
1

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

1

Quality Evaluation by QADA Quality Evaluation by QADA
EilaEila NiemeläNiemelä & Mari & Mari MatinlassiMatinlassi

VTT Technical Research Centre of FinlandVTT Technical Research Centre of Finland

E-mail: {Eila.Niemela, Mari.Matinlassi}@vtt.fi

QADA®

QADA® : http://www.vtt.fi/qada/

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

2

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVALUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

2

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

3

PRODUCT FAMILY ENGINEERINGPRODUCT FAMILY ENGINEERING

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

4

QUALITIES

performance

scalability

reusability
measurability

transferability

user-friendliness safety
simplicity

wrappabilitydiversity
interoperability

integrabilityflexibility

- maintainability
- flexibility
- modifiability
- extensibility
- portability
- reusability
- integrability
- testability

- performance
- security
- availability
- usability
- scalability
- reliability
- interoperability
- adaptability

EXECUTION EVOLUTION

QUALITY ATTRIBUTESQUALITY ATTRIBUTES

3

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

5

ORTHOGONAL PROPERTIES OF SOFTWARE ORTHOGONAL PROPERTIES OF SOFTWARE
ARCHITECTUREARCHITECTURE

Conceptual

Realizational

Hierarchy

Abstraction

Dynamic
Static

Viewpoint

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

6

SOFTWARE ARCHITECTURE & QUALITYSOFTWARE ARCHITECTURE & QUALITY

complement each other

ARCHITECTURE DESCRIPTION

Taxonomy of orthogonal propertiesMultiple views

Abstraction
level

Dynamism Aggregation
level

Physical Development

• commonalties
• variabilities

• maintainability
• modifiability
• reusability
• portability

• performance
• reliability
• security

• availability
• capacity
• bandwidth

managing
administrative
control

Decomposition of
functionality
-conceptual-

Realization of
the conceptual

abstraction

Logical
Concurrency

4

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

7

QUALITY OF PF LIFE CYCLEQUALITY OF PF LIFE CYCLE

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

8

QADA®

• Development started in
2000

• Industrial applications:

• Middleware services
• Distribution platforms
• Wireless services
• Wireless terminals
• Control systems
• Measurement systems
• Product families of

embedded systems
and software systems

5

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

9

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVQLUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

10

CAPTURING AND MAPPING CAPTURING AND MAPPING QRsQRs TO TO
ARCHITECTUREARCHITECTURE

1. Impact analysis

2. Quality analysis 3. Variability analysis

4. Hierarchical domain
analysis

6

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

11

1. IMPACT ANALYSIS1. IMPACT ANALYSIS

Goal:
To define the interested stakeholders and their

targets concerning the product family

• The concerns of different stakeholders are
negotiated to achieve all relevant functional and
quality requirements of a product family

• I*framework is used for requirements definition and
negotiation

• I* framework enables to describe dependencies
and conflicts between stakeholders’ concerns

• Example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

12

2. QUALITY ANALYSIS2. QUALITY ANALYSIS

Goal:
To express quality requirements (QR) in a way that they can later be traced

and measured

• QAs must be prioritized
• Requirements on the highest priority level have always to be met in

architecture (to be considered in trade-off analysis)
• Evaluation criteria are derived from the QRs and classified to evaluation levels,

e.g.:
• Family specific QRs of

• high priority
• medium priority
• low priority

• System/domain specific QRs of
• high priority
• medium priority
• low priority

7

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

13

3. VARIABILITY ANALYSIS3. VARIABILITY ANALYSIS

Goal:
To define the QRs that vary on the business domain or

stakeholders

Types of variability:
• Variability among quality attributes.

• For example, for one family member the reliability is
important, but for other family members there are no
reliability requirements.

• Different priority levels in quality attributes.
• For example, for one family member the extensibility

requirements are extremely high, whereas for others those
requirements are at the lower level.

• Indirect variation
• Functional variability can indirectly cause variation in the

quality requirements or vice versa

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

14

4. HIERARCHICAL DOMAIN ANALYSIS4. HIERARCHICAL DOMAIN ANALYSIS

Goal:
To map common and variable QAs to hierarchical service

categories

• The QRs common to all family members must be mapped to
the common functionality of the family

• The architect has to decide which services are responsible for
each quality requirement (scoping)

• One requirement may be mapped to several functional
services (dependency mgmt)

• The quality requirements themselves may result to certain
functionality (i.e. execution QAs)

• The requirements mapping is a specific work of the software
architects and requires an extensive knowledge of the product
family and its members

• Example

8

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

15

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVQLUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

16

QUALITIES IN ARCHITECTUREQUALITIES IN ARCHITECTURE

There are two main means to represent quality
requirements in architecture:

1. The use of architectural styles and patterns
• Styles and patterns employ qualitative

reasoning to motivate when and under what
conditions they should be used

2. The use of qualitative constrains, e.g. specific
quality profiles

• Profiles can be defined to extend the
architectural models to support certain
quality aspects

9

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

17

QUALITY REPRESENTATIONS: QUALITY REPRESENTATIONS:
styles and patternsstyles and patterns

• Candidate architectural styles must be identified. For
each style, it is examined how it meets the quality
requirements

• Possible conflicts between QRs are identified and the
trade-off analysis is carried out

• NFR (Non-Functional Requirements) framework or
Stylebase can be utilized in style selection and in
conflicts solving

• The architectural style that meets the QRs best is then
selected

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

18

QUALITY REPRESENTATIONS: QUALITY REPRESENTATIONS:
quality profilesquality profiles

• UML 2.0 enables the description of all the
viewpoints of QADA

• UML notation can be extended to support certain
quality attributes using UML’s own extension
mechanism; profiles

• A profile consists of stereotypes, tagged
definitions and constraints

• By creating a new stereotype, defining tags for it,
and denoting the stereotype to extend the
desired meta-class, the certain elements in
architecture can be extended with a new profile

• Profiles enable the attachment of quality
properties to the architectural models

10

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

19

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVQLUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

20

EVALUATING EXECUTION QUALITIES EVALUATING EXECUTION QUALITIES ––
RAP (Reliability & Availability Prediction) RAP (Reliability & Availability Prediction)

methodmethod
• Introduction
• Method overview
• Phases

1. Defining reliability and availability goals
2. Representing reliability and availability in

architectural models
3. Evaluating reliability and availability

• Case example

11

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

21

RAP INTRODUCTIONRAP INTRODUCTION

• An integrated part of QADA, extending it with reliability and
availability (R&A) related properties

• The main purpose is to predict reliability and availability
from the architectural models, before actual system
implementation

• Covers the gap from requirements definition to quality
analysis

• Provides methods and techniques for R&A prediction

Reliability = probability of failure-free operation of a software system for a
specified period of time in a specified environment

Availability = probability of a software system or service being available
when needed

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

22

RELEVANCERELEVANCE

• Faults and R&A problems can be detected
before system implementation

• modifications and corrections are easier and
cheaper

• Applicability of architectural style can be
detected before implementation

• the architectural decisions can still be
affected

• Different architectural solutions can be
compared and the best possible candidate can
be selected

12

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

23

EVALUATING EXECUTION QUALITIES EVALUATING EXECUTION QUALITIES ––
RAP methodRAP method

• RAP Introduction
• Method overview
• Phases

1. Defining reliability and availability goals
2. Representing reliability and availability in architectural models
3. Evaluating reliability and availability

• Case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

24

RAP RAP –– OVERVIEWOVERVIEW

• Phases
• Three phases: 1) Defining reliability and availability goals, 2)

Representing reliability and availability in architectural
models, and 3) Evaluating reliability and availability.

