HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Markus Ylikerala

Real-time data transportation with fake tunneling

Master’s thesis that has been given for review for the degree of
Master of Science in Technology, Espoo, May 13", 2003.

Supervisor: Professor Teemupekka Virtanen

Instructor: Group Manager Raimo Launonen

HELSINKI UNIVERSITY OF TECHNOLOGY

ABSTRACT OF THE MASTER’S THESIS

Author: Markus Ylikerala

Title: Real-time data transportation with fake tunneling

Date: May 13,2003

Pages: 73

Department: Department of Electrical and Communications Engineering
Professorship: T-110 Telecommunications Software

Supervisor: Professor Teemupekka Virtanen,

Helsinki University of Technology

Instructor: Raimo Launonen, Group Manager,
VTT Technical Research Centre of Finland

Content: Telecommunication networks enable connecting of users at different
places so that the users can simultaneously use the same multi-user virtual
environment. This enables collaboration between the users of the virtual environment
over the network because they can interact with each other and manipulate the same
virtual objects in real time. In addition to the network and user device, a protocol is
needed to transport real-time data between the users. Although transport protocols
that are suitable for real-time interaction should be used, their use can be denied for
security reasons. But, transport protocols that are not restricted for security reasons
can have other characteristics that make them unsuitable for real-time interaction.

The subject of this Master’s thesis was to research what kind of transport protocol
should be used to achieve real-time interaction over the network. As a result of the
research, the constraints of the current Internet transport protocols are avoided to
enable collaboration of distinct users in the same multi-user virtual environment.

As the practical part of this Master’s thesis, the author has developed the concept of
fake tunneling used on the Internet Protocol (IP) based networks. Fake tunneling is
designed according to the current Internet transport protocols and implemented
according to the standard, de facto, interfaces. Fake tunneling was compared to the
current transport protocols and was shown to be superior.

Keywords: header, interface, protocol

TEKNILLINEN KORKEAKOULU

DIPLOMITYON TIIVISTELMA

Tekija: Markus Ylikerila

Tyon nimi: Reaaliaikainen datan siirto lumetunneloinnilla
Piaivimaara: 13. toukokuuta 2003

Sivumaira: 73

Osasto: Sdhko- ja tietoliikennetekniikka

Professuuri: T-110 Tietoliikenneohjelmistot

Tyon valvoja: Professori Teemupekka Virtanen,

Teknillinen korkeakoulu

Tyon ohjaaja: Ryhmiépiillikko Raimo Launonen,
VTT Tietotekniikka

Tiivistelméteksti: Tietolitkenneverkot mahdollistavat eri kdyttdjien yhdistimisen
niin ettd kayttdjat voivat yhtdaikaisesti kayttdd samaa monen kayttdjan
virtuaaliympéristdd. Tédmd mahdollistaa virtuaaliympériston kéyttdjien vilisen
yhteistyon verkon vilitykselld, koska he voivat olla vuorovaikutuksessa keskendén ja
kisitelld samoja virtuaaliesineitd reaaliaikaisesti. Verkon ja kdyttdjin laitteen lisdksi
tarvitaan jokin protokolla siirtimdén reaaliaikaista dataa kayttdjien vililld. Vaikka
reaaliaikaiseen vuorovaikutukseen sopivia siirtoprotokollia tulisi kayttdd, niiden
kayttd voi olla kiellettyd turvallisuussyiden perusteella. Toisaalta siirtoprotokollilla,
joiden kiayttéd ei ole rajoitettu turvallisuussyilld, voi olla ominaisuuksia, jotka
tekevit niistd sopimattomia reaaliaikaiseen vuorovaikutukseen.

Tamén diplomityon aiheena oli tutkia minkélaista siirtoprotokollaa pitdisi kayttad
reaaliaikaisen vuorovaikutuksen saavuttamiseksi verkon vilitykselld. Tutkimuksen
tuloksena osoitetaan, ettd nykyisten Internet- siirtoprotokollien rajoitukset voidaan
valttdd, jotta erilliset kayttdjat pystyvdt yhteistybhon samassa monen kayttdjan
virtuaaliymparistossa.

Diplomityon kdytdnnonsovelluksena tekijd on kehittdnyt lumetunneloinnin késitteen
kaytettdviksi Internet Protokollaan (IP) pohjautuvissa verkoissa. Lumetunnelointi on
suunniteltu nykyisten Internet- siirtoprotokollien mukaisesti ja toteutettu de facto
standardi rajapintoja noudattaen. Tyossd Lumetunnelointia verrattiin nykyisiin
siirtoprotokolliin ja se osoittautui ylivoimaiseksi.

Avainsanat: otsake, rajapinta, protokolla

II

PREFACE

This Master’s thesis was done at VIT Technical Research Centre of Finland, VIT
Information Technology.

The supervisor of this thesis was Professor Teemupekka Virtanen at Helsinki
University of Technology and the instructor was Group Manager Raimo Launonen at
VTT Technical Research Centre of Finland, VTT Information Technology.

I would like to thank Professor Teemupekka Virtanen for his extremely valuable
instructions and Raimo Launonen for his views and support for this thesis.

I wish also to thank my colleagues who have helped me with this thesis.

Finally, I would like to thank my family for their support and my friends who have
been interested in this thesis. Especially, I would like to thank Piia for her love and
support that guided me during the process.

Espoo, May 13™ 2003

Markus Ylikerala

III

TABLE OF CONTENTS

ABSTRACT OF THE MASTER’S THESIS |
DIPLOMITYON TIIVISTELMA I
PREFACE I
TABLE OF CONTENTS v
ACRONYMS AND DEFINITIONS VI
LIST OF FIGURES VIII
1 INTRODUCTION 1
2 DETERMINATION OF THE STATEMENT 3
2.1 RESBARCH PROBLEM.......ccutiiiiiiiiiiiiciteniteic ettt sttt sttt ettt e 3
2.2 EVALUATION CRITERIAeoitiiiiitenitenitenitenteetteeteettesteesteeteenteseseseeesbeesaeenueenteenstensesueenseenseennens 3
2.3 SCOPE ...ttt e et sa e st 4
2.4 OVERVIEW...ouiiiiiiiiiiiiiitieieite ettt ettt s s ettt sttt b e s eae e 4

3 REQUIREMENTS OF REAL-TIME DATA TRANSPORTATION 5
3.1 DEFINITION OF REAL “TIME......cccttttiritiiiiiiinieiteitenieente ettt ettt ettt ettt s saeenaeeae e e 5
3.2 USABILITY .euttttiieeeeeieitiiteeeeeeeeecttteeeeeeeeeettateeeeeeeeeastasaaeeaeeaaaasassaeaaeaaaansbaassaaseaannsssssaeaeeeaanssraneaaeas 6
3.3 CONCEPT OF NETWORKSccoeuttiiieeeeeiiiititteeeeeeeeeitateeeeeeeeesistssseeaeaaassssssssaaseeasssssseeeseeanssssnseeeens 7
3.3.1 Network Topologies and COMPORENLS...........c..coecueeueieeeeieeaeeieeeeee e aeeeeeaaens 7

3.3.2 SYRCRFORIZALION ...ttt e ee e eete e aneesaanens 8

3.3.3 Data tranSpOTIALION LYPES.........coeueeeueeeeeeeeeeeaeeae et et et et eete ettt e e e e e e e e e e eneeeeeees 8

3.3.4 Ethernet teCANOLOQY.........c.cceeeveeeieeeeieeeieeeieeseesieeseesssessesssesssesssesssessesssesssassessnesnees 10

3.4 NETWORK LIMITATIONS....ccttirttitiaitinttenitenteeteetesitesieesieesteenaeenteenseestesseesueenseenneessessnessnesmeenses 10
3.5 NETWORK QUALITY OF SERVICE (QOS)eiiiiiiiiiiiiieeite ettt st eiee st ettt eveesbeeeiee e 11
3.6 NETWORK ARCHITECTUREScoctteutinitinitenteeteetentenieesieesteenueenteeateeseesueesueenseenseessessnesmnesueenses 12
3.6.1 Client-Server AVCRILECIUFe..............c.ccceeeeeiveeeeeeeeeseresseestesssesssessesssesseesseessassesssessesnees 12

3.6.2 P2P AVCRILECHUTC.......oc.veeveeeveeeeeeeeeeeesieesseessesssessesessnessseessesssesssasssesseessesssesssesssesseesnees 13

3.7 SUMMARY ..outttiiiie e e ettt et e e e eeettae e e e e e e e eeattaseeeeeeeestaaaeaaaeeeeaastaasaaaeeeaasstbaraaaeeeaastasaeaaeeeaaannrrees 14

4 CURRENT TRANSPORT PROTOCOLS 15
4.1 NETWORK ADDRESSINGcceeiieiiiuittireeeeeiiiitteeeeeeeaeiursreseeesaeeissssesseeesessssssesseessessssssesseessesssssees 15
4.2 CONCEPT OF PROTOCOLS.cciieiittitiieeeeeeettite e e e e ee ettt eeeeeeeettaaeeeaeeeeesararesaeeeseassnsseeaeeeeeannnens 16
4.3 NETWORK PROTOCOLSoeiiiiiieiiiiiiieee e e eeeitet e e ee ettt ee e e e e eetvaeeeaeeeeestsareaseeesessnssesaeeeeensnnnees 17
4.3.1 INternet ProtOCOL (IP).............ccuocueeeeeeeeeeeeeeeeeeecee e r s s e eesneas 17

4.3.2 Transmission CONtrol PrOtOCOL (TCP)occeieeieeeveesieeiesiiescsesseseessesssesssesssesssesnees 18

4.3.3 User Datagram Protocol (UDP)...............cceceeeeceeeeeeeeeeeeeeeeeineeeeeseeseeeseesseesseesseeeeannas 19

4.4 TUNNELING ..ottt sttt s bttt st b s e eae 20
4.5 SUMMARY ..ottt 20

5 IMPROVEMENT OF CURRENT TRANSPORT PROTOCOLS 21
5.1 MOTIVATION ..ottt ettt st s ettt sa e s ene e eae 21
5.2 DEFINITION OF FAKE TUNNELING........cccettttttteeeeeieititeeeeeeeeeetteeeeeeeeeesssseseeaeessesssssesaeessesnnsnns 22
5.3 DESIGN PRINCIPLESuutiiiiiiiiiiitiiieeeeeeeeiitteeeeeeeeeeitateeeeeeeeeeastaesaaaeeesnnstsaseaaeesaassssaeaaeessansnnens 24
5.4 ARCHITECTURE DESCRIPTIONcotiiiiiiiiuiirieeeeeeieiiureeeeeeeeeaiussseseeesaeaasssssesssessesssssesseessessnsens 25
5.4.1 CONNECLING @IEILIESeeeeeeeeeeee ettt et et e et eea e e et e e e e s e e s e e e e e eeanean 26

5.4.2 Fake Tunneling INLErflCeS.............ccooieeieeeeeeeeeee ettt nee 27

5.5 LUME TUNNELING PROTOCOL (LTP)....uiiiiiiiiiiiiiiiiieeieecteete sttt s e 28
5.5.1 LTP DatQgram BASICSccccueviveriiiriienieesiiesieesisessieessessseesssessseesssesssessssessseess 28

5.5.2 LTP Datagram AGVANCE...................cooeueeeueeeeeeeeaeeeeeeeeeeeseineeseeneesseeseesseeseesseenesneas 30

5.5.3 Checksum Calculation Speed Upcceeeeeeceeieeeeeeeeeeeeeeeeeeeeeeeeeereesseeesee e e sneas
5.5.4 Connection Establishment and CIOSING..........c..cccocvueeveeeerieriisieerieensesesssessesssesseesnes
5.5.5 Data TranSportAtiOn TYDEScceeccuervveersieirieerseesineessieesissessseessssessseesssesssessssessseess
5.5.6 Combination of Positive and Negative Acknowledgmentsccccoooueeeeieecennennene.
5.6 COMPARISON OF THEORETICAL CHARACTERISTICS......ccceieiiuuriireeeeeeeiitieeeeeeeeeetirneeeaeeeeennnnnnes
5.6.1 Protocol Header Data Overhead......................ccooeeeeeeeueeeeeeceieeeeeeeeeeseeeseecseeeeeeeneannas
5.6.2 Protocol Header Access OVerRead.occoevevinennerienensuesenenineneeneeneeneenne
5.7 SUMMARY ..ottt

6 IMPLEMENTATION OF FAKE TUNNELING

6.1 IMPLEMENTATION OF INTERFACEScoootutvetieeeeieeiireeeeeeeeeeiitreeeeeeeeeesistaereeeeeesestnneeseeeesennnnees
6.1.1 UDP APL ... eeeeeeeeee e eeeteaaveeeseeessaasaeeeseesessssaseeeesessnseseeeesennnnnnes
(0 B N Yo Yo 21 3 . U o (TR
6.2 IMPLEMENTATION OF LTP ...ttt e e e e e e eeannnes
6.3 IMPLEMENTATION ASPECTS.....uuutteiieeiiiiiiieeeeeeeeeeesiaeeeeseessessstessseessessistsseeesessssssaseeesesssnssinnees
0.3.1 BFAICRES.......cooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessssesareeessssssssnsreessssssssnsasessssssssnnrereesssssnnnres
L N 611 1Y N 28 ORI

7 EVALUATION OF FAKE TUNNELING

7.1 FAKE TUNNELING TEST BEDooiitiiiiiiiiiiieeee ettt e e e et s e e e e eeaaanaas
7.2 MEASUREMENTS AND TEST RESULTS ...ttt ettt ettt e et e e e e e e e e s e e eaenasanans
7.2.1 PFOLOCOL LALEACY ...ttt ss e es e ss e n e neeaneas
W K A (7 17 B
7.2.3 TESE CUSS..uvveeeeeeeieerereeeseeeeeeiraeeeeeeeeessrareeeseeessssaraseeseeessssraseeessesssssareseeseesssraraeeeesenns
7.3 EVALUATION OF THE TEST RESULTScccutiiiiiiiiieiiiieeeiiee ettt ettt et e e s e e e eneree e eaneeas
7.4 EVALUATION OF THE CRITERIA ..ot e e e e e e e e e e e eeeeeeeeeesesesesesssssssssesssesssssesesenens
TS5 SUMMARY ..ottt e e ettt e e e e e et e e e e e e e et e e aeee e et aa et eeeee et aaa e eeeeeereranans

8 CONCLUSIONS

REFERENCES

ACRONYMS and DEFINITIONS

API

ARP

avatar

BSD

DHCP

DNS

firewall

fragmentation

HTTP

IEEE

IETF

Internet

IP
IPv4
IPv6
ISO

IT
J2SDK
JRE

LAN

Application Programming Interface

Address Resolution Protocol, converts IP address to physical
address

object or shape that represents a user in virtual reality

Berkeley Software Distribution, distribution of UNIX
operating system

Dynamic Host Controlling Protocol, maps physical address to
I[P address

Domain Name System maps domain name to IP address and
vice versa

network component that can restrict data transportation
between networks

packets that are to large to be transported are divided and
denoted as fragmentation.

Hypertext Transfer Protocol, markup language to describe web
pages on the World Wide Web

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

all the networks in the world connected together using Internet
Protocol

Internet Protocol

version 4 of the Internet Protocol

version 6 of the Internet Protocol
International Organization for Standardization
Information Technology

Java 2 Software Development Kit

Java Runtime Environment

Local Area Network, fast small scale networks

VI

LTP

MTU

MAC
Napster
(ON}

pP2p

PC

platform

QoS

RFC
router
RTP

SETI@home

socket

switch

TCP
teleimmersion
UDP

UML

Ul
VE

VTT

Lume Tunneling Protocol

Maximum Transfer Unit, maximum amount of data that a
physical network can transport in a packet

Media Access Control
service for sharing files on the Internet
Operating System

Peer-to-Peer, network technology where data can be transport
between equal peers

Personal Computer
combination of the hardware and the operating system

Quality of Service, metrics that describes data transportation
characteristics of a network

Request For Comments, name of the documents of IETF
connects networks and transports data between them
Real Time Transport Protocol

Search for Extraterrestial Intelligence at home by analyzing
radio telescope data with computers

abstraction to enable communication between processes over
the network

connects network components such as computers
Transmission Control Protocol

realistic sense of being in another place

User Datagram Protocol

Unified Modeling Language, notation for software
development

User Interface
Virtual Environment

VTT Technical Research Centre of Finland

Vil

LIST OF FIGURES

FIGURE 3.1 INTERACTION IN VIRTUAL ENVIRONMENTcotttiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeteeereeeeeeeeeseseneeens 6
FIGURE 3.2: ON THE LEFT A START TOPOLOGY AND ON THE RIGHT A FULLY CONNECTED TOPOLOGY 7
FIGURE 3.3: TWO DISTINCT NETWORKS WITHOUT ANY ROUTE BETWEEN THEM

FIGURE 3.4: REPRESENTATION OF NETWORKS WITH GRAPHIC SYMBOLS......cceitiiiiiriieeeeeiiiieeeeeeeeeseninnnes
FIGURE 3.5: DIFFERENT DATA TRANSPORTATION TYPES......coouuiiiiieeiiiiiiieeeeeeeeeeiieeeeeeeesssssneneeeesessennnnnes
FIGURE 3.6: CLIENT-SERVER FUNCTIONALITYoioutttiieeeieiiireeeeeeeeeieisieeeeeeeeesssssseseeseessssnnnseessssssssnnees
FIGURE 3.7: BENEFITS AND DRAWBACKS OF CLIENT-SERVER NETWORKS.......cccovuviiiiieeiiiiiieeeeeeeeeennnnes
FIGURE 3.8: BENEFITS AND DRAWBACKS OF P2P NETWORKScociiiiiiiiiiieeeeeieiiieeeeeeeeeeeiaeeeeeeeessennnnes
FIGURE 4.1: DIFFERENT ADDRESS REPRESENTATIONS AND MAPPING BETWEEN THEMcuvvveeeviiinnnnes 15
FIGURE 4.2: CONCEPTUAL TCP/IP PROTOCOL STACKccccuvieeeureeeieeeeeeeieeeeeereeeeeeeeesenaeeeeenneesseneens 16
FIGURE 4.3: LOGICAL AND PHYSICAL CONNECTIONS OF TCP/IP PROTOCOL STACK........ccvvevevreeeennnee.. 16
FIGURE 4.4: FORMAT OF IPV4 HEADERocuiiiiiiiiiiitieieeeeeeeeeieeeeeeeeeeeetaeeeeeeeeeeeaaaeeeseessenansseeseesennannnes 17
FIGURE 4.5: FORMAT OF TCP HEADERcuuviiiiiiiiiiiieieeeeeeeeeitaeeeeeeeeeeetaeeeeeeeeeeeiasseeseeeseesssnsseeseeseensnnnees 18
FIGURE 4.6: FORMAT OF UDP HEADER.........cccoiiiiiiiiiieiieeeeeeeeitieeeeeeeeeeeitaeeeeeeeeeeeiasereeeeeesessssssessseseessnnnees 19

