
VTT INFORMATION TECHNOLOGY
SPECIFICATION

TEKES contract no: 40501/01

Wireless Wellness Monitor II (WWM II)

 Software Architecture

Version 1.3

21.5.2002

Timo Tuomisto, Lasse Pekkarinen, Luc Cluitmans,
Ilkka Korhonen

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.021

Version history

Version Date Author(s) Reviewer Description
0.1 2001-10-10 TTu draft of contents
0.2 2001-10-16 TTu, LPe VTT

WWM2
workgroup

more stuff in Location,
Proximity, OSGi spec 2.0
revisions

0.3 2001-10-22 LPe, TTu,
LCl

suggestions after check

0.4 2001-10-22 TTu, LPe inclusion of some software
components

0.5 2001-11-19 TTu fixed several typing errors,
duplicate text

0.9 2002-01-09 IKo Clarification of presentation
1.0b 2002-01-18 TTu, LPe Revisions on databases,

Proximity, TV
1.1 2002-04-03 LPe added appendix 3, checked from

start until a new section 5.1.3
JES dependency & persistence,
architecture figures

1.2c 2002-04-05 LPe checked and fixed from 5.1.3,
according to the implementation

1.2d 2002-04-08 TTu Clarification of text, rearranging
problems encountered to
Appendix, added some
References

1.3 2002-05-21 IKo Final version

Contact information

Ilkka Korhonen
VTT Information Technology
P.O. Box 6, FIN-33101 Tampere, Finland
Street Address: Sinitaival 6, Tampere
Tel. +358 3 316 3111, fax +358 3 317 4102
Email: ilkka.korhonen@vtt.fi
Web: http://www.vtt.fi/tte/

End of editable fields

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.022

Contents
Contents ... 2

1. Introduction ... 4

2. Design principles... 4

3. Architecture description .. 4
3.1. Introduction.. 4
3.2. Conceptual schema (ontology) and registered services 5
3.3. Proximity.. 6
3.4. Location ... 6
3.5. User Interfaces ... 6

3.5.1. Push .. 6
3.6. Person... 7
3.7. Persistency ... 7

3.7.1. The persistency problem in OSGi release 1 ... 7
3.7.2. The configuration admin service specification and OSGi release 2 8
3.7.3. The preferences service specification and OSGi release 2 8
3.7.4. Java Data Objects ... 8
3.7.5. WWM II Persistent Data .. 8

4. Software components .. 10
4.1. Processes .. 10
4.2. Bundles .. 11
4.3. Services .. 12

5. WWM II bundles... 12
5.1. Spatial extensions to OSGi .. 13

5.1.1. Proximity.. 13
5.1.2. Location.. 15
5.1.3. Implemented Proximity Information.. 16

5.2. WWM II User Interfaces ... 17
5.2.1. Status information .. 18
5.2.2. Text Messaging .. 19

5.3. Session and context handling... 19
5.3.1. ApplicationContext .. 19
5.3.2. Displays.. 20
5.3.3. Persons ... 20
5.3.4. Configuration ... 21

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.023

5.4. Device discovery.. 21
5.5. Device communication .. 21

5.5.1. SoapBoxDriver... 22
5.5.2. MettlerScaleDriver ... 22
5.5.3. ISTMultlinkDriver ... 22
5.5.4. NokiaProximityDriver.. 22
5.5.5. SoehnleScaledriver... 22
5.5.6. X10Driver... 22
5.5.7. CelotronShopController (optional) .. 23
5.5.8. The TV unit .. 23

5.6. WWM II agents.. 23
5.6.1. Home Portal ... 23
5.6.2. Weighing .. 24
5.6.3. IST Activity.. 24
5.6.4. Coffee Maker.. 24
5.6.5. Hot Spot ... 24
5.6.6. Cottage Watchguard... 24

6. Software packages... 25

References.. 26

APPENDIX 1. The proximity strategy .. 27

APPENDIX 2. Thoughts on conceptual model: an intelligent agent......................... 28

APPENDIX 3. Technical Limitations.. 29

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.024

1. Introduction

This document provides the main architectural principles and guidelines for developing
the WWM II software. It also provides a list problems encountered, and some deviations
in the final implementation from the original architectural design. The details of object
classes and interfaces are described in documentation generated by Javadoc.

The hardware for the WWM II demonstration system is introduced in [1] and the
functional requirements are introduced in [2].

2. Design principles

The WWM II demonstration system consists an OSGi-based home server, which
communicates with IP-based devices or device aggregates (networks). The home server
can be accessed by an HTML browser.

The home server is an implementation of OSGi release 1.0 [3], and is based on JES 2.0
(an implementation of OSGi release 1) with some custom extensions. Whenever
appropriate, the custom extensions are aligned with the OSGi release 2 specification,
which has recently appeared. The home server is based on Java JVM 1.3 or later.

The non-IP devices (mostly RS232 protocol based) and device aggregates have a front-
end proxy, which makes them IP based.

All concepts - devices, persons or locations – are introduced as services registered to the
OSGi framework. Hence, the services registered to the framework include each
individual user (Person service), each location (Location service), each user
display (Display device service), and each individual peripheral device. This is
done to have a uniform search mechanism for all services found in the framework, and
make references between them.

3. Architecture description

3.1. Introduction

The Open Service Gateway initiative (OSGi) is a group of organizations to develop a
platform for integrating the control and use of home appliances. The Open Service
Gateway Specification release 1.0 [3] is the architectural backbone for building the
WWM II demonstration system. An overview of the framework is given in [4].

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.025

OSGi defines a set of interfaces (framework) to manage the access and lifecycle of the
services. The specification also includes a minimum standard set of service interfaces
(http, log, device etc.) for OSGi compliant implementations to conform. Moreover,
there are some implicit functional requirements for the OSGi compliant systems to
obey, e.g. the inclusion of a Device Manager, which is responsible of acquiring and
installing drivers for any newly detected devices.

Java Embedded Server (JES) [5] (enhanced with patch [6]) provides an implementation
for OSGi. It also enhances the OSGi with some new functionality e.g. with a set of
interfaces and implementation to manage users and their authentication in the system.
Already in the JES implementation a few extra rules have been added to allow at least
minimum integration of services within Home Portal, e.g. the parameters used to
register a servlet to the ServletContext is a JES internal feature.

