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On the effect of very large nodes in Internet graphs

Hannu Reittu and Ilkka Norros
VTT Information Technology
P.O. Box 1202, FIN-02044 VTT, Finland
{Hannu.Reittu, llkka Norros }@vit.ft

Abstract— We analyse a random graph where the node degrees
are (almost) independent and have a distribution with finite mean
but infinite varlance — a region observed in empirical studies of
the Internet. We show that the existence of very large nodes has
a great influence on the connectivity. if N denotes the number of
nodes, it seems that the distance between two randomly chosen n-
odes of the glant component grows as slowly as loglog{/N). The
essential observation is that very large nodes form a spontanecusly
arising “core network™, which plays a crucial role in the connectiv-
ity, although its proportional size goes to zero as N — co. Several
resalts related to the core are proven rigorously, and a sketch of a
full proof is given. Some simulations providing illustration of the
findings are presented. Consequences of the resnlts are discussed.

[. INTRODUCTION

‘When the whole Internet is considered as a huge graph, where
the nodes (vertices) are the routers and the edges are the links
connecting them, it has been found that certain important char-
acteristics follow power laws [1]. Moreover, a qualitatively sim-
ilar picture arises when the nodes are Internet domains instead
of individual routers. These observations may turn out to be sig-
nificant for topology and routing dependent features of the In-
ternet. This may even be compared with the role that the power
laws of data traffic in communication networks play in modern
queuing theory. Random networks with power law distribution
of degrees of the nodes have been studied quite extensively in
the past few years [2], [3], [4], {51, [6], [7]. They have several
interesting practical applications, one of which is the topology
of Internet. N

In this paper, we adopt an analytically tractable random graph
model, introduced by Newman, Strogatz and Watts [5]. The
node degrees are independent and identically distributed ran-
dom variables (except for one node with degree at most one).
The probability mass function of node degree D behaves as
P(D =d) = d~7, where 7 > 1. According to [1], the In-
ternet graphs seem to fall in the region 7 € (2, 3), which means
that D has a finite mean but an infinite variance.

In the regime T > 3 it has been shown that the expectation of
the diameter of the graph in number of hops scales as log(N),
where V denotes the number of nodes {5]. Such graphs are
sometimes called “small worlds”. The method used in [5] does
not work for 7 < 3. The authors suggest an exponential cutoff
in degree distribution and find then the same logarithmic scaling
for the diameter, However, the exponential cutoff removes the
very large nodes and thus changes the character of the graph.
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The graphs with 7 > 3 are homogeneous in the sense that,
in average and asymptotically, all nodes have, so to say, the
same kind of environment around themselves. This is, however,
not the case one would expect for the Internet graph, where the
importance of different nodes in the functioning of the network
is very different — some powetful nodes have a key role. This
is often reflected in their large degrees in the graph.

Therefore, it is interesting to see what happens when one
leaves out the exponential cuteff, which was made only for
mathematical tractability (huge degrees do indeed appear in the
data, in good agreement with the power law). The effect turns
out to be quite dramatic. The distance between two random-
ly chosen nodes shrinks to the order log log{/V), and the reason
for this is that the large nodes form spontaneously a kind of core
petwork, which provides the high connectivity. This core con-
tains only a small (eventually vanishing) part of the nodes. Most
of the nodes have a small degree, but they can be connected to
the core with even a smaller number of steps than is the diam-
eter of the core. We present the rigorous mathematical proofs
only partially, the full proof will be given elsewhere. However,
we treat rigorously the new crucial features which are absent for
T > 3, and also make the rest of results intitively plausible.

I1. THE MODEL OF NEWMAN, STROGATZ AND WATTS

The model is defined as follows. Let N denote the number of
nodes in the graph, and let D1,..., Dy be ii1d. random vari-
ables, taking values {1,2,...}. Denote L = L(N) = Zf;l Dy.
To make the degree sequence possible, we add one more node
whose degree is

Dy = 1{1(N) is o4}
The graph is now built by joining “stubs” on the nodes randomly
to form links. It may happen that some node is connected by a
link to itself (a “ring™), and there can be more than one links
between the same pair of nodes, but this has little significance,

Motivated by the observed power laws, we want to have

P(D=d) ~const-d™",
where 7 € (2, 3). For simplicity, let us fix ihe distribution as
P(D2d)=d ", 4=1,2,.... e}

All our proofs assume this particular distribution.
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III. EMERGENCE OF A COREWHEN 2 < T < 3

‘We focus on the model described in the previous section with
T € (2,3). From a rigorous point of view, we study proper-
ties that a large graph has asymptotically almost surely (a.a.s.),
which means the following. Let A = AV) be the event that the
random graph with N nodes has a certain property. We say that
A happens a.as,, if

NhPmP(A(N )) =1

Since E { D} is finite, the usual law of large numbers implies
that the total number of links is proportional to N a.a.s.:
Lemma l: Foranyn >0,

. .
Y Di € {(E{D} - mIN,(B{D} +n)N] s.es.