• Steps
• For each phase, a set of steps is defined.

• Activities
• Steps can further include specific activities.

• Views
• Three views of QADA, structural, behavior and deployment,

are used in phases 2 and 3.
• Evaluation levels

• The R&A evaluation is done incrementally according to four
evaluation levels.

13

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

25

RAP as a part of QADARAP as a part of QADA

Phase1: Defining
reliability and
availability goals

Phase 2:
Representing
reliability and
availability in
architectural
models

Phase 3: Evaluating
reliability and
availability

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

26

EVALUATING EXECUTION QUALITIES EVALUATING EXECUTION QUALITIES ––
RAP methodRAP method

• RAP Introduction
• Method overview
• Phases

1. Defining reliability and availability goals
2. Representing reliability and availability in architectural models
3. Evaluating reliability and availability

• Case example

14

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

27

Phase 3: EVALUATING RELIABILITY AND Phase 3: EVALUATING RELIABILITY AND
AVAILABILITYAVAILABILITY

Purpose: to validate whether or not the R&A
goals are met in the architecture.

Results: result of the R&A analysis.

Steps:
1. Quantitative analysis
2. Qualitative analysis
3. Decision making

R&A goal
definition

R&A
representation
in architecture

R&A
evaluation

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

28

Step 1: QUANTITATIVE ANALYSISStep 1: QUANTITATIVE ANALYSIS

Purpose: to calculate the
reliability of the system as
probability of failure of its
components

Results: estimated probability of
failure of the system and its
components

Activities:
• Estimate component and

connector reliability
• Estimate software system

reliability
• Estimate system reliability

15

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

29

Step 1: ACTIVITIESStep 1: ACTIVITIES

Independent element
• Estimate the probability of failure of an independent component

using
• a Markov chain model, or
• documentation

• Refine the achieved value with other properties of a component
• E.g. component size/estimated size, (planned)

implementation technology, (planned) fault tolerance, etc.
• Estimate the probability of failure of the connectors

• Basing on the type of connection, interfaces, etc.

Estimate component and connector reliability as

Case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

30

Step 1: ACTIVITIESStep 1: ACTIVITIES

Estimate component and connector reliability as
Dependent element
• Simulate the system

• choose the elements for simulation
• define input messages
• create a simulation model and run the simulation

• Basing on the results of simulation and the estimated
probability of failure of independent elements, define
and calculate
• the probability of failure of components and

connectors in each system execution path
• the probability of failure of components and

connectors in all execution paths (i.e. refined
reliability of components and connectors in system
execution)

Case example

Case example

16

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

31

Step 1: ACTIVITIESStep 1: ACTIVITIES

Estimate software system
reliability

• Compute the reliability of
individual paths

• Path reliability is the
specified reliabilities of
components and
connectors involved in
a path

• Calculate the software
system reliability

• The reliability of the
software is a weighted
average of reliabilities
of all paths

Estimate system reliability
• Determine the reliability of

the hardware
• from previous use

(experiences) or testing
• Define the reliability of

hardware/software
component combination

• Define the reliability of the
network (between nodes)

Case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

32

Step 2: QUALITATIVE ANALYSISStep 2: QUALITATIVE ANALYSIS

Activities:
• Track the R&A requirements

to architecture
• Track the architectural

properties to the requirements
• Compare the design decisions

with the R&A requirements
and analyze how the
requirements are met

• Identify problems that may
occur when certain R&A
requirements are not met

Purpose: to analyze whether
or not the non-numerical
requirements are met

Results: analysis report on
how the architecture meets
the requirements

Case example

17

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

33

Step 3: DECISION MAKINGStep 3: DECISION MAKING

Activities:
• Accept the architecture, or
• Revise the architecture by

• Decrease the probability of failure of
components and their interactions

• choosing components with higher
reliability (if available)

• implementing higher reliable
components by eliminating software
defects in their implementation

• deploying software on more reliable
hardware.

• Change the architecture by
• changing styles and patterns
• introducing new mechanisms (e.g. fault

tolerance or fault treatment)

Purpose: to define
whether or not the
requirements are met
well enough

Results: the decision to
move to the next
evaluation level or go
back to the phase 2 to
revise the architecture

Case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

34

EVALUATING EXECUTION QUALITIES EVALUATING EXECUTION QUALITIES ––
RAP methodRAP method

• RAP Introduction
• Method overview
• Phases

1. Defining reliability and availability goals
2. Representing reliability and availability in

architectural models
3. Evaluating reliability and availability

• Case example

Continue

18

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

35

Case example: A Distributed Services Platform Case example: A Distributed Services Platform
((DiSePDiSeP))

• DiSeP system family
provides a distribution
platform for a family of
software systems.

• Includes three family
members: middleware
systems for game, health
care and emergency
intervention applications.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

36

DiSePDiSeP -- Phase 1: Identifying stakeholders and their Phase 1: Identifying stakeholders and their
concernsconcerns

Game
application

Health care
application

Emergency
intervention
application

Middleware

Middleware

Middleware

End user
(game
palyer)

End user
(medical
worker)

End user
(doctor,
police)

Game
application
developer

System
family

architect

Health care
application
developer

Emergency
application
developer

System 1
architect

System 2
architect

System 3
architect

No breaks in
communication

Reliability is at
low level

Service recovery
in medium time

Data is always
correct

Reliability is at
high level

Recovery time
is fast

Service availability
is very high

Response time
is short

Fault occurrence is
prevented

Service recovery
at medium rate

User notification of
failures/shutdowns

Middleware service
capability to recover

Message loss is
medium low

Data replication

Data consistency
is verified

Messages are
not lost

Service recovery
at medium rate

Data correctness
is ensured

Messages are
not lost and integrity

is ensured

Very fast
service recovery

Service execution
back-up

19

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

37

DiSePDiSeP -- Phase 1: Refining quality requirementsPhase 1: Refining quality requirements

mediumSystem family
architect

Data is replicated at least in
2 data storages

R6

mediumSystem family
architect

Data may not be lost in
failure/error situations

R7

lowSystem family
architect

Data consistency is verified
in every 5 seconds

R5

highSystem family
architect

Middleware services are
able to recover

R2.1

Importance Stakeholder Requirement description Req ID

• Refined R&A requirements from the family architect’s point of view

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

38

DiSePDiSeP -- Phase 1: Refining quality requirementsPhase 1: Refining quality requirements