Recently, the OSGi specification release 2 [7] has appeared. It refines, enhances and
modifies many features found in release 1. Some cornerstone modifications of release 2
are embedded in this document. The direct loans from that document are written with
Font Size 10.

The WWM II architectural basis is still OSGi release 1, but some changes suggested by
OSGi release 2 have been adopted. The WWM II User Scenarios [2] and Physical
Network Specification [1] introduce some new concepts, which neither the OSGi
specification v1.0 nor the corresponding JES implementation issue at all. In the
following the concept enhancements to release 1 are introduced with possible guidelines
to implement them by OSGi release 2.

3.2. Conceptual schema (ontology) and registered services

When artificial intelligence is built into a software environment ontology plays a major
role as the intelligent agents function based on their world view. The conceptual model
of OSGi standard has been kept in minimum.

The ontology requirements set by the WWM II user scenarios [2] are minor, because
most of the functionality within agents is done by intelligent functions, which are acting
upon a single service. Hence, the current WWM II system does not require conceptual
trees for artificial reasoning system. There is also no need to categorize the messages
shown to the users so that an agent capable of reasoning would filter and show only
important messages1. Appendix 2 provides an example of a complex ontology model. It
is very unlikely that such a world view can be standardized in a large scale.

However, there were some conceptual additions that needed to be introduced for the
WWM II. A sufficient conceptual schema for WWM II works with the interfaces
provided by services registered into OSGi. Most important roles in combinatory usage
have concepts such as person, proximity, display device, application, home portal,
health database, and electricity socket.

1 Though in the user trials a need for this kind of filtering appeared clearly.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.026

3.3. Proximity

The WWM II project adds the notion of proximity to the OSGi framework. In the
Physical Network Specification [1] there are several physical means to detect the
proximity of persons, displays, locations, and devices to each other. The WWM II
system utilizes this information to improve the management of home environment, and
especially the management of the environment in the proximity of a person, when he is
moving around at home.

3.4. Location

The proximity concept brings another issue of space, namely locations (house, living
room, kitchen etc.). The information that the user or a display device are close to a
certain location in the house may be utilized in assisting the user to select, or remind
about topics, which are spatially relevant. If the system knows that we are in the
proximity of kitchen it may reason that we also must be at home. This requires some
structural knowledge of locations.

NOTE: The WWM II system doesn’t use absolute locations, i.e. the exact space
coordinates of the services. However, if introduced, these services can be used via
Location and Proximity interfaces, which are reasonable abstractions or derivatives of
position information.

3.5. User Interfaces

Traditionally the interaction between a user and a system happens via an information
appliance, like PC, PDA, mobile phone etc. However, the use of physical devices
having an inherent physical “user interface” as well extends the user interface from
being a traditional display device to include the “user interactions with the other
physical (not only information appliances) devices as well. The software architecture
has to be partly turned around: in addition to (the users of) display devices being
capable of controlling the devices, also the devices know the existence of display
devices, which they can also control when the user interacts with the device user
interfaces.

3.5.1. Push

To be able to control the display devices (which are essentially browsers) in the HTML
view model, a push mechanism must be incorporated to allow the display device to be
manipulated by the system. However, while implementing and using this option care
must be taken that the user feels he still has the control on the system. If the display
device is an HTML browser, proprietary applets may be used to build push.

As explained in [2] it is assumed that PDAs are private user devices, and the
information displayed on them may be kept in discretion. In turn, the TV is a public
device, which is probably visible for a large audience. Therefore the system have to

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.027

allow a mechanism to block any discrete information from popping up in a public
display device.

3.6. Person

The concept of person is not handled at all in release 1 of OSGi specification. Each user
of WWM II will be associated with a persistent Person service. Following the ideas of
OSGi release 2, we give an unique service.pid to each person, so that it is possible
to have person related persistent data in section 3.7.5.

UserAdmin [release 2 of OSGi]

The package org.osgi.service.useradmin includes user authentication and authorization. It also
introduces a user object to store persistent data.

3.7. Persistency

Persistency is partly orthogonal for the conceptual model objects. It is something all the
services or other objects either have or not, and the persistency mechanism should be
invisible at the registered services level of OSGi.

3.7.1. The persistency problem in OSGi release 1

The OSGi specification 1.0 and its implementations have a inherent serious deficiency;
The BundleContext.registerService(), which is used to register services to
the framework for public use between bundles, has no internal persistency mechanism.
When shutting down the framework, each bundle may store in an appropriate manner
internally the services it has registered to framework. Otherwise the registered services
disappear from the framework. On restart of the framework the stored services will have
to be re-registered. However, re-registering creates always a new
ServiceRegistration with new ServiceReferences, which are unequal to
the previously registered services as understood by

ServiceReference.equals(ServiceReference previous)

Thus ServiceReference cannot as such be used as a persistent reference. Inside bundles
the persistent reference problem between services can be handled in an inherently
appropriate manner. However, if persistent references to services in other bundles are
required, the release 1.0 misses its target: the ServiceReference objects don’t
carry any persistent information, which could be used to identify the original service
when (after shutdown) reregistering to the framework.

WWM II has several persistent configurable references to other services between
bundles and thus a Persistency mechanism of persistent bundle service references is
required.

Persistent identity [OSGi release 2]

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.028

In chapter 9.3 of [7] the persistent identity is discussed. WWM II adapts the notation of using service.pid
as persistent identifier: all services requiring persistency should be registered with a property
service.pid, the name of which is defined in org.osgi.framework.Constants.SERVICE_PID. When a
bundle registers (or re-registers) as a persistent service it should always use the same PID. The PID
should be unique at least in their OSGi framework implementation.

3.7.2. The configuration admin service specification and OSGi release 2

Whatever the physical device behind the OSGi gateway, it needs some kind of persistency mechanism to
store device specific configuration data. In OSGi release 2 the framework is enhanced with a set of
packages to tackle the persistency issues of the configuration of the services. The
ConfigurationAdmin service maintains a persistent database of Configuration objects locally
or remote, that are registered with a service.pid –property and implement one of the two interfaces:

� Managed Service -A service registered with this interface receives its configuration dictionary from
the database or null

� Managed Service Factory –Service Registered with this interface receive several configuration
dictionaries when registered

The ConfigurationAdmin service is intended to replace the Configurable interface found in
release 1. One can use the metatype package of OSGi release 2. The reasons for dropping the
Configurable interface are discussed in chapter 9.12 of release 2 [7].

