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Abstract— Nonlinear effects in single-crystal silicon microres-
onators are analyzed with the focus on mechanical nonlinearities.
The bulk acoustic wave (BAW) resonators are shown to have
orders-of-magnitude higher energy storage capability than flex-
ural beam resonators. The bifurcation point for the silicon BAW
resonators is measured and the maximum vibration amplitude is
shown to approach the intrinsic material limit. The importance
of nonlinearities in setting the limit for vibration energy storage
is demonstrated in oscillator applications. The phase noise calcu-
lated for silicon microresonator-based oscillators is compared to
the conventional macroscopic quartz-based oscillators, and it is
shown that the higher energy density attainable with the silicon
resonators can partially compensate for the small microresonator
size. Scaling law for microresonator phase noise is developed.

Index Terms— Bifurcation, Bulk acoustic wave devices, Hys-
teresis, Microresonators, Nonlinear oscillators, Nonlinearities,
Oscillator noise, Oscillators, Phase noise, Resonators

I. I NTRODUCTION

A S the wireless communication devices are becoming
ubiquitous, there is a growing need to miniaturize the

size-consuming analog RF components. Although the new
transceiver architectures such as direct conversion cut down
the number of analog filters, a high spectral purity local oscil-
lator is still required. The problem is perhaps the most obvious
in the relatively low cost applications such as Bluetooth where
the entire communication circuitry, with the exception of the
frequency reference and a few capacitors, has been integrated
on a single CMOS chip.

Micromechanical silicon resonators are an interesting al-
ternative to the macroscopic quartz resonators due to their
compact size and feasibility for integration with IC tech-
nologies [1]. Unfortunately, the smaller size of the microme-
chanical resonators unavoidably results in a lower energy
storage and power handling capacity. As a direct consequence,
achieving a sufficient phase noise performance becomes a
challenge [2]. The maximum power handling capacity is also
a critical parameter in filter applications. The central aspect of
this paper is, therefore, to provide detailed knowledge of the
fundamental nonlinearity mechanisms in microresonators and
of the induced energy storage limits. The performance limits
are demonstrated in oscillator applications and microresonator
performance is compared to macroscopic quartz.

The paper is organized as follows: First, the theory of
nonlinear oscillations is reviewed in Section II. Expressions
to estimate the maximum vibration amplitude (the bifurcation
limit) are given and a scaling law for the maximum energy
stored in the resonator is derived. In Section III, the various
nonlinear effects in electrostatically actuated microresonators

are identified. The maximum energy storable in silicon flexural
(bridge and cantilever) resonators and bulk acoustic wave
(BAW) resonators is compared. It is shown that at the nonlin-
ear limit, the BAW resonators can store orders-of-magnitude
more energy than the flexural resonators. In Section IV, the
nonlinear analysis of BAW resonators is refined to include
material effects. The distributed material nonlinearity is the-
oretically estimated using the nonlinear engineering Young’s
modulus. A model incorporating the material effects is devel-
oped and simulated with the method of harmonic balance. The
simulations are compared to experimental data and it is shown
that the energy stored in the BAW resonators approaches the
material nonlinearity limit. In Section V, the oscillator phase
noise is considered. The equation for phase noise is derived
to explicitly show the relation between the stored energy
and phase noise. The theoretical phase noise attainable with
flexural and BAW resonators is compared to the macro quartz
crystal based oscillator performance in Section VI. While
the flexural resonators are shown to be inferior in terms of
phase noise due to their low energy storage capability, the
BAW resonators can provide performance close to the quartz
resonators. The paper is concluded with Section VII where the
impact of scaling on phase noise is analyzed.

II. N ONLINEAR OSCILLATIONS

To characterize the nonlinear oscillatory motion and to
estimate the maximum vibration amplitude, we review the
results by Landau [3]. We take the bifurcation point as a
measure of maximumusablevibration amplitude as at higher
vibration amplitudes the oscillator trajectory depends on the
initial conditions. Thus, the systems analyzed in this paper
are weakly nonlinear and the analysis is restricted only to a
single resonance excitation. Nonlinear effects can also lead
to super and subharmonic resonances that can also limit the
fundamental mode amplitude [4], [5].