Sinc'g 1We often bage our reasoning on a given sequence of
node degrees, it is good to state also the following.

Lemma 2: J)"IP[A(N)lDl,...,DN] — 1 in probability,
then AY) happens a.a.s.

We use also

Lemma 3: Let ¢,¢p : IN — IR be functions such that
B(N) — oo, Y(N) — oo, and that there exists a limit

- WN)
Then
1 ¥(N) e
N-ano lwm =e *¢i0,1].

A central role is played by the following lemma which shows
how large, in the sense of their aggregated number of links, two
sets of nodes need to be in order to have a.a.s. a connecting link
between them.

Lemma 4: Let U and V be two disjoint sets of nodes whose
definition does not refer to the connection phase of the graph
construction. Denote .

F=3"D; G=)YD;

icl Jev

If FG/N — oo a.as., then, a.a.s, some node in U is directly
connected to some node in V.

Progf.  Assume, without restricting generality, that ' < G. It
is possible to choose a sequence of numbers F' = F(N) such
that

PaYCN) | EON?
N o TN T

F(N) < F(N),

We show that by choosing randomly the endpoints of & link
stubs from the nodes of U, at least one of them will go to a node
in V', and no one will go back to U (a.a.s.). Indeed, it is easy to
check, using Lemmas 3 and 1, that

P(3links U — V)

IA

P(all links go to (U U V')¢) + P(3 some links U — U}
L-F-@a L—F—G—IML—ZF—G-!-I

L—1 L-3 L—-2F 1
g L-F L-F-1 L-2F+1
L-1 L-3 L-2F+1

L-F-¢ d L—92F+1 d
LZf G (R Y
(5s) - (222

[ ]

Let us fix a function £ : IN — IR with the following proper-
ties:

£(N)

£N) = oo, logloglog N

—0 asN - o0,

The following N-dependent definition of a “small number”
turns out to be very useful:

_ UN)
(N = log N’
In particular, note that
§N)—0, N Lo asN —oo. 2)

Now we can begin the analysis of our random graph. Let us
denote the size of the largest node by

it = argmax,-e{l'm,N}D,-.

First we note that the maximum degree Dy. is about N =
Note that 1/(7 — 1) > 1/2.
Proposition 5: The size of the largest node satisfies

Do € [Not N=:t3(N)| g3,
where 1
o 20:1(N) = : —C(N)'
Proof. By (1),
P(max D; < N°1) < (1- [N~V ¢
by Lemma 3, because, by (2),
N

—_— —1)e{N
oo = N 0.

Similarly, we see that
P(max Dy < Nort200) g,
]
Itis good to note that cyclic links, connecting a node to itself,

appear typically only by nodes that are bigger than +/N. The
proof resembles that of Lemma 4,
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Proposition 6: (i) Let ¥ € (0,1/2) and a(N) be any function
such that a(N) € (0, N7). An arbitrary node with degree in
ja(IN), N'7] has no cyclic links a.a.s.

(i) Let v € (1/2,1) and b(N) be any function such that
b(N) > N7Y. An arbitrary node with degree in [N, b{IN')| has
cyclic links a.a.s.

Next we aim to show that, starting from the largest node i*,
we can reach almost all sufficiently large nodes in a relatively
small number of steps. Recall the number o from Proposition
5, and define recursively

6 = 1—01=T_’:—:—§+E(N),
B2 = (T-2)81+e(N),
B = (T-2)Bk_1+elN)

T —2) k! .
- L2 am Yooy
=0

Denote Uy = {i*}, define the sets
Uj = {’” D; > N§j+£(N)}l Ji=12,...,

and denote
DE?) = Z D.‘.
i€l;
Lemma7: Foranyz € (0,1/(r —2)),

d 1
Z Dil{D‘gNﬂ} 2 ENI_(T_”I a.a.8.

