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Abstract. Priority queueing is the basic technique for providing real-time Quality of Service
to packet-based networking. The mathematical analysis of priority queues with general traffic
models is, however, prohibitively difficult, in particular when the traffic is long-range depen-
dent. This paper provides some important steps forward in this direction. Our analysis is the
first mathematically rigorous treatment of path-space large deviations of priority queues with
class-wise heterogeneous Gaussian input having an arbitrary correlation structure. This includes
the computation of the most probable paths that lead to overflow in one of the queues. Com-
pared with earlier work on the same topic, the paper provides three novel contributions: a new
representation of the workload in the low-priority queues, an exact characterization of the most
probable paths, and an extension of the analysis to virtual waiting times, in addition to queue
lengths.
Keywords: priority queue, large deviations, Gaussian process, fractional Brownian motion

1 INTRODUCTION

Priority queueing is the basic technique for providing Quality of Service (QoS) to packet-based
networking, which is crucial for real-time services in particular. Advanced scheduling mecha-
nisms are applied in the context of service differentiation, e.g., based on theDiffservprinciples
supported by the IETF (Internet Engineering Task Force). This motivates the need for tractable,
yet accurate performance evaluation methods for priority queues that work for a variety of input
processes, including long-range dependent traffic. The mathematical analysis of priority queues
with such general traffic models is, however, prohibitively difficult. In this paper we present a
novel, rigorous methodology for analyzing path-space large deviations of priority queues with
general Gaussian input traffic. Though the approach itself is mathematically quite advanced
and not necessarily directly applicable to real engineering problems, one of the main implica-
tions is that the more tractable performance formulae heuristically derived in [1, 2] can now be
motivated rigorously.



Gaussian processes have found wide-spread use as traffic model when considering perfor-
mance analysis of communication networks. They are attractive because of several nice features;
in particular, a Gaussian processAt with stationary increments is completely characterized by
its mean ratem= E{A1} and cumulative variance functionv(t) = Var(At), which can be rea-
sonably well estimated from measurement data. Moreover, Gaussian models of large traffic
aggregates can be justified by the Central Limit Theorem [3]. Measurement studies indicate
that the Gaussian model is accurate in many situations, as long as the time-scales considered
are not too small, and the aggregation level is sufficiently high, see e.g. [4].

The results on path-space large deviations of Gaussian processes were first applied to a
queueing context in [5]. The approach was extended to ordinary queues with general Gaussian
input in [6, 2], and then, in the form of heuristic approximations and bounds, to priority and
Generalized Processor Sharing (GPS) queues in [7, 2]. An essential tool for obtaining exact
identification of most probable paths (MPP s) in tandem and priority queues is what could be
called the ‘theory of infinite intersections’, as developed in [8]. It was used recently to identify
the most likely path to overflow in the tandem queue [9], and the present paper shows how
it can be applied in the setting of priority queues. A particular subtlety in our analysis is that
the smoothness of the input process plays a dominant role: non-smooth processes such as the
highly irregular fractional Brownian motion (fBm) give rise to an essentially different type of
MPP than smooth processes such as the integrated Ornstein-Uhlenbeck (iOU) process. We note
that other earlier large deviation studies for tandems, priority queues, and GPS predominantly
focused on asymptotics for short-range dependent input, see, among many other papers, [10,
11].

This paper is organized as follows. Section 2 presents our definition of a priority queue,
which differs from previous definitions, and works very well in the Gaussian case. Section 3
presents preliminaries on the Gaussian large deviation apparatus. In Section 4, we focus, for
the two-class setting, on the most probable paths leading to a large queue for the low-priority
traffic. In Section 5 we make a corresponding analysis of the virtual waiting time of the second
class traffic. Section 6 illustrates the technique with two qualitatively different traffic models:
fBm and iOU. Concluding remarks are made in Section 7.

2 THE PRIORITY QUEUE

We use the following notation throughout. Fors< t, At −As presents the amount of input traffic
in time interval(s, t], and we setA0≡ 0. We always assume that the input process is ergodic and
has stationary increments, i.e., for anyt0 ∈ R, the processes(At)t∈R and(At+t0 −At0)t∈R have
the same finite-dimensional distributions.