HighFull functionalityS3:A middleware for
emergency intervention
application

MediumRestricted
functionality

S2: A middleware for
health care application

LowLight functionalityS1: A middleware for
game application

R&A importanceFunctionalitySystem

20

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

39

DiSePDiSeP -- Phase 1: Mapping R&A requirements to Phase 1: Mapping R&A requirements to
functionalityfunctionality

Data distribution, Location serviceR6

Data distributionR7

Data distributionR5

All the involved basic, system and
communication services

R2.1

Corresponding serviceR&A requirement

• Mapping family-specific R&A requirements to functionality

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

40

DiSePDiSeP -- Phase 1: Mapping R&A requirements Phase 1: Mapping R&A requirements
to functionalityto functionality

Routes messages from network to listeners and
forward asynchronous messages. Routes outgoing
messages to the network.

Informs the active system service provider the
availability of the user services of the own node.

Sends after the given time period a notification
signal about the existence of the node in the
network. Maintains the location map of the network.
Sends a signal to the user services of the own node
to start registration when first time connected to the
network. Announce the availability of the system
services

Contributes to the operation of distributed data
storage. Creates, maintains and tracks connections
to other units in order to share data. Allows data to
be stored in local resources. Negotiates about the
copying, transferring or deleting data if necessary.

Responsibility

R2.1

R2.1

R2.1, R6

R2.1, R5, R6

Family-specific
R&A
requirement

R1-S3, R2.2-S3Advertiser

R1-S3, R2.2-S3, R4-S3Observer

R1-S3, A1-S3, R2.2-S3,
A3-S3, R8-S3

Location
service

R7R1-S3, R2.2-S3, R4-
S3, R8-S3

Data
distribution

System-specific R&A
requirements for S3

Service

21

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

41

DiSePDiSeP -- Phase 1: Selecting an architectural style Phase 1: Selecting an architectural style
and doing the tradeand doing the trade--off analysisoff analysis

• NFR framework for detecting conflicts

Step description

Layered
architecture

Simplex
ABAS

Implicit
invocation

Black
board

Reliability Performance

Recovery
+++

Data replication
+++ Space

performance
+

Time
performance

+++

Backward
recovery

++

Forward
recovery

+++
Local

+
Remote unit

+++

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

42

DiSePDiSeP -- PhasePhase 1: 1: Defining criteria for R&A Defining criteria for R&A
evaluationevaluation

Low level system-specific
requirements

Medium level system-specific
requirements

High level system-specific
requirements

System family-specific requirements

Evaluation criteria

R2.2-S3, A3-S3, A4-S3 Level 3

-Level 4

A1-S3, A2-S3, R1-S3, R3-S3,
R4-S3, R8-S3, R9-S3

Level 2

R2.1, R5, R6, R7Level 1

Corresponding requirementEvaluation level

low

medium

medium

medium

Importance

R6

R7

R5

R2.1

Req.ID

Data distributionData loss prevented in error
situations

Data storage, data distribution,
location service

Data replication

Data distributionData consistency
verification

All basic, system and communication
services

Service capability to
recover

Impacted architectural elementsEvaluation criteria

Criteria for
evaluation
of the DiSep
system family

Step description

22

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

43

DiSePDiSeP -- PhasePhase 2: 2: Representing required R&A in Representing required R&A in
conceptual architectureconceptual architecture

R2.1

R2.1

R2.1, R6

R2.1, R5, R6

Family-
specific
requirement

R1-S3, R2.2-S3Advertiser

R1-S3, R2.2-S3,
R4-S3

Observer

R1-S3, A1-S3,
R2.2-S3, A3-S3,
R8-S3

Location
service

R7R1-S3, R2.2-
S3, R4-S3, R8-
S3

Data
distribution

System-specific
requirements

Service

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

44

DiSePDiSeP -- PhasePhase 3:3: Quantitative analysisQuantitative analysis

• Estimating reliability of an independent component using Markov
chain model.

Step description

23

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

45

DiSePDiSeP -- PhasePhase 3: 3: Quantitative analysisQuantitative analysis

• Simulating the system at the architecture level

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

46

DiSePDiSeP -- PhasePhase 3: 3: Quantitative analysisQuantitative analysis

• Predicted probability of failure of components of the
system (in system execution), based on

• estimated probability of failure of components, and
• simulation

0.0015Data distributionC5

0,0001251Directory serviceC4

0,000758Observing serviceC6

3

5

1

Accessed

Data storage

Activator service

Application Service
Provider

Component

0.00075C3

0.005C2

0,000275C1

Probability of failureComp.ID

Step description

24

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

47

DiSePDiSeP -- PhasePhase 3: 3: Quantitative analysisQuantitative analysis

• calculating the probability of failure for an
execution path:

Probability of failure (P1) = 1 - ((1 - C6)*(1 - ConC6C2)*(1 - C2)
(1 - ConC2C5)(1 - C5) *(1 - ConC5C3)*(1 - C3) *(1 -
ConC3C5)*(1 - C5) *(1 - ConC5C6)*(1 - C6)) = 0,.0096

• calculating the probability of failure of software
system as a weighted average of execution paths:

Probability of failure (system) = Probability of failure(P1)*
Path probability(P1) + Probability of failure(P2)* Path
probability(P2) + Probability of failure(P3)* Path
probability(P3) = 0,0073

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

48

DiSePDiSeP -- PhasePhase 3:3: Qualitative analysisQualitative analysis

• identification of possible problem of the unmet requirement
Data storage of passive system

service node not up-to-date

Data distribution
service failure

Node location not in
service provider list

Database error Timing error Beacon signal about active
system services not received

Location signal
sending fails

OR

OR

OR

Data distribution component includes a timer
that starts data copying procedure every 5
seconds in the node of active system services.

Data distribution service negotiates
about data copies, transfers and
deletions with other units.

R5: Data consistency is
verified in every 5
seconds

Each node includes a data storage
that is continuously updated by the
data distribution component.
Location service of each node
maintains the list of system services
independently.

Conceptual level

Each node includes a data storage that is
continuously updated by the data distribution
component. Location service of each node
maintains the list of system services
independently.

