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Nonlinear Limits for Single-Crystal Silicon
Microresonators

Ville Kaajakari, Tomi Mattila, Aarne Oja, and Heikki Sepp

Abstract—Nonlinear effects in single-crystal silicon microres- are identified. The maximum energy storable in silicon flexural
onators are analyzed with the focus on mechanical nonlinearities. (bridge and cantilever) resonators and bulk acoustic wave
The bulk acoustic wave (BAW) resonators are shown to have gaw) resonators is compared. It is shown that at the nonlin-
orders-of-magnitude higher energy storage capability than flex- - .
ural beam resonators. The bifurcation point for the silicon BAW ear limit, the BAW resonators can store orders-of-.magnltude
resonators is measured and the maximum vibration amplitude is More energy than the flexural resonators. In Section IV, the
shown to approach the intrinsic material limit. The importance nonlinear analysis of BAW resonators is refined to include
of nonlinearities in setting the limit for vibration energy storage material effects. The distributed material nonlinearity is the-
is demonstrated in oscillator applications. The phase noise calcu- 4retica|ly estimated using the nonlinear engineering Young's
lated for silicon microresonator-based oscillators is compared to . - . .
the conventional macroscopic quartz-based oscillators, and it is modulus. A model mc_orporatmg the material effects is devel-
shown that the higher energy density attainable with the silicon Oped and simulated with the method of harmonic balance. The
resonators can partially compensate for the small microresonator simulations are compared to experimental data and it is shown
size. Scaling law for microresonator phase noise is developed. that the energy stored in the BAW resonators approaches the

Index Terms— Bifurcation’ Bulk acoustic wave deviceS, Hys_ material nonlinearity limit. In SeCtion V, the OSCillatOI’ phase
teresis, Microresonators, Nonlinear oscillators, Nonlinearities, noise is considered. The equation for phase noise is derived
Oscillator noise, Oscillators, Phase noise, Resonators to explicitly show the relation between the stored energy
and phase noise. The theoretical phase noise attainable with
flexural and BAW resonators is compared to the macro quartz
crystal based oscillator performance in Section VI. While

S the wireless communication devices are becominige flexural resonators are shown to be inferior in terms of
ubiquitous, there is a growing need to miniaturize thphase noise due to their low energy storage capability, the
size-consuming analog RF components. Although the n&®W resonators can provide performance close to the quartz
transceiver architectures such as direct conversion cut dowgsonators. The paper is concluded with Section VIl where the
the number of analog filters, a high spectral purity local oscimpact of scaling on phase noise is analyzed.
lator is still required. The problem is perhaps the most obvious
in the relatively low cost applications such as Bluetooth where I
the entire communication circuitry, with the exception of the _ . . _
frequency reference and a few capacitors, has been integratef characterize the nonlinear oscillatory motion and to
on a single CMOS chip. estimate the maximum vibration ampllltude, we review the

Micromechanical silicon resonators are an interesting 4fSults by Landau [3]. We take the bifurcation point as a
ternative to the macroscopic quartz resonators due to th@jgasure of maximursablevibration amplitude as at higher
compact size and feasibility for integration with IC techVibration amplitudes the oscillator trajectory depends on the
nologies [1]. Unfortunately, the smaller size of the micromdbitial conditions. Thus, the systems analyzed in this paper
chanical resonators unavoidably results in a lower ener§{® Weakly nonlinear and the analysis is restricted only to a
storage and power handling capacity. As a direct consequerﬁ!@,gle resonance excnatl_on. Nonlinear effects can als_o _Iead
achieving a sufficient phase noise performance becomedosuper and subhannomcresonancesthatcan also limit the
challenge [2]. The maximum power handling capacity is aldgndamental mode amplitude [4], [5].

a critical parameter in filter applications. The central aspect of 1 he equation of motion for forced oscillations is

this paper is, therefore, to provide detailed knowledge of the
fundamental nonlinearity mechanisms in microresonators and
of the induced energy storage limits. The performance limitghere m is the lumped massy is the damping coefficient,
are demonstrated in oscillator applications and microresonafoft) is the forcing term, and the nonlinear spring constant is
performance is compared to macroscopic quartz. k = ko(1+ kyz + kox? +...), wherek is the linear term and

The paper is organized as follows: First, the theory df, and k, are the first- and second-order anharmonic terms.
nonlinear oscillations is reviewed in Section Il. Expression#/e also define the natural frequency = \/k/m and quality
to estimate the maximum vibration amplitude (the bifurcatiofactor Q = wym /. The quality factor is not usually defined
limit) are given and a scaling law for the maximum energfor nonlinear systems but due to its information value for
stored in the resonator is derived. In Section lll, the variowngineers, its use is justified for the weakly nonlinear systems
nonlinear effects in electrostatically actuated microresonat@salyzed here. The solutions to Equation (1) can be obtained

I. INTRODUCTION

. NONLINEAR OSCILLATIONS

mi + i + kx = F(t), Q)
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by the method of successive approximations by assuming =

X AX AX
solution of form [3] k| >0
k, <0
x(t) = xo + x1 coswt + x2 cos 2wt + x3 cos 3wt + ... (2)
For vibrations without damping, the amplitude of the higher \
harmonics is given by
XTo = %x% [2p) a=) [op) a=1
T3 = L + ko) g8 (3) ;
3T \w® T3 )M (a) Linear response. (b) k1 and negativeks terms
. . tilt resonance peak to a lower
The resonance behavior changes in the presence of non- frequency.
linear terms and the resonance frequency is related to the
vibration amplitudez; by .
AX A
wy = wo(l + Kx?), (4) k>0

where 5 5

This behavior is illustrated in Figure 1. A typical linear

, ®

amplitude vs. frequency curve is shown in Figure 1(a). The @ ®
first-order nonlinearityk; (positive or negative) causes tilting (©) Positve ky it @ L ltude vibrati

. . C osltive ko UIts resonance arge amplitudae viorations
of the resonance peak to the left as shown in Figure 1(b).peak to a higher frequency. result in hysteresis.