We consider a single queueing system with multiclass traffic and a strict priority queueing
discipline. Let the input traffic consist ofk classes, and denote the cumulative arrival process
of class j ∈ {1, . . . ,k} by (A j

t )t∈R. We also denoteA j(s, t) .= A j
t −A j

s. Consider first the case of
a simple queue, i.e.,k = 1, and let the server have a constant capacityc. The storage process
(queue length process) is then defined asQ1

t = sups≤t(A
1
t −A1

s− c(t − s)). The processQ1 is
obviously stationary, and a sufficient stability condition is thatE{A1

1}< c.
Let us then turn to priority queues. Assume that the traffic of class 1 has highest priority,

class 2 the second highest, and so on. Our interpretation of the strict priority system is that
for any j = 1, . . . ,k− 1, traffic in classes 1, . . . , j is in no way affected by traffic in classes



j + 1, . . . ,k. Since we are considering fluid type input, there is no distinction between pre-
emptive and non-pre-emptive priority. A common way to define the second class queue would
be to consider both the total queue, sayQ12, and the first class queue,Q1 as ‘simple’ queues,
and then defineQ2 = Q12−Q1. This approach was also applied in the Gaussian context [7, 2],
although it was noted that it does not rule out thatQ2 may obtain negative values (albeit with
small probability). This unpleasant feature is avoided by the following novel definition (which
coincides to the previous one when the processes(Ai

t)t∈R are non-decreasing).
The idea (for which the authors are grateful to Venkat Anantharam and Takis Konstantopou-

los) is to define first the cumulative capacity available for the second class, sayC2, as a non-
decreasing process. Starting from the natural relationC2

t −C2
s =

(
c(t−s)−Q1

s− (A1
t −A1

s)
)+

and requiring thatC2 be non-decreasing, it follows that

C2
t −C2

s = sup
u∈(s,t]

(
c(u−s)−Q1

s− (A1
u−A1

s)
)+

=
(

sup
u∈(s,t]

(cu−A1
u)−sup

v≤s
(cv−A1

v)
)+ = sup

u≤t
(cu−A1

u)−sup
v≤s

(cv−A1
v).

Thus, we can define simplyC2
t = sups≤t(cs−A1

s), which yields a non-decreasing process with
stationary increments. We haveC2

0 = Q1
0, which can be subtracted to make the process go

through the origin. (Note also thatA1
t − ct = C2

t −Q1
t , i.e., (C2,Q1) is the solution of Sko-

rohod’s reflection problem for the processA1
t − ct.) Our definition of the second class queue

length processQ2
t is nowQ2

t = sups≤t(A
2
t −A2

s− (C2
t −C2

s)). In general, we define inductively

C j
t

.= sup
s≤t

(C j−1
s −A j−1

s ), Q j
t

.= sup
s≤t

(A j
t −A j

s− (C j
t −C j

s)), j = 2, . . . ,k.

It is crucial for our large deviation analysis that the event{Q2
0 > x} can be written in a

union-intersection form as follows. SinceC2
0 = supv≤s(v−A1

v)∨supu∈[s,0](u−A1
u) for s≤ 0, we

haveC2
0−C2

s = [supu∈[s,0](u−A1
u)−C2

s ]
+. Now,

{Q2
0 ≥ x}=

⋃
s≤0

{[ sup
u∈[s,0]

(cu−A1
u)−C2

s ]
+ ≤−A2

s−x}

=
⋃
s≤0

(
{ sup

u∈[s,0]
(cu−A1

u)−C2
s ≤−A2

s−x}∩{−A2
s−x≥ 0}

)
=

⋃
s≤0

(
{ sup

u∈[s,0]
(cu−A1

u)≤−A2
s−x+sup

t≤s
(ct−A1

t )}∩{−A2
s−x≥ 0}

)
=

⋃
s≤0

⋃
t≤s

( ⋂
u∈[s,0]

{A1
u−A1

t ≥ c(u− t)+A2
s +x}∩{−A2

s−x≥ 0}
)

=
⋃
s≤0

⋃
t≤s

⋃
a≥x

( ⋂
u∈[s,0]

{A1
u−A1

t ≥ c(u− t)+x−a}∩{−A2
s = a}

)
. (1)

Similarly, an expression for{Q3
0 ≥ x}, etc., can be found.