The equation of motion for forced oscillations is

mẍ + γẋ + kx = F (t), (1)

wherem is the lumped mass,γ is the damping coefficient,
F (t) is the forcing term, and the nonlinear spring constant is
k = k0(1 + k1x + k2x

2 + ...), wherek0 is the linear term and
k1 and k2 are the first- and second-order anharmonic terms.
We also define the natural frequencyω0 =

√
k/m and quality

factor Q = ω0m/γ. The quality factor is not usually defined
for nonlinear systems but due to its information value for
engineers, its use is justified for the weakly nonlinear systems
analyzed here. The solutions to Equation (1) can be obtained
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by the method of successive approximations by assuming a
solution of form [3]

x(t) = x0 + x1 cos ωt + x2 cos 2ωt + x3 cos 3ωt + .... (2)

For vibrations without damping, the amplitude of the higher
harmonics is given by

x2 = k1
6 x2

1

x3 =
(

k2
1

48 + k2
32

)
x3

1

. (3)

The resonance behavior changes in the presence of non-
linear terms and the resonance frequency is related to the
vibration amplitudex1 by

ω′
0 = ω0(1 + κx2

1), (4)

where

κ =
3
8
k2 −

5
12

k2
1. (5)

This behavior is illustrated in Figure 1. A typical linear
amplitude vs. frequency curve is shown in Figure 1(a). The
first-order nonlinearityk1 (positive or negative) causes tilting
of the resonance peak to the left as shown in Figure 1(b).
A positive second-order nonlinearity results in tilting of the
peak to a higher frequency as shown in Figure 1(c). Increasing
the excitation signal causes further increase in nonlinearity
and eventually the transmission signal shows discontinuity
due to frequency hysteresis (bifurcation) as demonstrated in
Figure 1(d).

The vibration amplitude at the point of bifurcation is

xb =
1√√
3Q|κ|

. (6)

As indicated in Figure 2, the critical vibration amplitude (or
the greatest vibration amplitude) is slightly higher than the
vibration amplitude at the bifurcation point and is given by

xc =
2√

3
√

3Q|κ|
. (7)

If either k1 or k2 is dominant, the critical limit can be
approximated from

xc1 = a1

√
1

k2
1Q

xc2 = a2

√
1

|k2|Q

, (8)

wherea1 =
√

16/5
√

3 anda2 =
√

32/9
√

3 (note correction
to [2] for a2).

We take the critical amplitude as the limit for mechanical
energy storable in the resonator. Thus, the maximum stored
energy is

Emax
m =

1
2
k0x

2
c . (9)

If all the linear device dimensions are scaled proportionally,
the mechanical linear spring constant and the critical vibration
amplitude scale as

k ∼ l
xc ∼ l/

√
Q,

(10)
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(d) Large amplitude vibrations
result in hysteresis.

Fig. 1. The effect of anharmonic force on oscillator transmission curves.

where l is the linear device dimension andQ is the quality
factor. Thus, at the nonlinearity limit, the maximum energy
stored scales asEmax

m ∼ l3/Q. It can be seen that increasing
the quality factorQ reducesthe amount of energy that can
be stored in a resonator as the resonator becomes more
susceptible to nonlinear effects.
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Fig. 2. The bifurcation pointxb and critical vibration amplitudexc.

III. N ONLINEARITIES IN MICRORESONATORS

The nonlinearities in electrostatically actuated resonators
can have mechanical and capacitive origin. The mechanical
nonlinearity is due to geometrical and material effects in the
resonating element while the capacitive nonlinearity is due to
electrostatic coupling mechanism. In this section, both effects
are considered and approximate analysis is carried out.

A. Mechanical nonlinearity

It is illustrative to estimate the mechanical nonlinearity for
three devices, a bridge, a cantilever, and a bulk acoustic wave
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(BAW) resonator, shown in Figure 3. Each resonator is sized
to have the natural frequency of 13 MHz. The aim of this
analysis is to get an order-of-magnitude comparison of the
maximum energy storage limit. For clarity, onlygeometrical
effects are considered and the accurate analysis that includes
material effects is postponed until Section IV.

1) Bridge resonator:Figure 3(a) shows a bridge resonator,
also known as the clamped-clamped beam resonator. Accord-
ing to the classical beam theory, the first mode shape is

u(z) = xC [sinh βz − sinβz − α(coshβz − cos βz)] , (11)

wherex is the vibration amplitude at the beam center and the
constants areC ≈ 0.619, βL ≈ 4.730, and α ≈ 1.018 [6].
Assuming a point force excitation at the bridge center, the
lumped effective mass and the spring constant for the first
resonance are

m = 0.396 · ρwhL0

k0 = 125.1 · Y I/L3
0,

(12)

where I is the moment of inertiaI = hw3/12, Y is the
Young’s modulus,h is the beam height,w is the beam width,
and L0 is the beam length. Large deformations result in an
additional anharmonic force due tension caused by the change
in the beam length.

