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On the effect of very large nodes in Internet graphs 

Hannu Reittu and IUdta Nomos 
VTT Information Technology 

PO. Box 1202, FIN-02044 VTT, Finland 

(Hannu.lXeittu, Ilkka.Norros)@vtt.fi 

AbsfraL-We analyse a random gnph when the node degrees 
are (&IO*) independent and have a dlrtrlbatlon with Bnite mean 
but inMte variance - a @on observed in empirlul rtndles of 
the Internet. We show that the existence of very large ncdes bas 
a great lniinence on the mnnoat*lty. If N denotes the number of 
nodes, It seem that the distance between two randomly chosen n- 
odes ofthe glant component grows as slowly as log log(E7). The 
ersentW obsemtlon Is that very large nodes form a rponta msonsly 
aridng “core network”, whkh plays a crudd d e  In the comeeth- 
ity. although Ita pmpordond dm goer to zem 81 N - m. Sevenl 
resdts dated to the core are pmven rlgomnsly, and a sketch of. 
IXI p m f  b @en. Some slmdationr p d d l n g  Lllnstmlion of the 
Bndlnp are presented. Consequences ofthe rernlt~ are disused. 

1. INTRODUCTION 

When the whole Intemet is considered as a huge graph, where 
the nodes (vatices) are the mums and the edges are the links 
connecting them, it has been found that certain impomit char- 
acteristics follow pow= laws [I]. Moreover, a qualiIaIk:ly sim- 
ilar picture arises when the nodes are Intemet domains instead 
ofiudiridualmuters. Theseobsemationsmayhunoutto besig- 
niiicant for topology and routing dependent features of the In- 
temet This may even be compared with the role that thi: power 
laws of data traffic in communioation networks play in modem 
queuing theory. Random networks with power law distribution 
of degrees of the nodes have been studied quite extensively in 

interesting practical applications, one of which is the tapology 
of Intemet 

In this paper, we adopt an analytically ttactable random graph 
model, introduced by Newman, S-tz and Waas [5 ] .  The 
node d-s are independent and ident idy  distribukd ran- 
dom variables (except for one node with d- at mo!d one). 
The probability mass function of node degree D behives as 
P(D = d)  = d-r, where T > 1. According to [I], the In- 
ternet graphs seem to fall in the region T E (2,3), which means 
that D has a finite mean but an infinite variance. 

In the regime T z 3 it has been shown that the expectation of 
the diameter of the graph in number of hops scales as log(N), 
where N denotes the number of nodes [SI. Such gayhs are 
sometimes called “small worlds”. The method used in [.SI does 
not work for T < 3. The authors suggest an exponentid cutoff 
in degree distribution and find then the same logarithmic waling 
for the diameter, However, the exponential cutoff removes the 
very large nodes and thus changes the character of the Saph. 

the past few Y- 121, PI,  141, Is1,[61, IT. They have several 

The graphs with T > 3 are homogeneous in the sense that, 
in average and asymptotically, all nodes have, so to say, the 
same kind of environment around themselves. This is, however, 
not the case one would expect for the Internet graph, where the 
impoaance of merent nodes in the functioning of the network 
is very different - some powerful nodes have a key role. This 
is oAen reflected in their h e  degrees in the p p h .  

Therefore, it is interesting to see what happens when one 
leaves out the exponential cutoff, which was made only for 
mathematical tractability @use degrees do indeed appear in the 
data, in good agreement with the power law). The effect turns 
out to be quite dramatic. The distance between two random- 
ly chosen nod- shrinks to the order log log(N), and the reason 
for this is that the large nodes form spontaneously a kind of core 
network, which provides the high connectivity. This core con- 
tains only a small (eventually vanishing) part of the nodes. Most 
of the nodes have a small degree, but they can be connected to 
the core with even a smaller number of steps than is the diam- 
eter of the core. We present the rigorous mathematical proofs 
only partially, the full proof will be given elsewhere. However, 
we treat rigorously the new crucial features which are absent for 
T > 3, and also make the rest of results intuitively plausible. 

11. THE MODEL OF NEWMAN, STROGATZ AND WATTS 

The model is delined as follows. Let N denote the number of 
nodes in the graph, and let D I ,  . . . ,DN be i.i.d. random vari- 
ables,takingvalues{1,2 , ._.  } . D e n o t e L = L ( N ) = C % l D , .  
To make the degree sequence possible, we add one more node 
whose degree is 

Thepaphisnow builtbyjoining“stUbs”onthenodesrand0mly 
to form links. It may happen that some node is connected by a 
link to itself (a “ring”), and t h m  can be more than one links 
between the same pair of nodes, but this has little significance. 

