

VIT TECHNICAL RESEARCH CENTRE OF FINLAND
2. QUALITY ANALYSIS
Goal:
To express quality requirements (QR) in a way that they can later be traced and measured
QAs must be prioritized
 Requirements on the highest priority level have always to be met in architecture (to be considered in trade-off analysis)
 Evaluation criteria are derived from the QRs and classified to evaluation levels,
e.g.:
Family specific QRs of
high priority
medium priority
low priority
System/domain specific QRs of
high priority
medium priority
LOWA DEJOLISTY emela, Anne Immonen, Teemu Kanstren, Mari Matinlassi, Janne Merilinna, Anti Niskanen

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
4. HIERARCHICAL DOMAIN ANALYSIS
Goal: To map common and variable QAs to hierarchical service categories
 The QRs common to all family members must be mapped to the common functionality of the family The architect has to decide which services are responsible for each quality requirement (scoping) One requirement may be mapped to several functional services (dependency mgmt) The quality requirements themselves may result to certain functionality (i.e. execution QAs) The requirements mapping is a specific work of the software architects and requires an extensive knowledge of the product family and its members Example
WICSA 2005 © Ella Niemelà, Anne Immonen, Teernu Kanstren, Mari Matinlassi, Janne Merilinna, Antti Niskanen

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
Step 1: ACTIVITIES
Estimate component and connector reliability as
Independent element
 Estimate the probability of failure of an independent component using
a Markov chain model, or
documentation
 Refine the achieved value with other properties of a component
 E.g. component size/estimated size, (planned) implementation technology, (planned) fault tolerance, etc.
 Estimate the probability of failure of the connectors
 Basing on the type of connection, interfaces, etc.
Case example WICSA 2005 © Ella Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi, Janne Merilinna, Antil Niskanen

Step 1: ACTIVITIES
Estimate component and connector reliability as
Dependent element
Simulate the system
 choose the elements for simulation
define input messages
create a simulation model and run the simulation <u>Case example</u>
 Basing on the results of simulation and the estimated probability of failure of independent elements, define and calculate
 the probability of failure of components and connectors in each system execution path
 the probability of failure of components and connectors in all execution paths (i.e. refined reliability of components and connectors in system. Case example
execution)
WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi, Janne Merilinna, Anti Niskanen

VTT TECHNICAL RESEARCH CENTRE OF FINLAND	
Step 2: QUAL	ITATIVE ANALYSIS
Purpose: to analyze whether or not the non-numerical requirements are met Results: analysis report on	 Activities: Track the R&A requirements to architecture Track the architectural properties to the requirements Compare the design decisions
how the architecture meets the requirements	 with the R&A requirements and analyze how the requirements are met Identify problems that may occur when certain R&A requirements are not met
WICSA 2005 © Ella Niemelä, Anne Immonen, Teen Janne Merilinna, Antti Niskanen	nu Kanstren, Mari Madriassi, Oxample 32

VTT TECHNICAL RESEARCH CENTRE OF FINLAND					
Step 3: DECISION MAKING					
	Activities:				
Purpose: to define whether or not the requirements are met	 Accept the architecture, or Revise the architecture by 				
well enough	 Decrease the probability of failure of components and their interactions choosing components with higher 				
Results: the decision to move to the next evaluation level or go back to the phase 2 to	 reliability (if available) implementing higher reliable components by eliminating software defects in their implementation 				
revise the architecture	 deploying software on more reliable hardware. 				
	 Change the architecture by 				
	 changing styles and patterns 				
WICSA 2005 © Eila Niemelä, Janne Merilinna. Antti Niskan	• introducing new mechanisms (e.g. fault tolerance or fault treatment) ane Immonen, Teemu Kansten, Mari Matirlassi, and				
	Case example				

VTT TECHNICAL	RESEARCH CENTRE OF FINLA	Refining quali	ty requirements	
	System	Functionality	R&A importance	
	S1: A middleware for game application	Light functionality	Low	
	S2: A middleware for health care application	Restricted functionality	Medium	
	S3:A middleware for emergency intervention application	Full functionality	High	
	WICSA 2005 © Eila Niemelä, Anne Immo	onen, Teemu Kanstren, Mari Matinlassi	. 31	3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DiSeP - Phase 1: Mapping R&A requirements to functionality					
Service	Responsibility	Family-specific R&A requirement	System-specific R&A requirements for S3		
Data distribution	Contributes to the operation of distributed data storage. Creates, maintains and tracks connections to other units in order to share data. Allows data to be stored in local resources. Negotiates about the copying, transferring or deleting data if necessary.	R2.1, R5, R6	R7R1-S3, R2.2-S3, R4 S3, R8-S3		
Location service	Sends after the given time period a notification signal about the existence of the node in the network. Maintains the location map of the network. Sends a signal to the user services of the own node to start registration when first time connected to the network. Announce the availability of the system services	R2.1, R6	R1-S3, A1-S3, R2.2-S A3-S3, R8-S3		
Advertiser	Informs the active system service provider the availability of the user services of the own node.	R2.1	R1-S3, R2.2-S3		
Observer	Routes messages from network to listeners and forward asynchronous messages. Routes outgoing messages to the network.	R2.1	R1-S3, R2.2-S3, R4-S		