To obtain a rough estimate for the anharmonic term, the
displacement profile is approximated with a triangle as shown
in Figure 3(a). While the triangle is rather crude approximation
to the mode shape given by Equation (11), it allows easy order
of magnitude estimation of the nonlinear spring force. The
beam tensioning due to the elongation isF = Y whδL/L0

and the resulting force inx-direction is

Fx = 2F sinϕ ≈ 8Y whx3/L3
0 = 0.767k0x

3/w2. (13)

Thus, the nonlinear mechanical spring is

k(x) = k0(1 + k2x
2)

k2 = 0.767/w2.
(14)

Finite element analysis shows that this simple estimate is
accurate within 30% for a typical bridge microresonator. The
critical vibration amplitude given by Equation (8) isxc2 =
65 nm for a 13 MHz bridge resonator withQ = 10 000 and
dimensions ofw = 4 µm, h = 10 µm, and L = 52 µm.
The corresponding maximum stored energy isEmax

m = 2.6 ·
10−11 J.

2) Cantilever resonator:Unlike the bridge resonator, the
cantilever resonator shown in Figure 3(b) has no single domi-
nant nonlinear effect [7]. While a full nonlinear analysis is
beyond the scope of this paper, it is useful to obtain an
upper limit for the stored vibration energy for scaling and
comparison purposes. Given that the nonlinear effects are
weak, we optimistically assume that the resonator can be
driven close to the silicon fracture point.

According to the linear beam theory, the effective mass and
the spring constant are

m = 0.250 · ρwhL
k0 = 3.091 · Y I/L3 (15)
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(b) Vibrations of clamped-free beam (cantilever).
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(c) Spring softening due change in BAW resonator area.

Fig. 3. Comparison of three different microresonators.

for a point force excitation at the cantilever end [6]. The mode
shape for linear vibrations is

u(z) = xC [sinβz − sinhβz + α(coshβz − cos βz)] , (16)

wherex is the vibration amplitude at the beam end and the
constants areC ≈ 0.367, βL ≈ 1.875, andα ≈ 1.362. The
maximum strain is at the anchor point and is given by

Smax
z =

w

2
d2u(z)

dz2

∣∣∣∣
z=0

. (17)

The typical fracture strain for bulk micromachined silicon
cantilevers is 1·10−2 [8]. Assuming that the beams can be
vibrated at 50% of the fracture point, a 13 MHz resonator with
dimensions ofh = 10 µm, w = 4 µm, andL = 20.5 µm has a
maximum vibration amplitude of 300 nm. The corresponding
maximum stored energy isEmax

m = 1.5 · 10−10 J.
3) BAW resonator:The beam BAW resonator shown in

Figure 3(c) demonstrates a geometrical spring softening effect
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due to the change in the cross sectional beam area. The wave
equation for a longitudinal mode in beam is

ρA0
∂2u

∂t2
= Y

∂

∂z

(
A(Sz)

∂u

∂z

)
, (18)

whereA0 is the undeformed beam cross sectional areas and
the deformed areaA(Sz) is given by

A ≈ A0(1− 2νSz) = A0

(
1− 2ν

∂u(z, t)
∂z

)
, (19)

whereν is the Poisson’s ratio. The solution to Equation (18)
is approximated by the linear solution

u(z, t) = x(t) sinπz/2L, (20)

where x is the motion of the beam tip [2]. Substituting
Equation (20) into (18) and integrating over the mode shape
leads to

ρA0L
∂2x

∂t2
=

π2

4
A0Y

L
x− π2

3
νA0Y

L2
x2. (21)

The effective mass and the nonlinear spring constants can be
recognized as

m = ρAL
k0 = π2A0Y/4L andk1 = −4πν/3L.

(22)

Using a typical values ofQ = 100 000, A0 = 100 µm2, and
L = 160 µm for a 13 MHz BAW resonator [2], the critical
vibration amplitude given by Equation (8) isxc1 = 500 nm
and the corresponding maximum energy isEmax

m = 3.7 ·
10−8 J.