A positive second-order nonlinearity results in tilting of the

peak to _a h_|gher_ frequency as shown '_n Figure 1(C) '”C_reas'_ﬂg. 1. The effect of anharmonic force on oscillator transmission curves.
the excitation signal causes further increase in nonlinearity

and eventually the transmission signal shows discontinuifyhere; is the linear device dimension ar@ is the quality
due to frequency hysteresis (bifurcation) as demonstratedsi;,, Thus, at the nonlinearity limit, the maximum energy

Figure 1(d). _ _ _ o stored scales a&™%* ~ [3/Q. It can be seen that increasing
The vibration amplitude at the point of bifurcation is the quality factorQ) reducesthe amount of energy that can
1 be stored in a resonator as the resonator becomes more
Ty = : ®) susceptible to nonlinear effects.

\ V3QIx|

As indicated in Figure 2, the critical vibration amplitude (or 4
the greatest vibration amplitude) is slightly higher than the
vibration amplitude at the bifurcation point and is given by B
C
2
Te = ————. @) 0
\/ 3V3Q|x|
If either k; or ky is dominant, the critical limit can be
approximated from
mcl - al kle ;
1 (®) @ @

Teo = a
€2 24/ Tr21Q Fig. 2. The bifurcation point; and critical vibration amplitude:...

wherea; = 1/16/5v/3 anda, = 1/32/9+/3 (note correction
to [2] for as). II1. NONLINEARITIES IN MICRORESONATORS
We take the critical amplitude as the limit for mechanical The nonlinearities in electrostatically actuated resonators
energy storable in the resonator. Thus, the maximum storegh have mechanical and capacitive origin. The mechanical
energy is nonlinearity is due to geometrical and material effects in the
maz _ 1, o resonating element while the capacitive nonlinearity is due to
m 2 € electrostatic coupling mechanism. In this section, both effects

If all the linear device dimensions are scaled proportionallgre considered and approximate analysis is carried out.

the mechanical linear spring constant and the critical vibration ) ) )
amplitude scale as A. Mechanical nonlinearity

k~1 (10) It is illustrative to estimate the mechanical nonlinearity for
x. ~1//Q, three devices, a bridge, a cantilever, and a bulk acoustic wave
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(BAW) resonator, shown in Figure 3. Each resonator is sized
to have the natural frequency of 13 MHz. The aim of this
analysis is to get an order-of-magnitude comparison of the L=~ L,1+(2x/L)
maximum energy storage limit. For clarity, onjeometrical zLU(1+2(x/L)2)
effects are considered and the accurate analysis that includes

material effects is postponed until Section IV.

1) Bridge resonator:Figure 3(a) shows a bridge resonator,
also known as the clamped-clamped beam resonator. Accord-
ing to the classical beam theory, the first mode shape is | L=

u(z) = xC [sinh Bz — sin Sz — a(cosh Bz — cos z)], (11) L,

wherez is the vibration amplitude at the beam center and the  (a) spring hardening due to stretching of clamped-clamped beam
constants ar&' ~ 0.619, SL ~ 4.730, anda ~ 1.018 [6]. (bridge resonator).

Assuming a point force excitation at the bridge center, the

lumped effective mass and the spring constant for the first

resonance are /. W |

m = 0.396 - pwhLg — 2

12 B X I ANy

ko =125.1-YI/L3, (12) . I 0 --"
where I is the moment of inertiadl = hw?®/12, Y is the ‘ > w T
Young’s modulus) is the beam heighty is the beam width, 2
and L is the beam length. Large deformations result in an
additional anharmonic force due tension caused by the change Y S - u g _w oyl
in the beam length. 2 TV TS

To obtain a rough estimate for the anharmonic term, the
displacement profile is approximated with a triangle as shown (b) Vibrations of clamped-free beam (cantilever).
in Figure 3(a). While the triangle is rather crude approximation
to the mode shape given by Equation (11), it allows easy order
of magnitude estimation of the nonlinear spring force. The I
beam tensioning due to the elongationAs= YwhdéL/Lo .o O —— i
and the resulting force in-direction s © [———

Q b q 6 6
F, = 2F sinp ~ 8Ywha® /L3 = 0.767koz® /w?®.  (13) x X
—ain A4 _ Ou(z)
Thus, the nonlinear mechanical spring is 4 u(z) = xsin 2L’ /TONI_z"S: 8= oz
k() = ko(1 + kox?) (14) z
ko = 0.767/w?. (c) Spring softening due change in BAW resonator area.