Motivated by the obsewed power laws, we want to have 

DO = 1{L(N) IB add). 

P(D = d )  - eonst. d-‘, 

where T E (2,3). For simplicity, let us fix the distribution as 

P(D 2 d )  = d-‘+’, d = 1,2,. . . . (1) 

AU OUT pmofs assume this particular distribution 
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III .  EMERGENCE OF A CORE WHEN 2 < T < 3 
We focus on the model described in the previous section with 

t E (2,3). From a rigorous point of view, we study proper- 
ties that a large graph has asympioiically d m s i  surply (Res.), 
which means the fdlowing. Let A = A ( N )  be the event that the 
raudm graph with N nods has a cer!ain property. We say that 
A happens aas., if 

5 

= 

Since E {D) is finite. the usual law of lame numbers h D k S  

5 

S(alllinkSgot0 ( L I U V ) c )  + P(3somelinksU t U) 

L - F- G L - P - G - 1 L - ZP - G + 1 ... 
L - 1  L - 3  L - Z P + l  

L - P  L - B - 1  L - Z P + l  
L - 1  L - 3  L - 2 @ + 1  

+1----. . . .  

- 
that the total nmber oilinks is proportionaiito N a.a.s.: 

. 
Let us fix a function e : IN + R with the following proper- 

ties: Lemma 1: For any 7 > 0. 
N 

Di E [(E{D} - q)N, (E {D} + q)N] a.a.8. . .  
C I  

Since we often base OUT reasoning on a given "9-e of Tbe following Ndeoendent definition of a ''small numb& 
tums outto be very useful: node degrees, it is good to state also the following. 

Lemma 2: I/ I DI,.  . . , D N ~  - 1 in probabilify, 

We use also 
Lemma 3: Lei 4, $ : IN t R be funciiom such thai 

In pslticnla, note that 4( N)  - m, $ ( N )  t 00, and i h  them exisis a limit 

W )  r(N) = - 
log" 

s(N) - 0, + CO as N + M. (2) 

Now we can begin the analysis of our random graph. Let us 
denote the size of the l q e s t  node by Then 

I \  ,, 
A central role is'played by the following lemma which shows I 

how large, in the SeaSe of links, taro 
sets of nodes need to be in order to have a.a.s. a c~~ecting link 
between them. 

First we note that the maxi" degree 0;. is about N 7-1. 
Notethat l/(s - 1) > 112. 

Proposition 5: rite size ofihe lamesf node saiisJks 
Lemma 4: Lei U and V be iwo disjoint seis of nodes whose 

dejiniiion does not refer io ihe connection phase of the graph 
Di. E [NaL,NmLf2L(N)] a.a.s., 

comimction. h t e  Where 

ZfFG/N + 0 0  aa.s., ihen, aas. some no& in U is directly 
connected io some no& in V .  
PmoJ Assume, without restriding generality, that F 5 G. It 
is possible to choose a sequence of numbers F = F ( N )  such 
that 

P(maxD, < Nux)  5 (1 - INn*l-T+l)N + 0 

by Lemma 3, because, by (Z), 

N = ~ ( r - l ) < ( N )  + m. 
Nex (7- 1) 

F(N)G(N) - M, - F(N)2 + 0. Similarly, we see that 
B(N) 5 FP", N 

1 - 1  
P (max D; 5 N"'+2t(N) We show that by choosing randomly the endpoints of B link 

stubs from the nodes of U, at least one of them will go to a node 
in V, and no one will go back to U (a.a.s.). Indeed, it is easy to 
check using Lemmas 3 and 1, that 

w 
It is g w d  to note that cyclic links, connecting a node to itself, 

appear typically only by nodes that are bigger than a. Tbe 
proof resembles that of Lemma 4. P(,A linksu - V )  
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Proposition 6: (i)Lety E (0 ,1/2)anda(N)beanyfu~t ion 
such that a(N) E (0, NT). An arbitrary node with & F e  in 
[a(N),N7] hosnocyeliclinba.as. 

(ii) Let 7 E (1/2,1) and b(N)  be any f i t i o n  such that 
b ( N )  > N7. An arbitrary node with degree in IN?, b(lV)] has 
cyclic linkr aa.s. 

Next we aim to show that, &g from the largest node i', 
we can reach almost all sufficiently large nodes in a relatively 
small number of steps. Recall the number ai from Propition 
5, and define mursively 

k-1 

+ c ( N ) x ( T - 2 ) ' .  
*=a 

(7 - 2)k = -  
r - 1  

Denote U, = {P}, define the sets 

U, = { i :  0; 2 N p j + f ( N )  

and denote 
DI? = D;. 