4) Microresonator comparison:Comparing the different
resonators, the BAW resonator is seen to have orders-of-
magnitude larger energy storage capacity (Emax

m = 3.7 ·
10−8 J) than the bridge (Emax

m = 2.6 ·10−11 J) and cantilever
resonator (Emax

m = 1.5 · 10−10 J) operating at the same
frequency. Normalizing the stored energy with the resonator
volume V gives the maximum energydensityEmax

m /V . For
the bridge, cantilever, and BAW resonator this is1.3·104 J/m3,
1.9 · 105 J/m3, and2.1 · 106 J/m3, respectively. Thus, the high
energy storage capability of the BAW resonators arises from
two factors: the high maximum energy density and the large
volume.

The approximate analysis in this section thus indicates that
the BAW devices are candidates for large energy storage
resonators. As the maximum energy density is of fundamental
interest, the approximate analysis for the BAW resonators will
be refined in Section IV where the material effects are also
considered.

B. Capacitive nonlinearity

Due to inverse relationship between displacement and par-
allel plate capacitance, electrostatic coupling introduces non-
linear forcing terms [9]. The nonlinear spring constants are
obtained by a series expansion of the electrostatic force

F = −U2
DC

2
∂C
∂x

C = ε0Ae

d−x ,
(23)

whereUDC is the bias voltage,Ae is the electrode area,ε0 is
the permittivity of free space,d is the electrode gap, andx is
the resonator displacement [2]. Including the terms up to the
second-order gives

k(x) = k0e(1 + k1ex + k2ex
2)

k0e = −U2
DCε0Ae

2d3 , k1e = 3
d , andk2e = 4

d2 .
(24)

The second-order correction can be shown to be the dominant
nonlinear electrostatic term [2]. Since the electrical spring
coefficient is proportional toU2

DC , the capacitive nonlinearity
can be reduced by lowering the bias voltage. Also, the nonlin-
earity could be significantly reduced with different electrode
configuration e.g. comb drive actuation. Thus, electrostatic
nonlinearity, while inherent to actuation mechanism, does not
set afundamentallimit to the vibration amplitude. In practice,
for resonators such as the cantilever in Section III-A.2 that
have low mechanical stiffness, the capacitive nonlinearity can
be significant. As an example, assuming electrode areaAe =
100 µm2, gap d = 0.5 µm, and bias voltageUDC = 50 V,
gives hysteresis limit ofxc3e = 57 nm for the cantilever
resonator. This can be compared to the 300 nm estimate for
the mechanical limit.

In addition to the nonlinear spring effects, the capacitive
coupling results in distortion of the motional current. These
harmonics can be calculated from

i = UDC
∂C

∂t
= −UDC

ε0Ae

d2

(
1− 2

x

d
+ 3

(x

d

)2

+ ...

)
∂x

∂t
.

(25)
Thus, even linear vibrations can result in harmonics and the
harmonics due to capacitive coupling can be much larger
than the harmonics arising from the nonlinearity and given
by Equation (3).

IV. M ECHANICAL NONLINEARITY IN SILICON BAW
RESONATORS

As was shown in Section III-A.3, the geometrical nonlinear-
ities may be very small for the BAW resonators and material
effects have to be included in the analysis. In this section, an
accurate analysis of mechanical nonlinearity is presented for
the BAW resonators. First, the nonlinear Young’s modulus is
calculated for bulk silicon. Next, a model that incorporates
the material nonlinearity is presented and nonlinear vibrations
are simulated using the method of harmonic balance. The
simulations are compared to experimental results obtained
for two types of BAW resonators: longitudinal mode beam
resonator and extensional mode plate resonator shown in
Figure 5.

A. Theory of large deformations

The Cauchy stress due to finite deformation including the
geometrical (area and volume change) and material stiffness
effects is

σij(X) =
ρX

ρa

∂Xi

∂ak

∂Xj

∂ak
(cijklηkl + cijklmnηklηmn), (26)

whereX is the particle coordinate at finite deformation,a is
the undeformed state,ρX andρa are the deformed and unde-
formed densities,cijlk and cijklmn are the second and third
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TABLE I

CALCULATED NONLINEAR ENGINEERING YOUNG’ S MODULUS.