FIGURE 5.1:
FIGURE 5.2:
FIGURE 5.3:
FIGURE 5.4:
FIGURE 5.5:
FIGURE 5.6:
FIGURE 5.7:
FIGURE 5.8:
FIGURE 5.9:

FIGURE 5.10:
FIGURE 5.11:
FIGURE 5.12:
FIGURE 5.13:
FIGURE 5.14:
FIGURE 5.15:
FIGURE 5.16:
FIGURE 5.17:

FIGURE 6.1:
FIGURE 6.2:
FIGURE 6.3:
FIGURE 6.4:
FIGURE 6.5:
FIGURE 6.6:
FIGURE 6.7:
FIGURE 6.8:
FIGURE 6.9:
FIGURE 6.10
FIGURE 6.11
FIGURE 6.12
FIGURE 7.1:
FIGURE 7.2:
FIGURE 7.3:
FIGURE 7.4:
FIGURE 7.5:
FIGURE 7.6:
FIGURE 7.7:
FIGURE 7.8:
FIGURE 7.9:
FIGURE 7.10
FIGURE 7.11
FIGURE 7.12

PROBLEMS WITH BOTH UDP AND TICPoooiiiiiiiiiiee e 22
CONCEPTUAL DEFINITION OF FAKE TUNNELINGccooutiviieeiieiiiieeeeeeeeeeeiieeeeeeeeeeeniaeeeeeeas 24
SOLUTION TO THE PROBLEMS OF BOTH UDP AND TCP ... 24
CONCEPTUAL ARCHITECTURE OF FAKE TUNNELINGcvvvviiiiiiiitiiieieeeeeeeeiieeeeeeeeeennaeeeeens 26
CONNECTION OF PARTIES WITH CONCEPTUAL ARCHITECTURE OF FAKE TUNNELING 27
FAKE TUNNELING PROTOCOL STACKuvvviteeiieiiteieieeeeeeeeieieeeeeeeeeeesssaeeeessessesasseeeesssssnnnnnees 28
VIRTUAL PACKET OF FAKE TUNNELINGcceoitiutirieeeeeeiiiiteeeeeeeeeeeinneeeeeeeeesanseeeeeeeeennnnees 28
REAL PACKET OF FAKE TUNNELING.cuuvtiiiiiiiiiieeeeeeeeeeiiteeeeeeeeeessnneeeeeeesessanseeseseesensnnees 29
MAPPING BETWEEN FIELDS OF UDP AND FAKE TUNNELING HEADERSceeovvveeeeieeeeeeennnn. 29
INTEGRATION OF FAKE TUNNELING LAYERSuuutviiieeiiiiiiiireeeeeeeieeinreeeeeeeeenisneeeeeeseennns
SMART USE OF IP HEADER WITH FAKE TUNNELING

SMART USE OF TCP HEADER WITH FAKE TUNNELING
TCP PSEUDO HEADERcooiiutiiiieeeeeiieieeeeeeeeeeeeaaeeeeeeeeeesataeeeeessssesaaeseeseessesnsseeesesssnnes
COMPARISON OF PROTOCOL HEADER DATA OVERHEAD.ccooiiiiiiiieeeeeieiieeeeeeeeeeeinanes
PROTOCOL HEADER DATA OVERHEADccoiiiiiiiiiiieeeeeeeeeeiieeeeeeeeeseniaeeeeseeeseennaseeseessennns
COMPARISON OF PROTOCOL HEADER ACCESS OVERHEAD
PROTOCOL HEADER ACCESS OVERHEADcciitiitiiiiieeeieeeiieeeeeeeeeseeieeeeeseeeseensnaeeeeeessennns
INTERFACE BETWEEN APPLICATION AND UDPoooiiiiiiiiiiiiiii et
DEFAULT USE OF UDP APooooiiiiiieeee ettt
USE OF CONSTRUCTOR PARAMETER OF UDP APoouiiiiiiiiieeeeeeeeeaaaes
USE OF CONSTRUCTOR PARAMETER OF UDP API
USE OF FACTORY OF UDP APL.......ouiriiiiiiiiieeeee e e
USE OF FACTORY OF UDP APL.......ouiriiiiiiiieeee e
SENDING DATA WITH FAKE TUNNELING.......ccocottiiiiiiiiiiiiiiieeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeereeeeeeeeenens
RECEIVING DATA WITH FAKE TUNNELINGcouvviiieeiiiiitieeeeeeeeeeeiieeeeeeeeeeenineeeeeeeesennnnnnes
DATA SENDING WITH FAKE TUNNELING
: DATA RECEIVING WITH FAKE TUNNELING
: CONNECTING JAVA SIDE TO PLATFORM SPECIFIC NATIVE SIDEcccovuviveeeeeieeiieeeeeeeeenns 45
: POSSIBLE BRANCHES OF LTP IMPLEMENTATIONccoiiiiiiiiiieieieeeeeeineeeeeeeeeeennneeeeeeeeeennns 46
TEST BED OF FAKE TUNNELING......ccceeteieieiiieieieieieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeneneesesesesneens
DETAILED DESCRIPTION OF THE TEST BED..
MEASUREMENT POINTS OF TEST CASES ...ceeeiiieiiiutteteeeeeeeeiireeeeeeeeeesisneeeeseesesisseesesessessnnees
PROPOSED TEST PACKET SIZEScoeiiiutvtiieeeeeeieieeeeeeeeeeeeiaeeeeeeeeeestaneeeeseeensasneesesessennnnnees
LIMITATIONS OF CURRENT UDP SENDERccouuuiiiiiiiiiiiiieeeeeeieeieee et eeeeeevvann s

ACHIEVED TEST PACKET SIZESceeiiiutteieeeeeeeeeiteeeeeeeeeeetaeeeeeeeeeenstnneeeeseeeensnnseseseesennnnees

PROTOCOL LATENCY OF SENDER, TCP DELAY, UDP AND LTP NOT CONNECTED............. 52
PROTOCOL LATENCY OF SENDER, UDP AND LTP NOT CONNECTED........coceevuurrreeeeeieinnnnnns 52
PROTOCOL LATENCY OF SENDER, TCP NO DELAY, UDP AND LTP CONNECTED............... 53
: PROTOCOL LATENCY OF SENDER, UDP AND LTP CONNECTEDccooovvveiieeieiiieeeeeeeeenns 53
: PROTOCOL LATENCY OF RECEIVER, TCP DELAY, UDP AND LTP NOT CONNECTED........ 54
: PROTOCOL LATENCY OF RECEIVER, TCP NO DELAY, UDP AND LTP CONNECTED 54

FIGURE 7.13: PROTOCOL JITTER OF SENDER, TCP DELAY, UDP AND LTP NOT CONNECTED 55
FIGURE 7.14: PROTOCOL JITTER OF SENDER, TCP NO DELAY, UDP AND LTP CONNECTED.................. 55
FIGURE 7.15: PROTOCOL JITTER OF RECEIVER, TCP DELAY, UDP AND LTP NOT CONNECTED............. 56
FIGURE 7.16: PROTOCOL JITTER OF RECEIVER, TCP NO DELAY, UDP AND LTP CONNECTED............... 56

IX

1 Introduction

This Master’s thesis has been done at VIT Technical Research Centre of Finland,
VTT Information Technology, as a result of the T1P2P project [1] that the author
was involved in. The T1P2P project was an internal research project. The purpose of
the T1P2P project was to research grid-based technologies and to apply Peer to Peer
(P2P) technology to data transportation. The growing interest in P2P technologies
was the reason to get familiar with such a technology. The related View of the Future
project [2] was used as the conceptual test bed for the TIP2P project. The View of
the Future project is a project IST programme of the European Union. Related to the
project a prototype for training of astronauts in a virtual environment (VE) was
developed and different interaction methods were investigated.

Connecting different users with networks enables simultaneous use of the same
multi-user virtual environment (VE) such as collaborative virtual environments and
teleimmersion. Applications that can take advantage of teleimmersion are e.g.
education, training, scenario simulations, art and entertainment [3]. As a result, the
multi-user VE can be used for collaboration of the users at different places. The VE
can represent a real environment but also be totally unrealistic. In the VE users can
see each other as they are or possibly as avatars, talk to each other and handle the
same objects. The users can use different kinds of devices, such as a desktop
computer, laptop, handheld, mobile phone etc., connected to the same network such
as the Internet. The network transports the control, spatial and visual, aural data
between the users so that real-time interaction is possible. The User Interfaces (UI)
that the hardware or software offers to the user can consist for example of text, two-
and three-dimensional images, voice commands, haptic feedback, tracking, odor etc.
In addition, virtual environments (VE) can be used as a UL. The development of
Personal Computer (PC) technology and the prices of that technology have made it
possible to use PC technology to produce VE. The benefit of the VE compared to the
Ul produced by the other devices is the more realistic sense of immersion that can be
achieved. Although many people can use such a VE at the same time, at this
moment, the viewpoint in a stereographic VE is correct only for a single user. But,
with the remote use of the same shared multi-user virtual environment (VE), this
problem can be solved. So networks are needed to transport data between users so
that the real-time interaction would be possible. If the Internet is used as the network,
the common resources of the network are shared with all the other users. In addition,
the Internet was originally designed for data transportation in unreliable
circumstances and not for the real-time interaction. If the resources of the network
are limited, Quality of Service (QoS) can be used to classify different data
transportation. As a result, data transportation of higher priority is treated as more
urgent than data transportation of lower priority. Unfortunately, the Internet Protocol
(IP) based networks do not generally guarantee QoS [4]. Data transportation on
networks is controlled with protocols, which are used for sending and receiving the
data between users. The restricted capabilities of the network, protocols and also
characteristics of different kinds of data can set limitations to data transportation.
This can affect usability of the multi-user VE and comprehensibility of the other
users and as a result real-time interaction can be impossible.

The alternative data transportation protocols used on the Internet Protocol (IP) based
networks, such as the Internet, are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). It depends on the application which protocol should be
used. TCP is suitable for reliable data transportation and e.g. Hypertext Transfer
Protocol (HTTP) used with World Wide Web (WWW) uses TCP. UDP is suitable to
data transportation when some data can be lost e.g. Real Time Protocol (RTP) uses
UDP. TCP is not suitable for real-time interaction because when data is lost, TCP
tries to send it until it succeeds [5, 6]. But, meanwhile the value of data has expired
because it no longer represents the situation of that moment but the situation in the
past. In addition, TCP buffers data so that the network resources are better utilized
but waiting for the data only causes interference to the interaction. Because UDP
does not retransmit or buffer data, it is more suitable for real-time interaction than
TCP [5]. But, unlike TCP, UDP can transport data out of the order so outdated data
can occur. Presentation of outdated data in real-time interaction is not desirable and a
situation like that should be handled properly. In addition to the restrictions of
networks and protocols, a firewall used for security reasons can also set limitations to
data transportation [7]. The firewall is used to separate the network of an
organization or individual from the other networks like the Internet. All data between
these networks is transported through the firewall that controls and can restrict data
transportation. For example, all data transportation that uses UDP could be denied
and only data transportation that uses TCP would be allowed. As a result, only TCP
could be used although UDP would be more suitable for real-time interaction.
Tunneling enables transporting of unsupported protocol with supported protocol. As
a result, to circumvent restrictions of firewalls, tunneling could be used to transport
UDP with TCP. But, the unsuitable characteristics of TCP for real-time data
transportation remain.

At this moment, many software services on the Internet are based on the Client-
Server architecture and the entities of this architecture are denoted as clients and
servers. For example, WWW and email are based on this architecture. Some
drawbacks of this architecture are that a server and the connection from the server to
clients can have inadequate capacity for serving all the clients. Also, resources of the
clients are usually under-utilized compared to the server and a malfunction of the
server can affect all the clients. An alternative way to use the resources of the
Internet and to offer services is the peer-to-peer (P2P) architecture and the entities of
this architecture are denoted as peers. Napster [8] and SETI@HOME [9] are
examples of this kind of architecture. Some benefits of this architecture are that data
are distributed among peers. When data are available at many peers, not all of the
peers have to use the same connection to get that data. As a result, the peers can get
the data faster and the resources of the network are better utilized. Also, a
malfunction of one peer does not have to affect other peers.

Transport protocols and P2P are related to the grid technology and were investigated
at the TIP2P project. At VTT Technical Research Centre of Finland, VTT
Information Technology, researching of transport protocols and P2P technology was
seen as the potential trend of the future. The author has done all the work for
designing and implementing the concept of Fake Tunneling that offers a P2P
platform suitable for real-time data transportation.

2 Determination of the Statement

In this chapter the research problem and the subject of this Master’s thesis are
presented. Also, the evaluation criteria and scope of the research problem are
considered. Finally, the overview of this Master’s thesis is described.

2.1 Research Problem

The research problem given to the author is to develop a solution that would enable
use of multi-user Virtual Environment (VE) over the network with different kinds of
User Interfaces (UI) and user devices that are connected together so that peer-to-peer
(P2P) aspects are taken into account. Especially a single-user VE used with View of
the Future project ought to be connected. As a result, real-time interaction between
the users should be possible.

The subject of this Master’s thesis is to research what kind of transport protocol
should be used so that real-time data transportation over the network could be
achieved without the constraints of the current Internet standard transport protocols.
The research for developing such a solution is the subject of this Master’s thesis.

2.2 Evaluation Criteria

The most important criteria of this Master’s thesis are going to be used for the
evaluation of the solution that the author will develop according to the research
problem.

Criterion 1:
The solution should be feasible and it should be able to be implemented in a
reasonable time.

Criterion 2:
The solution should be capable to real-time data transportation so that use of
multi-user VE is achieved between users at different places and that the users
are capable to real-time interaction.

Criterion 3:
The design of the solution should be done according to the current Internet
protocols. Also, the use of the solution must be possible with the current
protocol implementations.

Criterion 4:
The platform should be executable on different kinds of operating systems
(OS) and it should be able to be attached to the existing VE.

2.3 Scope

To utilize the current technology and to limit the topic of this Master’s thesis the
scope contains the following aspects, although, it should be noted that these aspects
provide the framework for this Master’s thesis but not for the solution to the research
problem.

e Internet Protocol (IP) version 4 (IPv4) technology
e Connectionless networks, namely packet switched networks
e Personal Computer (PC) and Ethernet technologies

2.4 Overview

Chapter 3 considers constraints and requirements of real-time data transportation on
connectionless networks. As a result, the chapter describes the main area of
technology related to this thesis.

Chapter 4 considers the current protocols that are used with the Internet. Also, the
chapter describes the current technology and the problem area of this thesis.

Chapter 5 describes the new technology denoted as Fake Tunneling as the solution of
the author to the research problem. The chapter considers the improvement to the
current technology that can be achieved with Fake Tunneling.

Chapter 6 considers different implementation aspects and also describes an
implementation of Fake Tunneling.

Chapter 7 includes description of the tests and test results that are made to compare
the new technology of the author to the current technology. The chapter also
concerns evaluation of the test results and criteria of this Master’s Thesis.

Finally, Chapter 8 makes conclusions and also describes the further development of
Fake Tunneling.

3 Requirements of Real-time Data Transportation

Basically, the users needs set requirements to the service that they are willing to use.
The service is used through the user interface (UI) that the software and hardware
offer. The characteristics of the Ul and also the data that the service uses affect the
usability of the service. The format and interpretation of the data are dependent on
that particular service. Data transportation between users can be enabled with
networks, which consist of two or more network components that are connected
together. As a result, also the limitations of the network can affect the usability [3].
For example, transportation of real-time data has different requirements to the
characteristics of the network compared to transportation of non real-time data and
Quality of Service (QoS) that the network offers can be used to affect the use of the
network resources.

The objective of this chapter is to consider different requirements of real-time data
transportation so that real-time interaction could be achieved. First, a definition of
the term real- time is declared. In addition, usability is described and an example of a
use of virtual environment (VE) is given. After that, concepts of networks and
network components are considered. Also, different kinds of connections between
network components are described. In addition, network limitations, QoS and
techniques that can be used to achieve better transport performance are considered.
Finally, two different kinds of network architectures are described.

3.1 Definition of Real -Time

There is a difference between the terms fast and real-time [10]. If some event is fast
then it occurs rapidly. But if some event is real-time then it occurs at the certain time.
The real-time system means the ability of the system to react to some event in a
predictable time. This is different to react to some event as fast as possible. So one
difference between the real-time system and the non real-time system is that the
behavior of the real-time system is predictable compared to the non real-time system.
This behavior can be achieved e.g. with harder control on hardware activities and
scheduling tasks based on time. There are number of systems that benefit from or
require real-time behavior. A few examples of real-time systems are virtual reality,
telecommunication, robotics and military systems [10]. The drawback of the real-
time systems compared to non real-time systems can be poorer throughput of tasks.
But if this is the problem, while real-time behavior must be guaranteed, one solution
is to achieve more efficient hardware. Also, using better algorithm in software can be
used to improve performance.

[10]

3.2 Usability

The term usability can be used in many different circumstances. With Information
Technology (IT) the usability can be defined e.g. according to Organization for
Standardization (ISO) or the usability researcher Jakob Nielsen. The definition
according ISO is the following. Usability is specific goals that a particular user can
achieve in such a way that the achieving is effectiveness, efficiency and get
satisfaction to the user [11]. The definition according to Jakob Nielsen is that
usability is the measure of the quality of a user's experience when interacting with a
product or a system [12]. The purpose of these definitions is to enable measurement
of usability so that usability can be affected. The user uses a service through the User
Interface (UI) that the software and hardware provides [13]. A UI can consist of text,
two- and three-dimensional images, voice commands, haptic feedback, tracking, odor
etc. Although the user needs not to be aware of a possible use of a network, the use
of the network effects the usability in general because the service can use real-time
data like graphics, speech and also location, velocity, acceleration etc. information
that is transported over the network. The network causes lag perceived by the user
[3]. Lag means the time it takes between related events. For example, the time it
takes between speaking into the microphone and hearing it from the speakers or the
time it takes between moving the head and seeing the updated graphics produced
according to the heads position. If the lag is high enough, the use of the VE can be
impossible [3].