VITTECHNICA	DiSeF	P - Pha	ase 1: e\	Defining o	crite	ria for R&A	
	Evaluation level	Evaluat	ion criteria			Corresponding requirement	
	Level 1	System family-specific requirements			ents	R2.1, R5, R6, R7	
Criteria for	Level 2	High level system-specific requirements				A1-S3, A2-S3, R1-S3, R3-S3, R4-S3, R8-S3, R9-S3	
evaluation of the DiSep	Level 3	Mediur	n level syst ements	em-specific		R2.2-S3, A3-S3, A4-S3	
system family	Level 4	Low le	vel system-	specific		-	
		require	requirements			7	
×	Evaluation criteria		Req.ID	Importance	Impa	acted architectural elements	
	Service capability to recover	1	R2.1	medium	All l serv	basic, system and communication ices	
	Data consistency		R5	medium	Data	a distribution	
	verification Data loss prevented in error situations		R7	medium	Data	a distribution]
	Data replication		R6	low	Data loca	a storage, data distribution, tion service	
WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi, Step description Janne Merilinna, Antti Niskanen							

D	iSeP - Phase 3	: Quantit	ative analysis	
 Predict system es sin 	ed probability of (in system exec timated probabil mulation	failure of ution), bas ity of failu	components of the sed on re of components, a	and
Comp.ID	Component	Accessed	Probability of failure	
Comp.ID C1	Component Application Service Provider	Accessed 1	Probability of failure 0,000275	
Comp.ID C1 C2	Component Application Service Provider Activator service	Accessed 1 5	Probability of failure 0,000275 0.005	
Comp.ID C1 C2 C3	Component Application Service Provider Activator service Data storage	Accessed 1 5 3	Probability of failure 0,000275 0.005 0.00075	
Comp.ID C1 C2 C3 C4	Component Application Service Provider Activator service Data storage Directory service	Accessed 1 5 3 1	Probability of failure 0,000275 0.005 0.00075 0,000125	
Comp.ID C1 C2 C3 C4 C5	Component Application Service Provider Activator service Data storage Directory service Data distribution	Accessed 1 5 3 1 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	Probability of failure 0,000275 0.005 0.00075 0,000125 0.001	

R&A requirement		
<u>^</u>	Conceptual level	Concrete level
R5: Data consistency is verified in every 5 seconds	Data distribution service negotiates about data copies, transfers and deletions with other units.	Data distribution component that starts data copying procedure every 5 seconds in the node of active system services.
R6: Data is replicated at least in 2 data storages	Each node includes a data storage that is continuously updated by the <u>data distribution</u> component. <u>Location service</u> of each node maintains the list of system services independently.	Each node includes a data storage that is continuously updated by the <u>data distribution</u> component. <u>Location service</u> of each node maintains the list of system services independently.
• Identific	Data distribution service node not up-to or Data distribution service failure pase error Timing error Beacon s system service	or the unmet requirement system date de location not in rvice provider list GR ignal about active location signal sending fails Step description

VTT TECHNICAL RESEARCH CENTRE OF FINLAND	to requirements
Purpose is to map the scenarios to requirements so the requirements can be evaluated through the scenarios.	Result is a mapping of scenarios to requirements with the following information • Which scenarios are related
Guidelines	to which requirement
 Map the scenarios that contribute something to that requirement in the architecture. 	 What solutions are used in each scenario to achieve the requirement
 One scenario can be mapped to many requirements. 	 How well does the scenario meet the requirement
 Don't Repeat Yourself - Some of the results information can be reported elsewhere in another form. 	 (Reasoning why a scenario is relevant to a requirement)
Case example WICSA 2005 © Ella Niemelä, Anne Immonen, Teemu Kanstren, Ma Janne Meriinna, Antii Niskanen	ari Matinlassi, 64