3.7.3. The preferences service specification and OSGi release 2

The package org.osgi.service.prefs is another persistency extension to store persistent personal
data or some other service related data (game highest score etc.). This package allows bundles to store
and retrieve properties stored in a tree of nodes, where each node implements the Preferences interface.
The preferences interface allows a bundle to create or obtain a Preferences tree for bundle properties as
well as for each user of bundle.

The Preferences Service does not provide a mechanism to allow one bundle to access the preferences data
of another. If a bundle wishes to allow another bundle to access its preferences data, it can pass a
Preferences or Preferences Service object to that bundle. The focus of preferences specification is
simplicity, not reliable access to stored data.

3.7.4. Java Data Objects

The OSGi name has been also associated with Java Data Objects (JDO) [8,9], which is a forthcoming
Java proposal to build a totally object oriented persistency interface, which hides the implementation
details. However, no trace of JDO is found in release 2 of OSGi spec [7].

3.7.5. WWM II Persistent Data

3.7.5..1 Configuration data

It is assumed that all configuration happens by a ResourceBundle file within each
bundle. Before a bundle is uploaded/updated, the ResourceBundle is edited by the
service provider to fit the client’s needs. This makes sense because WWM II does use

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.029

device discovery only marginally (see 5.4) and the devices in the local network are
found by contacting predermined addresses

Some temporary configuration may still be done to Configurable interfaces through
administrative user interfaces, which manipulate the Configurable interface, but these
changes are not persistent under shutdowns / restarts of the service. If persistent
configuration management is required, the ResourceBundle object is edited and the
containing bundle is updated to the OSGi environment.

3.7.5..2 Personal data or other measurement data

The OSGi 2 specification doesn’t define any a general database service with
transactions and atomicity guarantees. The preferences package services can be
used to store persistent user related data, but it is questionable, whether this form of data
storage is suitable for healthcare data e.g. weighing or activity data.

In WWM II personal data (e.g. health data) is loaded to a separate server running
remotely (or locally) via SQL statements. All services can use a common database,
which is configured for them in a single bundle: Persistency. Using this bundle the
WWM II services get a connection to the SQL-server.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0210

4. Software components

WWM II software components are depicted in Figure 1. In the following these
components are shortly introduced.

Figure 1. WWM II components. Processes are shown as rectangles with thick line.
Bundles are shown as rectangles with thin line. Services registered in BundleContext

are shown as ovals, and combined with lines to their origin bundles.

4.1. Processes

All processes communicate over Internet Protocol (IP). The processes included are:

� Device proxies, who change the appropriate physical devices to IP-based devices.
(SoapBoxServer, SoehleScaleServer, X10Server, MettlerScaleServer,
ISTMultiLinkServer, NokiaProximityServer)

HTTP BrowserHTTP Browser

Remote
HTTP-Server

InterClient JDBC
 SQL Database

X10 Server

DHCP

OSGi Server

Soehnle Scale
Server

(mddp client)

IST Multilink
Server

Mettler Scale
Server

Nokia Proximity
Server

Nokia Proximity
Server

Soapbox
Server

TCP/IP

Soapbox RF

Nokia Proximity
Soapbox

Mettler Scale
Soapbox

TCP/IP

HTTP Server

Celotron
Shop Controller

Persistence

Electricity

Interclient
Driver

Celotron Driver

URL Locator

MDDP Server

Soehnle Scale
Driver

IST Multilink
Driver

Mettler Scale
Driver

Nokia Proximity
Driver

Soapbox
Driver

Bundle
Context

HTTPService

SQLConnection

PersistentID
Creator

EleSocket

LightSocket

AlarmDetector

Temperature

LightSocket

EleSocket

PropertyDevicePropertyDevice

PersonScale

ISTDispatcher

CoffeeScale

ProxInformation

SoapboxMaster

Proxbox

Application
Context

Weighing

IST Activity

HomePortal

Cabin

Coffee Maker

HotSpot

Push

UIModel

KavaChart
Servlet

BSIUtil

Config

PersonPerson

UIIntegrator

UIService

UIService

UIService

UIService

DisplayDisplay

UIServiceUIService

PushServer
Factory

ActivityGraph

WeightGraph

GraphletGraphServer

WWM II
Software Components

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0211

� External (to WWM II) firmware (Celotron Shop Controller) or internal firmware
(Nokia Proximity SoapBox, Mettler SoapBox) based IP-services

� Network basic services (DHCP, Dynamic Host Control Protocol)

� Miscellaneous other external (outside WWM II) standard services (Database Server,
Remote HTTP Server, HTTP Browser)

� The OSGi server consisting of several services introduced by bundles

� The MDDPClient component in device proxies enabling the automatic driver
Bundle download specified in OSGi2

4.2. Bundles

The bundles consist of some functional entities added and removed from the framework
as an atomic whole. Bundles may introduce Java packages including classes and
interfaces for other bundles to use, but especially they install objects (Services)
implementing known interfaces to BundleContext for other Services to utilize.

The bundles included are:

� OSGi (JES) basic Bundles (HTTP Server) or some very standard extensions (WAP
Gateway).

� Device Driver Bundles, which communicate with device proxies, and bring the
devices behind the proxies visible (several devices if having multiplex behavior).

� Device Discovery Bundles, introducing the automatic detection of services in the
Home IP Network, and obeying OSGi device discovery mechanism. (here MDDP,
URLLocator, BSIUtil and Config)

� Conceptual Enhancement Bundles (Proximity, ApplicationContext, Electricity)
bringing concepts outside OSGi specification to framework.

� Agent bundles (e.g. Weighing), which utilize the services provided by other bundles
for additional processing.

� Utility bundles (Push, Interclient, Graphlet, GraphGenerator) for other services to
use. These bundles are not architecturally mandatory, but provide some internal
facilitating services.

� The Service Integration bundles (UIModel, HomePortal) used to build the home
portal application from the components.