Although, the human can sense by sight, hearing, smell, taste and feeling, not all of
them are needed in the use of a virtual environment (VE). Usually at least visual and
aural methods are considered because they are suitable in real-time interaction and
adequate technology is available [3]. Also, tracking can be used to enable producing
of correct viewpoint, handling of objects etc. In Figure 3.1 the author is in an
interaction situation in a VE.

[13]

Figure 3.1 Interaction in Virtual Environment

3.3 Concept of Networks

Networks enable connecting of users at different places so that the users can
simultaneously use the same multi-user virtual environment. Indeed, networks form
connections between the users and enable data transportation between them. The
network can consist of different kinds of hardware and software that form network
components and connections between them. In addition, a use of software in
networked environment can introduce unpredictable situations that should be handled
properly. Finally, the network can provide different kinds of data transportation types
and a choice between them can affect the network utilization. In addition, transport
protocols and hardware can set limitations to their use.

3.3.1 Network Topologies and Components

Network components and connections between them can be described with a graph
denoted as the network topology. In the topology, network components are described
as nodes and the connections, which can be wired or wireless, between the nodes are
described as links. Nodes are usually described as circles and links as arcs. If on
connection data can flow only to the other direction, the direction of the data flow
can be indicated with an arrow. It should be noted that not all of the network
components and connections have to be described with the same graph. In Figure 3.2
two different kinds of network topologies are shown. On the left side of the figure is
a star topology and on the right side is a fully connected topology. A route between
nodes consists of those nodes, links and other nodes connected together. Data can be
transported between the nodes only if there is a route between them. In Figure 3.3
there are to networks but no route between them.

o P

Figure 3.2: On the left a start topology and on the right a fully connected topology

Figure 3.3: Two distinct networks without any route between them

Some important network components are computers, switches, routers and firewalls.
Computers can be used to execute computer programs that can be used to both send
data to another network component and also to receive data from another network
component. Switches are used to connect network components. Routers, also called
gateways, are used to connect networks and to transport data between them.

Firewalls are used to separate networks from each other to control and restrict the
data transportation. The data transportation through the firewalls can be restricted by
different kinds of rules e.g. based on protocol [7]. In addition, firewalls act as routers.

Network components and connections between network components can also be
described with graphic symbols, as shown in Figure 3.4. For the clarity, explicit
routers and switches are not shown. Arbitrary networks can be represented with
clouds, network components such as firewalls with brick walls and computers with
images of a conventional computer. Computers and firewalls are connected to
networks with lines that represent connections, which can be wired or wireless. The
private network is usually denoted as Intranet and the public network as the Internet.

Also sender and receiver of data are declared.
=l Feceiver

Firewall

Figure 3.4: Representation of networks with graphic symbols

On the sender side data is divided into packets that are delivered separately across
the network from the sender to the receiver. Each packet contains the unique address
of the receiver that is used to deliver the packet to the receiver. The transport is
connectionless because the sender shares the resources of the network with all the
other users. So the delivering is based on best effort because no resources are
allocated for a delivery but the delivery must compete with all the other deliveries
that use the same route for the finite resources. When the packets arrive to the
receiver the data is assembled from the packets. The transport is unreliable because
some packets may be lost, be duplicated, arrive in different order than they were sent
or delayed.

[5, 14]

3.3.2 Synchronization

Synchronization describes the relation of some event to other events or time. As
mentioned before transportation of data across the network such as the Internet is
unreliable. Compared communication between software in single computer to
communication in networked and distributed systems, it is more complicated and
error prone in the former than in the latter [15, 16]. The reasons for this are related to
the use of memory and characteristics of the network.

3.3.3 Data transportation types

Data transportation between different network components can be classified into
three types that are unicast, multicast and broadcast that have different kinds of
characteristics and use. In Figure 3.5 different kinds of connection types are shown.
The letters A, B, C, D and E denote computers so that A is always the sender. In

addition a switch is denoted with the letter S and a router with the letter R. The
propagation of data from the sender to the receivers is indicated with arrows.

Figure 3.5: Different data transportation types

Unicast

Unicast can be used to sending data between two network components. In order to
use unicast, the sender has to know the address of the receiver [14]. In Figure 3.5 an
example of unicast data transportation is shown in the top-left when unicast data
transportation is made between A and D.

Multicast

Multicast can be used to send data simultaneously to group of network components.
In order to use multicast, the sender must know the address of the multicast group,
which the receiver belongs [14]. In Figure 3.5 an example of multicast data
transportation is shown in the top-right when multicast transportation is made
between A, B and D. Routers must support multicast so that multicast can be used to
send data to another networks.

Broadcast

Broadcast can be used to send data simultaneously to all network components of a
network. Broadcast can be classified into local broadcast and global, also denoted as
directed, broadcast. The former sends data only to the same network where the
sender is but the latter can send data to any network. In order to use broadcast the
sender must use a certain kind of well-known address [14]. In Figure 3.5 an example
of local broadcast data transportation is shown in the bottom-left and an example of
(global) broadcast data transportation in the bottom-right.

Choices between the data transportation types affect the utilization of the network
resources. Basically, the choice depends on the service and the characteristics of the
network which one of the data transportation types should be used. In addition
characteristics of the transport protocol can restrict the use of data transportation
types and as a result not all of them can be used [14]. In general, if the same data
should be transported to multiple users, it is better to use multicast or broadcast than

unicast. But otherwise unicast can be better because it does not necessarily consume
so much network resources. Finally, the solution that the author is developing should
take able to support different kinds of data transportation types because real-time
interaction can require transporting of different kinds of data. As a result, the most
suitable data transportation type could be used.

3.3.4 Ethernet technology

With Ethernet technology a computer can be connected to the network with one or
multiple network card. Each network card has a physical address that refers to that
particular network card. In Ethernet technology this is a unique Ethernet address that
is also called a Media Access Control (MAC) address or hardware address. The
physical address can be used to achieve different kinds of connection types. In wired
connections the network card is attached to the wire that is used as connecting media.
The wire can be made e.g. of copper or fiber. In wireless connections the network
card is capable to use radio frequencies as the connecting media.

[5, 14]

3.4 Network limitations

Restrictions of both hardware and also software that is used on the network can set
several limitations to the data transportation. Hardware limitations that are concerned
in general are bandwidth, throughput and latency.

Bandwidth

Bandwidth tells the maximum amount of data that could be transported in a certain
time. Physical characteristics of the hardware set limitations that affect the
bandwidth. Adding more transmission media and using media that allows better data
propagation can increase the bandwidth [5.]

Throughput
Throughput tells the amount of data that is correctly transported in a certain time.

Throughput can be maximized e.g. by minimizing corruption of data on transmission
and increasing the speed of the network [5.]

Latency
Latency means delay and tells the time it takes to transport data from a sender to a

receiver [3]. Because latency means the time between related events it is similar to
lag. Round-trip time is latency that it takes to transport data from a sender to a
receiver and back to the sender. For example, latency can consist of protocol
processing, transmission of data between network components, limitations of
bandwidth and routing [3]. Latency can be minimized e.g. by improving protocol
software, OS or the network interface but the if the speed of light [17] sets the upper
limit for latency [5].

10

3.5 Network Quality of Service (QoS)

The term QoS is used to describe characteristics of data transport in a network. QoS
is needed when the resources of the network are limited compared to the users’
needs. If the resources of the network were feasible for all users, QoS would be
useless [4]. QoS should be able to be affected when a network is used for real-time
data transportation. Examples of network QoS parameters are rate, loss, delay and
jitter of data. Rate measures the amount of the data that is sent, loss measures how
much of the data is lost and delay measures the time that it takes to transport data
from a sender to a receiver. Finally, jitter measures the variation of delay. QoS
parameters are dependent on characteristics of different components between the
sender and the receiver.

[3,4,5, 14]

With QoS, data and data transportation can be classified and treated differently so
that the resources of the network can be utilized for different kinds of services.
Transportation of real-time data has different kinds of demands compared to
transportation of non real-time data. For example, real-time interaction data such as
speech is usually sensitive to jitter and delay but can tolerate some data loss because
they can be omitted or interpolated [3]. But, non real-time data such as email [18§]
does not in general demand a small delay or jitter even if a small delay was desired
but none of the data should be lost or corrupted. Finally, requirements of data
transportation are dependent on the particular service. Once some QoS is guaranteed,
it should not be affected by other data transportation. Compared to the Internet,
affecting QoS is usually easier in private networks such as Local Area Networks
(LAN) of an organization or an individual because in general one authority controls
the private network. But there are approaches that can provide QoS also on the
Internet such as Integrated Services (IntServ) and Differentiated Services (DiffServ)
of the Internet Engineering Task Force (IETF) [19].

[3,4,5,19]

Because the Internet does not in general provide QoS compression or streaming of
data can be used [3, 20]. The limited resources of a network can be utilized better
with compression of data. So when data transported over the network, proper
compression can be used. This can reduce the size of the data to be transported so
that the transportation of compressed data can be done faster compared to the
transportation of the non-compressed data. When compressed data is received it has
to be decompressed before use. Although, compression can make the transportation
of data faster, it causes delay before the transportation and in addition decompression
causes delay after the transportation. So, if fast data transportation is desired, the
speed up gained from the data transportation should be more than the delay caused
by the compression and decompression phases. Another way to achieve performance
is streaming. Waiting for the end of the data transportation of the whole data before
its use is not suitable for real-time data and streaming should be used instead.
Streaming means that presentation of data is started as soon as some data arrive and
presented while the rest of the data is still being transported. So, the benefits of
streaming are that a receiver does not have to wait the completion of the whole data
transportation before beginning to use that data. Instead, the receiver can use the data
at the same time as the sender produces and sends data. Finally, streaming should
suite well for interaction purposes.

11

3.6 Network architectures

Network architectures provides an abstraction to the communication of network
components. The chosen network architecture also affects to the utilization of
network resources. At this moment, many software services on the Internet are based
on the Client-Server architecture but an alternative way to use resources of the
Internet and offering services is the peer-to-peer (P2P) architecture.

3.6.1 Client-Server Architecture

The entities of the Client-Server architecture [14] are denoted as clients and servers
and communication between them is well defined. The communication between a
client and a server is following. The server waits until some client contacts it. So, the
client always starts the communication. The client contacts the server by sending
data called request. Then the server handles the request and finally sends data called
response to the client. This whole client-server functionality is shown in Figure 3.6.
It should be noted that the Client can retrieve data from the Server without user
interaction and, as a result, network utilization can be increased and the delay
perceived by the user decreased.

Client SErEr

weait

send reguest —

SEMVE re%uest

= = - - - - .

———— ——

Figure 3.6: Client-server functionality

For example World Wide Web (WWW) [21, 22] is based on the Client-Server
architecture. There the WWW browser is the client and the beginning of the WWW
address contains domain name that identifies the server. WWW address can be typed
on the text field of the browser or hyperlink can contain it. The request is send by
pressing return or clicking hyperlink. After that the client can notice if the server is
functioning or not. If the server is not functioning some error message is usually
shown. Otherwise, the request is served by mapping the rest of the WWW address
e.g. to a page or a file that is sent to the client, which finally shows it. If the server is
functioning but the page cannot be found, some error message denoting this situation
is usually shown.

To consider benefits and drawbacks of client-server architecture, an example of a
client-server network is given in Figure 3.7. The server is denoted with the letter S
and the clients with the letter C. The benefits of the client-server architecture are that
the central authority eases the administration of the whole system. Using of the same

12

central resource can be used to control the clients and the same services are available
to all clients. The drawbacks of the client-server architecture come from the central
role of the server. Malfunction of the server paralyzes the whole system. Also,
connection from the server to the clients and also the server itself can have
inadequate capacity for serving all the clients. This can be shown as slow data
transportation or unavailability of the server. In addition, resources of the clients are
usually under-utilized compared to the server.

Figure 3.7: Benefits and drawbacks of client-server networks

3.6.2 P2P Architecture

The entities of the Peer-to-Peer (P2P) architecture [23] are denoted as peers that are
equal and each peer can contact another peer. A peer can offer services to other peers
and also use services of other peers. This can also be shown in Figure 3.6 in which
instead of a separate client and server both are denoted as peers. Both of the peers
can contain the functionality of both client and server. A peer is not dependent on the
specified peer but the same service can be requested from another peer.

To consider benefits and drawbacks of client-server architecture, an example client-
server network is given in Figure 3.8. Peers are denoted with the letter P. The
benefits of the P2P architecture is that services and data are distributed among peers.
When services are available at many peers, the system is more scalable. A
malfunction of a certain peer that offers some services that other peers are interested
in, does not prevent other peers to get that service. The service can always be gotten
from some other peer. Also, not all peers have to use the same connection to get that
data. As a result, the peers can get the data faster and the resources of the network are
better utilized. Also, a malfunction of one peer does not usually affect other peers.
The drawbacks of the P2P architecture are that because availability of a peer is
unpredictable, the functionality cannot be based on the certain peer. Also,
administration can be difficult when there are no common management.

Figure 3.8: Benefits and drawbacks of P2P networks

13

The use of P2P technology enables development of new kinds of communication
mechanisms between different network components. Especially when there is no
central authority and the individual peers can be connected and disconnected in an
unpredictable manner, the P2P architecture can be more scalable and robust. The
solution that the author is developing should take the benefits and drawbacks of the
both Client-Server and P2P architecture into account.

3.7 Summary

In this chapter a definition of the term real-time, usability and also concepts of
networks and different kinds of data transportation types were considered. In
addition, network limitations, QoS and two different kinds of network architectures
were introduced. The usability can be seen as the most important aspect in the human
computer interaction. The networks were described as a method to connect users so
that data between them can be transported. The networks can be represented as
topologies, which consist of network components such as computers and connections
between the network components. The use of different data transportation types,
namely unicast, multicast and broadcast, should depend on the particular service and
a choice between them affect utilization of the network resources. But, restrictions of
transport protocols and network characteristics can affect their use. QoS should be
able to be affected if the resources of the network are insufficient. Compared to the
non real-time data transportation, real-time data transportation can in general tolerate
some data loss but is sensitive to jitter and delay. Because the current Internet cannot
guarantee QoS in general, compression or streaming can be used instead. The use of
P2P architecture enables an alternative to the Client-Server architecture and can be
more scalable and robust when individual peers connected and disconnected the
network in an unpredictable manner.

14

4 Current Transport Protocols

Transport protocols enable data transportation between different network
components and can be implemented as computer programs. The fundamental
protocols of the Internet are Internet Protocol (IP), Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP. The Internet Engineering Task Force
(IETF) [19] controls the technical aspects and standardization of the Internet. Among
other things, IETF also offers descriptions of protocols as documents, which are
called Request For Comments (RFC).

The objective of this chapter is to consider IP-based networks. First I[P addressing
schema and protocols are considered. After that IP, TCP and UDP are described and
also the limitations of these protocols in real-time data transportation are considered
when real-time interaction should be achieved. Finally, a technique called tunneling
is declared.

4.1 Network Addressing

A computer can be attached into network with one or multiple network card and each
network card in a certain network is denoted as a network interface [14]. On IP-based
networks the IP address refers to a certain network interface although it is usually
meant to denote to a certain computer the network card is attached. Also, other
network components such as a router can have an IP address. The IP address consists
of a network id, which identifies a network and a host id, which identifies the
network component attached to the network [14]. Because the same computer can
have several network cards it can also have several IP addresses. An example of this
is a router. IP address is used as an abstraction to provide the consistent address
space in the Internet regardless of the network hardware.

Mapping an IP address to a physical address, such as the Ethernet address, can be
done e.g. with Address Resolution Protocol (ARP) [24]. Mapping physical address to
IP address can be e.g. with Dynamic Host Controlling Protocol DHCP [25]. IP
address is represented as numbers but humans usually prefer meaningful names. The
mapping between these domain names and IP addresses can be done e.g. with
Domain Name System DNS [26]. In Figure 4.1 examples of domain name, IP
address and physical address are given. In this case Ethernet address is used as the
physical address. In a certain network, each one of these different addresses can be
used to denote to the same computer. Ultimately the addresses are represented as
bits.

DHS domain name: www. lume . £i
[— —_ —_- — — — = QDNS
IF addresszs: 10.0.0.2

DHCPé_ -
physical address: QO0-DO-FE-10-EA-OF @ARF

Figure 4.1: Different address representations and mapping between them

15

4.2 Concept of Protocols

Protocols denote the logical behavior of parties and can be described as a protocol
stack [5, 14]. Each layer on the protocol stack relays on services of the layer below
and adds some additional service. Logically, layers on the same level interact with
each other and data is virtually transported between layers on the same level. But,
physically the data flows through the stacks. On the senders side the data flows from
the top to the bottom of the stack and on the receivers side the data flows from the
bottom to the top of the stack. As data is moved between layers, on the sender side
headers are attached to it. The resulting frame is transported over the network and on
the receiver’s side the headers are removed. As a result, the layers on the same level
actually see the same data. Although there are many conceptual models of the
TCP/IP protocol stack, in Figure 4.2 and 4.3 the TCP/IP protocol stack coherent to
the terminology of this Master’s thesis as introduced in [14] is shown. An alternative
TCP/IP protocol stack introduced in [5] uses terminology of Open Systems
Interconnection (OSI) Reference Model. It should be noted that basically either of
them could have been selected.

[27, 28, 29, 14, 5]

Lpplication

Transport

Internet

Network Interface

Hardware

Figure 4.2: Conceptual TCP/IP protocol stack

In Figure 4.3 the protocol stacks of the sender and receiver are shown. Also, packet
construction and deconstruction are represented. Directions of data flow are indicated
with arrows. Logical connection is shown with the dashed line and the actual flow of
the data is shown with solid lines. The physical connection can be wired or wireless.
Attaching and removing of headers are shown between layers. In this figure TCP is
used as the transport protocol but also UDP could be used instead of TCP.