Finite element analysis shows that this simple estimate Fig- 3. Comparison of three different microresonators.

accurate within 30% for a typical bridge microresonator. The ) o )

critical vibration amplitude given by Equation (8) is. = for a point force excitation at the cantilever end [6]. The mode
65 nm for a 13 MHz bridge resonator wit) = 10000 and Shape for linear vibrations is

dimensions ofw = 4 pm, h = 10 pm, and L = 52 um. ) = zC [sin 3z — sinh Bz + a(cosh Bz — cos Bz)], (16)

The corresponding maximum stored energyEig*® = 2.6 -

10-11 3. wherez is the vibration amplitude at the beam end and the
2) Cantilever resonator:Unlike the bridge resonator, theconstants ar€” ~ 0.367, L ~ 1.875, anda ~ 1.362. The

cantilever resonator shown in Figure 3(b) has no single dorff@ximum strain is at the anchor point and is given by

nant nonlinear effect [7]. While a full nonlinear analysis is e W d2u(2)

beyond the scope of this paper, it is useful to obtain an ST = 9 T dz2

upper limit for the stored vibration energy for scaling and =0

comparison purposes. Given that the nonlinear effects él'rge_typical_fracturQe strain for _bulk micromachined silicon
weak, we optimistically assume that the resonator can B@ntilevers is 110 [8]. Assuming that the beams can be
driven close to the silicon fracture point. vibrated at 50% of the fracture point, a 13 MHz resonator with

According to the linear beam theory, the effective mass affnensions ofv =10 um, w = 4 um, andL = 20.5 um has a
the spring constant are maximum vibration amplitude of 300 nm. The corresponding
maximum stored energy B = 1.5-10719 J.

3) BAW resonator: The beam BAW resonator shown in
Figure 3(c) demonstrates a geometrical spring softening effect

17)

m = 0.250 - pwhL

ko =3.091-YI/L? (15)
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due to the change in the cross sectional beam area. The watereUp¢ is the bias voltaged. is the electrode area, is

equation for a longitudinal mode in beam is the permittivity of free space] is the electrode gap, andis
52 P P the resonator displacement [2]. Including the terms up to the
pA Sl =y (Aes)SL), (18) second-order gives
ot2 0z 0z

. . I{Z(l’) = koe(l + kiex + k26$2)
where A, is the undeformed beam cross sectional areas and U3 ge0A. 4

(24)
_ _3 _ 4
the deformed areal(S.) is given by Foe = s ke =g, andkse = g5

The second-order correction can be shown to be the dominant
Ar Ag(1—208S.) = A (1 — 2V8“<Z’t)) , (19) nonlinear electrostatic term [2]. Since the electrical spring
9z coefficient is proportional té/? ., the capacitive nonlinearity
wherev is the Poisson’s ratio. The solution to Equation (18jan be reduced by lowering the bias voltage. Also, the nonlin-

is approximated by the linear solution earity could be significantly reduced with different electrode
. configuration e.g. comb drive actuation. Thus, electrostatic
u(z,t) = x(t)sinmz /2L, (20)  nonlinearity, while inherent to actuation mechanism, does not

where z is the motion of the beam tip [2]. Substitutingset afundamentalimit to the vibration amplitude. In practice,

Equation (20) into (18) and integrating over the mode shaf‘r)]%r resonators su_ch as_the cantilever |n__Sect|on _III-A._2 that
ave low mechanical stiffness, the capacitive nonlinearity can

leads to L X
be significant. As an example, assuming electrode drea

pA()LE??x _ ﬁAon B ﬁVAonz. 1) 100 pm?, gapd = 0.5 um, and bias voltagé/pc = 50 V,
ot? 4 L 3 L2 gives hysteresis limit ofr.3. = 57 nm for the cantilever
The effective mass and the nonlinear spring constants canrggonator. This can be compared to the 300 nm estimate for
recognized as the mechanical limit.

In addition to the nonlinear spring effects, the capacitive
m= Pf;lL (22) coupling results in distortion of the motional current. These
ko = AgY/4L andk, = —4mv/3L. harmonics can be calculated from

Using a typical values of) = 100000, Ay = 100 um?, and . _ oc c0de (T x\2 oz

L = 160 um for a 13 MHz BAW resonator [2], the critical i=Upc ot Upc d? (1 2d +3 (d) + ) ot’
vibration amplitude given by Equation (8) is; = 500 nm ) o ) ) (25)

and the corresponding maximum energy g = 3.7 - Thus, even linear vibrations can result in harmonics and the
10-8 J. harmonics due to capacitive coupling can be much larger

4) Microresonator comparison:Comparing the different than the.harmonics arising from the nonlinearity and given
resonators, the BAW resonator is seen to have orders-By. Equation (3).

magnitude larger energy storage capacily'(* = 3.7 -
10-8 J) than the bridgeK™* = 2.6- 10! J) and cantilever IV. M ECHANICAL NONLINEARITY IN SILICON BAW

resonator £ = 1.5 - 1071 J) operating at the same RESONATORS

frequency. Normalizing the stored energy with the resonatorAs was shown in Section 11I-A.3, the geometrical nonlinear-
volume V gives the maximum energgensity E7** /V. For ities may be very small for the BAW resonators and material
the bridge, cantilever, and BAW resonator thig i3-10* J/n?,  effects have to be included in the analysis. In this section, an
1.9-10° J/n?, and2.1 - 10¢ J/n?, respectively. Thus, the high accurate analysis of mechanical nonlinearity is presented for
energy storage capability of the BAW resonators arises frofte BAW resonators. First, the nonlinear Young's modulus is
two factors: the high maximum energy density and the larg@lculated for bulk silicon. Next, a model that incorporates
volume. the material nonlinearity is presented and nonlinear vibrations

The approximate analysis in this section thus indicates tre simulated using the method of harmonic balance. The
the BAW devices are candidates for large energy storagiénulations are compared to experimental results obtained
resonators. As the maximum energy density is of fundament@l two types of BAW resonators: longitudinal mode beam
interest, the approximate analysis for the BAW resonators wigsonator and extensional mode plate resonator shown in
be refined in Section IV where the material effects are al§dgure 5.
considered.