2 Possible component, but will not be included in the demonstration system.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0212

4.3. Services

Each bundle introduces new interface types and/or provides an implementation for
interfaces and produces registered services to the framework. The services, which each
bundle registers to Framework, are introduced to the system. Due to the fact that the
bundles need to be installed and removed on the fly, no direct use of objects of other
bundles are generally allowed but must be done via ServiceReference objects and the

BundleContext.getService(ServiceReference)

function call. Thus, all use of objects in the registered interfaces occur either by
ServiceReferences, or by String attributes, e.g. the service.pid.

5. WWM II bundles

Figure presents another view to the WWM II software, somewhat simplified picture of
the main implementation bundles at the OSGi server. In Figure dependencies are
marked with arrows: a block uses the component below to which an arrow leads. To
keep the amount of arrows small, the dependencies to UI Model are labeled with UI
letters. In addition, IST Dispatcher, and all the UI-labeled bundles depend also on
Application Context. The bundles are shortly described in the following sub-chapters.

Figure 2. The WWM II bundles and their dependencies.

WWM2 - Bundles at OSGi Server

Celotron
Driver

Hotspot IST
Activity

Person
Scale Persistence

Homeportal

Application
Context

Person & Display

HTML
Push

ProxBox Coffee Scale

Coffee
Maker

IST
Dispatcher

UIUI UI UI

UI Model

Weighing

UI

Proximity
Information

Weight
Graph

Activity
Graph

Electricity
X10

UI

SoapBox

Graphlet

Cottage
Watchguard

UI

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0213

5.1. Spatial extensions to OSGi

The sections 5.1.1. , and 5.1.2. below provide a software design for a general
proximity framework, suitable under OSGi. The section 5.1.3. describes implemented
version with its simplifying ideas.

5.1.1. Proximity

The proximity bundle provides the proximity framework for other services to use.
WWM II has specified the interfaces for a decent proximity bundle:

� It provides an abstracted API (Proximity) to check the spatial proximity between
services, which have been associated (mapped) to any proximity sensors.

� It allows services to register themselves as ProximityListeners for
ProximityEvents .

� It provides an agreed API (ProximityAccessPoint) that any Sensor Types
capable of detecting the proximity of each other can implement and join to the
proximity framework.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0214

«Interface»
ProximityListener

«Service»
Proximity ProximityImpl

«Interface»
ProximityAccesspointListener

0..n

1..1

«Service»
ProximityAccessPoint

0..1

1..1

0..n

1..1

«Service»
Location

«Service»
ProximitySensor

NokiaProximitySensorImpl

SoapboxProximityImpl

ISTProximitySensorImpl

WWM2 Proximity

Figure 3. The Proximity bundle structure. Registered service interfaces are shown with
Service stereotype. Proximity users log themselves as ProximityListeners to
Proximity Service. The Proximity implementation detects the ProximityAccessPoints
registered to the framework and creates a ProximityAccesspointListener for each of
these. The SoapBoxMaster, IST multilink unit, and Nokia Proximity Sensors may all
provide ProximityAccessPoint service.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0215

It is assumed that each sensor type that can provide proximity information (Proximity
Sensor) has an internal nominal range (in meters) to be able to detect its counterparts.
This is, however, not necessarily accurate as antennas may be used, amplifications
adjusted, or if there may be objects between transmitters and receivers.

The proximity package may communicate with the Location service to infer some
additional rules for Proximity of services.

Some issues have deliberately been left out from the implementation:

� How each implementing package is capable of mapping its internal identifiers to the
ServiceReferences? It is supposed that an internal Dictionary exists to map the
identifiers to the PIDs of OSGi framework registered ServiceReferences. This
Dictionary is kept in a ResourceBundle properties file

� The discovery of new ProximityAccessPoint Services is not handled. In the
OSGi framework it is assumed that the discovery happens through listening
ServiceRegistrationEvents in OSGi framework.

� Due to the fact that device discovery is in the current scheme not supported, a
new/unknown PDA or Pen computer carrying an ProximityAccessPoint
(Nokia Proximity Sensor) must be handled by an ad hoc
ProximityAccessPoint discovery: When an HTML call from a display device
is issued the server searches for the ProximityAccessPoint by contacting a
specific port of the host address retrieved from the HTML request. The discovery is
facilitated by calling the Proximity interface method
proximity.suggestAccessPointAt(InetAddress host), which adds an existing
ProximityAccessPoint to the OSGi environment.

The proximity package only deals when the proximity is detected by
ProximityAccessPoints and inferred from Location structure. Implicit
proximity of e.g. by a person, who has registered himself as a user for a Display
device is not handled by the proximity package. If such a proximity becomes of
importance, the application using the proximity service must implement the strategy by
itself. For details, see the Appendix 1: The proximity paradox

5.1.2. Location

Location bundle contains the hierarchy of locations of home. The bundle has only one
interface Location, which contains methods to

� add /remove sub-locations (Location inside another)

� add / remove Services to the location

� Query whether a service fixed within a location

� get all sub-locations and services contained

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0216

Each of the individual Locations are registered to the framework. An example structure
may be found in Figure 4.

Home

1floor 2nd floor

Kitchen lobby Living
Room

Dining
room

Parents'
Bedroom toilet

Scale
Device

Coffee
Maker

IST
Base
Unit

Figure 4. An example of the home hierarchy including some services.

5.1.3. Implemented Proximity Information

The implemented proximity system has knowledge about three service types: persons,
displays, and WWM II UI Services. The persons and displays can have active Nokia
proximity sensors (master sensors), and the displays and UI services can have passive
sensors. This means, that their IDs are mapped, and known in the proximity system.

The proximity system listens to all available person services at OSGi, and connects to
their Soapbox sensors, if they have been mapped to one. It also receives suggestions
from the authentication, ApplicationContext, about which persons are using what
displays. Those display devices are tested to see if they can provide proximity
information through TCP connection.

Although the API could support quite general actions, the functionality has been
restricted to support the tasks needed at the WWM2 user trials:

� Listeners to follow what is near a focus point, which can be a person or a display.

� Answer to a question, whether a certain proximity sensor ID is near a certain person.

� Answer to a question, which persons are near a specific proximity sensor ID.