Y0[GPa] Y1 Y2

beam ([100]) 130 0.67 -4.9
plate extension 181 -2.9 -8.5

order stiffness tensors, andηkl is the Lagrangian strain [10].
The third-order stiffness tensor for silicon has been experi-
mentally obtained using ultrasonic wave measurements [11]
and theoretical analysis [12]. This data and Equation (26)
enable computation of nonlinear strain dependent engineering
Young’s modulus

Y =
T

S
= Y0(1 + Y1S + Y2S

2), (27)

whereT is the force divided by the initial undeformed area
(engineering stress),S = ∂u/∂x is the displacement gradient
with respect undeformed coordinates (engineering strain), and
Y1 andY2 are the first- and second-order corrections respec-
tively. Calculated values for the nonlinear Young’s modulus
are tabulated in Table I with values in [100]-direction agreeing
with the published analytical results in [10]. The contribution
of the anharmonic stiffness tensorcijklmn is found to be
significant. For example, accounting only for the geometric
effects givesY1 = 1.5 and Y2 = 0.5 for the [100] beam
extension. The third-order stiffness tensors in [11] and [12] are
slightly different but the resulting difference in the nonlinear
Young’s modulus is only about 5%.

Unfortunately, no information exists on the effect of doping
on the anharmonic stiffness tensor. Thus, the calculated values
may not be accurate for the highly boron doped silicon (NB ≈
5 · 1018 1/cm3) used for the microresonators measured in this
study. Nevertheless, the literature data allows a comparison
of measured resonator nonlinearities and the fundamental
material limits.

The relationship between the nonlinear Young’s modulus
and spring constants is

k(x) = k0(1 + k1x + k2x
2)

k0 = AY0
L , k1 = Y1

L , andk2 = Y2
L2 ,

(28)

wherex is the spring stretching,A is the area, andL is the
length. We emphasize that this includes both the material and
geometrical effects. Using Equations (8) and (28), the critical
strain amplitude at the hysteresis due to first- and second-order
mechanical nonlinearity corrections can be approximated.
Based on the computed values for Young’s modulus in Table I,
we estimate the critical vibration amplitudexc ≈ 180 nm for a
plate resonator in Figure 5 withL = 160 µm. In this case, both
the first- and second-order correction terms are significant.

B. Modeling of the distributed nonlinearity

To accurately simulate the nonlinear vibrations, the dis-
tributed nature of stress and strain has to be included in the
model. In our devices the resonator modal shape is to a good
approximation sinusoidal and the strain is the highest at the
center. A full distributed model would be computationally very
demanding and therefore the continuum is approximated with
a discrete chain of masses connected with nonlinear springs.

As shown in Figure 4, a good approximation is obtained with
a relatively small number of masses. A four mass system
appears to be a good compromise between the accuracy and
simulation speed, and is used in this paper. The mass-spring
chain model has been implemented as an electrical-equivalent
model in the Aplac simulation software. In addition to the
mechanical nonlinearity, the equivalent circuit includes an
accurate model of the capacitive coupling [9]. Displacement
versus frequency responses to a sinusoidal excitation are
simulated using the harmonic balance analysis [13]. As the
harmonic balance analysis is carried out in the frequency
domain, it is computationally efficient for systems that have
a high quality factors and are thus slow to settle in the time
domain (transient) analysis.

C. Measured nonlinear vibrations

To characterize the nonlinear vibrations in single-crystal
silicon micromechanical resonators, two bulk acoustic wave
(BAW) resonator designs shown in Figure 5 were measured.
The devices were fabricated by etching a SOI wafer. Both
the beam and plate BAW resonators show high quality factors
exceeding100 000 and operate at 11.7 MHz and 13.1 MHz
respectively. Further details of these resonators are provided
in references [2] and [14].

The measurements were done using a HP4195A network
analyzer and the resonance signal was buffered with a JFET
preamplifier with a low 100Ω input impedance to rule out
resonator loading by the measurement set-up. Figure 6 shows
the measured and simulated transmission amplitudes|S21| for
the plate BAW device shown in Figure 5. At higher drive
levels, the resonator peak becomes sharper and shifts down
in frequency. As discussed in Section III-A, this tilting is
expected withk1 and/or negativek2.

The measured and simulated data shown in Figure 6(a)
correspond to the best fit valuesY1 = −1.4 and Y2 = −4.0.
These experimentally obtained values are about 50% lower
than theoretically estimated for a solid plate. This discrepancy
can probably be attributed to the etch holes (39×39 matrix
of 1.5 µm holes) in the plate that lower the effective Young’s
modulus. Another source of discrepancy may the corner an-
choring that although flexible may add to the nonlinearity.
Nevertheless, the obtained maximum vibration amplitude is
close to the theoretical limit for bulk silicon. The hysteresis
limit was xc = 155 nm, which corresponds to average strain
of Sx = Sy = 9.7 · 10−4 across the resonator and maximum
strain ofSmax

x = Smax
y = 1.5 · 10−3 at the resonator center.

