for example — but this
has several disadvantages. First, e.g. green piece of paper can be detected to
be anything from yellow to cyan by the CCD. Second, the scene can easily
have similar green in other regions, requiring heuristic to eliminate false
positives. We tried with green and blue papers (red is almost impossible
because humans are red, and further because we had red floors...), and had
mixing success. Sometimes paper works just fine, but sunlight etc. can
suddenly make the detection difficult.

More advanced method is to use two-color marker (figure 11). Now the
criterion of possible marker edge is adjacent two colors, green and blue. This
eliminates almost all false positives. There are still some, but usually only
just few pixels, which can be eliminated with continuity checks.

With two-color marker, the RGB thresholding range can be very wide com-
pared to single color detection. Figure 12 shows the RGB values which were
used to detect green and blue. As can be seen from the picture, all colors
between yellow and cyan are classified as green, and all colors between cyan
and magenta are classified as blue. More precisely, green is defined as all
hue values from 60 to 180, and blue is defined as all hue values from 181 to
299. Some minimum saturation is also required, which is why in figure 12
the volumes don’t reach the grey diagonal. If similarly wide colour ranges
were used in single-color markers, the amount of false positives would be
extremely high.

Even with very wide colour ranges, the detection is quite robust. Figure 13
demonstrates the phases of marker detection.

We found that the two-color marker gives reasonably robust detection over a
wide variety of lighting conditions, however the LED marker is still superior
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Figure 12: RGB-cube used in two color marker detection

a) Captured image b) Green—=white. Blue=black. Rest gray.

c¢) Gradient edge detection d) Thresholding of edges

Figure 13: Processing of two-color marker
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a) Two-color marker b) Hough lines calculated ¢) Hough transformation of b)

d) Part of marker blocked e) Hough lines calculated f) Hough transformation of e)

Figure 14: Partial markers

and requires much less processing. With LEDs, there is an additional pos-
sibility of modulation, which would give even more robustness, but we have
yet to try that out.

7.2 Partial markers

It is possible to make use of even partially blocked markers using an image
processing algorithm called the Hough transformation. Hough transforma-
tion is cabable of finding non-continuous lines. This is advantageous if there is
a lot of noise in the image and lines are often broken. Figure 14 demonstrates
a marker specifically designed to take advantage of the Hough transforma-
tion. Even with a very large blockade, there are enough lines to calculate the
location of the obstructed corner. The yellow circles are calculated intersec-
tions, and double circles are heuristically selected corner locations. The idea
is that the location of corners can be encoded in all parts of the image, so
that a small portion of the image can be used to find the corners. The marker
in figure 14 has 2 “backup” edges in addition to the four normal edges, but
there could be more. This way the robustness of two-color markers can be
raised even higher.
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7.3 Matrix markers

With symmetric markers, the “roll” parameter can’t be recovered completely.
There will allways be four possible orientations which are possible. By adding
a matrix inside the marker, we can label one of the corners and deduce the
roll parameter also. Figure 15 shows the matrix marker we used. First, the
outer black-white border is used to find the edges, and after corners have
been calculated, the matrix inside is checked to see which edge is which.
This allows image augmenting, where the virtual object can be rotated 360
degrees, instead of just 90 degrees.

Matrix markers can also act as a checksum to make the detection process
more robust. After corners have been found, the matrix can be checked. If
the matrix inside is not correct, the corners are probably false. Even 2x2
(white,black,black,black) matrix eliminates most false detections, although
not all.

Third use for matrix marker is the possibility to have multiple markers on
scene, again with checking of the matrix we can determine which marker is

which.

7.4 Image augmenting

Image augmenting means adding virtual objects to a real scene. A survey of
different augmentation methods and applications is presented in [1]. Markers
utilizing a matrix code printed inside can be used to have multiple markers
on scene [2]. With our method of augmenting, no information about camera
focal length or other camera calibration parameters are needed. Different
method of calibration-free image augmenting is presented in [3].

Using pose information, i.e. the marker-image transformation matrix and
scale factor as calculated before, the image can be augmented in reference
to the marker. Figure 16 shows the marker captured in different angles, and
augmented with a cube. As can be seen, the cube is realistically in correct
orientation in respect to the marker. Image augmenting only requires the
image normal direction and scale factor, i.e. solving the weak perspective
equation. Depth information about the invidual vertices are not necessary.
Figure 17 has the visible human data augmented on top of the marker. The
data was renderered in correct orientation and size using the normal vector
and scale parameter, and then a single translation was done to superimpose
the body in the right place in the image. Figure 18 shows augmenting of a
MRI head.
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a) 2x2 matrix marker

b) Image augmenting using matrix marker

Figure 15: Matrix marker
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Figure 16: Image augmenting with cubes
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a) Visible human held in hand

b) Coke bottlggas size reference

Figure 17: Visible human augmentation



Figure 18: MRI data augmenting
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8 C(Conclusions

We developed a complete pose calculation system, with different markers
and marker segmentation algorithms, the P3P pose calculation method, and
several augmentation methods with wireframe and volumetric data. Future
directions for development are better marker detection and detection of mul-
tiple markers. Currently marker detection works best with relatively simple
scenes with mainly the marker showing. If there are a lot of clutter on the
scene, the detection algorithms can be fooled. After marker corners have been
correcly detected, the remaining calculations are foolproof. We are confident
that the marker detection can be made quite robust with matrix markers, or
modulated infrared LEDs.
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