� Answer to a question, whether a certain person is near a specific display.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0217

The final implemented version of proximity information in WWM II does all required
functions, but the SW architecture is simplified. The proximity related IDs should be
handled only inside the proximity framework. Now the mapping of a service to its
location is done by explicitly defining the proximity sensor ID for in each service that
has type WWM II UI Service. All the persons and displays are explicitly given a
proximity sensor ID at the ApplicationContext. Information about Nokia proximity
sensors is therefore not only inside the proximity framework.

The proximity system can support also other methods than Nokia sensors, but with
current implementation, it is not as easy as with the designed proximity and location
framework. The main troubles are: Mapping of this other method and a service, person,
or display can not be easily separated inside the proximity framework Implementation
of a mid-layer, that combines the proximity knowledge of both Nokia sensors and the
other method.

5.2. WWM II User Interfaces

An HTTP server included in OSGi is used to incorporate Java servlets. Each of the
home appliances has one or more servlets to provide the HTML user interface. Also the
home portal has a servlet. Only basic HTML code is used, e.g. no frames are supported .
For push operation, the HTML code includes loading an applet.

As an extension to OSGi, all WWM II services that have user interfaces use a special UI
framework. It defines interfaces for UI integrator, application, and administrative
services. The main task of these interfaces is to combine the user interfaces of different
services and construct a central remote controller for home.

Status Messages

HomePortal

Coffee Maker

IST Activity

UIService Interface

coffee status
important now

get status
icon

get startup
link

get message &
mark as read

write
a message

Figure 5. Operation of the UI framework. HomePortal implements UIIntegrator, and
Coffee Maker implements UIService.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0218

The UI integrator builds displays to represent the current services. Its servlet gathers the
information to display from all UIServices registered into OSGi. The integrator
builds the display by asking from the UIservices HTML code: their startup links, and
status information.

The UI integrator provides headers and footers for the HTML code provided by
application servlets. The header part presents e.g. status and title bars as suggested in
[2], thus avoiding the use of frames.

UI service interface allows also simple messaging between applications. It provides a
straightforward solution e.g. for a requirement "When IST activity is low � show coffee
cup" presented in [2]. This is implemented as a method in the UIService interface,
which indicates of an increased importance. It can be used to tell that now e.g. coffee
maker status is important information.

5.2.1. Status information

Figure 6 shows how one UI intergrator, the home portal, divides the screen into sections
including status information components.

Title

SERVICE ICONS
with text links

Or space for the service application:
weighing, activity, coffee

Status icons Status text area

Figure 6. Sections of the display as divided by WWM II home portal.

Graphical icons are used for status information. These are context sensitive, and visible
only when they are relevant. The status icons can be clicked to open the services they
represent. This section is constructed, as the UI intergrator asks from UI services,
whether they want to show a graphical icon.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0219

The UI framework gives responsibility to the application services to determine what
kind of status information they should show. Here are some guidelines that should be
followed in applications to sustain usability at the home portal:

� Let each user configure, when they will see icons.

� Send messages only from important changes.

� It is possible to continuously show an icon to represent e.g. changing status, but then
it must have real value: perhaps a good example of an icon to be shown is the
activity level of a person.

5.2.2. Text Messaging

The status text messaging system of UI Integrator has an interface, which can easily be
used to build e.g. a listbox. The messages are generated when an event in the house is
worthwhile to be told to the user. The user is e.g. informed, e.g. that the coffee maker
has been turned off automatically. For this usage, the system keeps in memory for all
the messages of current day. The system supports building an UI which can separate
new – unread, and old - read messages.

When an UI Service has worthwhile information it can send a text message to all the
users of home, e.g. the coffee maker informs about an automated turn-off. UI integrator
may listen to new messages and inform about the new message as wanted, e.g. use push
with sound effects.

The messaging system has a servlet with an input line. This can be used by the operator
users to type what ever text message they want to sent to the home users.

5.3. Session and context handling

Person and Display services enhance the context of WWM II services. These
services are also always included into HttpSession. There they are directly available
for all servlets that have been registered with ApplicationContext.

Display and person are often used together. To make this easy, a person service can tell
all the displays that this user has logged in, and a pisplay service can tell the person
using it.

5.3.1. ApplicationContext

ApplicationContext bundle provides a single authentication for all home servlets: the
user has to login only once. It also provides a same HttpSession for all the servlets with
the display and person objects. All this is implemented through the
handleSecurity-method at our HttpContext.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0220

Authentication

The user interfaces, mainly the UIIntegrator, can control authentication by
indicating when the user has logged out, when the user wants to log in, and when the
user wants to log in as a guest for using only public services.

When an unknown user tries to use a WWM II service, they are forwarded to an
authentication servlet. It supports traditional typing of username and password, but
authentication is also possible with the proximity sensor–Soapbox combination: it is
successful, if a single person is detected to be in the proximity of the display.

5.3.2. Displays

Display is strongly related to HttpSession: they have similar lifetimes. Display
concept is registered to OSGi and bound into HttpSession. The registered concept
makes is possible to pose questions like: “Is there a display near person X?”

HttpContext updates the display object, so that it knows the URL that currently visible
at the HTML browser. The URL defines whether or not the display is free to
information push. This URL update also indicates the last time that display was used to
session management of WWM2 ApplicationContext. After a decent interval, a passive
session is removed i.e. auto-logout of user.

The URLs, which are a free targets for information push, are initialized by applications.
It is additional information related to a servlet registration.

Home applications can use the display service to find out whether the display is public
or not, and behave accordingly:

� Television user – do not allow intimate data.

� PDA user – allow intimate data.

The display service uses and controls the actual HTML push implementation by
checking the intimacy and the current URL. After desired checks, it commands reload
trough the push service.

5.3.3. Persons

All users are registered to OSGi as person services. The service contains only a user
name and a persistent ID (service.pid). Other services do not store personal data to the
actual person service but link the data to a specific person with the persistent ID. The
services may use whatever data storage they want. This strategy of storing person
related data is simpler than the one at OSGI v.2.0 [7]. It may be used since the
requirements for personal data WWM II are simple: weighing and activity
measurements are stored into SQL database, and used separately

Architecture should be further developed, if personal data would be integrated e.g. both
the weight and activity data would be analyzed in a single application. The easiest
approach would be not to use a complex person object, but instead a distributed storage.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0221

Negative effect of our approach is additional data management. If person related data is
stored into the Weighing bundle, that measures the data, removing a person from the
system leaves obsolete data into this bundle. As a solution, all the existing persons are
persistently registered to OSGi by ApplicationContext. Applications know that a person
has been removed when ApplicationContext service is an active service, but there is no
person service with the persistent id that application had stored to its data.