In addition to queue lengths, we are also interested in the delays. We give the following
intuitive definition of the virtual waiting time (v.w.t.) of classj at timet, denoted asV j

t : we say
thatV j

t = τ if a ‘fluid molecule’ of classj entering the system at timet, is transmitted at time
t + τ. In a fluid model with fixed service rate, the v.w.t. of a simple queue is proportional to the



queue length. Evidently, the class 1 queue is simplyV1
t

.= Q1
t /c. For j > 1, the natural definition

of V j
t is the time remaining to the next timet +τ such that all work in the queues 1, . . . , j at time

t has been served and, additionally, all work from the classes 1, . . . , j − 1 that arrived during
(t, t + τ] has been served, too:

V j
t

.= τ
j

t − t, τ
j

t = inf
{

u > t :
j

∑
i=1

Qi
t +

j−1

∑
i=1

(Ai
u−Ai

t) < c(u− t)
}
. (2)

In the rest of this paper, we restrict to the case of two priority classes.

3 THE LARGE DEVIATION FRAMEWORK FOR GAUSSIAN
SYSTEMS

3.1 The Gaussian traffic model

We assume that the processesA j are independent, continuous Gaussian processes with station-
ary increments and denote

A j
t = mjt +Z j

t , m=
k

∑
i=1

mi , Var
(

Z j
t

)
= v j(t), Γj(s, t) = Cov

(
Z j

s,Z
j
t

)
,

where theZ j ’s are centered (zero-mean) processes. To exclude pathological cases, we assume
that there exist numbersα0,α∞ ∈ (0,2] such thatv(h)/hα0 is bounded forh ∈ (0,1), and
limt→∞ v(t)/tα∞ = 0. We also assume that all finite-dimensional distributions of the process
(Z1, . . .Zk) are non-singular.

We call a Gaussian processZ smoothat t, if it has a Bochner derivative at 0, that is, there
exists a random variableZ′t ∈G such that limh→0E{(Z′t − (Zt+h−Zt)/h)2}= 0. It follows from
the stationarity of increments that ifZ is smooth at 0, then it is smooth at allt ∈ R. It takes
some straightforward analysis to verify that fBm, with variance functiont2H for some Hurst
parameterH ∈ (0,1), is non-smooth, as opposed to iOU, with variance functiont−1+e−t (in
fact,Z′t is a normally distributed with mean 0 and variance1

2).
The reproducing kernel Hilbert space (RKHS) of a Gaussian process plays a crucial role in

the large deviation asymptotics. Fori = 1, . . . ,k, the RKHSRi of Zi is defined as follows: start
with the functionsΓi(t, ·), t ∈ R, define their inner product as

〈Γi(s, ·),Γi(t, ·)〉Ri

.= Γi(s, t),

extend to a linear space (with pointwise operations), and complete the space with respect to
the norm‖ f‖Ri

.= 〈 f , f 〉Ri . The RKHS of the multivariate process(Z1
t , . . . ,Zk

t ) can be defined
as spaceR

.= R1×·· ·×Rk with inner product〈( f1, . . . , fk),(g1, . . . ,gk)〉R
.= ∑k

i=1〈 fi ,gi〉Ri . The
correspondenceZi

t ↔ Γi(t, ·) extends to a Hilbert space isometry between a subspace ofL2 and
Ri . If Zi is smooth, thenΓi(s, t) has partial derivatives, and the isometry counterpart ofZi

t
′
in R

is the functionΓ ′
i (t,s) .= (d/dt)Γ (t,s).



3.2 The large deviation principle and the most probable paths

In large deviations asymptotics in the so-called ‘many sources regime’, one lets the input be a
superposition ofn independent, identically distributed streams, and scales the server capacityc
and the considered buffer levelx by n as well. LetB

.=
{

Q1
0 > x1,Q2

0 > x2; V1
0 > v1,V2

0 > v2
}

.
Now the scaling implies the following reduction. Replace the input process vector by a super-
position ofn independent identical copies of(A1,A2) and the server capacityc by nc. Denote
the corresponding class-wise queue length process vectors by(Q1,n,Q2,n) and the v.w.t. pro-
cess vectors by(V1,n,V2,n). Writing down the conditions and dividing the inequalities byn, we
obtain

P
(

Q1,n
0 > nx1,Q

2,n
0 > nxk; V1,n

0 > v1,V
2,n
0 > v2

)
= P

(
Z√
n
∈ B

)
, (3)

since the superposition ofn i.i.d. centered Gaussian processes is one more copy of the same
process, multiplied by

√
n.