Sender Recelver
Logical
connection _ "
| Application I N Application I
Data i T Data
Transport | Transport |
TCF et o Data
header header]|
Internet | Internet |
IF TCP Data Ip TCF Data
header|header| header| header
Network Interface |Network Interface I
Frame IP TCP Data Frame Frame IF TCFP Data Frame
header| header] header trailer header{header| headey trailer
Phy=sical
connection
| Hardware |—H Hardware |

Figure 4.3: Logical and physical connections of TCP/IP protocol stack

16

4.3 Network Protocols

Although there are several data transportation protocols, it should depend on the
application what kind of protocols should be used. In principle the transport and
Internet layers of the TCP/IP protocol stack provides three different protocols that
can be used to transport data. But, although applications can use IP directly, usually
either TCP or UDP is used between application and IP. The purpose of the use of
TCP or UDP is the additional services they provide [10] such as port numbers,
reliable or unreliable data transportation and checksum calculation over the data
portion of the packet. Each protocol defines the uniform format of the header. The
purpose of the format is to organize the data into a well-known form so that protocols
at different network components can construct, deconstruct and interpret packets
uniformly. It should be noted that although a byte is usually thought to consist of
eight bits, the number of bits in a byte can also be machine dependent and that is the
reason why octet can be used to refer to exactly eight bits [14]. But, in this Master's
thesis the byte is defined to contain exactly eight bits so the term byte (B) is used
instead of octet. The most fundamental protocols on IP-based networks, such as the
Internet, are IP, TCP and UDP [14]. Each description of these protocols contains a
figure that declares a format of the protocol header, which consists of several fields
and interpretation of them varies. Also the sizes of the fields vary and this sets the
limit to the number of different values that a field can represent. In the figure the
vertical sequence of numbers from zero to thirty-one denotes the bits of a row, so a
row consist of 32-bits, and the horizontal sequence of numbers denotes the number
of the rows. It should be noted that the numbering is started from zero as stated in the
RFC that describes the protocols, nevertheless, the justifications of reasons for that
are not relevant.

4.3.1 Internet Protocol (IP)

Internet Protocol (IP) [29] resides on the Internet layer and is the core of the Internet
because it provides wrapping for IP-addresses and many other protocols rely on it. IP
was designed to deliver data in unreliable conditions when some of the connections
and network nodes on the route between the sender and the receiver could be
damaged. The service that IP provides is connectionless and unreliable data
transportation. There are two different version of IP namely version 4 (IPv4) and
version 6 (IPv6). An IP packet also called datagram consists of an IP header and data
area. The data area follows the header but the IP does not specify the format of the
data area. So arbitrary data can be transported. In Figure 4.4 the format of the IPv4
header is shown.

[29, 14]
01 2 3 4 5 6 7 8 9 101112 1314151617 15192021 22 2324 25 2627 25 2930 31
VERSION | HLEN I TYPE OF SERVICE TOTAL LENGTH
IDEMTIFICATICN FLAGS] FRAGMENT OFFSET
TIME TO LIVE I' PROTOCOL HELDER CHECKSUM

JOURCE ALDDRE3S
DESTINATION ADDREZS
QP TICNS l PADDING

R T T R

Figure 4.4: Format of IPv4 header

17

The VERSION field describes the content of the IP header so the rest of the fields are
interpreted according to this field and can contain e.g. identification of IPv4 or IPv6.
The HLEN field defines the length of the IP header measured in 32-bit multiples. If
OPTIONS and PADDING fields are not used, the HLEN field is equal to 5, which is also
the minimum size of the IP header. The TOTAL LENGTH field defines the length of
the whole IP packet. The TYPE OF SERVICE field specifies how the network should
handle the IP packet. This can be taken as a hint because there are no guarantee that
the network takes these into account. The IDENTIFICATION field gives the unique
identification number for the IP packet and in addition with the FLAGS and
FRAGMENT OFFSET fields controls fragmentation and assembly of IP packets. The
value of TIME TO LIVE field is decreased on the route from the sender to the receiver
and the IP packet is discarded when it reaches zero. The PROTOCOL field defines the
format of the IP data area and can contain e.g. identification of TCP or UDP. The
HEADER CHECKSUM field contains the computed checksum over the IP header. The
SOURCE ADDRESS and DESTINATION ADDRESS fields contain the unique IP address
of the sender and the receiver in the same network. The OPTIONS field can contain
additional options and then the PADDING field fills the rest of the header with zero so
that the size of the header is multiple of 32-bits because of the HLEN field.

[29, 14]

4.3.2 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) [30] resides on the transport layer and the
service that TCP provides is connection oriented and reliable data transportation.
Compared to the IP TCP provides reliable data transportation, ports and checksum
calculation over the data area of the TCP packet. TCP can be used for unicast
connections. In Figure 4.5 the format of the TCP header is shown.

[30, 14]

01 2 3 4 5 6 7 &8 9 101112 131415161715 192021 22 232425 2627 258 259 3031

o SOURCE PORT | DESTINATICH PORT

1 SEQUENCE MNUMEER,

2 ACENOWLEDGHMENT NUMEER

3| HLEN RESERVED CODE BITS WINDOW

4 CHECESUN URGENT FOINTER

5 OF TIONS | PADD ING

Figure 4.5: Format of TCP header

The SOURCE PORT and DESTINATION PORT fields define the endpoints of the sender
and the receiver. Although the size of a port field sets the maximum number of
endpoints, TCP uses the abstraction of connection, which is a pair that consists of the
[P-address and the port of both the sender and the receiver. As a result, the same port
can be shared between different connections. The SEQUENCE NUMBER and
ACKNOWLEDGMENT NUMBER fields and also bits in the CODE BITS field are used to
establish and close the connection. They are also used during the data transportation
to enable reliable connection, so that the receiver sends an acknowledgment when it
has received data from the sender. If the sender does not get the acknowledgment in
a certain time the data is retransmitted. Usually the sender sends multiple packets
instead of one before waiting of acknowledgment so that the resources of the

18

network are better utilized and the sliding window mechanism is utilized. Also the
WINDOW field s used as a part of this mechanism to control the number of packets
that can be sent before the sender must get acknowledgment from the receiver. The
HLEN field defines the length of the TCP header measured in 32-bit multiples. If
OPTIONS and PADDING fields are not used the HLEN field is equal to 5, which is also
the minimum size of the TCP header. The CHECKSUM field contains the computed
checksum over the TCP packet. The URGENT POINTER field and a bit in the CODE
BITS field are used to indicate that processing of that particular TCP datagram is
urgent. The OPTIONS field can contain additional options and then the PADDING field
fills the rest of the header with zero so that the size of the header is multiple of 32-
bits because of the HLEN field

[30, 14]

The reliable data transportation that TCP offers is important to many services, such
as email [18], because data should not be lost. But, reliable data transportation is not
suitable for real-time data transportation because it causes jitter if data need to be
retransmitted [5]. In addition, TCP usually buffers data so that more data is
transported at once. This enables better utilization of network resources because
fewer packets need to send so also less header data need to be sent. But, this
characteristic causes delay to data transportation and is not suitable for real-time data
transportation [6].

[14, 5, 3]

4.3.3 User Datagram Protocol (UDP)

User Datagram Protocol (UDP) [31] resides on the transport layer and the service
that UDP provides is connectionless and unreliable data transportation. Although
UDP provides the same data transportation service than IP, the additional services
that UDP offers are ports and checksum calculation over the data area of the UDP
packet. If reliable transport is needed it must be handle at the application level. UDP
can be used for unicast, multicast and broadcast connections. In Figure 4.6 the format
of the UDP header is shown.

[31, 14]
o1 2 3 4 5 6 7 8 92 101112 1314151617 151922021 22 2324 25 2627 258 293031
u] SOURCE PORT DESTINATICN PORT
LENGTH CHECESTTM

Figure 4.6: Format of UDP header

The SOURCE PORT DESTINATION PORT fields define the endpoints of the sender and
the receiver. In principle, the use of the SOURCE PORT is optional. Because UDP does
not use the abstraction of connection, the size of a port field sets the limit to the
number of simultaneous data transportation. The LENGTH field indicates the size of
the whole UDP packet. The CHECKSUM field contains the computed checksum over
the UDP packet but its use is optional.

[31, 14]

19

The unreliable data transportation that UDP offers is suitable to real-time data
transportation because data is not retransmitted so additional jitter is not caused [10].
In addition, UDP does not buffer data so delay that buffering can cause is avoided.

4.4 Tunneling

Tunneling is a technique to transport a packet of some protocol as a data portion of
some other protocol [5, 14]. As a result, the reason for tunneling is that without it the
packet of the former protocol could not otherwise be transported because the network
does not support its use. But, because the latter protocol is supported data
transportation can be achieved and the data of the unsupported protocol can be
delivered from the sender to the receiver. For example, if the network does not
support transportation of UDP packets but supports transportation of TCP packets,
with tunneling UDP packets are transported in the data portion of TCP packets so
that they can be delivered from the sender to the receiver.

4.5 Summary

In this chapter different characteristics of IP-based networks and transport protocols
were considered. The most important concept was the IP address that enables the use
of the TCP/IP protocol stack regardless of the hardware. In addition, concept of
protocol stack and also packet construction and deconstruction were represented. The
most important protocols described were IP, TCP and UDP. The choice between
TCP and UDP should depend on the application because these offer different kinds
of services with different kinds of characteristics. Also the unsuitable real-time data
transportation properties of TCP compared to UDP were considered. Finally, a
technique called tunneling, which can be used if some protocol such as UDP is not
supported, was described.

20

5 Improvement of Current Transport Protocols

Fake tunneling is the concept that the author is developing as the solution to the
research problem stated in Chapter 2. Chapter 3 has described the requirements for
the design. Chapter 4 has described the current technology and the general
constraints of it. The purpose of the author is to improve the current technology with
the concept of Fake Tunneling that the author has invented.

The objective of this chapter is to describe the development process of Fake
Tunneling. First, the motivation for such a concept is given. After that, the definition
of Fake Tunneling is given. Finally, the design of Fake Tunneling is described.
Basically, the objective in development of Fake Tunneling is to investigate in which
way the characteristics of current transport protocols could be combined to achieve a
new protocol that would be more suitable for real-time data transportation so that a
solution to the given problem could be developed. In addition, the solution should
take the general constraints and the requirements of the current technology into
account.

5.1 Motivation

Compared to TCP the characteristics of UDP are more suitable to real-time data
transportation [5]. First, data is not buffered but is sent immediately. Secondly,
acknowledgments or retransmission are not used so there are no additional delay or
jitter. Finally, UDP can supports multicast and broadcast that enable transporting the
same data to multiple users at the same time. As a result, UDP should be used instead
of TCP in real-time interaction.

To secure the network of an organization or an individual, it can be separated with
the firewall from the other networks such as the Internet. The own network to be
protected can be considered as private and secure while the other networks can be
considered as public and insecure. Although the purpose is to block malicious data
transportation from the public to the private network, this can set limitations also to
the opposite direction, namely from the private to the public network. For example,
all data transportation that uses UDP can be denied and only data transportation that
uses TCP is allowed. As a result, the use of UDP and also all the protocols that use it,
such as Real Time Protocol (RTP) [32], is impossible if the receiver is beyond the
firewall [7].

To circumvent restrictions of firewalls, tunneling UDP with TCP would be possible.
But, the characteristics of TCP, namely the buffering and reliability achieved with
acknowledgment and retransmission, are not suitable for real-time data transportation
[5, 6]. Although the buffering can be neglected and the window size of the TCP
header can be changed, the design of TCP remains. That makes TCP unacceptable
choice to real-time interaction. If Quality of Service (QoS) could be guaranteed, TCP
could be suitable enough but that is not the case in the current Internet, which cannot
guarantee QoS in general [4].

21

In Figure 5.1 is shown the conceptual picture of the problems that UDP and TCP
cause when the sender should achieve real-time data transportation beyond the
firewall to the receiver. As shown in the figure, the sender is attached to the private
network and the receiver is attached to the public network. In addition, the networks
are separated from each other with a firewall. Because the firewall is the only path
between the sender and the receiver, all the data are passed through it. As a result, the
firewall can block all data transportation that is considered malicious. The problems
arise when data transportation that uses UDP is blocked. On the other hand, the
benefits of UDP cannot be used because of the firewall and on the other hand, the
drawbacks of TCP make it unsuitable although TCP could otherwise be used.

Firewall

Transport | 3uitable foy Firewall i :
: - =l Feceiver
: protocol real-time action
mender interaction
UDP YES BLOCES
TCP HO ALLOWS

Figure 5.1: Problems with both UDP and TCP

5.2 Definition of Fake Tunneling

So, the restrictions of both UDP and TCP, namely the use of UDP with firewalls and
the lack of real-time data transportation properties of TCP, make them unsuitable to
real-time data transportation through firewalls when real-time interaction should be
achieved [5, 6, 7]. The solution to these restrictions is the concept of Fake Tunneling
that the author is developing. So that the definition of Fake Tunneling to be used on
the IP-based networks was meaningful, the constraints of the current technology and
also network components and existing applications are considered. In addition, the
fundamental solutions to these constraints are introduced. First, the whole point of
developing Fake Tunneling is the service that can be achieved. This service is the
real-time data transportation so that real-time interaction between the users of a
multi-user virtual environment (VE) can be achieved. Because TCP cannot but UDP
can provide this service the characteristics of UDP makes it more appealing choice
compared to TCP. Based on the characteristics of UDP and TCP, the data
transportation characteristics of the new protocol should be closer to UDP than TCP.
The important conclusion is that the new protocol should achieve data transportation
similar to UDP. Secondly, in spite of the fact that in general any transportation
protocol can be used in the private network, the public network allows only the use
of certain protocols. So, compared to the private network, the public network sets the
stricter limitation to the transportation protocols that can be used. In addition, the
firewall can further limit the use of transport protocols. Based on these constraints
the form of the new protocol must be identical to the supported transport protocol

22

namely TCP because in general firewalls block rather UDP than TCP data
transportation. The important conclusion of making the new protocol to look like
TCP is that none of the network components can distinguish Fake Tunneling from
TCP. Also, the following conclusions are achieved and named as the fundamental
principles of Fake Tunneling:

The fundamental principles of Fake Tunneling:
1. UDP like data transportation
2. TCP like form

As a result, because the properties of pure TCP or pure UDP are not adequate
enough, Fake tunneling combines the benefits of both TCP and UDP to achieve data
transportation that is suitable for real-time interaction. This is denoted with the
conceptual definition of Fake Tunneling given in Formula (1). The formula states
that Fake Tunneling consists of a combination of UDP and TCP but instead of using
the current protocols, a completely new protocol is to be created. The term Fake
Tunneling denotes the fact that although in principle UDP is tunneled with TCP in
reality this is not the case as will be shown. But instead of using the term virtual the
term fake is chosen because only the user but not the observer of Fake Tunneling can
say that the tunneling is not real.

Fake Tunneling = combination of (UDP + TCP))

Although the fundamental principles of Fake Tunneling are adequate it should be
noted that the application uses the current transportation protocols through the certain
interfaces that the implementation of the protocol offers. Further, the implementation
of the protocol uses the network through the certain interface that the operating
system (OS) provides. As a result there are at least two interfaces between the
application and the network. Although the former interface is dependent on the
implementation, the properties of UDP and TCP set limits to the characteristics that
the interface offers. The latter interface is dependent on the OS although the same
kind of abstraction is often used among OS. In addition the latter interface is harder
to affect than the former interface. Although the interfaces are not arbitrary, they are
not uniform either. Based on these constraints the new protocol is dependent on the
applications and the OS. As a result, the new protocol should minimize dependencies
of the different applications and OS but take advantage of the interfaces that the
current protocols use.

In Figure 5.2 the idea of Fake Tunneling is described as conceptual protocol stacks.
In the resulting combination UDP offers services to the application layer and TCP
offers services to the Internet layer. As a result, the interfaces that the two main
transportation protocols of the TCP/IP stack provide are used to utilize Fake
Tunneling. Thus, the application only interacts with UDP and the network only
interacts with TCP.

23

Application Application Application
{UDP]
Transport — Transport (UDP) + Transport [TCP)
[TCP)
Internet Internet Internet
Network Interface Network Interface Metwork Interface
Hardware Hardware Hardware

Figure 5.2: Conceptual definition of Fake Tunneling

As a result of the definition of Fake Tunneling, the solution is given in Figure 5.3 to
the problems of the current transport protocols shown in Figure 5.1. Because Fake
Tunneling is used, both UDP and TCP have become obsolete. In Figure 5.3, LTP
denotes the protocol that is used with Fake Tunneling. LTP is the acronym for Lume
Tunneling Protocol used with Fake Tunneling. Lume is a Finnish word for the
English word fake. Obviously, FTP would be an unsuitable acronym because on IP-
technology FTP denotes File Transfer Protocol. LTP combines the benefits of both
UDP and TCP so that LTP achieves real-time data transportation and the firewall
does not block the data transportation.

Firewall

Juitable for

Tran=port Firemall

X Receiwver
protocal r=al —time action

interaction

HEF B2 BErONE

i
FEF T T

LTF TEE LLLOWE

Figure 5.3: Solution to the problems of both UDP and TCP

5.3 Design Principles

The most important design choices include the tools and also Application
Programming Interfaces (API) of Fake Tunneling that are going to be used. It should
be noted that, some or all of these could be replaced with another technology without
affecting the concept of Fake Tunneling. In addition, implementation issues like use
of another OS can require some modifications. Also, some of them, such as the
socket abstraction is widely accepted and used that replacing it could be deprecated.
Nevertheless these design principles here provides feasible methods for the design
and implementation.

e The design is done according to the current Internet protocols. As a result, there
is no reason why the use of Fake Tunneling would not be possible with current
protocol implementations. The significant consequence is that the use of Fake
Tunneling is possible without requiring that both the sender and the receiver use
it but either one of them can use some TCP protocol implementation.