R6: Data is replicated at
least in 2 data storages

Concrete levelR&A requirement

• requirements tracking

Step description

25

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

49

DiSePDiSeP -- Phase 3:Phase 3: Decision makingDecision making

• Reliabilities of components are satisfactory
• Observing service and Activator service are

the most critical components of the system
• Activator service has the highest probability

of failure value
• Numerical value for the probability of failure of the

software system is 0.0073. The required
probability of failure was max 0.01, thus the
requirement R1-S3 is met in the architecture.

• Qualitative analysis proved that the requirements
have been taken account in the architecture in a
satisfactory manner.

=> the architecture is accepted! Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

50

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVALUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

26

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

51

EVALUATING EVOLUTION QUALITIES EVALUATING EVOLUTION QUALITIES ––
IEE (IEE (IntegrabilityIntegrability & Extensibility Evaluation) & Extensibility Evaluation)

methodmethod
• IEE Introduction
• Method overview
• Phases

1. Defining IE
Requirements

2. Scenarios
description

3. IE Evaluation
• Case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

52

IEE INTRODUCTIONIEE INTRODUCTION

• IEE method = A scenario based method for Integrability and
Extensibility Evaluation (IEE) at the architectural level.

• Covers the design activities from specifying, modelling and
evaluating of quality properties.

• Intended for being used by architects
• cost-effectively (i.e. the use takes only some hours) and
• repeatedly (i.e. the method is easy to use).

• Suitable fro product family architectures and single system
architectures.

Integrability is the ability to make separately developed components of a system to
work correctly together.

Extensibility is the ability to extend a software system with new
features/services/components without loss of functionality or qualities
specified as requirements.

27

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

53

RELEVANCE RELEVANCE

• Software family architecture that supports integrability and
extensibility assists in:

• Using 3rd party components.
• Estimating adaptation required for a software family

architecture or a component when components or
services are renewed or new ones are added to the
family.

• Developing long-lasting software family architecture
that will give better return on investment.

• The IEE method helps in achieving these goals.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

54

EVALUATING EVOLUTION QUALITIES EVALUATING EVOLUTION QUALITIES ––
IEE methodIEE method

• IEE Introduction
• Method overview
• Phases

1. Defining IE Requirements
2. Scenarios Description
3. IE Evaluation

• Case example

28

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

55

IEE METHOD OVERVIEWIEE METHOD OVERVIEW

• Phases
• Three phases: Quality requirements specification, scenario

descriptions and evaluation
• Steps/Activities

• For each phase, a set of steps with several activities and
guidelines are defined.

• Views
• QADA views - structural, behaviour, development and

deployment - are in use.
• Scenarios

• Modelling and evaluation is scenario based, i.e. iterative
and incremental.

• Iterations
• Modelling and evaluation are iterated based on priorities set

by quality goals definition.
• Knowledge base

• Stylebase is used as a supporting tool to find and evaluate
the use of patterns for IE purposes.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

56

IEE as a IEE as a partpart of QADAof QADA®®

1. Defining IE
requirements

2. Scenarios
description

Stylebase as a supporting
design and evaluation tool

3. IE Evaluation

29

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

57

ARCHITECTURAL VIEWSARCHITECTURAL VIEWS

• QADA uses four views:
• structural, behavioral, development and

deployment
• Views are presented on two abstraction levels:

• conceptual and concrete.
• IEE method uses the views in modelling architecture

according to the identified scenarios.
• Each scenario is represented in the views and

abstractions that are affected by that scenario.
• Only the affected parts of the view are modelled in

scenarios.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

58

EVALUATING EVOLUTION QUALITIES EVALUATING EVOLUTION QUALITIES ––
IEE methodIEE method

• IEE Introduction
• Method overview
• Phases

1. Defining IE Requirements
2. Scenarios Description
3. IE Evaluation

• Case example

Defining IE
Requirements

IE Evaluation

Scenarios
Description

30

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

59

StepStep 1: IDENTIFY SCENARIOS1: IDENTIFY SCENARIOS

Guidelines
• Identify scenerios belonging to the categories of IE scenarios:

Replacing existing services/components/technology platforms.
Adding new services/components/subsystems.
Adding new features to existing services/components.

• Use information from phase 1 to help identify the scenarios:
IE quality requirements and goals.
Variability.

Consider the evaluators needs for evaluating the requirements.

case example

Purpose is to identify the scenarios that are
relevant to integrating and extending the
architecture.

Result is a list of scenarios to
be used as a basis for the
evaluation.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

60

StepStep 2: DESCRIBE AND MODEL SCENARIOS2: DESCRIBE AND MODEL SCENARIOS

Purpose is to describe and model
the required information in the
identified IE scenarios in such a
way that evaluation of the IE
requirements can be performed.

Results are the descriptions and
models of the scenarios that will be
used to evaluate the defined IE
requirements.

Guidelines
• Use UML 2.0 models and textual descriptions
• Describe what the scenario is, what components are involved and how are

they affected.
• Use the stylebase to look for patterns and solutions.
• Define/refine assumptions, architectural constraints and design rationale of

each view to document all used patterns and solutions.
• Consider the evaluators needs for evaluating the scenarios.

case example

31

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

61

StepStep 3: DEFINE THE REQUIRED COMPONENT TRACES3: DEFINE THE REQUIRED COMPONENT TRACES

Purpose is to define which components
need tracing and what kind of information
should be traced for each component.

Result is a list of the
required traces for
components.

Guidelines
• Tracing of components is needed if not all information is available.
• Or when more detailed knowledge about component states and

operations are required to ensure their compatibility.
• Requires that the component has built in support for tracing.
• Different types of traces:

Operational traces - Interaction of component operations
State traces – Object and data states in components/services

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

62

EVALUATING EVOLUTION QUALITIES EVALUATING EVOLUTION QUALITIES ––
IEE methodIEE method

• IEE Introduction
• Method overview
• Phases

1. Defining IE Requirements
2. Scenarios Description
3. IE Evaluation

• Case example

Defining IE
Requirements

IE Evaluation

Scenarios
Description

32

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

63

PhasePhase 3: IE EVALUATION3: IE EVALUATION

Purpose is to evaluate how the
IE requirements are met in
the architecture.

Activities for evaluating the
scenarios

• Architectural mismatch
analysis

• Dependency analysis
• Extensibility analysis
• Simulation with

instrumented components

Steps for IE evaluation
1. Map scenarios to quality

requirements
2. Evaluate the requirements
3. Compare evaluations results

with the targets of the quality
evaluation

4. Identify conflicts and report
improvements

5. Report evaluation results.

Result is a report of the
evaluation results.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

64

Step 1: Map scenarios to requirementsStep 1: Map scenarios to requirements

Purpose is to map the scenarios to
requirements so the requirements can
be evaluated through the scenarios.