VTT TECHNICAL RESEARCH CENTRE OF FINI AND	
Evaluation activities	
_	
Purpose is to provide a set of evaluation activities to use to hel evaluate the scenarios.	p
Result from each activity is the analysis of a given aspect of qu	Jality
in a scenario.	
Activities defined for evaluating the scenarios:	
1. Architectural mismatch analysis	
2. Dependency analysis	
Extensibility analysis	
Simulation with instrumented components	
Guidelines	
Keen in mind the requirement and evaluate the scenarios not o	nlv
based on the given activities but by what is relevant for the	illy
scenario and requirement.	
WICSA 2005 © Eila Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi,	69
Janne Merilinna, Antti Niskanen	

DiSeP - Phase 3: Mapping scenarios to requirements				
Requirement	Scenario	Reasoning for mapping		
I2: Diversity of languages and component models	2: A new application is integrated into DiSeP.	The scenario describes how new applications can be implemented on different platforms and different programming languages. This makes it directly related to supporting diverse programming languages.		
	4: Different component models.	The scenario describes the integrability of components using different component models and is thus directly related to this requirement.		
	5: Different implementati on languages	The scenario describes the integrability of components implemented using different programming languages and is thus directly related to this requirement.		
I3:Substitutability of middleware services	1: Replacing existing services.	The scenario considers replacing the data storage service which is a middleware service and has alternative variants. Thus it relates to substitutability of middleware services.		
	7: Adding the transaction service.	The scenario concerns the transaction service which is a middleware service. The scenario also describes the services alternative variants and thus the services substitutability.		

	Di	SeP – Pha ai	ise 3: Architecture mismatch nalysis; interfaces	
Т	he interfaces provide all	s must be ch the service	necked to see that the new component s that the old component provides.	ent can
1	with the M	vSQL JDBC	c interface and thus its services are	CHACE
	mapped to mapping sl	hows that a	es of the in-house data storage. The Ill services can be provided.	;
	mapped to mapping sl	hows that a	es of the in-house data storage. The Ill services can be provided.	
	mapped to mapping sl	the service hows that a MySQL executeUpdat e	es of the in-house data storage. The Ill services can be provided. Rationale Both store data and the parameters for storeData can be encoded in the SQL query for the	
	mapped to mapping sl In-house storeData getData	the service hows that a MySQL executeUpdat e executeQuery	es of the in-house data storage. The Ill services can be provided. Rationale Both store data and the parameters for storeData can be encoded in the SQL query for the Both refrereve data and the parameters for getData can be encoded in the SQL query for the	

VTT TECHNICAL RESEARCH CENTRE OF FINLAND	
 VTT TECHNICAL RESEARCH CENTRE OF FINLAND DiSeP - Phase 3: Extensibility The most important DiSeP extensibility requirement – E4: Component extensibility Extensibility of the architecture where it is required should be as easy as possible. Identified extension points in DiSeP: Transaction service needs to support different variants. Data storage service needs to support different variants. 	cd DISeP - wrapped data storage SaisSystemServices: DataManagementServices saitematives waltematives waltematives attematives attematives attematives attematives attematives attematives bataStorage: DataStorage: COTS
New protocols need to be supported by the communication services.	
It must be possible to extend the DiSeP platform to new programming languages and platforms.	
WICSA 2005 © Ella Niernelä, Anne Immonen, Teernu Kanstren, Mari Matinlassi, Janne Merilinna, Antti Niskanen	86