24

e The architecture of Fake Tunneling is designed with Unified Modeling Language
(UML) [33]. Although some other modeling method could also be chosen, wide
acceptance and suitability of it in modeling of software development make it a
reasonable choice.

e With the use of the socket abstraction, namely Berkeley Software Distribution
(BSD) socket and its derivations, a uniform interface between LTP and the
network is achieved. Although not all of the OS support use of the socket, the
most popular OS of this moment do. So, there is no reason to try something
different although any interface between LTP and the network can be used. As a
result, the socket is used as the interface to the network and the Socket API that
the OS offers is utilized.

e The TCP/IP protocol stack does not define a certain interface to be used between
the application and protocol but the OS usually provides it as a part of the Socket
API. With the use of the UDP API a uniform interface between the application
and LTP is achieved. It should be noted that because any UDP API can be used, a
use of a specific UDP API is not relevant in the design phase. As a result, a
generic UDP API is used in the design phase and a more specific one will be
used in the implementation phase.

It should be noted that because the Socket API that the OS provides offers the
interface to the use of the network, it also offers use of the UDP API related concept.
As a result the Socket API and UDP API are related to each other. In addition some
software library can be used between the application and the OS, as a result, the
application uses the Socket API through the software library [14]. In this design the
aspects of packet processing between the application and LTP relates to the UDP
API and aspects of packet transporting over the network to the Socket API.

5.4 Architecture Description

In Figure 5.4 the conceptual architecture of Fake Tunneling is shown as a logical
view. Fake Tunneling components communicate through the following standard
APIs. First, the application and LTP communicate through the UDP API. Secondly,
LTP and the physical network communicate through the Socket APIL. As a result, the
implementation of LTP can be done independently of the application and the
physical network.

25

Application

<<UDF API=>»

Lurne Tunneling Protocol

<<Bocket API:»>

Physical Metwork

Figure 5.4: Conceptual architecture of Fake Tunneling

The details of the UDP API and the Socket API are considered later and instead
conceptual descriptions are used. The reasons for that are that a detailed description
of the APIs is not relevant yet. Also, the details of both the UDP API and the Socket
API can be considered as implementation specific issues that should be omitted in
the design phase of the development. Because the OS usually provides the Socket
API and the UDP API as part of the Socket API, they are dependent on the OS.
Although, some common abstraction layer can be specified between the application
and the protocol layers. In spite of the fact that the interfaces can be OS specific, the
basic principles can be thought to be quite similar among different OS.

5.4.1 Connecting entities

In Figure 5.5 the connection between entities, such as sender and a receiver, is shown
with the conceptual architecture of Fake Tunneling. It should be noted that neither
the sender nor the receiver has to know the details or anything about the physical
network or how they are actually connected. In the same way they do not have to
know the details or anything about LTP. All that the entity has to know is what
services the UDP API offers are how they are used. On the other hand, LTP has to
know what services both the UDP API and the Socket API provides and how they
are used.

26

Sender Receiver

Application Application
<<UDP API>> <<UDP API:>>
Lurme Tunneling Protocol Lurne Tunneling Protocol
<<docket API:> <<docket API:>
Physical Netwark Physical Metwark

Figure 5.5: Connection of parties with conceptual architecture of Fake Tunneling

5.4.2 Fake Tunneling Interfaces

In Figure 5.4 and Figure 5.5 are described the interfaces of Fake Tunneling. In
addition, in Figure 4.6 a format of the UDP header and in Figure 4.4 a format of the
IP header are shown. The UDP API and the use of it are declared based on these
formats. Instead, the formats are irrelevant to the use of the Socket API because it is
used to send and receive arbitrary sequence of bytes and the interpretation of the
bytes is left to LTP.

The UDP API contains methods to set and get values of the [P and UDP header
fields and also methods to set and get data of the UDP packet data portion. The
services of the UDP API that the entity uses are identifying of itself with a source IP
address and a source port. In addition, the entity uses UDP API services that enable
setting data to other entities and getting data from other entities based on the
destination port and the destination IP-address of the other entity. The definition of
the source IP address and source port can be implicit or explicit. In addition, the
definition of the source IP address is based on the network configuration. If the entity
does not declare the source port explicitly, it can be defined implicitly and as a result
any available port can be given. The implicit source port declaration is usually
sufficient for the sender because the receiver does not usually care from which port
the packets are sent. But, usually the receiver declares its source port explicitly
because the sender needs to know to which port the packets should be sent. To
summarize, usually the UDP API provides at least the following conceptual services
for the sender and the receiver.

The conceptual services of the UDP API:
setData

getData

setIPAddress

getIPAddress

setPort

getPort

27

Because LTP is used on the other side of the UDP API, it also has to manage the
conceptual services that the UDP API offers. In addition, LTP has to use the Socket
API. As a result, LTP must be able to send data to the physical network and also
receive data from the physical network. Indeed, the Socket API contains services to
send and receive arbitrary sequence of bytes that are considered as packets. So as a
result, the Socket API is used to send packets to the network and receive packets
from the network. In addition, Socket API is used when LTP takes care of the
implicit [P-address and port declaration and also of the implicit filling of the fields of
the headers that the entity does not declare explicitly. To summarize, the Socket API
should provide at least the following conceptual services for LTP.

The conceptual services of the Socket API:
e sendPacket
e receivePacket

5.5 Lume Tunneling Protocol (LTP)

LTP interacts with the application through the UDP API and with the network
through the Socket API as shown in Figure 5.4. This specifies the way data is passed
through the interfaces to and from LTP. In addition, the specifications of LTP data
processing are shown In Formula (1) and Figure 5.2. So, Fake Tunneling states that
application uses UDP and network uses TCP and that there is a mapping between
UDP and TCP. As a result, LTP takes care of this mapping as shown in Figure 5.6.

Application Application
(UDLP)
Transport => Transport (LTE)
[(TCP)
Internet Internet
Network Interface Network Interface
Hardware Hardware

Figure 5.6: Fake Tunneling protocol stack

5.5.1 LTP Datagram Basics

It should be noted that in general the details of the packets are not the primary
interest of the entities, such as the sender and the receiver. Although, it is an
important part of the mechanism that enables transmitting data between the entities.
Nevertheless, because the entities use the UDP API, they can also thought that they
are actually using the UDP header shown in Figure 4.6 and also the packet shown in
Figure 5.7. Indeed, from the application point of view this is the correct assumption.
The figure shows the virtual packet of Fake Tunneling when IP is used as the
underlying transport protocol.

IP UDP

header| header data

Figure 5.7: Virtual packet of Fake Tunneling

28

But, Fake Tunneling does not use the UDP but TCP header in the packet. The TPC
packet consists of a TCP header, which is shown in Figure 4.5, and a data portion.
When LTP sends data, it fills the fields of TCP header and the data portion with
values retrieved from UDP API. Correspondingly, when LTP receives data it uses
the UDP API to set values retrieved from the TCP header and the data portion. As a
result, instead of using the virtual packet shown in Figure 5.7, the packet shown in
Figure 5.8 is used in reality. The figure shows the real packet of Fake Tunneling
when IP is used as the underlying transport protocol. It should be noted that although
in general and also in this design the IP protocol is used as the underlying transport
layer, there is no reason why any other protocol could also be used. But, because IP
is used, LTP also fills the fields of the IP header shown in Figure 4.4 in addition to
the fields of the TCP header.

IP TCP

header| header data

Figure 5.8: Real packet of Fake Tunneling

So, LTP takes care of the mapping between the UDP API and the Fake Tunneling
packet and the conceptual services of the UDP API are used. The purpose of this
mapping is to enable the use of the TCP header instead of the UDP header and in
Figure 5.9 the actual mapping is shown. The related fields are connected with lines
that have dots at the ends.

IP header
VERSION | HLEN ii TTTF OF SELVICE TOTLL LENGTH
IDENTIFICATICN FLAGS | FRAGNENT CFFSET
TIME TO LIVE | PrROTOCOL HEADER CHECKSUHN
SOURCE ADDRESS
" DESTINATION ADDRESS
OPTICNS e | rappmc
TCP header/
SOURCE PCORT @ DESTINATION PORT @
P SEQUENCE NUMEER
ACKNOULEDGMENT NUMBER
& HLEN I RESERVED CODE BITS WINDOW
CHECKSUM 8 URGENT POINTER
OPTIONS \ | PADD ING
UDEP header \
SOURCE PORT [] \ DESTINATION PORT @
- LENGTH 1 CHECKSTN

Figure 5.9: Mapping between fields of UDP and Fake Tunneling headers

29

Because the TCP header contains fields for all the data that can be represented with
the UDP header, the mapping between the headers is quite straightforward. In
addition, the IP header is used as usual. The SOURCE PORT and the DESTINATION
PORT fields of the UDP header have direct counterparts in the TCP header. In
addition, the LENGTH field of the UDP header contains the sum of that consist of the
length of the UDP header and of the data. So, the UDP header length portion is
omitted and the data length portion is included into the TOTAL LENGTH field of
the IP header that also includes HLEN fields of both the TCP and IP header. Finally,
the CHECKSUM field of the TCP header is similar to the CHECKSUM field of the UDP
header and is calculated in the same way.

When the sender sends a packet to the receiver, the conceptual services of the UDP
API are exploited in the following way. First, the sender uses the service setData to
set the data portion of the packet shown in Figure 5.8 and the receiver uses the
service getData to get the data portion of the packet. Secondly, the sender uses the
service setlPAddress to set the IP-address of the receiver into the DESTINATION
ADDRESS field of the IP-header and the receiver uses the service getIPAddress to get
the IP-address of the sender from the SOURCE ADDRESS field. Finally, the sender uses
the service setPort to set the port number of the receiver into the DESTINATION PORT
field of the TCP header and the receiver uses the service getPort to get the port
number of the sender from the SOURCE PORT field. Because LTP can implicitly fill
the rest of the fields, this described the use of the packet and the services that the
UDP API provides is sufficient. Especially, LTP must make sure that the PROTOCOL
field of the IP-header corresponds to the value that indicates that the data portion of
the IP datagram is TCP not UDP. As a result, LTP has provided the mapping
between UDP and TCP. As a result, the design of the first and second item of the
fundamental principles of Fake Tunneling has been declared and can now been
implemented.

5.5.2 LTP Datagram Advanced

Because the UDP header is very simple containing just a few fields [31], the
connection between the application and LTP was quite straightforward. Although the
current implementations of the TCP and IP layers can be exploited, LTP itself can
also offer the necessary services of these portions. Integrating the TCP and IP layers
can take advantage of the data locality in memory [15, 16]. Also, the values of the
specific fields can remain constant so they need to be set only once and are then
omitted. As a result, unnecessary data manipulation is avoided that often results
increased execution speed. Based on the conceptual definition of Fake Tunneling
shown in Figure 5.2 and the Fake Tunneling protocol stack shown in Figure 5.6 this
integration is described in Figure 5.10.

[3, 14]

Application Application

(TDE)

Transport — Transport
L3 —> - [LTE)

[TCE) Internet
Internet
Network Interface Network Interface
Hardware Hardware

Figure 5.10: Integration of Fake Tunneling layers

30

When the IP header is used without options, the following fields of the IP header are
considered: TOTAL LENGTH, IDENTIFICATION, HEADER CHECKSUM and
DESTINATION ADDRESS. The rest of the fields need to be set only once. In Figure
5.11 the IP header of this kind of use is shown. In addition, when the TCP header is
used without options, the following fields of the TCP header are considered:
DESTINATION PORT, SEQUENCE NUMBER, ACKNOWLEDGEMENT NUMBER and
CHECKSUM. The rest of the fields need to be set only once. In Figure 5.12 the TCP
header of this kind of use is shown. Another benefit of having many constants fields
affects the fact that calculation of checksums can be faster in general.

012 3 4 5 6 7 8 9 101112 1314 1516 17 16 152021 22 2324 25 2627 28 29 30 31
| TOTAL LENGTH
IDENTIFICATION |
[HELDER CHECKSUN

DESTINATION ALDDREZS

Mk W w0

Figure 5.11: Smart use of IP header with Fake Tunneling

01 2 3 4 5 6 7 8 9 101112 131415161715 19 2021 22 232425 2627 28 293031
DESTINATICN FPORT

SEQUENCE NUMEER
ACEINOWLEDGHMEMNT NUMEEER

o S =]

CHECE3TUH

Figure 5.12: Smart use of TCP header with Fake Tunneling

If packets are sent only to a certain destination, the DESTINATION ADDRESS and
DESTINATION PORT fields can be omitted because then they need to be set only once.
In addition, the use of the fields IDENTIFICATION, SEQUENCE NUMBER and
ACKNOWLEDGEMENT NUMBER can possible be omitted if a) the security restriction
allow that and b) the both parties of the data transportation agree. So, the former is
affected by firewalls and the latter is affected of the implementation details of the
entities. If fixed size packets are used also the field TOTAL LENGTH has to be set only
once. Also, if the TOTAL LENGTH, IDENTIFICATION and DESTINATION ADDRESS
fields can be omitted also the CHECKSUM field of the IP header can be omitted. In
addition, if the DESTINATION PORT, SEQUENCE NUMBER and ACKNOWLEDGEMENT
NUMBER fields can be omitted the CHECKSUM field of the TCP header is the only one
that is accessed. If all but the CHECKSUM field of the TCP header can be omitted as
described, the optimum accessing of the IP and TCP headers fields is reached. It
should be noted that Fake Tunneling could exploit all these features although it is not
mandatory

5.5.3 Checksum Calculation Speed Up

Now as the constant and volatile fields of the Fake Tunneling design have been
declared, the checksum calculation speed up is considered. The formal algorithm to
the checksum calculation is the following. Treat the input as chunks of 16-bit

31

integers using one’s complement arithmetic and take one’s complement of the result
[29, 30] According to the algorithm, the IP checksum is calculated so that input is IP
header. TCP checksum is calculated with the algorithm so that input is TCP Pseudo
header, TCP header and data portion. The TCP pseudo header is shown in Figure
5.13. But instead of using such a formal algorithm, which involves copying of
memory, execution of loops and accessing all of the fields, the checksum calculation
is done in the following way. First, the sum of the constant fields is calculated only
once because they always produce the same value. As a result the constant fields
have to be accessed only once. Secondly, the pseudo header is omitted so that
memory copying can be avoided. Instead the use of the pseudo header is integrated to
the checksum calculation as the following phase describes. Thirdly, the common
fields of the checksums are exploited at the same time to minimize atomic operations
and memory traffic.

012 3 4 5 6 7 8 9 101112 1314 151617 18 192021 22 2324 25 2627 28 29 30 31
a SOURCE ADDRESS
DESTINATION ADDRESS
ZERO | PROTOCOL | TCP LEMGTH

Figure 5.13: TCP pseudo header

5.5.4 Connection Establishment and Closing

When a sender sends packets, the receiver must be ready to receive those packets or
they are lost. TCP defines the establishment of connection opening defined as the
three-way handshake. During the three-way handshake three packets are transmitted
between the entities namely the sender and the receiver. Although, TCP normally
uses a similar mechanism to close connection than to open it, it also defines
connection reset. The connection reset is simpler that connection closing. It should
be noted that UDP does not provide any mechanism to open or close the connection
because UDP does not use such an abstraction. As a result, if such a mechanism is
needed with UDP, it must be done at the application layer. On the other hand,
because UDP does not define connection opening, the application cannot according
to UDP require such a mechanism. But, on the other hand TCP requires such a
mechanism so according to the conceptual definition of Fake Tunneling shown in
Figure 5.2 such a mechanism is required. Based on the latter argument it is strongly
suggested that LTP would use connection opening. Also, some firewalls and OS can
check that the connection is actually established. Based on these arguments the use
of connection opening is mandatory. It should be noted that the application can also
benefit from the connection-opening behavior of TCP. This is useful if the
application wants to make sure that a route between the sender and the receiver is
established before any payload data is sent. Instead of connection closing, connection
reset can be used because of its simplicity. It should be noted that establishment of
the connection has to be done only once so it does not produce additional overhead
after to data transportation. Use of connection opening mechanism enables the use of
LTP with the current implementations of TCP. As a result, use of Fake Tunneling is
possible without knowing the implementation details of the other entity beforehand.
This also enables solving of the implementation details of the other entity at run time.
This could be done for example with a use of some certain identifier. Another
possibility to figure out the implementation details of the other party would be to first

32

omit the use of the IDENTIFICATION, SEQUENCE NUMBER and ACKNOWLEDGEMENT
NUMBER fields and then inspect how the other entity reacts. Because the conceptual
services of the UDP API allows setting of a different receiver each time a packet is
sent, LTP has to take care that the connection is not reopened before it is closed.

5.5.5 Data Transportation Types

TCP is used for unicast connection only but UDP can also be used to multicast and
broadcast connections. Because Fake Tunneling supports UDP interface to the
application it can be suggested that LTP should be able to offer also multicast and
broadcast connections.

5.5.6 Combination of Positive and Negative Acknowledgments

Instead of using the positive acknowledgment, like TCP does, LTP can take
advantage of the negative acknowledgment. When the positive acknowledgment is
used, the receiver acknowledges the sender if a packet is received. The negative
acknowledgment works in the opposite way. When the negative acknowledgment is
used, the receiver acknowledges the sender if a packet is not received. The benefits
of the negative acknowledgment compared to the positive acknowledgment are that
the sender will not be overloaded from the acknowledgments. In general, this has a
great importance especially when multicast or broadcast is used so Fake Tunneling
can exploit the combination of positive and negative acknowledgments.

[3]

5.6 Comparison of Theoretical Characteristics

In addition to the use of TCP or Fake Tunneling, another solution would be tunneling
UDP with TCP to enable transmission of UDP packets beyond firewalls. So the
theoretical characteristics of these different kinds of data transportation mechanism
are compared. First, protocol header data overhead and after that protocol header
access overhead is compared. The purpose of these comparisons is to give a uniform
view of the theoretical characteristics so that the theoretical differences between the
different data transportation mechanisms can be compared.

5.6.1 Protocol Header Data Overhead

The protocol causes overhead to data transportation because not all of the transported
data is payload data but includes also header data. This is denoted as protocol header
data overhead and the results of the comparison between different data transportation
mechanisms are shown in Figure 5.14. In the figure the field transport mechanism
specifies the different data transportation mechanisms and includes UDP, TCP,
tunneling UDP with TCP and Fake Tunneling. The field profocol header indicates
the size of the protocol header of each transport mechanism measured in bytes. The
field IP + protocol header corresponds to the field protocol header but also the size
of the IP header is included. The field overhead indicates the header data overhead
that is introduced because part of the transported data contains header fields. The
term UDPdo(N)), in which the substring 'do' denotes data overhead, indicates the
header data overhead of UDP with a payload data size N, especially, UDPdo(0) is

33

equal to 1.0. The header data overhead of a transport mechanism is calculated with
Formula (2), which returns a multiple of the UDP header data overhead compared to
UDPdo(0). The number eight in the nominator of the formula indicates the protocol
header size of the UDP transport mechanism in bytes. Although firewalls can block
UDP data transportation, the UDP header data overhead is used as a reference
because it causes header data overhead least of all. The comparison is made without
the use of the protocol options fields of the headers. The protocol option field of the
TCP header is not included because although the size of the option field can vary, it
can be considered as a constant because its effect is same for all other but UDP,
which does not use such a field. In addition, the protocol option field of the IP header
is not included because the effect of it is same for all the data transportation
mechanisms.