i=1

In particular, D‘(-f) > %Nl“ﬂi“‘*’(s")‘(m B.A.8.
Proof. The number of nodes with positive contribution
to the sum has the distribution Bin(N,P(D > N*}). Since
P(Bin{n,p) < 3F) < exp(—3F) (see, e, [8], (2.51)), the
number of non-zero terms is a.as. larger than N1~ (7129,
and the claim follows. |
Proposition 8: Let j € {0,1,...}. Select a node from Uy
by any rule that does not refer to the connection phase of the
graph construction. Such a node is connected to a node in Uy
a.as.
Proof.  Denote by I the degree of the selected node. If the
node belongs to U/, there is nothing to prove, so assume that it
does not. Then it is sufficient to check the condition of Lemma
4. Indeed, we have by Lemma 7 a.a.s.

p-D¥

2

|

With respect to k, the numbers () have the positive limit

€(N)/(3 — 7). This motivates the following definition: we call
the set

c= {,- . D, > Ne(f)e<N)/<s~r)}, (3)

where £(7) = 7 — 27, the core of our random graph. (We use
this term in another sense than is customary in graph theory [7],
where the definition of a core refers to subgraphs in which the
degrees of the nodes have a certain lower bound.)

Proposition 9: Let k* denote the number

B = loglog N
T =leg(r—2) |

Then C g Uk-.
Proaf  Inordet to have 8 + €(N) < £(T)e(N)/(3 —7), it
suffices that
— 2k -1
(T'T 41) < (5(3’")_ — - 1) (N) = ().

Taking logarithms we see that this is equivalent to

> loglog N — log &(N) — log(7 — 1)

k —log(r — 2)

Neglecting the negative terms we obtain the expression of k*. ll

The existence of a so called giant component (a connected
component with size proportional to V) is guaranteed in classi-
cal random graphs when the number of links, chosen randomly
from all pairs of nodes, is larger than ¢N/2, wheree > 1. In
our case, with 7 € (2, 3), it can be shown that the giant com-
ponent always exists. Although we have at present an explicit
proof only for the distribution (1) with T € (2, 3), we have good
grounds to believe that the criterion for the existence of a giant
component is 3.0, d>P(D = d) /E {D} > 2. This criterion
appears in both [5] and [6], in very slightly different situations.
The left hand side is the limit, when N — oo, of the expectation
of the size of a node where a randomly chosen link stub is stick-
ing out, and our argument is based on the well-known criterion
for a positive probability of eternal life of a branching process.
In the regime 7 € (2,3), the sum is infinite. It is clear from
Lemuma 4 and Proposition 5 that 1* belongs to the giant compo-
nent. For 7 > 3, in contrast, the existence of a giant component
would not depend on the distribution tail alone.

IV, DISTANCE IN A POWER LAW GRAPH WITH2 < 7 < 3

We have the following proposition, whose complete proof
will be published later:

Proposition 10: Assume that the degree distribution is (1}
with T € (2,3). Two randomly chosen nodes of the giant com-
ponent are a.a.s. connecled with at most 2k* (1 + o(1)) steps.

We showed above that the core C consists of k* layers, sur-
rounding the node ¢*, such that an arbitrary node from layer j+1
is a.a.s. directly connected to a node from the higher layers. One
can show that the links providing those at most k* steps up to
i* exist simultaneously a.a.s. — note that k* also increases to
infinity, although very slowly.

Then it remains to show that an arbitrary node from the gi-
ant component is connected to the core in at most k*o{1) step-
8. We skip the proof, which is based on a branching process
construction. Here is a heuristic argument indicating that the
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core is reachable in at most &* steps. Assume that the neigh-
borhood reachable from a node i of the giant component in
F(N) steps, say V;(7(N}), grows a.a.5. at least exponentially
fast when j{N) — oo, J{N) < k*({N) (note that the exist-
ing “small world” results correspond to an exponential growth
of the set reachable in & hops): |Vi(3(N))| > p#M) aas. for
some g > 1. Then a sufficient condition for Vi{k*(N)) to have
a.as. alink to the core C is, by lemmas 4 and 7,

[Vi(k*(N))| N 147 —DE(r)e(N)/(3~7)
N
> pF N rDENUANYB-T) o as N — oo,

But this is true since £{/N') grows more slowly than k* (N).

V. SIMULATION RESULTS

The number k* grows so slowly with N that it remains prac-
tically constant over all N that have some interest. Here are
some numbers when 7 = 2.5:

N J10° {10% [ 10° [ 10° {107 [ 10% [ 107
k* 3 4 4 4 5 5 5
This can be related to the empirical fact that the average hop
distance in Internet has remained nearly constant while N has
grown from a few thousands to about 150000 [1], [5].