5.3.4. Configuration

Following a simple configuration model, the ApplicationContext bundle has a
properties file. This file is especially important as it defines persons: the user names,
persistent ids, proximity ids, and also the displays and their proximity ids.

5.4. Device discovery

Discovery mechanisms such as Jini, uPnP or MDDP developed in an earlier project [8]
might be chosen. To include a device discovery protocol in to the framework would
require at minimum an installation of a device discovery driver (e.g. MDDPDriver) to
OSGi framework, which is first capable of detecting a device in the IP network . After
being detected and registered by the appropriate device discovery mechanism, the
Device is taken care by the Device Manager, which searches all
DriverLocator services (e.g. URLLocator of MDDPDriver) to download and install
a DeviceDriver for the installed Device. If such are found the
DeviceDriver.attach(ServiceReference basicDevice) method is called, which
creates and registers the new Device objects using the properties in the
ServiceReference to the basic Device registered by the discovery mechanism.

WWM II architecture doesn’t issue the device discovery mechanism, because that is an
issue related to device driver implementation. Currently device discovery is not not
implemented in WWM2, except for Weighing Scale (MDDP).

5.5. Device communication

All the WWM II devices are wrapped as IP servers, having their driver counterparts in
the OSGi environment. By the driver we mean software included in to a bundle , which
handles the communication between OSGi and the above device IP server. We
concentrate here on the services registered by the different bundles to the OSGi
framework, not on the details of IP communication between the servers and drivers.

Each of the following devices may use its internal device detection protocol. The
discovered devices are registered to the framework. It is assumed that the driver has a
configurable persistent storage file of devices, which can be added/removed by editing
the storage directly (properties file, XML file...), or through a separate configuration
panel. The persistent storage acts as a default source for creating devices when
restarting. Thus – if no device discovery exists – the only way of introducing new
devices is by editing this file , or by creating new devices by the management panel for
the driver.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0222

5.5.1. SoapBoxDriver

The SoapboxDriver communicates with the SoapBoxServer.

Because SoapBoxes don’t have any device discovery mechanism, a properties file
(which is not necessarily in Soapbox driver) contains the pre-configured information of
attached SoapBoxes – either NokiaProximitySoapBoxes (SoapBoxes connected to
Nokia Proximity Sensors), or MettlerScaleSoapBox (SoapBox connected to Mettler
Scale).

The SoapBox driver registeres a SoapboxMaster service to OSGi. This is used also by
another bundle: ProxBox. It provides special methods to get connections into those
Soapboxes that are attached into Nokia proximity sensors.

5.5.2. MettlerScaleDriver

The MettlerScaleDriver is responsible of communicating with the MettlerScaleServer,
directly trough TCP connection, or indirectly by using the soapbox bundle and Soapbox
RF connection. The bundle registers a Scale interface to the system.

5.5.3. ISTMultlinkDriver

ISTMultilinkDriver communicates with the ISTMultilinkServer. It registers an
ISTDispatcher to OSGi. The service provides IST data for interested listeners, and
it can also support a short time listener for a context sensitive usage of the IST wrist unit
button. Two different listener types exist, one for raw IST shout protocol data, and one
with some time filtering with the activity values.

5.5.4. NokiaProximityDriver

NokiaProximityDriver communicates with active proximity sensors trough TCP and
with Soapbox connection as provided by the ProxBox bundle. Currently, this bundle
also registers and implements the whole Proximity Information Service, described in
section 5.1.3.

5.5.5. SoehnleScaledriver

SoehnleScaledriver communicates with the SoehnleScaleServer, and creates and
registers a Scale service for person weighing.

5.5.6. X10Driver

The X10 control module, CM11 PC powerline, is operated by an IP based server, made
py J. Peterson. [10]. An electricity bundle in OSGi communicates with the server via
TCP connection.

The electricity bundle provides the control mechanism of X10 devices. Because X10
has no service discovery mechanism, the bundle defines the x10 devices (LM 565 Lamp
dimmers, AM12 power switches etc.) in a configuration file. It also has a servlet user
interface to set up and operate all the X10 devices.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0223

Each of the X10 devices is registered to the Framework as a separate service.

X10 lm565 dimmer

Each instance shall be registered to OSGi framework as a LightSocket service.

X10 lamp module

Each instance shall be registered to OSGi framework as an EleSocket service.

5.5.7. CelotronShopController (optional3)

Two IP-based functionalities are used from the Celotron Shop Controller. The bundle
registers service to OSGi, which provides information of temperature, and motion
detector alarms..

5.5.8. The TV unit

The TV unit is not shown in Figure 1. TV unit doesn’t require any specific driver
software registered with OSGi.

The TV unit consists of a PC equipped with a television card and proprietary remote
controller enhanced by a separate mouse device. The PC runs the web browser software.
TV mode / HTML -browser mode is selected by toggling the remote controller TV/AV
mode

The Web Browser software informs in login URL parameters that it is a public display
device and has bigger screen size than the PDA. Otherwize, the TV unit makes a
connection with the OSGi server like a normal display device. The ApplicationContext
creates and registers a corresponding DisplayDevice object as it does with all
HTML browsers connecting the system.

5.6. WWM II agents

In addition to the devices and device drivers WWM II contains some applications. They
are built upon these drivers and implement UIServices in the WWM II framework.
These are called agents, but also application, and service terms are used.

5.6.1. Home Portal

The role of a Home Portal agent is to introduce the UIIntegrator service for the rest
of the bundles to use, i.e. it provides an integrated access to all available agents.

3 The Celotron device was finally available with adequate instructions at a time, when the implementation
phase of this project ended. Only some test programs for the creation of a driver exists.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0224

5.6.2. Weighing

The weighing agent is an enhancement to the person Scale service. It provides an
UIService object with a servlet for the display of weight history. The weighing
bundle stores the measurement data to an SQL database, and can read from the database
the the latest result of users.

The graph image is built in another bundle, and HTML code points to this another
servlet with the SRC parameter of IMG tag. A graphlet bundle prints the image using
an external graph library: KavaChart [11]. Data to this graph is read by a weightgraph
bundle, which also knows the structure of weight data in SQL database.