This corresponds to the stored energy of 190 nJ or average
energy density ofEm/V = 1.9 · 105 J/m3.

To quantify the effect of nonlinearity due to the capacitive
coupling and to show that the nonlinearity is indeed of
mechanical origin, the transmission was also simulated without
the mechanical nonlinearity in the model. As the capacitive
nonlinearity given by Equation (24) increases as a square of
bias voltage, it is insignificant at low bias voltages but becomes
important at high bias voltages. This is evident in Figure 6(b),
where simulation without mechanical nonlinearity show no
excitation amplitude dependence at 50 V bias voltage. Higher
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Fig. 5. Schematics of the beam and plate resonators used in measuring nonlinearities in single-crystal BAW resonators

bias voltages show capacitive spring softening effect, but even
at Ubias = 100 V this is not enough to explain the observed
nonlinearity. A further proof that the mechanical nonlinearity
dominates at low bias voltages is obtained by looking at the
bias and excitation voltage productUbias ·uac at the hysteresis
limit. As the driving force and consequently the vibration
amplitude is proportional toUbias · uac this remains constant
if the mechanical nonlinearity dominates. Our measurements
for the plate BAW resonator indeed show that hysteresis is
obtained at constantUbias · uac.

As both the first- and second-order nonlinearity can cause
similar distortion on the transmission curve, there is un-
certainty about the relative contribution ofY1 and Y2. In
principle the first- and second-order effects can be differen-
tiated by looking at the vibration spectrum. Unfortunately,
as discussed in Section III-B, the parallel plate transducer
produces harmonics even for linear vibrations. For our devices,
the harmonics in motional current due to capacitive coupling
given by Equation (25) are orders-of-magnitude larger than
the harmonics due nonlinear vibrations given by Equation (3).
Thus, measuring the motional current spectrum does not yield

further information about the mechanical nonlinearity. Future
work will measure the mechanical vibrations using optical
interferometric techniques.

The measured beam BAWs showed similar behavior but
the measured values showed larger variation from device to
device. We attribute this to the larger surface-to-volume ratio
that causes small geometrical or surface defects to have a
larger effect. Also, the mechanical spring constant for the
beams is much smaller than for the plate causing the capacitive
nonlinearity to be more significant. With capacitive nonlinear-
ity shadowing the mechanical nonlinearity, accurate absolute
values for the nonlinear mechanical spring constant could not
be obtained. Based on our measurements, we estimate upper
limits of |Y1| ≤ 3 and |Y2| ≤ 10 for the correction terms.
Thus, even for the 1-D beam BAWs, we can conclude that
the measured mechanical nonlinearities are not significantly
larger than estimated from the theory and that the devices can
be operated near the fundamental strain limit.
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the material nonlinearity included in the model (Y1 = −1.4 and
Y2 = −4.0). The highest excitation level results in a discontinuity
(the sweep direction is from right to left).
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Fig. 6. Measured and simulated transmission curves for 2-D plate (f0 = 13.1 MHz) with nonlinear capacitive and mechanical effects. The maximum vibration
amplitude at the hysteresis limitxC was 155 nm independent of bias showing that hysteresis limit is due to mechanical and not capacitive nonlinearity.
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V. NONLINEARITY AND PHASE NOISE PERFORMANCE

To show the importance of nonlinearities for microresonator
performance, it is useful to consider noise-to-carrier ratio in an
oscillator. Figure 7 shows an electrical equivalent circuit for a
MEMS resonator connected in an oscillator loop with a loop
amplifier and a buffer to interface with the outside world. The
schematic representation that uses two amplifiers is chosen
as it simplifies the analysis by the separating of the near-
carrier mechanical noise and the far-from-carrier amplifier
noise (noise floor).

The motional resistanceRm, capacitanceCm, and induc-
tanceLm depend on the effective spring constantk, the effec-
tive massm, the quality factorQ, and the electromechanical
transduction factorη [2]. The relation between current and
mechanical velocity isi = ηẋ.

The mechanical vibration energy stored in the resonator is

Em =
1
2
kx2

c = Lmi2sig, (29)

where i2sig is the mean-square signal current through the
circuit. The theoretical maximum power deliverable to the

buffer is the same as the power dissipated in the motional
resistance i.e.

Psig = Rmi2sig =
ωEm

Q
. (30)

In specifying quartz crystal oscillators, thePsig and isig

are interchangeably referred to as the “drive level” and is a
measure of resonator power handling capacity.