Guidelines
• Map the scenarios that contribute

something to that requirement in the
architecture.

• One scenario can be mapped to many
requirements.

• Don’t Repeat Yourself - Some of the
results information can be reported
elsewhere in another form.

case example

Result is a mapping of
scenarios to requirements
with the following information

• Which scenarios are related
to which requirement

• What solutions are used in
each scenario to achieve the
requirement

• How well does the scenario
meet the requirement

• (Reasoning why a scenario is
relevant to a requirement)

33

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

65

Guidelines
• Evaluation is based on the scenarios.
• Scenarios relevant to each requirement were mapped in the previous step.
• Apply the relevant activities to each scenario.
• Consider the scenarios related to the requirement being evaluated.

A scenario can be considered from a different viewpoint for a different
requirement.

• The defined activities are only guidelines, apply common sense and
experience.

The most important thing is to evaluate how the requirement for
integrability or extensibility is supported.

case example

Step 2: Evaluate the requirementsStep 2: Evaluate the requirements

Purpose is to evaluate how
well the requirements are
met in the architecture.

Result is the evaluation
results that show how well
the requirements are
supported in the
architecture (scenarios).

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

66

StepStep 3: 3: Compare evaluation results with the Compare evaluation results with the
targets of the quality evaluationtargets of the quality evaluation

Guidelines
The evaluation report should answer at least the following questions:
• Are the IE quality requirements met in the scenarios?
• How serious are the possible conflicts or problems?
• Which level of requirements are met?
• What is the overall result of the evaluation?

case example

Purpose is to check how well
the IE requirements are met
in the architecture.

Result is a report of
• How well are each of the requirements met
• What solutions are used in the scenarios for

achieving the requirement
• What requirements levels are met
• How serious are the conflicts

34

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

67

StepStep 4: 4: IdentifyIdentify conflictsconflicts and and reportreport
improvementsimprovements

Purpose is to identify and evaluate
possible conflicts in achieving the
IE qualities and to propose
improvements to found conflicts.

Guidelines
• Check the scenarios and requirements for conflicts.

Do any scenarios, solutions or requirements conflict with
each other?

• Evaluate the impact of conflicts to each others (trade-offs)
Does fixing one affect another scenario/requirement?

• Propose improvements by using patterns and identify unsolved
problems.

Use the stylebase as a guide for patterns and solutions.

case example

Result is a report of the
• Identified conflicts
• Improvement suggestions

for fixing the conflicts
• Unsolved problems

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

68

Step 5: REPORT EVALUATION RESULTSStep 5: REPORT EVALUATION RESULTS

Purpose is to report the results of the evaluation done
in steps 1-4.

Result is a report telling
• How well are the requirements met
• Proposed improvements
• Unsolved problems

Guidelines
• Collect data from the previous step into a summary

report of the results

Case example

35

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

69

EvaluationEvaluation activitiesactivities

Purpose is to provide a set of evaluation activities to use to help
evaluate the scenarios.

Result from each activity is the analysis of a given aspect of quality
in a scenario.

Activities defined for evaluating the scenarios:
1. Architectural mismatch analysis
2. Dependency analysis
3. Extensibility analysis
4. Simulation with instrumented components

Guidelines
Keep in mind the requirement and evaluate the scenarios not only

based on the given activities but by what is relevant for the
scenario and requirement.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

70

ActivityActivity 1: 1: ArchitecturalArchitectural mismatchmismatch analysisanalysis

Result is a comparison of
• component features and the

architectural styles of the
system.

• component interfaces

Purpose is to check that the integrated
components are compatible with
their interfaces and assumptions
about the architectural style of the
system.

Guidelines
• Applied when new components are added or existing ones are updated.
• Identify the main architectural style(s)
• Check that new components are compatible with the used architectural

style(s).
Compare component features to styles and patterns

• Check interfaces and behaviour matches based on matching conditions

case example

36

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

71

ActivityActivity 2: 2: DependencyDependency analysisanalysis

Guidelines to check
• Interfaces

When components need to be replaced
Matching conditions are used to control component interfaces.

• Component coupling
When components are replaced or added.
Coupling is minimized, change is localized and ripple effect prevented.

• Encapsulation
When components/features are changed or added.
Separate techniques are used to achieve increased cohesion and
deferred binding times for feature types, component types and abstract
layers

Purpose is to check that when components
or features have been added or replaced,
appropriate techniques have been used
to minimize dependencies.

Result is the analysis and
description of how
dependencies are minimized in
the scenarios.

case example

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

72

ActivityActivity 3: 3: ExtensibilityExtensibility analysisanalysis

Steps for evaluating extensibility
1. Identify extension points – the places in the architecture where

it needs to support easy addition of functionality.
2. Check the use of extensibility patterns, e.g. observer, façade,

selector, proxy, bridge, etc., in those extension points.
3. Check the use of other possible extensibility supporting

mechanisms.
• Use the stylebase as an on-line guide to assist in the

evaluation of the use of patterns and solutions.

case example

Purpose is to check how the
architecture supports extensibility
where it is required.

Result is a list of defined
extension points and analysis of
how the architecture supports
extensibility in these points.

37

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

73

ActivityActivity 4: 4: SimulationSimulation withwith instrumentedinstrumented
componentscomponents

Purpose is to gather the required information to
evaluate the integrability of components.

Result is gathered data from the component traces.

Guidelines
• The required component traces were defined in

phase 2.
• To be able to trace the components, they must

support the used tracing technique.
• Tracing is done using simulation through tester

components that stimulate the component and
gather data about its states and operations as
related to the defined required component traces.

id Tracing

Component
Under Test

ProvidedInterface1

Requi redInterface1

TracingInterface

Tester

«trace»

«real ize»

Go to next

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

74

Case Case exampleexample: A : A DistributedDistributed ServicesServices PlatformPlatform
((DiSePDiSeP))

• The DiSeP family provides a distribution
platform for a family of software systems.

• The DiSeP family contains two products:
Basic product A and Advanced product B.

• The architecture is service oriented, i.e.
each product is built on top of the services
provided by the DiSeP.

• The scope of family is limited to the
platform services so that applications are
considered only in application interfaces
provided on top of platform services.

Tutorial
outline

38

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

75

DiSePDiSeP -- PhasePhase 2: 2: IdentifyingIdentifying scenariosscenarios

From the requirements defined in phase 1 three different types of
scenarios for integration and extension were defined:

1. Existing services
in the product
family are
replaced with new
ones.

• An inhouse
component is
replaced with a
COTS, OS or
OTS.

• DiSeP is
extended to a
new software
platform.

• …

2. New features are
added to existing
services.

• A new feature is
added to basic
services.