5.6.3. IST Activity

IST Activity agent stores the activity measurement data internally and provides a
service to look at the activity history data. It provides the UIService for the activity
history servlet. The graph images is provided in a similar way as in Weighing.

The Activity agent listens to ISTMultlinkDriver. One listener writes plain data
according to the SHOUT protocol [12] to activity database. Two other listeners use the
time filtering of activity data as provided by the ISTMultlinkDriver. One handles the
activity status, and another controls the electricity network of home - X10.

5.6.4. Coffee Maker

The Coffee Maker agent reads data from the coffee scale (MettlerScale), interprets
the data and transforms it into the information about amount and freshness of coffee.
The Coffee Maker agent provides an UIService to present this information to the
user. It also uses the Electricity service to turn of the coffee maker power when
the pot is empty or the coffee is too old.

5.6.5. Hot Spot

Hot Spot agents implement UIService interfaces. They define a proximity sensor
identification, and the startup link of these services is an URL pointing anywhere to the
internet. The Hot Spot service includes a configuration file and an user interface to
define the agents.

5.6.6. Cottage Watchguard

With the Celotron driver available: This service shows a temperature of the summer
cabin, and stores images from web-camera, when Celotron driver produces a movement
alarm. These images are archived, and available to be browses by the users. The cottage
Watchguard has UIService and a servlet for this. When movement is detected, the
watchguard uses text messaging system to alert the users.

Without the Celetron driver: Neither the temperature sensor nor Movement detector
are in use, and e.g. the movement alarm has to be input to the messaging system by an

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0225

operator user. UIService shows no temperature information, and the image of a
summer cabin seen in the servlet is always the same picture, not web-camera.

6. Software packages

Each bundle contains one or more software packages. The documentation of software
packages is in a separate document generated by Javadoc.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0226

References
1. Luc Cluitmans, Ilkka Korhonen, Lasse Pekkarinen, Timo Tuomisto, Arto

Ylisaukko-Oja, WWM II Physical Network Specification v2.4 (28.09.2001),
Research Report, VTT Information Technology, 2001.

2. Lasse Pekkarinen, Katja Rentto, Mark van Gils, Timo Tuomisto, Ilkka Korhonen,
WWM II User Scenarios v1.0 (28.09.2001), Research Report, VTT Information
Technology, 2001.

3. OSGi Service Gateway Specification, Release 1.0, May 2000. http://www.osgi.org

4. OSGi Specification Overview, Version 1.0, January 2000. http://www.osgi.org

5. Java Embedded Server 2.0. http://www.sun.com/software/embeddedserver/

6. Java Embedded Server patch 2.0.1 http://www.sun.com/software/embeddedserver/

7. OSGi Service Gateway Specification, Release 2.0, Oct, 2001
http://www.osgi.org/resources/docs/spr2book.pdf

8. JSR 12, Java Data Objects (JDO) Specification, http://jcp.org/jsr/detail/012.jsp

9. Java Data Objects, http://access1.sun.com/jdo/

10. Java X10 CM11A/CM17A Library by J Pedersen,
http://www.jpeterson.com/rnd/

11. KavaChart. http://www.ve.com/

12. The SHOUT protocol. A proprietary protocol by IST. Private document.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0227

APPENDIX 1. The proximity strategy

We assume that a user registered with a display device is in the proximity of the device,
or better – the device is used as his proximity information. However, this assumption is
not necessarily valid: the user may not always be in the proximity of his private display
device (though it is switched on). Furthermore, the user may wear another tag
(proximity sensor) so that also his location is known. When a display device shows
services within the proximity, is it being near the device, or near the person that counts
– or a combination of both.

We have defined atomic rules for proximity service:

� PDA has always an active proximity sensor.

� If user operates a PDA without a separate proximity sensor, user & PDA location
are the same i.e. user location is defined by PDA location.

� If user operates a PDA and has also a separate proximity sensor, the latter
dominates, and defines the user's location.

For simplicity we may assume that in our trial system the users always have a proximity
sensor-SoapBox combination, which gives the location and identity of the user.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0228

APPENDIX 2.
Thoughts on conceptual model:

an intelligent agent

SW architecture functionality example around “Tired person � go and get coffee.”

Our solution is simple compared to a true ambient intelligence architecture but this
requirement of messaging gives ideas about that future architecture. Here is an example
of how it might work:

Person context is followed in a well-defined ontology. Activity is marked low. Person
context has wellness listener agents, and the one for low activity reacts. It goes checking
time context information of this person. The agent finds out that the person should be
active at this time and date. It starts searching refreshing possibilities from well-defined
ontology at the nearby location. Since the person is currently at home, the agent
examines ontology under home. There a as a property for a coffee maker it is being
listed that it can offer refreshing liquid, just now ready-made in the pot. In an ambient
intelligent system, the person's context would include preferences learned along time.
Comparing preferences, and the refreshing possibilities, the agent might encourage the
person to go and get a cup.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0229

APPENDIX 3.
Technical Limitations

JES 1.0 has never surpassed experimental status, and not been supported by Sun for a
while. Especially the HTTP server of JES seems to suffer from errors. The iPAQ 3850
has network and browser related problems. For WWM2 all these arise difficulties in
combination with the randomness of proximity provided by Nokia RF sensors.

JES HTTP-server

JES includes a HTTP service as defined in [3]. Although similar API exists in the newer
version of OSGI [7], the functionality of HTTP service is obviously not standardized
well enough. This has caused difficulties in the implementation of WWM II. This may
lead into harmful dependency on the Java Embedded Server version 1.0 by Sun, and
hinder upgrading into better OSGi implementations. The dependency can be understood
from the section 5.3 - Session and context handling.