A. Theory of large deformations

B. Capacitive nonlinearity The Cauchy stress due to finite deformation including the
eometrical (area and volume change) and material stiffness

Due to inverse relationship between displacement and p octs is

allel plate capacitance, electrostatic coupling introduces non-

. : . . X,; 0X;
linear forcing terms [9]. The nonlinear spring constants are o;;(X) = px 90X 0X,

a. (Cijklnk'l + Cijkl’m,nnkln7n7L)7 (26)

obtained by a series expansion of the electrostatic force pa Oai day
v where X is the particle coordinate at finite deformatianjs
F=—_=padl (23) the undeformed statex andp, are the deformed and unde-
O = SAe

formed densities¢;;;, and ¢;jrimns are the second and third
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TABLE |

, As shown in Figure 4, a good approximation is obtained with
CALCULATED NONLINEAR ENGINEERING YOUNG'S MODULUS.

a relatively small number of masses. A four mass system

Yo[GPa] Yi Y3 appears to be a good compromise between the accuracy and
beam ([100]) 130 067 -49 simulation speed, and is used in this paper. The mass-spring
plate extension 181 -29 -85

chain model has been implemented as an electrical-equivalent
model in the Aplac simulation software. In addition to the
order stiffness tensors, angl; is the Lagrangian strain [10]. mechanical nonlinearity, the equivalent circuit includes an
The third-order stiffness tensor for silicon has been expeHpcurate model of the capacitive coupling [9]. Displacement
mentally obtained using ultrasonic wave measurements [Mdrsus frequency responses to a sinusoidal excitation are
and theoretical analysis [12]. This data and Equation (2&mulated using the harmonic balance analysis [13]. As the
enable computation of nonlinear strain dependent engineerfigrmonic balance analysis is carried out in the frequency
Young's modulus domain, it is computationally efficient for systems that have
a high quality factors and are thus slow to settle in the time

T 2
YV =< =Y(1+Y15+ Y25, (27)  domain (transient) analysis.

S
where T is the force divided by the initial undeformed area
(engineering stressfy = du/dx is the displacement gradientC. Measured nonlinear vibrations

with respect undeformed coordinates (engineering strain), andl’o characterize the nonlinear vibrations in single-crystal

Y, andY; are the first- and second-order corrections respec:. . . .
silicon micromechanical resonators, two bulk acoustic wave

tively. Calculated values for the nonlinear Young’s modulu AW) resonator designs shown in Figure 5 were measured

are tabulated in Table | with values in [100]-direction agreeingi]e devices were fabricated by etching a SOI wafer Both'

with the published analytical results in [10]. The contributiort}1 b d plate BAW i how hiah lit f ;

of the anharmonic stiffness tensef;i.,, is found to be € beam and plate resonators show high quaiity factors
R exceedingl00 000 and operate at 11.7 MHz and 13.1 MHz

significant. For example, accounting only for the geometri¢ . ; .
effects givesY; — 1.5 and Y, — 0.5 for the [100] beam respecnvely. Further details of these resonators are provided
in references [2] and [14].

extension. The third-order stiffness tensors in [11] and [12] are_l_he measurements were done using a HP4195A network

lightly diff h Iti iff in th li . X
?(é%ntg){sdrlngcriimsbiust (t)n?yrzzgu“tngcygl erence in the non Ineazgmalyzer and the resonance signal was buffered with a JFET

Unfortunately, no information exists on the effect of dopin$ reg?agg??gaﬁ'i:‘ 1'0:%’612%;;3%;;?? zgﬁzce Ft? l:?eleGOsur:ows
on the anharmonic stiffness tensor. Thus, the calculated Va|lﬁ§§ measured ar?d s%mulated transmission anFl). |itlj,?ﬁﬁ$ for
may not be accurate for the highly boron doped silicai (~ the plate BAW device shown in Figure 5 Art) higher drive
5-10'® 1/cm?) used for the microresonators measured in thig :

study. Nevertheless, the literature data allows a comparisgxels’ the resonator peak becomes sharper and shifts down

of measured resonator nonlinearities and the fundamer{{]alfrequencx As discussed n Section IlI-A, this tilting is
material limits. expected withk; and/or negativek,.

The relationship between the nonlinear Young's modulusThe measured and s!mulated data shown in Figure 6(a)
. . correspond to the best fit valuds = —1.4 andY, = —4.0.
and spring constants is X :
These experimentally obtained values are about 50% lower
k(z) = ko(1 + k1 + koa®) (28) than theoretically estimated for a solid plate. This discrepancy
ko = A0 ky = X1 andk, = 33, can probably be attributed to the etch holes X39 matrix
of 1.5 um holes) in the plate that lower the effective Young's

length. We emphasize that this includes both the material a d_UIUS' Another source ,Of discrepancy may the corner an-
geometrical effects. Using Equations (8) and (28), the critica'°MNnY that although erX|bIe may add_to t_he nonl|r_1ear|ty_.
strain amplitude at the hysteresis due to first- and second-orbigertheless, the o_btam_ed_ maximum _\_/|brat|on amplltude_ 'S
mechanical nonlinearity corrections can be approximate(apfse to the theoretical “”,“t for bulk silicon. The hysteres_|s
Based on the computed values for Young's modulus in Tablel'mIt was zo = 155 nrr1,4 which corresponds to average .stram
we estimate the critical vibration amplitude =~ 180 nm for a of S, = Sy = 9.7-10™% across the resonator and maximum

plate resonator in Figure 5 with = 160 zm. In this case, both Strain of 55¢% = 5,1 = 1.5 - 1077 at the resonator center.
the first- and second-order correction terms are significant.ThIS corresp_onds to the stored energy of 190 nJ or average
energy density ofZ,,,/V = 1.9-10° J/n¥.