We made some simulations and found that the behavior is in-
deed similar to what our reasoning suggested. The simulation
results are summarized in Table 1. They show only ope simu-
lation run for each N, so that the numbers are not statisticalty
accurate, but give a clear impression of the overall behavior, We
show the number of nodes remaining outside the giant compe-
nent, the number of cyclic links, and the distances of the nodes
from the largest node. The relative size of the giant componen-
t converges to a positive constant, which is in this case about
80%. The majority of the nodes is indeed connected over very
few steps. In our theoretical study, we did not consider the true
diameter of the giant component, but. the distance between two
randomly selected nodes, which is of course a smaller number.
The simulations indicate, however, that the true diameter is not
much bigger, and the number of exceptionally distant nodes was
usually very small.

We also give two visualizations of the graphs. Fig. 1 shows all
nodes and links so that the vertical axis corresponds to a node’s
distance from the largest node (we put distance -1 outside the
giant component) and the horizontal position is the square root
of the number of the node in reversed order by degree.

Fig. 2 shows all nodes as small squares ordered according

to decreasing degree in the form of a quadratic spiral:
The darkness corresponds to the node's distance from the largest
node, with the same graylevels as in Fig. 1. The clearly visible
outmost layer consists of nodes with degree 1. The black nodes
are outside of the giant component. This figure indicates that
rather few nodes with degree larger than one remain outside the
giant component. :

Finally, we produced a similar picture with T = 3.5, keep-
ing the size of the giant component the same by modifying the

TABLEI
NUMBER OF NGDES OUTSIDE THE GIANT COMPONENT (“REST"), NUMBER
OF CYCLIC LINKS (“RINGS”™), AND THE NUMBER OF NODES AT DISTANCES
1,2,...FROM THE LARGEST NODE IN SOME SIMULATED REALEZATIONS

WITH 7 = 2.5.

N 11001 | 3163 | 10001 | 31625 | 100000
rest | 266 | 678 | 2228 | 6517 | 20913
nngs § 6 78 9 79 34

] 86 | 587 | 271 | 2691 | 2070

2 294 | 1309 | 2232 | 11644 | 23134

3 246 | 491 | 3421 | 7910 | 35039

4 8 88 | 1464 | 2268 | 14521

5 23 8 329 | 491 3432

6 2 1 a7 84 679

7 14 169

8 1 4 37

9 1 5

degree distribution to be P(D > d) = (d + a)1-7 /(1 +a)!-,
a = 1.465. The light center is clearly smaller in this regime.

VI. CONCLUSIONS AND REMARKS

We have shown how a kind of “core network™ arises spon-
taneously from the distributional assumption that the node de-
grees are (almost) independent and obey a power law with infi-
nite variance. This core makes it possible that the diameter of
the graph grows extremely slowly (as loglog N) with its size.
Such a core does not arise with T > 3 (note also that k* — oo
a1,/ 3.

The practical consequence is that the existence of very large
nodes has an important positive impact on the connectivity. *S-
mall is beautiful” does not hold for architectures of large net-
works (although, on the other hand, this increases vulnerability
for node losses — see [10]).

Properties of this kind of models have already been used in
studies on denial of service attacs [11] and multicast [12], [13];
we hope that our results will turn out to be useful in that kind of
“principle level” research on large telecommunication network-
5.

The role of the independence assumption is twofold. In the
real Internet, some efforts are probably made to maintain a net-
work that is better than a random one. Thus, the model may be
motivated as a “pessimistic” one. On the other hand, the fea-
ture that the connections are made irrespective any geometric
aspects can be seen as an “optimistic™ bias.

There is no one-to-one correspondence between degree and
power/importance of individual routers — pure core routers
need not have many ports despite their high importance. Om
the other hand, this correspondence may be good in the domain
graph, also studied in [1].

In a very recent paper [14], the same model was studied with
more extensive simulations and compared with empirical data.
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Fig. 1. Distances from largest node. N = 5000, 7 = 2.5.

Fig- 2. 50000 nodes in spiral, ordered by descending degree. Darkniess corre-
sponds to closeness to the largest node, + = 2.5.

The model showed a surprisingly good match with the real net-
works. It was also possible to reveal a kind of “soft hicrarchy”
resembling our “core’
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