*E IJj 

Lemma 7: For any z E (0, l/(r - 2)). 

 wid^ DY) 2 4 ~ 1 - - 8 ~ + ~ + ( 3 - - ~ ) w  

PmoJ The number of nodes with positive contribution 
to the sum has the distribution Bin(N,P(D 2 N 2 ) ) .  Since 
P(Bin(n,p) 5 y )  5 exp(-y) (see, e.g., [SI, (Z.Sl)), the 
number of non-zao terms is a.a.s. larger than N ~ - ( ~ - - ~ ) * / z ,  
and the claim follows. 

Pmposition 8: Let j E {O, 1 , .  . ,}. Select a nodefmni Uj+l 
by any d e  that does not refer to the mnnection phase of the 
graph constmction. Such a node is connected to a no& in U, 

where C ( T )  = 7 - 27,  the core of om random graph. (We use 
t h i s  term in another sense than is cnstomary in graph thary [71, 
where the delinition of a core refers to subgraph in which the 
degrees of the nodes have a certain lower bound.) 

Proposition 9: Let k' denote the number 

1 log log N 
-lOg(T-2) 

k '=  1 
%?I c c U P .  
ProoJ 
suffices that 

In order to have pk + a(N) 5 < ( r ) ~ ( N ) / ( 3  - T ) ,  it 

i - 1  - 

Taking logarithms we see that this is equivalent to 

Neglecting the negative terms we obtain the expression of k'. W 
The existence of a so called giant component (a connected 

component with sue proportional to N) is guaranteed in classi- 
cal random graphs when the number of links, chosen randomly 
from all pairs of nodes, is larger than d / 2 ,  where c > 1. In 
ow case, with r E (2,3), it can be shown that the giant com- 
ponent always exists. Although we have at present an explicit 
proofonlyforthedistribution(1)with~ E (2 ,3) ,  wehavegood 
grounds to believe that the criterion for the existence of a giant 
component is @P(D = d )  /E {D] > 2. ? l i s  criterion 
appears in both [5] and [6], in very slightly mfferent sitnations. 
Theleflhandsideisthelimif whenN ---t oo,oftheexpectation 
of the size of a node where a ra"ly chosen link stub is stick- 
ing out, and ow argument is based on the well-known criterion 
for a positive probability of etemal life of a branching process. 
In the regime T E (2,3),  the sum is infinite. I t  is clear from 
Lemma 4 and Proposition 5 that i* belongs to the giant compo- 
nent. For T > 3, in contrast, the existence of a giant component 
would not depend on the distribution tail alone. 

IV. DISTANCE iN A POWER LAW GRAPH WITH 2 < r < 3 
We have the following proposition, whose complete p m f  

will be published latec 
Proposition 10: Assume that the d q p e  distribution is ( I )  

with T E (2,3). Two randomly chosen nades of the giant com- 

aas.  
pmox Denote the degree Of the 'Ode. If the 

d m  not. Then it is sufficient to check the condition of Lemma 
4. Indeed, we have by Lemma 7 a.a.s. 

node to there is nothing to Prove, so asme that it ponent a~ 0.a.s. connected with at most 2k'( 1 + o(1)) steps. 
we above that the core consists of k. layers, 

mnndingthenodei', suchthatanarbiharynodefi.omlayerj+l 
is a.a.s. directly connected to a node h m ~ t h e  higher layerS. One 
can show that the links providing those at most k' steps up to 
i* exist simultaneouly a.a.s. - note that k' also increases to 

node from the gi- 
r ( N ) / ( 3  - 7). This motivates the following definition: we call ant component is fo the in at kSo(l) step- 

s. We skip the proof, which is based on a branching process 
constluction. Here is a hemistic argument indicating that the 

the Set 

0.0:' 1 - > -N(4-7)@) + oo, 
N - 2  

: infinity, although very slowly. 
With respect to k, the nnmbers f lk  have the positive limit men it to show that an 

(3) c = { i  : D.  > fs/€(T)@)/(3-T) * -  
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core is reachable in at most k' steps. Assume that the neigh- 
borhwd reachable f" a node i of the giant component in 
j ( N )  steps, say K ( j ( N ) ) ,  grows a.a.8. at least exponentially 
fast when j ( N )  + m, j ( N )  5 k ' (N)  (note that the exist- 
ing "small world" results unrespond to an exponential growth 
of the set reachable in k hops): IK(j(N))I 2 p j ( N )  a.a.s. for 
some p > 1. Then a sufficient condition for K ( k * ( N ) )  to have 
a.a.s. a link to the core C is, by lemmas 4 and 7, 

N 
> p k ' ( N ) e - ( r - ~ ) € ( r ) c ( N ) / ( S - r )  - as N - W. - 

But this is hue since ( ( N )  grows more slowly than k'(N) 

V. SIMULATION RESULTS 

The number k' grows so slowly with N that it remains prac- 
tically constant over all N that have some intemt. Here are 
some numbers when r = 2 . 5  

This can be related to the empirical fact that the average hop 
distance in Internet has remained nearly constant while N has 
grown f" a few thousands to about 150064 [l], [9]. 