To quantify the effect of nonlinearity due to the capacitive
coupling and to show that the nonlinearity is indeed of

To accurately simulate the nonlinear vibrations, the disaechanical origin, the transmission was also simulated without
tributed nature of stress and strain has to be included in tthe mechanical nonlinearity in the model. As the capacitive
model. In our devices the resonator modal shape is to a gawahlinearity given by Equation (24) increases as a square of
approximation sinusoidal and the strain is the highest at th&s voltage, it is insignificant at low bias voltages but becomes
center. A full distributed model would be computationally verymportant at high bias voltages. This is evident in Figure 6(b),
demanding and therefore the continuum is approximated witthere simulation without mechanical nonlinearity show no
a discrete chain of masses connected with nonlinear springscitation amplitude dependence at 50 V bias voltage. Higher

wherex is the spring stretchingd is the area, and. is the

B. Modeling of the distributed nonlinearity
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1 ——=
k k k k =6~ Mass approximation g
m © || Analytical profile
m m m 2 E 08°F 5>
S
=
m=PAL penbAf vtk Q. Masses A f/fy[%]
N 2 k= 0.6 7
= 1 10
= 2 2.6
| 804 3 1.1
% 4 0.6
> N02t 5 0.4
L, L 6 0.3
0
4L P 0(’ . .
0 0.2 0.4 0.6 0.8 1

x/L

Fig. 4. Equivalent mechanical model used in Aplac circuit simulator. Material nonlinearity is included as nonlinear springs. As the number of discrete
elementsN is increased, the frequency differendef / fo between discrete and continuum model approaches zero.

JFET amplifier !
(8 4 Uy i
1 1 U out
1 b
! ol
<4— —>» ! L
P > < ..... *—0 : :
HH ’ I
! ....................................é ! uth
e e e e e = —— 1 :
I Ubias I
I (]blas

Fig. 5. Schematics of the beam and plate resonators used in measuring nonlinearities in single-crystal BAW resonators

bias voltages show capacitive spring softening effect, but eviemther information about the mechanical nonlinearity. Future
at Up;.s = 100 V this is not enough to explain the observeavork will measure the mechanical vibrations using optical
nonlinearity. A further proof that the mechanical nonlinearitinterferometric techniques.

dominates at low bias voltages is obtained by looking at the

bias and excitation voltage produgy;, - u.. at the hysteresis

limit. As the driving force and consequently the vibration

amplitude is proportional td/y;a - ua. this remains constant  The measured beam BAWSs showed similar behavior but
if the mechanical nonlinearity dominates. Our measuremeRte measured values showed larger variation from device to
for the plate BAW resonator indeed show that hysteresis dgyice. We attribute this to the larger surface-to-volume ratio
obtained at constarfyia - tac- that causes small geometrical or surface defects to have a
As both the first- and second-order nonlinearity can caukager effect. Also, the mechanical spring constant for the
similar distortion on the transmission curve, there is umeams is much smaller than for the plate causing the capacitive
certainty about the relative contribution df; and Y. In  nonlinearity to be more significant. With capacitive nonlinear-
principle the first- and second-order effects can be differeity shadowing the mechanical nonlinearity, accurate absolute
tiated by looking at the vibration spectrum. Unfortunatelywalues for the nonlinear mechanical spring constant could not
as discussed in Section 1lI-B, the parallel plate transdudee obtained. Based on our measurements, we estimate upper
produces harmonics even for linear vibrations. For our devicdisjits of |Y;| < 3 and |Y;| < 10 for the correction terms.
the harmonics in motional current due to capacitive couplirithus, even for the 1-D beam BAWSs, we can conclude that
given by Equation (25) are orders-of-magnitude larger thdihhe measured mechanical nonlinearities are not significantly
the harmonics due nonlinear vibrations given by Equation (3arger than estimated from the theory and that the devices can
Thus, measuring the motional current spectrum does not yidld operated near the fundamental strain limit.
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h u, =320mV i 61
& U, =100V y =1.12V
Ubias:50V g 4r
u, =320mV

=100V u,=1.12V
Uy =50V

bias

2 5l
g g
- 0F = 0F
IS I
728 728
) -2
-4 4
-6 -61
-0.5 kHz 5 +0.5 kHz -0.5 kHz 5 +0.5 kHz
(a) Measured (0) and simulated (-) transmissj6h; | curves with (b) Measured (0) and simulated (-) transmisgi6gy | curves without
the material nonlinearity included in the modéf;(= —1.4 and the material nonlinearity included in the model. Capacitive spring
Y> = —4.0). The highest excitation level results in a discontinuity softening alone does not explain the frequency shift.

(the sweep direction is from right to left).

Fig. 6. Measured and simulated transmission curves for 2-D pfate=(13.1 MHz) with nonlinear capacitive and mechanical effects. The maximum vibration
amplitude at the hysteresis limit- was 155 nm independent of bias showing that hysteresis limit is due to mechanical and not capacitive nonlinearity.

| buffer is the same as the power dissipated in the motional
amp. ‘ resistance i.e.

 whky,

Psig - Rm'igig - Q (30)
In specifying quartz crystal oscillators, thg;, and i,
buff H “ H ” H
ﬁﬂ/\—{ }—/YY\ e are interchangeably referred to as the “drive level” and is a
_ Ak , _m ‘ measure of resonator power handling capacity.
"oor Cf% T The noise current due to motional resistangg, at the
buffer input is shaped by RLC impedang€w) and is
Mechanical resonator
4 . . . . —  4kTR,,
Fig. 7. The electrical equivalent circuit for MEMS based oscillator. i2 = W (31)
w