Lransport UDF | TCP | Tunneling Fake
mechanism UDP with TCP| Tunneling
A
protocol
header ([octets) et 25 e
owverhead
(times UDPdD(D]j .01 2.50 3.5 2.5
e
IF + protocol
header (octet3) 28| 40 48 40
overhead Wi kel rl fof 1.4
[CLime=z UDPdAo(0))

Figure 5.14: Comparison of protocol header data overhead

IP + (UDP v TCP)
IP+8

overhead = JP=(0vQ)AUDP=8ATCP=0 Q?)

Based on the second item of the fundamental principles of Fake Tunneling and the
Fake Tunneling packet shown in Figure 5.8 it should be obvious that the comparison
of protocol header data overhead gives equal values to both LTP and TCP.
Compared to the tunneling UDP with TCP the mapping shown in Figure 5.9 declares
a more efficient way that is used with LTP. The reasons for that are that the UDP
header does not need to be included explicitly to the data portion of the TCP packet
but implicitly to the TCP and IP headers.

The header data overhead as a function of packet size in bytes is shown in Figure
5.15 when IP is used as the underlying transport protocol and the UDPdo(N) is used
as the reference value. LTP is equal to TCP and UDP+TCP indicates the use of
tunneling UDP with TCP. Note that because in the figure the reference value is
UDPdo(N), the overhead of UDP is constant. According to the figure, the protocol
header data overhead of the other data transportation mechanisms compared to UDP
decreases as the size of the packet increases and finally is in practice equal to UDP.

34

HEADER DATA OVERHEAD COMPARED TO UDPdo(N)

j=s)
()

;

%/

b
[
3

—=— UDP+TCH
—<P
—e—UDF

=
j=s]
o

o
™
fen]

OVERHEAD (TIMES UDPdo(N))

[=
e
[=]}

(=)
T
=i

0,00

01 2 4 8 1B 32 G4 128 256 512 1024 2048 4095 B192 16354 32768 55536
N (B)
Figure 5.15: Protocol header data overhead

5.6.2 Protocol Header Access Overhead

Values of the fields of a protocol header need to be set and get. This causes field-
accessing overhead and is denoted as protocol header access overhead. The results of
the comparison between different data transportation mechanisms are shown in
Figure 5.16. Because UDP header has fields least of all, it is used as the reference.
Also this comparison is made without the use of protocol options fields of the
headers based on the same arguments. In the figure the field transport mechanism
specifies the different data transportation mechanisms and includes UDP, TCP,
tunneling UDP with TCP also two extreme use of LTP with Fake Tunneling, namely
LTP Basic and LTP Advanced. The field number of protocol access indicates the
number of the individual fields of the transport mechanism that at least have to be
accessed. The field number of IP access corresponds to the field number of protocol
access. Because it relates to the IP header, the values are same for all data
transportation mechanisms. The field overhead indicates protocol header access
overhead that is introduced because some of the header fields have to be accessed
each time a packet is sent or received. The term UDPao(N), in which the substring
'ao' denotes accessing overhead, indicates the protocol header access overhead of
UDP with the number of packet N, especially, UDPao(1) is equal to 1.0. The
protocol header access overhead of a transport mechanism is compared to the
UDPao(1) and calculated with Formula (3), which returns a multiple of the UDP
protocol header access overhead. The number six in the nominator indicates the
number of optimal access of the UDP transport mechanism.

35

LLansport UDP | TCP | Tunneling LTF LTF
mechanism TDEF with TCP| Baszic | idvanced
O T L B R o e, P PO B e P
number of
protocol access z = ¥ 4 t
nurber of 4 4 4 4 0
IF access
—
nurmber of 5 g 11 g 3t
optimal access
overhead i, 1 1.8 1.3 0.z
[Lime=s UDFaao(l))

Figure 5.16: Comparison of protocol header access overhead

numberOfOptimalAccess

overhead =
6

(&)

Because the values indicates number of the fields that at least have to be accessed,
the values that are gotten are optimal and at least in the case of LTP Advanced
optimum. As a result, the values for the protocol header access overhead of UDP and
TCP can be worse. Obviously, the protocol header access overhead of TCP and LTP
Basic are the same because same kind of packet handling can be used but LTP Basic
is optimal. In addition, as the number of packets increases the effect of the overhead
increases. The protocol header access overhead as a function of packet size in bytes
is shown in Figure 5.17 when IP is used as the underlying transport protocol and the
UDPao(N) is used as the reference value. LTP Basics is equal to TCP and UDP+TCP
indicates the use of tunneling UDP with TCP. Because the factor of protocol header
access overhead is constant as the size of the packet increases the effect is similar to
all of the transport mechanism.

HEADER ACCESS OVERHEAD COMPARED TOQ UDPao(N)

10000000

1000000

100000

1000,0

1000

OVERHEAD (TIMES UDPao(N))

100

—m— UDP+TCP

——LTF Basics
= LJDP

—&— LTP Advance

01

G4

1268 2586 512 1024 2048 4095 8192 16384 32765 65536

N (B)

Figure 5.17: Protocol header access overhead

36

5.7 Summary

In this chapter concept of Fake Tunneling was introduced and design of it was
described. As a result, the characteristics of UDP are used to provide the transport
protocol functionality and the form of TCP is are used to allow data transportation
beyond firewalls. These were defined as the fundamental principles of Fake
Tunneling. Also Lume Tunneling Protocol (LTP) that Fake Tunneling uses was
described. It was denoted that the architecture of Fake Tunneling exploits the UDP
API and the Socket API. As a result, the conceptual services of the interfaces that
Fake Tunneling uses were declared so that LTP can communicate through the
interfaces with the application and the network. It was also shown how entities can
be connected with Fake Tunneling. In addition, it was shown how LTP handles the
mapping between UDP API and TCP packet. As a result, the design of the
fundamental principles of Fake Tunneling has been declared and can now been
implemented. Finally, the theoretical characteristics of different data transportation
mechanisms were compared and the results were analyzed.

37

6 Implementation of Fake Tunneling

So far, the detailed implementation of Fake Tunneling has been omitted. For now on,
different implementation issues are considered. It should be noted that Fake
Tunneling does not demand any specific implementation of Lume Transport Protocol
(LTP) because that is an implementation specific issue. As a result, the purpose of
the described implementation is to give a concrete example of Fake Tunneling and
enable practical comparison against the current protocol implementations.

In this chapter, implementation of Fake Tunneling that the author has developed and
designed in the Chapter 5 is described. First, the Application Programming Interfaces
(API) that are used to implement the Fake Tunneling interfaces are declared. After
that the implementation of LTP that Fake Tunneling uses is described. In addition
some different implementation branches are considered.

6.1 Implementation of Interfaces

LTP interacts with the application and network through the UDP and Socket
interfaces. In Figure 5.2 the conceptual architecture of Fake Tunneling is shown. The
detailed description of the interfaces of Fake Tunneling has been able to be omitted
until this moment because the conceptual services of the interfaces were used instead
of the specific ones. But, now the specific interfaces that are used in this
implementation of Fake Tunneling are declared in details. Although the specific
interfaces are now declared, the consideration of the too strict implementation issues
is postponed for a while. The obvious reason for that is that separating the
implementation from the interface is a good software development practice because
it enables replacement of the implementation with another if needed without
affecting the rest of the system.

6.1.1 UDP API

The choice of the UDP API can be considered to be distinct from the choice of the
implementation language so any language can be used. So, although any UDP API
could be used, the UDP API part of the already defined Java UDP API [34] is chosen
because it defines a well-documented and clear interface. Although the substitution
mechanism is also described it does not have to mean that it have to be used because
not all the UDP API provide such a mechanism. The purpose of the substitution
mechanism declaration is to give a concrete example how Fake Tunneling can be
exploited also with the current applications. But, replacing the Java UDP API is
always possible.

The UDP API part of the Java API denoted for now on as the UDP API offers the
conceptual services of the UDP API to the use of the network with UDP from the
application. This is available in the java.net package and the most relevant part of it
is described as a class diagram shown in Figure 6.1. The DatagramSocket contains
methods to send DatagramPackets to the network and receive DatagramPackets from
the network. Although these offer the conceptual services of the Socket API, they are

38

treated as a part of the UDP API that offers an abstraction to the use of the Socket
API through LTP. The DatagramSocket also contains optional connect method that is
used to send and receive DatagramPackets only from the specified receiver. In
addition, the Datagram packet contains the methods that offer the conceptual services
of the UDP API. These methods are used to set and get the application specific data
and also to set and get IP address and port of the sender and the receiver.

Jjava.net
DatagramSocket ~ [---- > DatagramPacket
+oonnect (IPaddress ,port) +ogetdddress () IPaddress
treceiveDatagranlacket) +getlort i) port
+aendDatagranlacket) +getlatal): data

t+aetdddress (Iladdress)
t+aetPort (port)
+setatafdata)

Figure 6.1: Interface between application and UDP

The UDP API defines a default transport protocol implementation of UDP, namely
PlainDatagramSocketImpl that is used by default. This is described as a class
diagram shown in Figure 6.2. As a result, the DatagramSocket, which is also shown
also in Figure 6.1, uses the UDP implementation through the DatagramSocketImpl.

java.net

DatagramSocket

Vi

DatagramSocketimpl

1

PlainDatagramSocketimpl

Figure 6.2: Default use of UDP API

Although a Fake Tunneling implementation can take advantage of the UDP API
interface, the UDP API does not offer an implicit implementation of LTP. As a
result, an explicit implementation of LTP is needed. The purpose of this
implementation is to enable a mechanism to the entity, such as a sender and a
receiver, to send and receive data over the network. But, instead of re-implementing
the whole UDP portion of the Java API, the Java API itself provides methods to
substitute the default transport protocol implementation. As a result, Fake Tunneling
implementations could exploit one of these substitutions to enable the use of Fake
Tunneling instead of UDP with the current applications.

39

One way to exploit the substitution mechanism is passing of the LumeDatagram,
which is the substituting implementation to UDP provided in fi.vtt.tte.fi package, to
the constructor of the DatagramSocket so that the default transport protocol
implementation of UDP is replaced with the LumeDatagram. This is shown in as a
class diagram in Figure 6.3. In Figure 6.4 is shown a sequence diagram related to the
use of constructor parameter. Although the LumeDatagram does not implement UDP
but LTP, the DatagramSocket does not notice the difference because the
LumeDatagram implements the functionality that the DatagramSocket uses.

jawa.net

DatagramSocket

thatagrensccket (DatagrensockatIupl)

AV
DatagramSocketimpl

A

fi.vtt.tte.net

LumeDatagram

Figure 6.3: Use of constructor parameter of UDP API

_Application DatagramSocket LumeDatagram
creste
L Diat i
return LurmeDatagram
| eturn LumeDa 11 LN WS :

Figure 6.4: Use of constructor parameter of UDP API

The other way is shown in Figure 6.5. The DatagramSocket gets reference to the
LumeDatagramFactory that in turn is used to create the LumeDatagram. Finally, the
LumeDatagram replaces the default transport protocol implementation of UDP. In
Figure 6.6 is shown a sequence diagram related to the use of the factory substitution.

40

java.net

DatagramSocket
+setDatagrapSocketIupl Factory(DatagranSocket Tupl Factory) @ void

\/ A¥4
DatagramSocketimpl =< DatagramSocketimplFactory>=
+oreatelatagranSocketInpl () DatagramSocketInpl

x 3

fi.vtt.tte.net

LumeDatagram [C------======-=---1 LumeDatagramFactory

Figure 6.5: Use of factory of UDP API

Application DatagramSocket LumeDatagramFactory || _LurneDatagrarn

create

3

setDatagramSocketimplFactary >

create

L teDat Socketlmpl
createDatagram=ocke mp-_

create

- eturn LumeDatagram_ _

Figure 6.6: Use of factory of UDP API

Although, the Java API that is used can affect the choice which substitution to
choose, nevertheless, the Java API has defined a standardized and clean way to the
use of Fake Tunneling. So in addition to the interface between the application and
UDP, Figure 6.1 also shows the interface between the application and LTP. As a
result, the substitution mechanism that replaces UDP with LTP can also be achieved
with the current applications and should be definitely used with the new
implementations of Fake Tunneling if they are implemented with the API that
supports such or a corresponding mechanism.

After the DatagramSocket has been created, the application can use it to send and
receive DatagramPacket through the UDP API interface. In Figure 6.7 sending of
data is shown. Correspondingly, in Figure 6.8 receiving of data is shown. The
sending and receiving of data can be done independently of each other.

Application DatagramSocket LumeDatagram

send DatagramPacket -
send DatagramPacket

Figure 6.7: Sending data with Fake Tunneling

41

Application DatagramSocket LumeDatagram

receive DatagramPacket

- receive DatagramPacket

Figure 6.8: Receiving data with Fake Tunneling

6.1.2 Socket API

The socket is an abstraction that is used to enable use of network namely sending
data to the network and receiving data from the network. Similar abstraction is e.g.
file that enables writing data to the file system and reading data from the file system.
The main difference is that file has to be identified with a name but the socket does
not.

The concepts of the UDP API are related to the Socket API and are used with the
Socket API or through some software library that enables the use of the UDP API
part of the Socket API. Usually the operating system (OS) provides the Socket API
and as a result the use of the specific Socket API makes the implementation
dependent on the OS although the dependencies can be minimal. It should be noted
that any OS that provides the socket abstraction to the use of network could be
exploited. The specific Socket API that is chosen is the GNU Socket API [35]
because it is well documented and easily available. GNU Socket API offers the
conceptual services of the Socket API to the use of the network and is utilized with
LTP. In addition to sending and receiving data, the GNU Socket API also contains
methods to retrieve information about the sender and network. The most relevant part
of this API is the following.

e s =socket(type, protocol)
e send(s, packet)
e recv(s, packet)

The socket function returns a reference to the variable that is used to access the
network. The argument type of the socket function declares if reliable or unreliable
socket is requested. It is also used to declare the use of raw sockets that can be
exploited to bypass the default protocol implementations of the OS. This feature is
exploited with Fake Tunneling. The argument protocol of the socket function
declares the protocol that the socket uses, for example, UDP or TCP, but it can also
represent all IP protocols. The send function is used to send packets to the network
through the specific socket. Finally, the recv function is used to receive packets from
the network through the specific socket.

42

6.2 Implementation of LTP

In addition to the use of the Fake Tunneling interfaces, LTP also constructs and
deconstructs the LTP packets shown in Figure 5.8. The formats of IP and TCP
headers are shown in Figure 4.4 and Figure 4.5. It should be noted that although on
the Internet IP packets are used as an abstraction, the physical network transports
bytes. Although, the Socket API provides methods to send bytes to the network and
also receive bytes from the network, the interpretation of these bytes depends on
LTP.

A sequence diagram of data sending is shown in Figure 6.9. The application uses
send method of the class DatagramSocket to pass the class DatagramPacket to the
underlying UDP API. After that, LTP retrieves the values of the DatagramPacket and
constructs a packet. Finally, LTP passes the packet to the Socket API that sends it to
the underlying network. In Figure 6.10 a sequence diagram of data receiving is
shown. The functionality is contrary to the data sending.

_Application UDP AP LTF Socket AP Metwark

sehid DatauramF‘acket-_

getlF‘address
IgetF'Dn
getData

constructPacket

send packet -

Eacket.

Figure 6.9: Data sending with Fake Tunneling

_Application UDP AP LTP Socket AP Metwark
receive DatagramPacket
- recy packet
o
: packet .
deconstructPacket

setlPaddress
setPort

setData

e e

Figure 6.10: Data receiving with Fake Tunneling

When LTP constructs a LTP packet, the DatagramPacket, TCP and IP headers are
used in the following way. The method getIPaddress of the DatagramPacket is used
to set the DESTINATION ADDRESS field of the IP header. In addition, the method
getPort of the DatagramPacket is used to set the DESTINATION PORT field of the TCP

43

header. Finally, the method getData of the DatagramPacket is used to set the data
portion of the LTP packet. The deconstructing of a LTP packet is done contrary to
the constructing of a LTP packet. Also, when LTP deconstructs a LTP packet, the
DatagramPacket, TCP and IP headers are used in the following way. The method
setlPaddress of the DatagramPacket is used to get the SOURCE ADDRESS field of the
IP header. In addition, the method setPort of the DatagramPacket is used to get the
value of the SOURCE PORT field of the TCP header. Finally, the method setData of
the DatagramPacket is used to get the data portion of the LTP packet. As a result,
LTP has provided the mapping between UDP API and LTP packet. It should be
noted that UDP packets are not transported to the network but the data that otherwise
were used in conjunction with them are passed in the LTP packets.

In the design of Fake Tunneling it is suggested to omit some fields of the headers and
indeed the checksum calculation is done according to that. Because in the
implementation of Fake Tunneling that the author will done the use of the headers
options are not exploited, the OPTIONS and as a result PADDING fields are not used. In
addition to the fields that can be filled and retrieved with the UDP API, the rest of
the fields must also handled. According to LTP Basics some of the fields can always
hold constant values but the use of LTP Advances can affects which of the fields can
further remain constant. LTP Basics defines that the VERSION, HLEN, TYPE OF
SERVICE FLAGS, FRAGMENT OFFSET, TIME TO LIVE, PROTOCOL and SOURCE
ADDRESS fields of the IP header can hold a constant value during data transportation
as shown in Figure 5.11. In addition, the SOURCE PORT, HLEN, RESERVED,
CODE BITS, WINDOW and URGENT POINTER fields can hold a constant value
during data transportation as shown in Figure 5.12. In the implementation of Fake
Tunneling that the author will do, the field options of LTP Advanced are not
exploited so that the implementation is definitely compliant with the current TCP
protocol implementation. But instead the connect method of the UDP API is used so
that the DESTINATION ADDRESS and DESTINATION PORT need to be set only once and
not each time a packet is sent. Now as the constant and volatile fields of the Fake
Tunneling implementation of the author have been declared the checksum
calculation speed up is done as suggested in the design of Fake Tunneling.