We made some simulations and found that the behavior is in- 
deed similar to what our reasoning suggested. The simulation 
results are m"&ed in Table 1. "hey show only one simu- 
lation nm for each N ,  so that the numbers are not statistidly 
accurate, but give a clear impression of the overall behavior. We 
show the number of d e s  remaining outside the giant compo- 
nent, the number of cyclic links, and the distances of the ncdes 
f" the largest node. The relative size of the giant compnen- 
t converges to a positive constant, which is in this case about 
80%. The majority of the nodes is indeed connected over very 
few steps. In ow thmre.tical study, we did not consider the true 
diameter of the giant component, but the distance between two 
randomly selected nodes, which is of come a smaller number. 
The simulations indicate, however, that the true diameter is not 
mucbbigger,andthenum~ofexceptionsllydistantnodeswas 
usually very small. 
Wealsogivetwovisuakatimofthpphs. Fig. 1 showsall 

nodes and links so that the vertical axis comsponds to a node's 
distance f" the largest node (we put distance -1 outside the 
giant component) and the horizontal position is the quare root 
of the number of the d e  in ~ V b s B d  order by depree. 

Fig. 2 shows all nodes as small squares ordered according 
to decreasing degree in the form of a quadratic spiral: 
The darkness corresponds to the node's distance from the largest 
node, with the same graylevels as in Fig. 1. The clearly visible 
outmost layer consists of nodes with degree I .  The black nodes 
are outside of the giant componmt This figwe indicates that 
rather few nodes with degree l a r g ~  thim one remain ourside the 
giant component 

Finally, we produces a similar p i c m  with T = 3.5, keep- 
ing the sue of the giant component the same by modifying the 

TABLE I 
NUMBER OP NODES OUTSIOETHE G U N T  COMPONENT (..ReST"), NUMBER 

OF CYCLIC LINKS ("RINGS"), AND THE NUMBER OF NODES AT DISTANCES 

1.2,. ..PROM THE LARGEST NODE IN SOME SIMULATED REALIZATIONS 

WITH T = 2.5. 

3 
4 
5 
6 
7 
8 
9 - 

246 
83 
23 
2 

- 

49 I 
88 
8 
1 

- 

3421 
14M 
329 
47 
7 
1 

- 

7910 
2268 
49 1 
84 
I4 
4 
I - 

35039 
I4521 
3432 
679 
169 
37 
5 - 

de,pedistributiontobeP(D> d )  = ( d + ~ ) l - ' / ( l + a ) l - ~ ,  
a = 1.465. The light center is clearly s d e r  in this regime. 

VI. CONCLUSIONS AND REMARKS 

We have shown how a kind of -core network- arises span- 
taneously f" the distributional assumption that the node de- 
gees are (almost) independent and obey a power law with infi- 
nite variance. This core makes it possible that the diameter of 
the gmph grows extremely slowly (as IoglogN) with its size. 
Such a core does not arise with T > 3 (note also mat k' + m 
as r / 3). 

The practical consequence is that the existence of very large 
nodes has an important positive impact on the connectivity. "S- 
mall is beautiful" does not hold for architectures of large net- 
works (although, on the other hand, this increases vulnembility 
fornodelosses-see[lO]). 
Properties of this kind of models have already been used in 

studies on denial of service attacs [111 and multicast [IZ], [13]; 
we hope that our results will turnoutto be useful in that kind of 
"principle lever research on large telecommunication network- 

The role of the independence assumption is twofold. In the 
real Internet, some efforts are probably made to maintain a net- 
work that is better than a random one. Thus, the model may be 
motivated as a "pessimistic" one. 00 the other hand, the fea- 
ture that the connections are made inespective any geometiic 
aspects can be seen as an "optimistic" bias, 

There is no one-to-one correspondence between degree and 
power/importance of individual routers - pure core routers 
need Mf have many ports despite their high importance. On 
the other haud this correspondence may be gmd in the domain 
ginpb, also studied in [l]. 

In a vay  recent paper [ 141, the same model was studied with 
more extensive simulations and c o m p d  with empirical data. 

S. 
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Fi8.1. Dishmxsfmmlargrstnodc.N =5000.r=2.5. 

: 3.5, and dishibution modified 

The model showed a surprisingly good match with the real net- 
works. It was also possible to reveal a kind of “sofl hicmchy” 
rambling OUT ‘‘me*’. 
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