V. NONLINEARITY AND PHASE NOISE PEREORMANCE For a frequency offsef\w from the center frequenay,, the

. : . . impedance of the series RLC-circuit is
To show the importance of nonlinearities for microresonator P

performance, it is useful to consider noise-to-carrier ratio in an Z(Aw) = i2LAw. (32)
oscillator. Figure 7 shows an electrical equivalent circuit for a ) ) _ )
MEMS resonator connected in an oscillator loop with a Ioo@/e can thus write the noise power density due to mechanical
amplifier and a buffer to interface with the outside world. ThiSSes at the buffer input as

schematic representation that uses two amplifiers is chosen ech wo \2

as it simplifies the analysis by the separating of the near- PNt = 4RT <2QAw) : (33)

carrier mechanical noise and the far-from-carrier amplifier » ) i . )
noise (noise floor). The loop amplifier will also add noise but with proper noise

The motional resistanc®,,, capacitance’,,, and induc- optimization it's contribution to near-carrier noise can be made
m moa

tanceL,, depend on the effective spring constanthe effec- smgll. For simplicity, the loop amplifier noise is therefore
tive massm, the quality factorQ, and the electromechanical®Mitted here.

transduction factor [2]. The relation between current and 1he buffer amplifier noise sets a fundamental limit for
mechanical velocity is = 7. the oscillator performance at large frequency offsets. The

The mechanical vibration energy stored in the resonator §S0nator impedance seen by the buffer amplifier is a rapidly
1 L varying function of Aw, and thus perfect noise matching
B, = —ka? = Lmiiy (29) cannot be obtained for all frequency offsets. In practice, the
L 2 consequence is the constant amplifier noise floor at large
where igig is the mean-square signal current through theequency offsets. We model the buffer noise using a white
circuit. The theoretical maximum power deliverable to theoise power spectral densifyjl(,“ff.




SUBMITTED FOR IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS - IN PRESS 8

Adding the buffer noiseP}"// and dividing Equation (33) 90
by two to account only the phase and not amplitude noise gives
the overall phase noise spectrum. It is customary to normalize
this with the carrier poweg;, to obtain the phase noise-to- 110 L
carrier ratio

C%T [ wy \© PR
g(Aw)_WQQm) o D

-100

-120

e Gantilever

£,[dBe/Hz]

--130

beam BAW

Thus, we have a near-carrier region originating from me-
chanical dissipations where noise falls agAw?, and a 140 ¢ ]
constant noise floor region dominated by the buffer amplifier. \ plate BAW

Equation (34) bears close similarity to the generally used 1

quartz

models for oscillator phase noise (e.g. ‘Leeson’s equation’) _160 ‘ ‘ , ,

[15], [16]. The analysis has ignored the effect Ioff-noise, 10" 10° 10! 10° 10° 10*

which would result in noise falling as/Aw?® very close to Offset from carrier [Hz]

the carrier. Fig. 8. Comparison of theoretical phase noise for a bridge, beam-BAW,

The important observation is that both terms in Equ&Db-BAW, and macroscopic quartz resonator based oscillators.
tion (34) have an inverse dependence of signal poRgy
and consequently of the enerdy,, (Equation (30)). As was
shown in Section II, the maximum energy at nonlinear limit-155 dBm/i/Hz (or 7, =4 nV/v/Hz in 50 Q system). The
scales with device size a&B™e* ~ [3/Q. Thus, assuming bridge and cantilever resonators’ poor noise performance is
fixed frequency, the signal power scalfs;, ~ [3/Q* and due to low quality factor and energy storage capability. In
the resonator noise floor at nonlinear limit is proportional toomparison, the beam BAW has improved performance but
Q?/13. Thus, the energy storage capacity sets the fundamerite noise floor is still about 30 dB higher than for macro
performance limit for microresonators and the small siaguartz crystal oscillator. The plate BAW resonator has the
cannot be compensated with a high quality factor. same quality factor as the beam BAW but due to the improved
Finally, we note that the electromechanical transducti@nergy storage capability, the noise performance is close to
factorn does not appear in Equation (34) as it assumes optintlag quartz crystal. In practice the oscillators must be operated
power coupling. However, in practice a sufficienis required well below the bifurcation to avoid aliasing of noise and the
to optimally realize the oscillator using technologically feaskifurcation limit is used for comparison purpose only and it

ble amplifier interface. may not be reached with real oscillators.
It may be of interest to compare the noise analysis presented
VI. PHASE NOISE COMPARISON here to the analysis on noise and scaling in [18]. The devices

Using Equation (34), the theoretical phase noise can BBalyzed here are much larger and consequently the noise due
compared for the microresonators analyzed in this paper dfdnternal dissipation is much larger than the quantum noise
for a macro quartz crystal. The bifurcation limit for a 5 MHzsources in [18]. However, when scaling to smaller dimensions,
AT-cut quartz crystal resonato€)(= 800000, R,, = 165 ) the quantum effects can be significant.
iS imez = 2.1 MA and the corresponding maximum drive For a real world performance comparison, Figure 9 shows
level and stored energy am;, = %Rmifmm = 360 W and measured single side band (SSB) phase noise to carrier ratio
Emer = PQ/w = 9.3 ud, respectively [17]. These publishedor a test oscillator based on the plate resonator [19]. The
values roughly agree with our own measurements of tlescillator demonstrates that sufficient energy can be stored
hysteresis in quartz crystals. The crystal volume is estimatédthe micro-resonator to satisfy the GSM-specifications for
to be 200 mm and the corresponding stored energy density phase noise.