As suggested in the design of LTP, connection-opening mechanism is used.
Although, the use of the connection reset is acceptable, connection closing is used
instead because it is normal behavior of TCP connection. The choice of the
connection closing is also meaningful because the current implementation of these
mechanism are going to be exploited in addition to implementation of the author.
Finally, LTP has to take care of that the connection is not reopened before it is
closed. As a result, LTP must keep track on the state of the connections.

6.3 Implementation Aspects

LTP communicates with the application through the UDP API. In spite of the fact
that in this Master's thesis the implementation of Fake Tunneling is done with Java
programming language, any other programming language could also be used. The
Java programming language is chosen because it enables independence of the
application from the OS [34, 36]. But, the use of OS specific data means that this
cannot directly be achieved although the socket abstraction is so widely accepted that

44

the OS specific modification should be minimal. The Java programming language
also offers a uniform Java API among Java programs so the same functionality is
available for different Java programs. Finally, the Java programming language is
chosen to give a uniform example of the implementation although the interface is
separated from the implementation of the interface.

To summarize the use of the UDP API interface between the application and LTP,
the application has to do the following phases to take advantage of the use of the
Java UDP API with Fake Tunneling.

1. importing java.net and fi.vtt.tte.fi packages
2. substitution of UDP with LTP
3. use of Java UDP API

In addition to the UDP API, LTP communicates with the network through the Socket
APL In spite of the fact that in this Master's thesis the implementation of Fake
Tunneling GNU Socket API is chosen, the different Socket APIs are similar enough
in general. As a result, the porting of this implementation also to the other OS is
always possible. But, the chosen OS is GNU/Linux based on its great support for
programming and raw sockets in the implementation of Fake Tunneling. Because the
GNU Socket API is implemented with the C programming language also the part of
LTP that interacts with the Socket API is implemented with the C programming
language.

If the Socket API that the OS provides cannot directly be called from a Java
program, all of the functionality needed cannot be implemented with the Java
programming language. In such case the Java Native Interface (JNI) can be used to
allow use of Java with another programming language [34]. Java denotes another
programming languages as native. So, JNI interacts between the Java and native
programming languages and as a result native side can be called from the Java side
and vice versa. In Figure 6.11 connecting both the Java side and the native side with
the JNI is shown so that the use of the Socket API is possible. If the OS provides the
direct use of the Socket API from the Java side, JNI can be omitted and the
functionality of the native side can be integrated directly to the Java side.

Java side
JNI

Native side

Socket API

Figure 6.11: Connecting Java side to platform specific native side

On the Java side, Sun Microsystems Java 2 Software Development Kit (J2SDK)
1.4.1 on Linux, for now on J2SDK, is used because it is one of the latest Java
distribution at this moment and enables both kinds of default transport layer
substitutions. As the native language, the C programming language is used. JNI also
supports connecting of Java and C programming languages. So, one part of LTP is

45

implemented with Java and the other part with C and JNI is used. As a result of
connecting the Java side and the native side with JNI, two modules are produced.
The Java side is implemented as vtt.fi.tte.net package and constructed to the lumenet
archive. The native side is implemented as lumenet library that is loaded at run time
into the JVM. Because the native side is finally needed, the delay that the use of JNI
causes cannot be avoided. But, the delay should be same for all the different
protocols so it is considered as constant.

6.3.1 Branches

Depending on the OS that is used and the implementation specific details, the
implementation of LTP can be divided into some branches. In Figure 6.12 a state
diagram of the branches is shown. For clarity, the transition arrows and labels are
shown only to the send method of the DatagramSocket of the UDP API. The receive
method of Java UDP API is gotten by inverting the transition arrows but not all of
the transition labels are then correct.

Lumelbatagram

[3end]

oA

[use JNI]

[use Jawva TCFP]

Java TGP AP

[handle \
construct/deconstruct acket]
packet

[handle
\{ packet

[use JNI] later]
<

—
[packet not [INI not
handled] needed]

[construct/deconstruct

[use JNI]

[JNI not
needed]

[packet not
handled]

[packet

handled] packet

Sacket API I{

[packet
handled]

Figure 6.12: Possible branches of LTP implementation

Summarizing the branches shown in Figure 6.12:
LumeDatagram-Java TCP API-Socket API
LumeDatagram-Java TCP API-JNI-Socket API
LumeDatagram-JNI-construct packet-Socket API
LumeDatagram-construct packet-JNI-Socket API
LumeDatagram-construct packet-Socket API

M

46

Because the OS is usually implemented with a native language like C or C++, also
the Socket API that the OS provides is used with a native language. There are also
OS that are supposed to allow the direct use of Java [37] but the most popular OS of
this moment do not support that. The branches 1 and 5 propose that JNI is not needed
and based on that they are omitted. The branch 2 uses the Java implementation of
TCP and implies that the full benefits of LTP are not exploited and based on that the
branch is omitted. Finally, the branches 3 and 4 remains and are taken into more
detailed consideration.

The C programming language is compiled to the platform dependent machine code
that can be directly executed with the hardware. The Java programming language is
compiled to the platform independent Java byte code that is at least at first
interpreted with the Java Virtual Machine (JVM) that uses the hardware. As a result,
the execution performance of C code is usually higher compared to Java because it is
not directly executed with the hardware. But, the current JVM also compiles Java
code during execution. Although, the compiling takes some time, the benefits can be
greater because instead of interpreting, the code can be executed directly with the
hardware. Although, the need for the high execution performance is dependent on the
application and compared to C Java can take advantage of different kinds of runtime
environments. Finally, there are translators that enable compiling of the Java
programming language to the machine code instead of the Java byte code [38]. The
current Java implementations of UDP and TCP are done according to branch 3. In
addition, this can give better execution performance because the packets are
constructed and deconstructed on the native side. Branch 4 let the programmer do as
match of the implementation on the Java side because only the OS specific
functionality must be implemented on the native side. As a result, it is possible to
implement the constructing and deconstructing of packets on the Java side. This can
also enable better utilization of the Java threads and class library. Although the
branch 4 can provide great benefits to the development, the branch 3 is chosen
instead. The purpose of this is to enable comparable tests to be performed. As a
result, the branch 3 is implemented to make LTP according to the current Java
implementations of UDP and TCP. The purpose of this is to enable comparable tests
to be performed. Although, at this moment LTP is not implemented as a part of the
GNU/Linux OS, the Scout OS and especially Scout In Linux Kernel (SILK) could
improve the performance of Fake Tunneling because context switches would be
avoided [5, 39].

6.4 Summary

In this chapter the implementation details of Fake Tunneling were considered. The
implementation of Fake Tunneling uses Java and Socket APIs that are considered as
de facto standards. These specific interfaces were also considered in detail. In
addition, transport protocol substituting provided in the Java API was exploited to
use the Lume Tunneling Protocol (LTP) of Fake Tunneling. It was also shown how
LTP handles the mapping between UDP API and LTP packets. Although different
implementation branches can be derived, not all of them exploit the full benefits of
Fake Tunneling or cannot just be constructed with the most popular OS of this
moment. As a result, the most suitable one of the different implementation branches
was implemented.

47

7 Evaluation of Fake Tunneling

In Chapter 5 the design and in Chapter 6 the implementation of Fake Tunneling were
considered. In this chapter the evaluation of the Fake Tunneling implementation that
the author has done is going to be compared against the current technology described
in Chapter 4. Also, evaluation of the criteria stated in Chapter 2 is considered.
According to this, the results of this thesis and achievements that the author has made
are presented and justified so that the results of the research and the quality of this
thesis can be evaluated.

The objective of this chapter is to describe the evaluation of the Fake Tunneling
implementation and also evaluation of the criteria. First the test bed of Fake
Tunneling and test data are declared. After that the test cases are described and the
test results of comparing Fake Tunneling against the current protocol
implementations are declared. After that, the results of the tests are analyzed and
synthesis is made. Finally, evaluation of the criteria is considered.

7.1 Fake Tunneling Test Bed

Test purpose of the test environment is to simulate the use of Fake Tunneling. The
concept is that UDP cannot be used because of the firewall and TCP cannot be used
because of its unsuitable characteristics to the real-time interaction as shown in
Figure 5.1. In Figure 7.1 is shown the actual topology of the network that is used as
the test bed for Fake Tunneling. Both the sender and the firewall are attached to the
LAN of VTT and the receiver is directly attached to the firewall. The sender tries to
send packets to the receiver. In order to be acceptable, the packets should pass
though the firewall while sustaining suitability to the data transportation of real-time
interaction. Because, comparing of LTP to both UDP and TCP is seen more
attractive than comparing it just to TCP the firewall behavior will be disabled after
the correctness of the concept is checked show that the result shown in Figure 5.3
could be compared against the current technology. So as the consequence, the
firewall acts only as a router and UDP, TCP and LTP are compared to each other. In
Figure 7.2, a more detailed description of the test bed components is given. The
sender, firewall and receiver are Personal Computers (PC) and network is
constructed with the 10/100 Ethernet technology.

SEy -

Firewall

3| Receiwver

Figure 7.1: Test bed of Fake Tunneling

48

} Distribution
Role Domain Hame IP address CRU Hemory | Cache Kernel

Sender lumeSource 130.188.68.128 Pentium IIT SDRELM Lz FedHat 7.0
700 MHz 354 ME | Z256EE Z.4.3

Firewall | lumeFirewall 130.188.68.175) pentium IT | SDRAM Lz RedHat 7.3
10.0.0.3 450 MH=z 128 ME 51ZKE 2.4.18-3

Receiver | lumeDbestination 10.0.0.1 Rentium 11 SDRAM Lz FedHat 7.3
300 MHz 192 ME | S12KE Z-.4.18-3

Figure 7.2: Detailed description of the test bed

Because the Ethernet is used as the underlying physical network, the translation
mapping between IP address and physical address must be done. Because the OS
already offers these service and they are utilized. Nevertheless, these can always be
implemented if needed. The 10/100 Ethernet technology that is used sets limit to the
MTU (Maximum Transfer Unit), namely 1500 B.

7.2 Measurements and Test Results

The test Fake Tunneling is going to be compared against the implementations of the
current technology. As a result, LTP implementation that the author has done is
going to be compared against the current protocol implementations of TCP and UDP
included in J2SDK. In addition, similar test classes for all the protocols are
implemented. The Java Runtime Environment (JRE) included into the J2SDK is used
to execute all the tests cases.

7.2.1 Protocol Latency

The protocol latency consists of the time it takes for a packet between entering and
exiting the protocol stack and is measured at the following way. At the sender side
are measured the entering time from the application to the protocol stack and the
exiting time from protocol to the network. At the receiver side are measured the
entering time from the network to the protocol stack and the exiting time from the
protocol stack to the application.

Measuring the time between the protocol stack and the network offers two obvious
choices. Namely, measuring time in the implementation or in the network. Because
the author implements Fake Tunneling, also the source code of the implementation
will be available. But although Java implementation of the Java reference
implementation is available, the availability of the native implementation of it is
more restricted. Also, the usefulness of it is questionable because the change of the
J2SDK could involve new investigation of the Java implementation. As a result, the
network is monitored to measure the time when a packet exits or enters the protocol
stack. The benefit of this is that comparable results are ensured because the times are
measured on the same points for all of the protocols so this is also independent of the
particular implementation. In Figure 7.3 are shown the measurement points of the
protocol latency for the time of the moment when a packet is processed. In the
application the measurement of time is part of the test class and on the network the
measurement of time is done with Ethereal [40] network protocol analyzer.

49

Sendex Receiver
Application Application
MEASUEREMENT
<< Java AFPIs> POINTS << Java API=>
Frotocol Frotocol

+<<Socket AP Tx>

FPhysical Metwork

+<<Socket AP I>>

FPhysical Metwork

Firewall

Figure 7.3: Measurement points of test cases

7.2.2 Test data

All of the test data is generated with the class java.util.Random of the J2SDK. The
purpose of this is to generate different amounts of random data automatically. In
addition, each protocol uses exactly the same data in corresponding test cases and the
order of protocols is randomly chosen. In Figure 7.4 the payload and total packet
sizes of test data for different protocols are shown although these turned to be
proposal the justification of them is considered. The size of the payload data
increases as a power of two. The maximum value that the TOTAL LENGTH field of the
IP header can hold and the size of the IP and TCP headers set the maximum size for
the payload data. This is the limit that can be used with LTP and TCP although UDP
could in theory transport a little bit more because it does not contain so much header
data as the other protocols.

Packetid |Payload (B) JUDP packet (B) |LTP packet(B) |TCP packet(B)
1 0 28 40 40
2 1 29 41 41
3 2 30 42 42
4 4 32 44 44
5 8 36 48 48
6 16 44 56 56
7 32 60 72 72
8 64 92 104 104
9 128 156 168 168

10 256 284 296 296
11 512 540 552 552
12 1024 1052 1064 1064
13 2048 2076 2088 2088
14 4096 4124 4136 4136
15 8192 8220 8232 8232
16 16384 16412 16424 16424
17 32768 32796 32808 32808
18 65495 65523 65535 65535

Figure 7.4: Proposed Test Packet sizes

Although payload sizes of packets as shown in Figure 7.4 were going to be used, it
turned out that this would not be possible. The reason for that was that the UDP
implementation of J2SDK could not handle packets which size was more than MTU
of the network of the test bed, namely 1500 B. This limitation of UDP compared to

50

the other protocols is shown in Figure 7.5. Instead of dividing the data into smaller
packets the current UDP sender of J2SDK just sent them to the network. Obviously
the network could not process larger packets than MTU so the data transportation
failed. Instead, LTP and TCP divided the packets into smaller ones so that they could
be transported over the network. To make the protocol implementations comparable
to each other the limit of MTU is used to set the maximum size of the packet instead
of the IP and TCP. As a result, the achieved payload and total packet sizes of test
data for different protocols are shown in Figure 7.6.

CURRENT UDP LIMITATIONS OF SENDER

70000 -

BSO00

(]

A4000 - ||!

S0000 'l

P
-

: w

(=T

= =2 =

i

=
=
|

TRAHSPORTED PAYLOAD F
-

‘l—l—I—.—l—-—l—-—l—-—l—-—l—-—l—-—Iﬁ—Q-«=h=t"¢h*0 e ——
R R & ,51,'3? qﬁp

e;.i:‘ 6-,‘:""
SEHT PAYLOAD (B
Figure 7.5: Limitations of current UDP sender

Packet id [Payload (B) JUDP packet (B) [LTP packet(B) JTCP packet(B)
1 0 28 40 40
2 1 29 41 41
3 2 30 42 42
4 4 32 44 44
5 8 36 48 48
6 16 44 56 56
7 32 60 72 72
8 64 92 104 104
9 128 156 168 168

10 256 284 296 296
11 512 540 552 552
12 1024 1052 1064 1064
13 1460 1488 1500 1500

Figure 7.6: Achieved Test Packet sizes

7.2.3 Test Cases

The test cases to be performed compare the real-time data transportation
characteristics of the different protocols. As a result, protocol latency and jitter of the
protocols of both the sender and the receiver are measured when the different number
and size of packets are sent from the sender to the receiver. The purpose of these
tests is to show the differences between the protocols so that a further improvement
of the concept of Fake Tunneling can be performed if needed. It should be noted that
all the other protocols but TCP could transport data if the size of the payload was
Zero.

51

Test Case 1

The first test case measures protocol latency of the sender as the function of payload
in bytes. According to the settings, TCP should not send data immediately but can
buffer it. In addition, UDP and LTP are not connected. In Figure 7.7 and Figure 7.8
the results of the test are shown. The former figure represents results of all the
protocols and the latter figure UDP and LTP only so that also the differences
between UDP and LTP can be seen.

PROTOCOL LATENCY OF SENDER

50000 -
£3000 .
45000 —

44000 ———a—

g

4= LIDF)
| |—=—TCP
| |—a—LTP

PRI

B

B

:

:

:

5888

B PR S Tty EEPAEEPSES, A A
o 1 2 4 a 16 Q 54 128 255 512 24 1480
PAYLOAD (1)

Figure 7.7: Protocol latency of sender, TCP delay, UDP and LTP not connected

PROTOCOL LATENCY OF SENDER

g B

H-M““-H.
>»

/_,x-’

—a— LD
== LTP

DELAY fUS)
& & 8
-
[~

k“‘\
| 1
[

8

-

|
|
"
|
L]

8
Cel
]
]
|

—— + * * 5—9—0—0
+ +
o |
o 1 z a B 18) 64 128 BB OS2 1034 148D
PAYLOAD {H)

Figure 7.8: Protocol latency of sender, UDP and LTP not connected

52

Test Case 2

The second test case measures protocol latency of the sender as the function of
payload in bytes. According to the settings, TCP should send data immediately and
should not buffer it. In addition, UDP and LTP are connected. In Figure 7.9 and
Figure 7.10 the results of the test are shown. The former figure represents results of
all the protocols and the latter figure UDP and LTP only so that also the differences
between UDP and LTP can be seen.

PROTOCOL LATENMCY OF SENDER

EEgRceEteas:

:

:

DELAY jUS)

CEEER R R

-8

U e
] 1 2 4 B 16 12 B4 128 255 512 i 1450
PAYLOAD ()

Figure 7.9: Protocol latency of sender, TCP no delay, UDP and LTP connected

PROTOCOL LATENCY OF SEMDER

B0
g = A l'n -y
Em:u /\J’I\ —a—LTP
” [V
) [A
ol AR _
e | =¥
! o I1 2 -1IBI1EP;“3:&D;E}E#I1HIEEI5!?IW‘HIHBD

Figure 7.10: Protocol latency of sender, UDP and LTP connected

53

Test Case 3
The third test case measures protocol latency of the receiver as the function of
payload in bytes. According to the settings, TCP should not send data immediately
but can buffer it. In addition, UDP and LTP are not connected. In Figure 7.11 the
results of the test are shown.