• A new application
is integrated into
DiSeP providing
new features and
services through
the platform.

3. New services are
added to the product
family

• A new
communication
protocol is added.

• The location service
(component) is
added.

• The transaction
service (component)
is added.

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

76

DiSePDiSeP -- PhasePhase 2: 2: DescribingDescribing scenariosscenarios

• Description: The data storage must support different variants
of in-house, OS and COTS components. To support these
requirements, we add a new component to the architecture
that functions as an interface between the rest of the system
and the data storage component. The responsibilities for this
component include

• 1) adapting the possible differences of the variants to work
with the rest of the system and

• 2) providing the rest of the system a unified interface to
the used data storage component.

• Other knowledge to document: The used adapter
component is considered to have properties from the adapter
and facade patterns.

39

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

77

DiSePDiSeP -- PhasePhase 2: 2: ModellingModelling scenariosscenarios

• DataManagementServices domain is modelled
to show the adapter style component and the
alternative DataStorage components.

• Only this part is modelled for this scenario as it is
the only affected part of the architecture.

• The variation modelling in DiSeP follows the
notation of the PFE profile defined for product
family engineering

• DSAdapter is always present and connects to
the chosen alternative data storage component.

• DSAdapter is the interface component between
the rest of the system and the data storage
component.

cd DiSeP - w rapped data storage

«sub-domain»
BasicSystemServ ices::

DataManagementServ ices

«mandatory»

DSAdapter

«al ternative»

DataStorage:
OS

«alternative»

DataStorage:
COTS

«alternative»

DataStorage:
Inhouse

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

78

DiSePDiSeP -- PhasePhase 3: 3: MappingMapping scenariosscenarios to to
requirementsrequirements

Reasoning for mappingScenarioRequirement

The scenario concerns the transaction service which is a middleware
service. The scenario also describes the services alternative variants
and thus the services substitutability.

7: Adding the
transaction
service.

The scenario considers replacing the data storage service which is a
middleware service and has alternative variants. Thus it relates to
substitutability of middleware services.

1: Replacing
existing
services.

I3:Substitutability
of middleware
services

The scenario describes the integrability of components implemented
using different programming languages and is thus directly related
to this requirement.

5: Different
implementati
on languages

The scenario describes the integrability of components using different
component models and is thus directly related to this requirement.

4: Different
component
models.

The scenario describes how new applications can be implemented on
different platforms and different programming languages. This
makes it directly related to supporting diverse programming
languages.

2: A new
application is
integrated
into DiSeP.

I2: Diversity of
languages and
component
models

Step description

40

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

79

DiSePDiSeP -- PhasePhase 3: 3: EvaluatingEvaluating the the requirementsrequirements

• We start with the first requirement - I1: Style
conformance

• The requirement states that new components must
comform to the architectural style of the system.

• Evaluate the scenarios that were mapped to the I1
requirement with the relevant evaluation activities.

• The requirement concerns scenarios that add or
replace components

This includes most of the scenarios in DiSeP
• For each scenario that is relevant we check that they

maintain the architectural style
Architecture mismatch analysis

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

80

DiSePDiSeP -- PhasePhase 3: 3: CompareCompare evaluationevaluation resultsresults
withwith the the qualityquality goalsgoals

• Two important requirements are partly met
• Two less important quality requirements were not

supported
• All other requirements are met

• Most important level of requirements is partly met
• Second most important level is met
• Third and fourth level of requirements have some

unsupported requirements and are thus not met

• The identified conflicts are not considered serious for
the product family.

Step description

41

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

81

DiSePDiSeP -- PhasePhase 3: 3: IdentifyIdentify conflictsconflicts and and reportreport
improvementsimprovements

• Improvement suggestion: Use a
single component model that
allows

components written in
different programming
languages to be integrated
wrapping components using
other component models to
the used system component
model

• This allows the use of different
programming languages and
component models while
localizing the change

• DiSeP has two important
requirements that were evaluated
to partly met

I1: Style comformance
I2: Heterogeneity of
languages and component
models is managed

• This is because a change of the
implemention language of a
component can cause changes to
two components on two layers

Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

82

DiSePDiSeP -- PhasePhase 3: 3: ReportReport evaluationevaluation resultsresults

• Improvement suggestion: Use a
single component model to localize
change and meet the requirements

• Unsolved problems: Runtime
changes and doubled system
services are not considered in the
current architecture which makes
the two least important levels of
requirements not met

• The identified conflicts are not
considered serious for the product
family

• The level of requirements met:
Most important level is
partly met
Second most importal level
is met
Third and fourth level are
not met

• The most important level is
partly met because a scenario
integrating components in
different programming
languages can cause changes
to two components in two
layers.

Step description

42

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

83

DiSePDiSeP -- PhasePhase 3: 3: ArchitecturalArchitectural mismatchmismatch
analysisanalysis; ; stylesstyles

• Example scenario: Existing in-house
services are replaced with OS or COTS.

• The main architectural style is identified as
the ”Layers” architectural style where the
domains are the layers.

• A COTS database typically functions in a
client-server style. The in-house data storage
system is a simple data structure object for
storing data. Thus they have different
architectural styles and interfaces.

• In the example scenario the style and
interface differences are adapted by using an
adapter component. The change of
component is not visible to any components
connected to it.

Mismatch is avoided.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

84

DiSePDiSeP –– PhasePhase 3: 3: ArchitectureArchitecture mismatchmismatch
analysisanalysis; ; interfacesinterfaces

This is a special case of the getData service and can
be handled with the same service and some
extra processing.

executeQuerysearchServic
e

Both retrieve data and the parameters for getData
can be encoded in the SQL query for the
database.

executeQuerygetData

Both store data and the parameters for storeData
can be encoded in the SQL query for the
database.

executeUpdat
e

storeData

RationaleMySQLIn-house

The interfaces must be checked to see that the new component can
provide all the services that the old component provides.

The scenario considers replacing the inhouse component interface
with the MySQL JDBC interface and thus its services are
mapped to the services of the in-house data storage. The
mapping shows that all services can be provided.

Activity description

43

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

85

DiSePDiSeP -- PhasePhase 3: 3: DependencyDependency analysisanalysis

• Scenario: Components written in different
programming languages need to interact.

• Scenario describes using a proxy-converter
pair when needed to make components work
together.

• Changing one of the components to a
different programming language causes
changes to two components.

• This causes a ripple effect and changes to
two layers, making them more tightly coupled.
This is clearly not an optimal solution.