E,,/V = 50 JIm?. Extrapolated to 13 MHz (see Section VII),

the critical parameters ar@ = 300000, P,;; = 360 pW,

Emar = 1.4 J/m?, and E,,,/V = 190 J/m’. Comparison to VIl. SCALING TO HIGHER FREQUENCIES

the silicon plate BAW resonator,,/V = 1.8 x 10° J/m?)

shows that orders-of-magnitude higher energy density can bd his paper has focused on 13 MHz resonators — a frequency
achieved with silicon micromechanical resonators than withipically used for reference oscillator applications. In transre-
shear-mode macroscopic quartz devices. This can partigigiver, the reference frequency is multiplied by a factor
compensate for the small size of RF-MEMS oscillators.  to generate the local oscillator (LO) at the carrier frequency

Figure 8 shows the theoretical phase noise density for ttigpically 1-2 GHz). Due to this frequency multiplication, the
macro AT quartz crystal, silicon bridge, silicon cantilever, anphase noise scales a3 [16]. Alternatively, the resonator can
silicon beam BAW and plate BAW resonators summarize@e scaled to operate at higher frequency to obtain the LO
in Table II. All but the cantilever resonators are assumed feequency directly. Thus, it is of interest to develop a scaling
be driven to themechanicalhysteresis limit. The cantilever law for micro-oscillator phase noise as a function of resonator
resonator operates at 50% of the fracture limit (see Section Inatural frequency.

A.2). In the plots, we have assumed buffer noisePQ,fff = Assuming that the frequency-quality factor prodyctQ is
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TABLE I
RESONATORS USED FOR NOISE SPECTRUM COMPARISONHE SILICON RESONATORS ARE BASED ON RESULTS PRESENTED IN THIS PAPERHE QUARTZ
RESONATOR IS EXTRAPOLATED FROM DATA FORS MHZz AT-CUT QUARTZ CRYSTAL[17].

Quartz Bridge Cantilever Beam BAW  Plate BAW

Quality factor 300000 10000 10000 100000 100 000
Stored energy[nJ] 1400 0.026 0.14 2.6 180
Energy density[J/ff] 190 1.310* 1.510° 8.010* 1.810°
s ' ' ' nonlinearities and lower the maximum energy stored. The geo-
100 ] metrical nonlinearity was shown to be the limiting mechanical
1/ £ trend line nonlinear effect in the bridge resonat.ors. In comparison, the
-110 1 BAW resonators demonstrated operation near the fundamental
_ material limit for silicon. The BAW resonators were theo-
N 120 GSM specification: retically and experimentally shown to have three orders-of-
2 0l & -130 dBe/Hz@] KHz magnitude larger energy storage capability than the analyzed
3\ flexural resonators. Moreover, the comparison to macro quartz
140 crystals showed that for the silicon resonators the maximum
energy density attainable is orders-of-magnitude larger. The
w150 ¢ importance of the energy storage capacity was demonstrated
160 by estimating the theoretically attainable oscillator signal-
‘ ‘ , A , to-noise ratio. The flexural resonators were shown to have
10’ 10* 10° 10 10° 10° inferior phase noise floor in comparison to macroscopic quartz
Frequency crystals while the BAW resonators can rival the quartz crystal
Fig. 9. Measured noise spectrum for a microresonator based low phase npieesformance_
oscillator.
. ACKNOWLEDGMENT
constant [20], the device scales as We thank A. Alastalo for useful discussions and J. Ki-
wp = awp ihaméki for device processing. The financial support from
U'=1l/a Nokia Research Center, Okmetic, STMicroelectronics, VTI
Q' =Q/a (35) Technologies, and Finnish National Technology Agency is
E, = Ep/a? acknowledged.
Slig = Psig7
REFERENCES

where all the device dimension are scaled by the same factor

« and the device is operated at the hysteresis limit. The phdgeC. T. -C. Nguyen, “Frequency-Selective MEMS for Miniaturized Low-
; ; ; Power Communication Devices”, IEEE Trans. on Microwave Theory and
naise for the scaled device is Techniques, vol. 47, no. 8, pp. 1486-1503, Aug. 1999.

2T 2 pbuff [2] T. Mattila, J. Kiihandki, T. Lamminnaki, O. Jaakkola, P. Rantakari, A.

4 wo N . , A . .

Z(Aw) =« + . (36) Oja, H. Sepp, H. Kattelus, and I. Tittonen, “12 MHz Micromechanical
Psig \2QAw 2Ps;g Bulk Acoustic Mode Oscillator”,Sensors and Actuators, Aol. 1, no.

. . . . 1-2, pp. 1-9, Sep. 2002.
The noise floor is seen to remain constant while the n L. D. Landau and E. M. Lifshitz, “Mechanics”, 3rd ed., (Butterworth-

carrier noise degrades a$. In practice, the noise floor will Heinemann, Oxford, 1999).

deteriorate for higher frequency oscillator as it is more difficul#] A. H. Nayfeh, “Nonlinear Oscillations”, (Wiley, New York, 1979).
A. Oja, T. Mattila, H. Sepp, J. Kiihan@ki, T. Lamminn&ki, M. Kosken-

. . . . (8]
to Ot_)tam pptlm‘,”“,COUplmg' Thus, from purely phase no|518 vuori, P. Rantakari, I. Tittonen, “Nonlinear Effects in Bulk Acoustic Mode
considerations, it is better to use low frequency reference and Mmicroresonators”, irEurosensors'02, The 16th European Conference on
multiply it to higher frequency than it is to make a high Solid-State Transducer$rague, Czech republic, Sep. 15-18, 2002, pp.