The version of HTTP protocol has features of both HTTP standards 1.1 and 1.0; it
should rather follow only the version 1.1. The problem can be detected e.g. by starting
only the original JES management panel bundles by Sun, and logging into it. You see
following error messages:

> HttpService warning: Exception in servlet: /images/jesmp
java.net.SocketException: Connection reset by peer: socket write error
 at java.net.SocketOutputStream.socketWrite(Native Method)
 at java.net.SocketOutputStream.write(SocketOutputStream.java:83)
 at com.sun.jes.impl.http.HttpOutputStream.rawFlush(HttpOutputStream.java:242)
 at com.sun.jes.impl.http.HttpOutputStream.flush(HttpOutputStream.java:233)
 at com.sun.jes.impl.http.HttpOutputStream.close(HttpOutputStream.java:254)
 at com.sun.jes.impl.http.ResourceServlet.doGet(ResourceServlet.java:100)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:715)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:840)
 at
com.sun.jes.impl.http.ServletRegistry$Entry.service(ServletRegistry.java:140)
 at com.sun.jes.impl.http.ServletRegistry.service(ServletRegistry.java:309)
 at com.sun.jes.impl.http.HttpServer$Handler.run(HttpServer.java:458)
 at java.lang.Thread.run(Thread.java:484)
HttpService warning: Could not handle request
java.net.SocketException: Connection reset by peer: socket write error
 at java.net.SocketOutputStream.socketWrite(Native Method)
 at java.net.SocketOutputStream.write(SocketOutputStream.java:83)
 at com.sun.jes.impl.http.HttpOutputStream.rawFlush(HttpOutputStream.java:242)
 at com.sun.jes.impl.http.HttpOutputStream.flush(HttpOutputStream.java:233)
 at com.sun.jes.impl.http.HttpOutputStream.close(HttpOutputStream.java:254)
 at com.sun.jes.impl.http.HttpResponse.end(HttpResponse.java:112)
 at com.sun.jes.impl.http.HttpServer$Handler.run(HttpServer.java:480)
 at java.lang.Thread.run(Thread.java:484)

The HTTPSession Sharing Problem

The documentation of HTTP server in JES 2.0 claims that by using the same
HttpContext in servlet registration calls they will share the same
ServletContext and thus also same HttpSession. Our first implementation tried to

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0230

achieve this by registering a HttpContext to OSGi, and all servlet registrations got it
trough OSGi getService method. However, the registered servlets had different
ServletContexts.

The solution can be described as an additional requirement: for the HTTP server in JES
2.0: all the registration calls to HTTP server must be made inside a single bundle. Then,
using the same HttpContext the servlets will have same ServletContext and HttpSession.

The implemented ApplicationContext bundle provides a wrapper class for the
registration of servlets. UI services register their servlets through the wrapper class, and
the registration calls therefore originate from a single bundle, a single service which has
the same HttpContext as a member variable. As a result the HttpSession is shared
between WWM2 servlets. This is a common and useful technique in servlet
programming.

Resources Related System Freeze

JES can be run in a state where you can not get any data from the web server nor use the
console to input. Milder version is crash of the resources part in HTTP server of JES: no
images are seen on the web pages and the push applet stops working.

The total freeze occurs when all resources used in WWM2 are registered under the
HTTP server of JES. System hangs when starting both the bundle activitygraph, and
weightgraph.

Starting only either of the graphs, the system works with a behaviour suggesting to
synchronization problems: Slow browsers like iPAQ run without errors, TV and Pen
Computer run without errors, if they have to download the push applet on the first time,
so that it is not yet in cache. With faster browsers downloading the push applet from
JES resources shows exactly similar error message as above, with the resources being
/pushresources.

The system works even after this message with a small amount of resources,
e.g. without any graphs, the istapplication or weighing bundles. With more bundles
present, the resources part of HTTP server freezes – it can not provide any data
anymore.

Possible Causes

There may be synchronization failure inside the HTTP server of JES 1.0, which is used
in its extremes, probably surpassing tests made by Sun.

Related implementation issues:

� Multiple servlets are registered to the HTTP server through a special wrapper bundle
to give the same HttpContext for all WWM2 servlets.

� Resources are registered directly trough the HTTP server of JES, each with the
simplest possible HttpContext.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0231

� The graph bundles use multiple OSGi service listeners – one for each dependency.
They listen for the HTTP server wrapper and use it to register their servlets.

Possible Solutions

Work around by registering all the resources except graphs to another web server.
Implemented successfully except for another technical limitation at the iPAQ [see
below].

Other ideas – unimplemented:

� Write a special servlet class to provide the resources instead of the HTTP server of
JES. At least it would be possible to debug what is going on with the resources.

� Place also the graph servlets under another web server. The weight and activity data
can be shared trough the common SQL database. URL query parameters need to be
used to pass the username as a plain string. This leads into a security hazard that
should be solved with some suitable protocol.

� Use GateSpace, ProSyst or at least their HTTP server to handle the resources of
WWM2 services.

Wireless Wellness Monitor Software Architecture v1.3
(WWM II)

VTT Information Technology Modified on 21.05.0232

iPAQ 3850
Applet Start-up

To surpass the problems of the JES HTTP server, the push applet was transferred under
another web server. The HTML code for starting the applet therefore defines archive
location with an URL like http://localhost:8085/resources/pusharchive.jar.

The Explorer of Microsoft Pocket PC 2002 does not seem to be capable of starting the
applet. With all other browsers and hosts this usage of a different web server than the
one in JES makes WWM2 system fully functional.

Slowness in Push Operation

When receiving multiple push commands e.g. moving fast between two proximity
sensors, the PDA can not reload the HTML pages fast enough. The iPAQ it is capable
of receiving another push message only after it has fully loaded the HTML page
including the push applet. This is because in the current implementation push applets
are restarted continuously. Each push applet starts up, listens for one message, loads the
new HTML page, and kills itself.

Possible Solutions

� Do not destroy the push applet after; implement a simple protocol for the push
operation, so that loading each HTML page informs the push applet with the current
browser status. Becomes somewhat complex, since push must be context-sensitive:
e.g. if user is busy using another service, stepping on the scale must not change the
display into weight graph screen.

� Cache and delay push messages. Implement a method for the push applet to tell the
push server that now it has been fully loaded.

Network Configuration

Internet connection via WLAN and a PC as the router machine was successfully tested.
However, the push worked really slowly, about 1 refresh in 1 minute, when a real
Internet connection was in use.

The slowness originates in searching order of the network, as iPAQ does not seem to
have any known means to configure special local addresses, instead it always does a
inevitably failing and time consuming search for the local machines from the domain
name servers of internet service provider.

IPAQ should have methods to configure its network e.g. by specifying the local
addresses in a similar manner as using the lmhosts-files in Windows.