• What can be done to improve?
• Use the stylebase to look for another pattern

that could fix the problem -> suggestion: Use
a single component model.

cd serv ice_prov ider_proxy

«domain»
SystemServiceUserInterface

«domain»
SystemServ iceProv ider

«sub-domain»
SystemServ iceProv ider::SystemServ ices

«component»

ApplicationServ iceProv ider

«component»

DirectoryServ ice

«variationPoint»

v p

«variationPoint»

v p

«optional»

Proxy

«optional»

Conv erter

Activity description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

86

DiSePDiSeP -- PhasePhase 3: 3: ExtensibilityExtensibility analysisanalysis

• The most important DiSeP extensibility
requirement – E4: Component extensibility

• Extensibility of the architecture where it is
required should be as easy as possible.

• Identified extension points in DiSeP:
Transaction service needs to support
different variants.
Data storage service needs to support
different variants.
New protocols need to be supported by the
communication services.
It must be possible to extend the DiSeP
platform to new programming languages
and platforms.

cd DiSeP - w rapped data storage

«sub-domain»
BasicSystemServ ices::

DataManagementServ ices

«mandatory»

DSAdapter

«al ternative»

DataStorage:
OS

«alternative»

DataStorage:
COTS

«alternative»

DataStorage:
Inhouse

44

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

87

DiSePDiSeP -- PhasePhase 3: 3: AnalysisAnalysis of an of an extensionextension
pointpoint

• Communication protocols are used through the NetworkService component.
• The scenario describes this as a use of the facade pattern.
• The interface to the NetworkService component is always the same regardless

of which protocol is used to communicate with other nodes.
• Adding new protocols only requires changes to the NetworkService

component. Thus extensibility by adding support for new protocols easily is
supported and the appropriate patterns are used.

cd DiSeP - Protocol Facade

«domain»
CommunicationServ ices

«component»

SynchronousMediatorServ ice

«component»

InterpreterServ ice

«component»

AsynchronousMessagingServ ice

«mandatory»

Netw orkServ ice

«alternative»

TCP/IP

«alternative»

UDP

Activity description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

88

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVQLUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

45

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

89

QADA TOOLING SUPPORTQADA TOOLING SUPPORT

• Background:
• ’Stardardized’ documentation

• A pattern for component documentation
• A pattern for architecture documentation

• Model-Driven Development
• Quality-Driven Architecture Development

• Q-Stylebase
• Q-Tra tool extension

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

90

QQ--StylebaseStylebase –– PatternPattern RepositoryRepository

46

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

91

QQ--StylebaseStylebase -- UserUser InterfaceInterface

Query dialog Management dialog

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

92

QQ--TraTra ToolTool

• Stylebase
• Distributed database

• Q-Stylebase
• Model handler

• Access the modeling
tool

• Transformer
• Performs

transformations
• Rulebase

• Q-RDL
• Graphical user interface
• Mediator

• Provides loose
coupling between
components

• Modifiable
• Extensible

Structure active class QTra {1/1}Structure active class QTra {1/1}

mHandler : ModelHandler

mHandler : ModelHandler

Mediator : Mediator

Mediator : Mediator

dbHandler : DatabaseHandler

dbHandler : DatabaseHandler

transformer : Transformer

transformer : Transformer

uiHandler : UIHandler

uiHandler : UIHandler

StylebaseAccessStylebaseAccess ModelAccessModelAccess

RulebaseAccessRulebaseAccess

47

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

93

QQ--TraTra ToolTool

Q-Tra can be used in four ways
1. Electrical library for patterns

• Using such as pattern catalogues
2. Quality-driven architecture model

construction guide
• Choosing the most suitable patterns

for the problem by quality attributes
3. Quality-driven architecture model

evaluation guide
• Validating quality requirement by

browsing the stylebase by pattern
name

4. Quality-driven architecture model
transformation tool

• Transforms existing architecture to
another one

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

94

TUTORIAL OUTLINETUTORIAL OUTLINE

• INTRODUCTION
• Main concepts of QADA®

• CAPTURING AND MAPPING QUALITY REQUIREMENTS
TO ARCHITECTURE

• REPRESENTING QUALITIES IN ARCHITECTURE DESIGN
• EVALUATING EXECUTION QUALITIES

• RAP method
• EVQLUATING EVOLUTION QUALITIES

• IEE method
• (RE)USING EXISTING DESIGN KNOWLEDGE
• CONCLUSIONS

48

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

95

CAPTURING AND REPRESENTING QUALITIESCAPTURING AND REPRESENTING QUALITIES

QADA - QRF
• aims to enable quality evaluation at an early phase of

software development
• includes steps and techniques for eliciting quality

requirements, and transforming and modeling them in
product family architecture

• is suitable for product families, allowing to manage
variable requirements

• helps in evaluating that architecture meets the
requirements

• has been applied to two experiments (laboratory and
industrial)

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

96

EVALUATING EXECUTION QUALITIESEVALUATING EXECUTION QUALITIES

• QADA - RAP is a method for predicting reliability and
availability at the architectural level

• Consists of three phases:
1) Defining reliability and availability goals,
2) Representing reliability and availability in

architectural models by using RA profiles, and
3) Evaluating reliability and availability from

architecture
• Aims to improve reliability and availability of the

product family enabling quality prediction in early
development phase

• Tool support for evaluation has been developed as an
add-on to a commercial tool

49

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

97

EVALUATING EVOLUTION QUALITIESEVALUATING EVOLUTION QUALITIES

• QADA – IEE is for evaluating integrability and
extensibility at the architectural level

• Consists of three phases:
1. Defining IE Requirements
2. Scenarios Description
3. IE Evaluation

• Modelling and evaluation are scenario based with a set
of steps and activities defined for each phase.

• Aim is to evaluate quality at an early phase with minimal
time investment

• Evaluation is supported by a stylebase including a set of
styles and patterns

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

98

REFERENCES REFERENCES –– QADAQADA®®

• Niemelä, E. Strategies of Product Family Architecture Development. To appear in SPLC 2005, 12 p

• Niemelä, E., Matinlassi, M., Taulavuori, A. Practical Evaluation of Software Product Family Architectures, The 3rd International Conference
on Software Product Lines, SPLC3, August- September 2004, 130-145.

• Matinlassi, M.. Comparison of software product line architecture design methods: COPA, FAST, FORM, KobrA and QADA. - Proceedings of
the 26th International Conference on Software Engineering (ICSE 2004), Edinburgh, UK, 23 - 28 May 2004. (2004), 127 - 136.

• Dobrica, L., Niemelä, E. 2004. UML Notation Extensions for Product Line Architectures Modeling, The 5th Australasian Workshop on
Software System Architectures (AWSA 2004), Melbourne, Australia, April 13-14, 2004, 44-51.

• Lago, P, Niemelä, E., van Vliet, H. Tool Support for Traceable Product Evolution, European Conference on Software Maintenance and
Reengineering, CSMR, Tampere, Finland, March 24-26, 2004, 261-269

• Niemelä, E., Ihme, T. 2001. Product Line Software Engineering of Embedded Systems. Proceedings of SSR'01, Symposium on Software
Reusability, Toronto, Ontario, Canada, May 18-20, 2001, pp. 118-125.