: 381-382.
frequency oscillator [16]. [6] W. Weaver, Jr., S. Timoshenko, and D. Young, “Vibration Problems in
Engineering”, 5th ed., (Wiley, 1990).
VIIl. CONCLUSIONS [7] P. Malatkar, “Nonlinear Vibrations of Cantilever Beams and Plates”,

Dissertation, 2003.
For many practical applications, the resonator power hagt C. Wilson and P. Beck, “Fracture Testing of Bulk Silicon Microcantilever

dling capacity and quality factor are equally important. In this Beams Subjected to a Side Load", J. Microelectromech. Syst., vol. 5, no.
3, pp. 142-150, Sep. 1996.

paper_ _the nonlinear I|m_|ts for SI|ICOf_1 resonators have be‘f?ﬁ T. Veijola and T. Mattila, “Modeling of Nonlinear Micromechanical
qguantified and expressions for scaling of resonator energy Resonators and Their Simulation with the Harmonic-Balance Method”

storage and power handling capacity were derived. Different '3”2t-13-s Féz %%%if'icmwa"e Computer-Aided Eng., vol. 11, no. 5, pp. 310-

m|crores_0nat0rs Werg ana!yzed using one degree-of.-free'dﬁg']\ K. Y. Kim and W. Sachse, “Nonlinear Elastic Equation of State of Solids
model with anharmonic spring forces. The maximum vibration Subjected to Uniaxial Homogeneous Loading”, J. Material Science, vol.
amplitude was estimated from bifurcation in the vibration 35 no. 13, pp. 3197-3205, Jul. 2000. _

. . [ljt%/] H. McSkimin and P. Andreatch, Jr., “Measurement of Third-Order
amplitude vs. frequency curve. Increasing the resonator quality’ \;oquii of Silicon and Germanium’, J. Appl. Phys., vol. 35, no. 11, pp.

factor was shown to make the resonator more susceptible t03312-3319, Nov. 1964.



SUBMITTED FOR IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS - IN PRESS

[12] E. Anastassakis, A. Cantarero, and M. Cardona, “Piezo-Raman Meast
ments and Anharmonic Parameters in Silicon and Diamond”, Physic
Review B, vol. 41, no. 11, pp. 7529-7535, Apr. 1990.

[13] S. Maas, “Nonlinear Microwave and RF Circuits”, 2nd Edition, (Artect
House, 2003).

[14] V. Kaajakari, T. Mattila, A. Oja, J. Kiihai@ki, H. Kattelus, M. Kosken-
vuori, P. Rantakari, I. Tittonen, and H. SéppgSquare-extensional mode
single-crystal silicon micromechanical RF-resonator"Tiansducers’03,
The 12th International Conference on Solid-State Sensors and Actuatd
Boston, USA, June 8-12, 2003, pp. 425-432.

[15] T. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”,
(Cambridge University Press, 1998).

[16] W. Robins, “Phase Noise in Signal Sources (Theory and Applications)”,
IEE Telecommunication Series 9, (Peter Peregrinus Ltd., 1982).

[17] J. Nosek, “Drive Level Dependence of the Resonant Frequency i
BAW Quartz Resonators and His Modeling”, IEEE Trans. Ultrasonics
Ferroelectric, Frequency Contr., vol. 46, no. 4, pp. 823-829, Jul. 1999.

[18] J. R. Vig and Yoonkee Kim, “Noise in Microelectromechanical System
Resonators”, IEEE Trans. Ultrasonics, Ferroelectric, Frequency Cont
vol. 46, no. 6, pp. 1558-1565, Nov. 1999.

[19] V. Kaajakari, T. Mattila, A. Oja, J. Kiiha&ki, and H. Sepa, “Square-
Extensional Mode Single-Crystal Silicon Micromechanical Resonator fo
Low Phase Noise Oscillator Applications”, IEEE Electron Device Letters
vol. 25, no. 4, pp. 173-175, Apr. 2004.

[20] J. R. Vig and A. Ballato, “Frequency Control Devices”, liitrasonic
Instruments and DevicegAcademic Press, 1999).

Ville Kaajakari received his M.S. and Ph.D. de-
grees in electrical and computer engineering fron
University of Wisconsin-Madison in 2001 and 2002,
respectively. He is currently Senior Research Scier
tist at VTT Information Technology, Finland, where
his research interest is RF-MEMS.

10

Tomi Mattila received his M. Sc. and Dr. Tech.
degrees from the Department of Technical Physics
at Helsinki University of Technology in 1994 and
1997, respectively. Since 1999 he has been working
as Senior Research Scientist at VTT. His current
research interests concentrate on micromechanical
RF-devices.

Aarne Oja received his Dr. Tech. degree in
1988 from the Low Temperature Laboratory of the
Helsinki University of Technology. Before joining
VTT at 1995 he investigated nuclear magnetism at
nanokelvin temperatures. He is the leader of MEMS
Sensors group at VTT Microsensing and Research
Professor since 2000. His current research interests
include several microelectromechanical sensors and
devices: RF-resonators, high-precision MEMS, ul-
trasound sensors, and magnetic MEMS.

Heikki Seppéa Sepya received the M.Sc., Lic. Tech.,
and Dr. Tech. degrees in technology, from Helsinki
University of Technology in 1977, 1979 and 1989,
respectively. From 1976 to 1979, he was an assistant
at the Helsinki University of Technology, working in
the area of electrical metrology. He joined VTT in
1979 and since 1989 he has been employed there
as a Research Professor. In 1994, he was appointed
Head of the Measurement Technology field at VTT
Automation. Since 2002, he has acted as Research
Director, VTT Information Technology. He has done

research work on electrical metrology, in general, and on superconducting

\\“Hll m devices for measurement applications, in particular. He is doing research on
AV

dc-SQUIDs, quantized Hall effect, SET-devices, RF-instruments and micro-

electromechanical devices.