The noise current due to motional resistanceRm at the
buffer input is shaped by RLC impedanceZ(ω) and is

i2n =
4kTRm

|Z(ω)|2
. (31)

For a frequency offset∆ω from the center frequencyω0, the
impedance of the series RLC-circuit is

Z(∆ω) ≈ i2L∆ω. (32)

We can thus write the noise power density due to mechanical
losses at the buffer input as

Pmech
N = 4kT

(
ω0

2Q∆ω

)2

. (33)

The loop amplifier will also add noise but with proper noise
optimization it’s contribution to near-carrier noise can be made
small. For simplicity, the loop amplifier noise is therefore
omitted here.

The buffer amplifier noise sets a fundamental limit for
the oscillator performance at large frequency offsets. The
resonator impedance seen by the buffer amplifier is a rapidly
varying function of ∆ω, and thus perfect noise matching
cannot be obtained for all frequency offsets. In practice, the
consequence is the constant amplifier noise floor at large
frequency offsets. We model the buffer noise using a white
noise power spectral densityP buff

N .
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Adding the buffer noiseP buff
N and dividing Equation (33)

by two to account only the phase and not amplitude noise gives
the overall phase noise spectrum. It is customary to normalize
this with the carrier powerPsig to obtain the phase noise-to-
carrier ratio

L (∆ω) =
2kT

Psig

(
ω0

2Q∆ω

)2

+
P buff

N

2Psig
. (34)

Thus, we have a near-carrier region originating from me-
chanical dissipations where noise falls as1/∆ω2, and a
constant noise floor region dominated by the buffer amplifier.
Equation (34) bears close similarity to the generally used
models for oscillator phase noise (e.g. ‘Leeson’s equation’)
[15], [16]. The analysis has ignored the effect of1/f -noise,
which would result in noise falling as1/∆ω3 very close to
the carrier.

The important observation is that both terms in Equa-
tion (34) have an inverse dependence of signal powerPsig

and consequently of the energyEm (Equation (30)). As was
shown in Section II, the maximum energy at nonlinear limit
scales with device size asEmax

m ∼ l3/Q. Thus, assuming
fixed frequency, the signal power scalesPsig ∼ l3/Q2 and
the resonator noise floor at nonlinear limit is proportional to
Q2/l3. Thus, the energy storage capacity sets the fundamental
performance limit for microresonators and the small size
cannot be compensated with a high quality factor.

Finally, we note that the electromechanical transduction
factorη does not appear in Equation (34) as it assumes optimal
power coupling. However, in practice a sufficientη is required
to optimally realize the oscillator using technologically feasi-
ble amplifier interface.

VI. PHASE NOISE COMPARISON

Using Equation (34), the theoretical phase noise can be
compared for the microresonators analyzed in this paper and
for a macro quartz crystal. The bifurcation limit for a 5 MHz
AT-cut quartz crystal resonator (Q = 800 000, Rm = 165 Ω)
is imax = 2.1 mA and the corresponding maximum drive
level and stored energy arePsig = 1

2Rmi2max = 360 µW and
Emax

m = PQ/ω = 9.3 µJ, respectively [17]. These published
values roughly agree with our own measurements of the
hysteresis in quartz crystals. The crystal volume is estimated
to be 200 mm3 and the corresponding stored energy density is
Em/V = 50 J/m3. Extrapolated to 13 MHz (see Section VII),
the critical parameters areQ = 300 000, Psig = 360 µW,
Emax

m = 1.4 J/m3, and Em/V = 190 J/m3. Comparison to
the silicon plate BAW resonator (Em/V = 1.8 × 105 J/m3)
shows that orders-of-magnitude higher energy density can be
achieved with silicon micromechanical resonators than with
shear-mode macroscopic quartz devices. This can partially
compensate for the small size of RF-MEMS oscillators.

Figure 8 shows the theoretical phase noise density for the
macro AT quartz crystal, silicon bridge, silicon cantilever, and
silicon beam BAW and plate BAW resonators summarized
in Table II. All but the cantilever resonators are assumed to
be driven to themechanicalhysteresis limit. The cantilever
resonator operates at 50% of the fracture limit (see Section III-
A.2). In the plots, we have assumed buffer noise ofP buff

N =
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Fig. 8. Comparison of theoretical phase noise for a bridge, beam-BAW,
2D-BAW, and macroscopic quartz resonator based oscillators.