• Niemelä, E., Kalaoja, J., Lago, P. Toward an architectural knowledge base for wireless service engineering. IEEE Trans. on
Software Engineering,Vol. 31, No 5, May 2005, pp. 361-379

• Purhonen, A., Niemelä, E., Matinlassi, M. Viewpoints of DSP Software and Service Architectures. In the Journal of Systems &
Software. 2004. Vol. 69, No. 1-2, 57-73.

• Merilinna, J., Matinlassi, M. Evaluation of UML tools for model-driven architecture. 11th Nordic Workshop on Programming and
Software Development Tool and Techniques NWPER'2004. Turku, 17 - 19 Aug. 2004. TUCS General Publications (2004)

• Niemelä, E., Matinlassi, M., Lago, P. Architecture-centric approach to wireless service engineering. The Annual Review of
Communications. International Engineering Consortium. Vol. 56. October 2003, 875-889. ISBN: 0-931695-22-9.

• Matinlassi, M., Niemelä, E, Dobrica, L. Quality-driven architecture design and quality analysis method. A revolutionary initiation
approach to a product line architecture. Espoo, VTT Electronics, VTT Publications 456, 2002, 128 p. + 10 p. ISBN 951-38-5967-3;
951-38-5968-1.

• Merilinna, J. 2005. A Tool for Quality-Driven Architecture Model Transformation. Espoo, VTT Electronics. 106 p. + app. 7 p. VTT
Publications; 561
ISBN 951-38-6439-1; 951-38-6440-5 http://www.vtt.fi/inf/pdf/publications/2005/P561.pdf

50

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

99

REFERENCES REFERENCES –– QADAQADA®®

• Immonen, A., Niemelä, E., Matinlassi, M. Evaluating the integrability of COTS components - software product family viewpoint. In: Testing Commercial-
off-the-Shelf Components and Systems, Beydeda, Sami; Gruhn, Volker (Eds.), Jan. 2005, Springer-Verlag, ISBN: 3-540-21871-8,. 141-168.

• Merilinna, J. and Niemelä, E. A Stylebase as a Tool of Quality-Driven Software Architecture Modelling. In: Proceedings of the Ninth
Symposium on Programming Languages and Software Tools, August 13-14, 2005, Tartu, Estonia. Pp. 97-111. ISBN 9949-11-113-7.

• Immonen, A., A method for predicting reliability and availability at the architectural level. To appear in Research Issues in Software Product-Lines -
Engineering and Management, Timo Käkölä and Juan Carlos Dueñas (Eds.), 2005, Springer.

• Immonen, A. and Niskanen, A. A tool for reliability and availability prediction. Accepted to the 31th Euromicro Conference on Software
Engineering and Advanced Applications. 2005, Porto, Portugal. 8 p.

• Matinlassi, M. Evaluating the portability and maintainability of software product family architecture: terminal software case study. - Proceedings of the 4th
IEEE/IFIP Conference on Software Architecture (WICSA), 12 - 15 June 2004 Oslo, Norway, Magee, J., Szyperski, C., Bosch, J. (Eds). IEEE Computer
Society (2004), 295 – 298

• Matinlassi, M., Niemelä, E. The impact of maintainability on component-based software systems. The 29th Euromicro conference, Component-based
software engineering track. Antalya, Turkey, 3-5 Sep. 2003, 25-32.

• Dobrica, L., Niemelä, E. A Survey on Software Architecture Analysis Methods. IEEE Transactions on Software Engineering, Vol. 28, No 7, July 2002,
638-653.

• Dobrica, L., Niemelä, E. A strategy for analysing product-line software architectures. VTT Espoo: Technical Research Centre of Finland, VTT
Publications 427, 2000, 124 p. ISBN 951-38-5598-8

• Dobrica, L.; Niemelä, E. 2000. Attribute-based product-line architecture development for embedded systems. Proceedings of the 3rd Australasian
Workshop on Software and Systems Architectures. Sydney, 19 - 20 Nov 2000. IEEE. US (2000), 76 – 88.

• See QADA also at http://www.vtt.fi/qada/

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,
Janne Merilinna, Antti Niskanen

100

OTHER REFERENCESOTHER REFERENCES

• Pohl, K., Böckle, G., van der Linden, F. J. Software Product Line Engineering. Foundations, Principles and Techniques. 2005, XXVI, 468 p., Springer-
Verlag, ISBN: 3-540-24372-0

• van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H. Software Product Family Evaluation. SPCL 2004, Boston, USA, pp. 110-129

• Bosch, J. On the Development of Software Product-Family Components. SPLC 2004, Boston, USA, pp. 146-164.

• Bass, L., Clements, P., Kazman, R.. Software Architecture in Practice. Reading, Massachusetts: Addison-Wesley, 1998.

• Bosch, J. Design and Use of Software Architectures - Adopting and Evolving a Product line Approach, Addison Wesley, 2000. ISBN 0-201-
67494-7.

• Hofmeister, C., Nord, R., Soni, D. Applied software architecture. Addison-Wesley, 1999.

• P. B. Krutchen. The 4+1 View Model of Architecture. IEEE Software, November 1995, pp. 42−50.

• Buhne, S., Chastek, G., Käkölä, T., Knauber, P., Northrop, L., Thiel, S.: Exploring the Context of Product Line Adoption. Lecture Notes in
Computer Science, Vol. 3013. Springer-Verlag, Berlin Heidelberg New York (2003)

• Schmidt, K., Verlage, M.: The Economic Impact of Product Line Adoption and Evolution. IEEE Software, 19 (4), (2002), 50-57.

• Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Boston, MA, USA: Addison-Wesley. (2002)

• van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Krzanik, L., Obbink, H.: Software Product Family Evaluation. Lecture Notes in Computer
Science, Vol. 3014. Springer-Verlag, Berlin Heidelberg New York (2003), 376-394

• Obbink, H., America, P., van Ommering, R., Muller, J., van der Sterren, W., Wijnstra, J. G.: COPA: A Component-Oriented Platform Architecting
Method for Families of Software-Intensive Electronic Products. SPLC1, (2000)

• America, P., Rommes, E., Obbink, H.: Multi-View Variation Modeling for Scenario Analysis. Lecture Notes of Computer Science, Vol. 3013.
Springer-Verlag, Berlin Heidelberg New York (2003)

• Wijnstra, J.G.: Evolving a Product Family in a Changing Context. Lecture Notes of Computer Science, Vol. 3013. Springer-Verlag, Berlin
Heidelberg New York (2003).