FPROTOQCOL LATENCY OF RECENWVER

e a ekl AT
—h—k

E 100000 I - TCF
prr | —d—LTP
]

:
]

'R + 8 B W B4 w8 26 52 WM 0
PAYLOAD i
Figure 7.11: Protocol latency of receiver, TCP delay, UDP and LTP not connected

Test Case 4

The forth test case measures protocol latency of the receiver as the function of
payload in bytes. According to the settings, TCP should send data immediately and
should not buffer it. In addition, UDP and LTP are connected. In Figure 7.12 the
results of the test are shown.

FROTOQCOL LATEMNCY OF RECEIVER

—a— LGP
. -
—i—LTP

DELAY j15)

Q I 1 2 I 4 I 8 I 16 I X2 I B4 . 128 I 258 L12 : 1024 I 146D I
PAYLOAD {B)
Figure 7.12: Protocol latency of receiver, TCP no delay, UDP and LTP connected

54

Test Case 5

The fifth test case measures protocol jitter of the sender as the function of payload in
bytes. According to the settings, TCP should not send data immediately but can
buffer it. In addition, UDP and LTP are not connected. In Figure 7.13 the results of
the test are shown.

PROTOCOL JITTER OF SENDER

g5
-

8

Falis]

8

g

g

g

g
g |

g

o
8

R

8
]
-

B
1" 1
=y

i])) TCP
L 1 77 1 :u—LrP

g
[

=

{
|
e T e
P__..-'-"'
[i
/
L1
T
-

NTEELLELE
-
L1

B 1 2 4 8 18 m™ B4 1M BB 52 M 1860
PAYLOAD (B)
Figure 7.13: Protocol jitter of sender, TCP delay, UDP and LTP not connected

Test Case 6
The sixth test case measures protocol jitter of the sender as the function of payload in
bytes. According to the settings, TCP should send data immediately and should not

buffer it. In addition, UDP and LTP are connected. In Figure 7.14 the results of the
test are shown.

PROTOCOL JITTER OF SENDER

— 7 —— UDF
1300 . {

o 1200 \] 1] = TCP

E ! i !] | |—a—LTP

=]] f

f*ﬂ‘x e 7
7, 3\ A A
i o oy

¥ N
Fi NS '-..- L LW

SEELELELE
D

0 ! 2] 8 6 X 64 1B 26 512 10M 1480
PAYLOAD (B
Figure 7.14: Protocol jitter of sender, TCP no delay, UDP and LTP connected

55

Test Case 7

The seventh test case measures protocol jitter of the receiver as the function of
payload in bytes. According to the settings, TCP should send data immediately and
should not buffer it. In addition, UDP and LTP are connected. In Figure 7.15 the
results of the test are shown.

PROTOCOL JITTER OF RECEVER

1D:ICI- .
f
- A .i
000 }”' 'llllk :
ol I S
‘3 E000 ! \I\ /r'r l'l' ! T
E o : v i
g
2000 / /) A
w11 T U VIR s =
sEEmmeE_ S

PAYLOAD 1)
Figure 7.15: Protocol jitter of receiver, TCP delay, UDP and LTP not connected

Test Case 8

The eighth test case measures protocol jitter of the receiver as the function of
payload in bytes. According to the settings, TCP should send data immediately and
should not buffer it. In addition, UDP and LTP are connected. In Figure 7.16 the
results of the test are shown.

PROTOCOL JITTER OF RECEVER

11000 5

10000

i I A -
K \l .'[I'| | \ u-TCP

" /‘ T a
o A\]] / X |
o0 5—#__,#«574{’_:\%/ = _-,ﬂ_;_;

] 2]] 16 k) B4 128 ¥ 512 W4 N4ED
PAYLOAD {H)

JITTER {US)
&

"1
]
]

Figure 7.16: Protocol jitter of receiver, TCP no delay, UDP and LTP connected

56

7.3 Evaluation of the Test Results

To compare Fake Tunneling against the current technology, the author has performed
tests to find out and show the differences between the protocols. As a result, LTP
was compared against TCP and UDP and the results of each of the test cases are
analyzed. It should be noted that although the time scale is in microseconds and
milliseconds and although the lack of real-time network and operating systems (OS)
has introduced interference, there are differences between the protocols. The
interference can be seen as a peak on a stable curve

Test Case 1

This test measured delay of protocol stack on the sender side and in Figure 7.7 and
Figure 7.8 the results of the test are shown. The unsuitable characteristics of TCP in
real-time data transportation are shown as delay that is significant compared to UDP
and LTP. The delay of TCP increases as the size of the payload increases. In
addition, the delay of UDP and LTP compared to TCP is more stable and the size of
the payload does not seem to affect although there are interference. As a result, delay
of LTP on the sender side is similar to UDP and significantly better compared to
TCP.

Test Case 2

This test measured delay of protocol stack on the sender side and in Figure 7.9 and
Figure 7.10 the results of the test are shown. When TCP sent data immediately and
both UDP and LTP were connected, the delay decreased for TCP and LTP but not
for UDP. Although compared to the results of test case 1, the improvement of TCP is
significant, the difference is still very high compared to the other protocols. Instead,
delay of LTP has decreased to the level of UDP. As a result, delay of LTP can be
decreased if it is connected.

Test Case 3

This test measured delay of protocol stack on the receiver side and in Figure 7.11 the
results of the test are shown. The delay of TCP and UDP is smaller compared to LTP
and the difference seems significant. The reason for that seems that because TCP
uses a connection as an abstraction so the data receiving can be quicker compared to
UDP and LTP that construct a packet that contains information about the sender. The
difference of LTP compared to the other protocols relates to the implementation
issues if the used mechanism that locks all the threads for a while is worse than use
of a non thread locking mechanism. As a result, delay of LTP on the receiver side is
not as good as delay of other protocols.

Test Case 4

This test measured delay of protocol stack on the receiver side and in Figure 7.12 the
results of the test are shown. When TCP sent data immediately and both UDP and
LTP were connected, the delay increased for TCP but not for UDP. The reason for
this relates characteristics of TCP that provide reliable data transmission that
increases data transportation when acknowledgements are sent to indicate that data is
received. Although according to this and the previous test case the receiver side of
LTP seems to be less capable compared to the other protocols, LTP can also be used
in conjunction with the current implementations. As a result, Fake Tunneling can use
LTP on the sender side and TCP on the receiver side and the delay can be decreased.

57

Test Case 5

This test measured jitter of protocol stack on the sender side and in Figure 7.13 the
results of the test are shown. The jitter of UDP and LTP is smaller compared to TCP
and the difference seems significant. The jitter of LTP is very similar to UDP and
they both seem to be stable although there is interference. Instead the jitter of TCP
seems to vary a lot and the reason relates to the buffering. As a result, jitter of LTP is
similar to UDP and better than TCP.

Test Case 6

This test measured jitter of protocol stack on the sender side and in Figure 7.14 the
results of the test are shown when TCP sent data immediately and both UDP and
LTP were connected. The jitter decreased for all the protocols although TCP is still
worse than the other protocols. As a result, jitter of LTP can be decreased if it is
connected.

Test Case 7

This test measured jitter of protocol stack on the receiver side and in Figure 7.15 the
results of the test are shown. Although there is interference, the jitter is very similar
to all the protocols and denotes that the characteristics of the test bed were similar to
all the protocols. In addition the behavior of the protocols stacks on the receiver side
seem to be stable.

Test Case 8

This test measured jitter of protocol stack on the receiver side and in Figure 7.16 the
results of the test are shown when TCP sent data immediately and both UDP and
LTP were connected. As in the previous test case, there seem to be no difference.

Previously it was shown that the concept of Figure 5.1 was correct so that the result
of the improvement shown in Figure 5.3 could be justified. In addition, it was
previously noted that UDP could not handle restriction that MTU causes although
according to IP larger packet could have been used. According to the result of the
tests that were declared, there are significant differences between the protocols.
Analyzes and synthesis of the tests have been shown that the characteristics of LTP
on the sender side is more similar to UDP than TCP. Although the current delay of
LTP on the receiver side is not as good as the other protocols, while TCP achieved
smallest delay, the fact that LTP can also be used with the current TCP
implementations also on the receiver side makes it superior compared to the current
technology.

7.4 Evaluation of the Criteria

The purpose of the criteria stated in Chapter 2 are to evaluate the concept of Fake
Tunneling that the author has developed as the solution to the research problem
stated in Chapter 2 and also to evaluate the quality of this thesis. For clarity, each
criterion is reviewed and shown in italic. After that, the evaluation of that particular
criterion is made.

58

Criterion 1:
The solution should be feasible and it should be able to be implemented in a
reasonable time.

The solution of the author declares a new way to exploit the current
technology that is consistent with the environment so that real-time data
transportation can be achieved. The solution is also designed and
implemented in a reasonable time. As a conclusion, the Criterion 1 is
fulfilled.

Criterion 2:
The solution should be capable to real-time data transportation so that use of
multi-user VE is achieved between users at different places and that the users
are capable to real-time interaction.

In the tests that the author performed, it was shown that the properties of LTP
that the solution of the author uses are more close to the properties of UDP
than TCP and suits well for real-time data transportation. As a result of the
research the author has produced a solution and implementation that can be
used to connect users of Virtual Environments (VE) over the network so that
real-time interaction can be achieved. As a conclusion, the Criterion 2 is
fulfilled extremely well.

Criterion 3:
The design of the solution should be done according to the current Internet
protocols. Also, the use of the solution must be possible with the current
protocol implementations.

It was clear that the solution could not even be successful if the characteristic
of the current Internet protocols and Internet standards were omitted. As a
result, the solution of the author exploits and improves the current
technology. Also, the solution is designed and implemented according to the
standard, de facto, interfaces. As a conclusion, the Criterion 3 is fulfilled
extremely well.

Criterion 4:
The platform should be executable on different kinds of operating systems
(OS) and it should be able to be attached to the existing VE.

Because the network consists of heterogeneous hardware and software is was
clear that the use of the widely accepted Java technology and socket
abstraction would be the best solution. The use of Java technology makes the
implementation independent on the OS and the use of socket abstraction
enables porting of the implementation to another OS although this requires
changing some parts of the implementation. As a conclusion, the Criterion 4
is fulfilled.

59

7.5 Summary

In this chapter the test bed and test cases of Fake Tunneling were described, results
of test cases were presented and evaluation of the test results was considered. It was
stated that the properties of LTP are similar to UDP and can be used with current
TCP implementations as denoted in the fundamental principles of Fake Tunneling.
As aresult, a significant improvement to the current technology can be achieved with
the use of Fake Tunneling. In addition, evaluation of the criteria stated in Chapter 2
was considered. As a result, it was justified that the solution that the author has
developed as a concept of Fake Tunneling fulfills well the requirements that were
stated for this thesis.

60

8 Conclusions

To enable real-time data transportation on an IP-based network, such as the Internet,
a suitable protocol should be used so that real-time interaction could be achieved
between the users of a multi-user Virtual Environment (VE). Nevertheless, the
current technology, namely TCP and UDP, is not adequate to this because the
Internet does not guarantee Quality of Service (QoS) in general. In addition, firewalls
can set limitations to the data transportation for security reasons. The former
limitation can affect TCP and the latter limitation can affect UDP. As a result of this
thesis, the author has developed the concept of Fake Tunneling. The justification for
such a concept is the fact that the characteristics of the current transport protocols
can be unsuitable for real-time data transportation. Also, the current technology has
been improved so that the properties of the current transport protocols are exploited.
The purpose of this was to benefit from the acceptance of one transport protocol,
namely TCP, and from the characteristics of the other transport protocol, namely
UDP, so that real-time data transportation could be achieved. As a result, the author
developed Lume Tunneling Protocol (LTP) to be used as the transport protocol with
Fake Tunneling. Because LTP uses the exact form of TCP, it can transport data over
a network such as the Internet. In addition, because LTP uses data transportation
similar to UDP, real-time data transportation can be achieved. According to the tests
that were performed it turned out that LTP is superior to TCP and UDP and therefore
Fake Tunneling is superior to the current technology.

The solution is based on the current technology so limitations are also related to it.
Although, a change in the current technology that is used on the Internet is not likely.
But, the use of the protocol header of TCP instead of UDP introduces protocol
header overhead although the effect of it decreases as the payload size increases. In
addition, TCP and UDP are in general implemented as a part of the operating system
(OS). As a result, the performance of LTP could further be improved if it was also
implemented as a part of the OS.

The further development of Fake Tunneling is continuing and it will be used to
connect VE of VTT Technical Research Centre of Finland to the VE of the partners.
In addition, the performance of Fake Tunneling on the receiver side could be
improved. As a result, further tests to measure the characteristics of LTP compared to
other protocols are going to be performed. Finally, publications of Fake Tunneling
will be released.

61

REFERENCES

[1] Project T1P2P, date 2002-09-13,
http://www.vtt.fi/

[2] Project View of the Future, date 2002-09-13,
http://www.vtt.fi/

[3] Foster L., Kesselman C., The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999, p.677,
ISBN 1-55860-475-8

[4] Metz C, IP QoS: Traveling in First Class on the Internet
Internet Computing, IEEE , Volume: 3 Issue: 2 , Mar/Apr 1999,
http://www.ieee.org/

[5] Tanenbaum A. S., Computer Networks, 3rd Edition, Prentice Hall
PTR, USA, 1996, p.813,
ISBN 0-13-349945-6

[6] Huston G., RFC 2990 Next Steps for the IP QoS Architecture, 2000,
http://www.ietf.org/

[7] Anderson R. J., Security Engineering A Guide to Building Dependable
Distributed Systems, John Wiley & Sons, USA, 2001, p.612,
ISBN 0-471-38922-6

[8] Napster, date 2002-10-25,
http://www.napster.com/

[9] Seti@Home, date 2002-10-25,
http://www.setiathome.berkeley.org/

[10] Buttazzo G.C., Hard real-time computing systems: predictable
scheduling algorithms and applications, USA, 1997, p.379,
ISBN 0792399943

[11] International Organization for Standardization (ISO), ISO 9241-11:1998,
date 2002-09-16,
http://www.iso.org/

[12] Nielsen J., Usability Engineering, Morgan Kaufmann Publishers, USA,
1994, p.362,
ISBN 0-12-518406-9

[13] Helander M., Landauer T.K, Prabhu P, Handbook of Human-Computer
Interaction, 2nd Edition, Elsevier Science Publishers, Holland, 1997, p.1582,
ISBN 0-444-81876-6

[14] Comer D.E., Internetworking with TCP/IP Principles, Protocols and
Architecture, 4th Edition, Prentice Hall, USA, 2000, p.750,
ISBN 0-13-018380-6

[15] Tanenbaum A.S., Modern operating systems, Prentice Hall
International, USA, 1992, p,728,
ISBN 0-13-595752-4

[16] Stallings W., Operating systems Internals and Design Principles, 3rd
Edition, Prentice Hall, USA, 1998, p.781,
ISBN 7-302-02976-8

[17] Young H. D., Freedman R.A., University Physics, 9th Edition,
Addison-Wesley Publishing Company, 1996, p.1484,
ISBN 0-201-31132-1

[18] Postel J.B., RFC 821 Simple Mail Transfer Protocol, 1982, date 2002-10-25,
http://www.ietf.org/

[19] The Internet Engineer Task Force, date 2003-01-17,
http://www.ietf.org/

[20] Chwan-Hwa W., Irwin D., Emerging multimedia computer
communication technologies, Prentice Hall, 1998, p.464,
ISBN 0-13-079967-X

[21] Berners-Lee T., Cailliau R., Luotonen A., Nielsen H.F., Secret A., The World-
Wide Web, Communications of the ACM, v.37 n.§, p.76-82, Aug. 1994
http://portal.acm.org/

[22] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., Berners-Lee
T., RFC 2616 Hypertext Transfer Protocol - HTTP 1.1., 1999, date 2002-11-29,
http://www.ietf.org/

[23] Barkai D., Peer-to-Peer Computing Technologies for Sharing and
Collaborating on the Net, USA, Rich Bowles, 2002,
ISBN 0-9702846-7-5

[24] Plummer D.C., RFC 826 An Ethernet Address Resolution Protocol, 1982,
date 2002-11-29,
http://www.ietf.org/

[25] Droms R., RFC 2131 Dynamic Host Configuration Protocol, 1997,
date 2002-11-29,
http://www.ietf.org/

[26] Mockapetris P., RFC 1034 Domain Names - Concepts and facilities

date 2002-11-29,
http://www.ietf.org/

63

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Cerf, V.; Kahn, R., A Protocol for Packet Network Interconnection,
IEEE Transactions on Communications, Volume: 22 Issue: 5, May 1974,
Page(s): 637 -648, date 2002-11-29,

http://www.ieee.org/

Leiner B., Cole R., Posten J., Mills D., The DARPA Internet Protocol Suite,
IEEE Communications Magazine, Volume: 23 Issue: 3 , Mar 1985, Page(s):
29-34, date 2002-11-29,

http://www.ieee.org/

Postel J., RFC 791, Internet Protocol, 1981, date 2002-11-29,
http://www.ietf.org/

Postel J., RFC 793, Transmission Control Protocol, 1981, date 2002-11-29,
http://www.ietf.org/

Postel J., RFC 768, User Datagram Protocol, 1980, date 2002-11-29,
http://www.ietf.org/

Schulzrinne H., Casner S., Frederick R., Jacobson V., RFC 1889 A Transport
Protocol for Real-Time Applications, 1996, date 2002-11-29,
http://www.ietf.org/

Fowler M., Scott K., UML Distilled Applying the standard object
modeling language, Addison Wesley, USA, 1997, p.179,
ISBN 0-201-32563-2

Sun Microsystems, date 2003-01-10,
http://java.sun.com/

GNU Project, date 2003-01-10,
http://www.gnu.org/

Miyoshi A., Kitayama T., Tokuda H., Implementation and Evaluation of Real-
Time Java Threads, Real-Time Systems Symposium, 1997. Proceedings., The
18th IEEE , 2-5 Dec 1997, Page(s): 166 -175

http://www.ieee.org/

Project RTJOS, date 2003-04-24,
http://www.vtt.fi/

The GNU Compiler for the Java Programming language, date 2003-04-11,
http://gcc.gnu.org/java/

Scout operating system
http://www.cs.princeton.edu/nsg/scout/, date 2003-04-11,

Ethereal network protocol analyzer, date 2003-01-17,
http://www.ethereal.com/

64