−155 dBm/
√

Hz (or vn =4 nV/
√

Hz in 50 Ω system). The
bridge and cantilever resonators’ poor noise performance is
due to low quality factor and energy storage capability. In
comparison, the beam BAW has improved performance but
the noise floor is still about 30 dB higher than for macro
quartz crystal oscillator. The plate BAW resonator has the
same quality factor as the beam BAW but due to the improved
energy storage capability, the noise performance is close to
the quartz crystal. In practice the oscillators must be operated
well below the bifurcation to avoid aliasing of noise and the
bifurcation limit is used for comparison purpose only and it
may not be reached with real oscillators.

It may be of interest to compare the noise analysis presented
here to the analysis on noise and scaling in [18]. The devices
analyzed here are much larger and consequently the noise due
to internal dissipation is much larger than the quantum noise
sources in [18]. However, when scaling to smaller dimensions,
the quantum effects can be significant.

For a real world performance comparison, Figure 9 shows
measured single side band (SSB) phase noise to carrier ratio
for a test oscillator based on the plate resonator [19]. The
oscillator demonstrates that sufficient energy can be stored
in the micro-resonator to satisfy the GSM-specifications for
phase noise.

VII. SCALING TO HIGHER FREQUENCIES

This paper has focused on 13 MHz resonators – a frequency
typically used for reference oscillator applications. In transre-
ceiver, the reference frequency is multiplied by a factorα
to generate the local oscillator (LO) at the carrier frequency
(typically 1-2 GHz). Due to this frequency multiplication, the
phase noise scales asα2 [16]. Alternatively, the resonator can
be scaled to operate at higher frequency to obtain the LO
frequency directly. Thus, it is of interest to develop a scaling
law for micro-oscillator phase noise as a function of resonator
natural frequency.

Assuming that the frequency-quality factor productf ·Q is
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TABLE II

RESONATORS USED FOR NOISE SPECTRUM COMPARISON. THE SILICON RESONATORS ARE BASED ON RESULTS PRESENTED IN THIS PAPER. THE QUARTZ

RESONATOR IS EXTRAPOLATED FROM DATA FOR5 MHZ AT-CUT QUARTZ CRYSTAL [17].

Quartz Bridge Cantilever Beam BAW Plate BAW
Quality factor 300 000 10 000 10 000 100 000 100 000
Stored energy[nJ] 1 400 0.026 0.14 2.6 180
Energy density[J/m3] 190 1.3·104 1.5·105 8.0·104 1.8·105
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Fig. 9. Measured noise spectrum for a microresonator based low phase noise
oscillator.

constant [20], the device scales as

ω′
0 = αω0

l′ = l/α
Q′ = Q/α

E′
m = Em/α2

P ′
sig = Psig,

(35)

where all the device dimension are scaled by the same factor
α and the device is operated at the hysteresis limit. The phase
noise for the scaled device is

L (∆ω) = α4 2kT

Psig

(
ω0

2Q∆ω

)2

+
P buff

N

2Psig
. (36)

The noise floor is seen to remain constant while the near
carrier noise degrades asα4. In practice, the noise floor will
deteriorate for higher frequency oscillator as it is more difficult
to obtain optimal coupling. Thus, from purely phase noise
considerations, it is better to use low frequency reference and
multiply it to higher frequency than it is to make a high
frequency oscillator [16].

VIII. C ONCLUSIONS

For many practical applications, the resonator power han-
dling capacity and quality factor are equally important. In this
paper the nonlinear limits for silicon resonators have been
quantified and expressions for scaling of resonator energy
storage and power handling capacity were derived. Different
microresonators were analyzed using one degree-of-freedom
model with anharmonic spring forces. The maximum vibration
amplitude was estimated from bifurcation in the vibration
amplitude vs. frequency curve. Increasing the resonator quality
factor was shown to make the resonator more susceptible to

nonlinearities and lower the maximum energy stored. The geo-
metrical nonlinearity was shown to be the limiting mechanical
nonlinear effect in the bridge resonators. In comparison, the
BAW resonators demonstrated operation near the fundamental
material limit for silicon. The BAW resonators were theo-
retically and experimentally shown to have three orders-of-
magnitude larger energy storage capability than the analyzed
flexural resonators. Moreover, the comparison to macro quartz
crystals showed that for the silicon resonators the maximum
energy density attainable is orders-of-magnitude larger. The
importance of the energy storage capacity was demonstrated
by estimating the theoretically attainable oscillator signal-
to-noise ratio. The flexural resonators were shown to have
inferior phase noise floor in comparison to macroscopic quartz
crystals while the BAW resonators can rival the quartz crystal
performance.
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