VTT TECHNICAL RESEARCH CENTRE OF FINI AND
REFERENCES – QADA®
Niemelä, E. Strategies of Product Family Architecture Development. To appear in SPLC 2005, 12 p
 Niemelä, E., Matinlassi, M., Taulavuori, A. Practical Evaluation of Software Product Family Architectures, The 3rd International Conference on Software Product Lines, SPLC3, August-September 2004, 130-145.
 Matinlassi, M Comparison of software product line architecture design methods: COPA, FAST, FORM, KobrA and QADA Proceedings of the 26th International Conference on Software Engineering (ICSE 2004), Edinburgh, UK, 23 - 28 May 2004. (2004), 127 - 136.
 Dobrica, L., Niemelä, E. 2004. UML Notation Extensions for Product Line Architectures Modeling, The 5th Australasian Workshop on Software System Architectures (AWSA 2004), Melbourne, Australia, April 13-14, 2004, 44-51.
 Lago, P, Niemelä, E., van Vliet, H. Tool Support for Traceable Product Evolution, European Conference on Software Maintenance and Reengineering, CSMR, Tampere, Finland, March 24-26, 2004, 261-269
 Niemelä, E., Ihme, T. 2001. Product Line Software Engineering of Embedded Systems. Proceedings of SSR'01, Symposium on Software Reusability, Toronto, Ontario, Canada, May 18-20, 2001, pp. 118-125.
 Niemelä, E., Kalaoja, J., Lago, P. Toward an architectural knowledge base for wireless service engineering. IEEE Trans. on Software Engineering/Vol. 31, No S, May 2005, pp. 361-379
 Purhonen, A., Niemelä, E., Matinlassi, M. Viewpoints of DSP Software and Service Architectures. In the Journal of Systems & Software. 2004. Vol. 69, No. 1-2, 57-73.
 Merilinna, J., Matinlassi, M. Evaluation of UML tools for model-driven architecture. 11th Nordic Workshop on Programming and Software Development Tool and Techniques NWPER'2004. Turku, 17 - 19 Aug. 2004. TUCS General Publications (2004)
 Niemelä, E., Matinlassi, M., Lago, P. Architecture-centric approach to wireless service engineering. The Annual Review of Communications. International Engineering Consortium. Vol. 56. October 2003, 875-889. ISBN: 0-931695-22-9.
 Matinlassi, M., Niemelä, E, Dobrica, L. Quality-driven architecture design and quality analysis method. A revolutionary initiation approach to a product line architecture. Espoo, VTT Electronics, VTT Publications 456, 2002, 128 p. + 10 p. ISBN 951-38-5967-3; 951-38-5966-1.
 Merilinna, J. 2005. A Tool for Quality-Driven Architecture Model Transformation. Espoo, VTT Electronics. 106 p. + app. 7 p. VTT Publications; 561 ISBN 951-38-46439-1; 951-38-6440-5 http://www.vtt.fl/inf/od/publications/2005/P561.pdf
WICSA 2005 © Ella Niemelä, Anne Immonen, Teernu Kanstren, Mari Matinlassi, 98 Janne Merilinna, Antti Niskanen

V	TT TECHNICAL RESEARCH CENTRE OF FINLAND
	OTHER REFERENCES
•	Pohl, K., Böckle, G., van der Linden, F. J. Software Product Line Engineering. Foundations, Principles and Techniques. 2005, XXVI, 468 p., Springer- Verlag, ISBN: 3-540-24372-0
•	van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H. Software Product Family Evaluation. SPCL 2004, Boston, USA, pp. 110-129
•	Bosch, J. On the Development of Software Product-Family Components. SPLC 2004, Boston, USA, pp. 146-164.
•	Bass, L, Clements, P., Kazman, R Software Architecture in Practice. Reading, Massachusetts: Addison-Wesley, 1998.
•	Bosch, J. Design and Use of Software Architectures - Adopting and Evolving a Product line Approach, Addison Wesley, 2000. ISBN 0-201- 67494-7.
•	Hofmeister, C., Nord, R., Soni, D. Applied software architecture. Addison-Wesley, 1999.
•	P. B. Krutchen. The 4+1 View Model of Architecture. IEEE Software, November 1995, pp. 42–50.
•	Buhne, S., Chastek, G., Käkölä, T., Knauber, P., Northrop, L., Thiel, S.: Exploring the Context of Product Line Adoption. Lecture Notes in Computer Science, Vol. 3013. Springer-Verlag, Berlin Heidelberg New York (2003)
•	Schmidt, K., Verlage, M.: The Economic Impact of Product Line Adoption and Evolution. IEEE Software, 19 (4), (2002), 50-57.
•	Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Boston, MA, USA: Addison-Wesley. (2002)
•	van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Krzanik, L., Obbink, H.: Software Product Family Evaluation. Lecture Notes in Computer Science, Vol. 3014. Springer-Verlag, Berlin Heidelberg New York (2003), 376-394
•	Obbink, H., America, P., van Ommering, R., Muller, J., van der Sterren, W., Wijnstra, J. G.: COPA: A Component-Oriented Platform Architecting Method for Families of Software-Intensive Electronic Products. SPLC1, (2000)
•	America, P., Rommes, E., Obbink, H.: Multi-View Variation Modeling for Scenario Analysis. Lecture Notes of Computer Science, Vol. 3013. Springer-Verlag, Berlin Heidelberg New York (2003)
•	Wijnstra, J.G.: Evolving a Product Family in a Changing Context. Lecture Notes of Computer Science, Vol. 3013. Springer-Verlag, Berlin Heidelberg New York (2003).
	WICSA 2005 © Elia Niemelä, Anne Immonen, Teemu Kanstren, Mari Matinlassi, Janne Merilinna, Antti Niskanen