The asymptotics of large deviation probabilities of the type (3) are given by (the general-
ized version of) Schilder’s theorem (see Bahadur and Zabell [12]; for general basics on large
deviation theory, see, e.g., [13]). Skipping technical details, ‘Schilder’ tells the following. Let
B be some ‘well-behaving’ set of pathsω of the Gaussian processZ (e.g., a convex set with
non-empty interior, the complement of such a set, etc.). Then

lim
n→∞

1
n

logP
(

Z√
n
∈ B

)
=− inf

ω∈B

1
2
‖ω‖2

R.

In this large deviations principle, the norm|| f || of a path in the reproducing kernel Hilbert
space of the underlying Gaussian process plays a crucial role; the probability of the Gaussian
process being in some closed setD is directly related to the pathf ∗ with minimal norm, i.e.,
argminf∈D|| f ||. If unique, the pathf ∗ has the interpretation of themost probable path(MPP)
in D, and the exponential decay rate of the probability ofD is given by1

2|| f
∗||2.

For various specific setsD the MPP has been found. when the event can be written as a
unionof events, i.e.,D =∪t>0Dt , the problem reduces to a simpler problem: the decomposition

inf
f∈D

|| f ||= inf
t>0

inf
f∈Dt

|| f ||

applies. In particular, in the one-dimensional case the second infimum is immediately given in
the case that eachDt is a half-space of the formDt = {Zt > dt}: the minimizing path is then a
multiple of a single covariance function:(dt/v(t))Γ (t, ·) [2]. The opposite case, whereD is an
(infinite) intersectionof half-spaces, is fairly non-trivial. The only general result seems to be
the following [8].

Theorem 1. Consider the one-dimensional case k= 1, Z = Z1. Let ζ ∈ R and let S⊆ R be
compact. Denote Bζ ,S

.= { f ∈ R : f (s)≥ ζ (s) ∀s∈ S}. Then there exists a unique function
β ∗ ∈ Bζ ,S satisfying‖β ∗‖= min{‖ f‖ : f ∈ Bζ ,S}. Moreover,β ∗ ∈ Ro

S∗ ∩RS, where

S∗ = {t ∈ S: β
∗(t) = ζ (t)}, RS= sp{Γ (s, ·) : s∈ S}, Ro

S∗ =
⋂
u>0

sp{Γ (s, ·) : s∈ S∗+[−u,u]}.

If Ro
S∗ ∩RS = RS∗

.= sp{Γ (s, ·) : s∈ S∗}, thenβ ∗(t) = E [Zt |Zs = ζ (s) ∀s∈ S∗].



The ‘message’ of this theorem is that the minimizing path is determined through the points
S∗ where it touches the curveζ , plus, in the case that the process is smooth, the infinitesimal
environments of those points.

4 MOST PROBABLE PATHS WITH A LARGE VALUE OF Q2

To make a large-deviations analysis of the overflow event{Q2
0 ≥ x} accessible to our methods,

we should write it in terms of half-spaces in such a way that unions precede intersections: i.e.,
if E = ∪t ∩sEs,t , then inff∈E || f || = inft inf f∈∩sEs,t || f ||, and it turns out that inff∈∩sEs,t || f || can
be tackled by applying Theorem 1. Indeed, the form (1) is exactly of this type:

{Q2
0 ≥ x}=

⋃
s≤0

⋃
t≤s

⋃
a≥x

(
B1

x,s,t,a∩B2
s,a

)
, (4)

whereB1
x,s,t,a

.= {A1
u−A1

t ≥ c(u− t)+x−a ∀u∈ [s,0]} andB2
s,a

.= {−A2
s = a}.

The above form tells us already a lot about the most probable paths in{Q2
0 ≥ x}. First, if

we can characterize the most probable path pairs in the eventsB1
x,s,t,a∩B2

s,a and compute their
norms, then the rest is just a minimization of a known numerical function (overs, t,a), as argued
above. Second, since each eventB1

x,s,t,a∩B2
s,a is convex and closed and its intersection with the

kernel spaceR is non-empty, it has a unique MPP pair. Third, the independence of the priority
classes yields that the MPP pair consists of the MPP s of each of the setsB1

x,s,t,a andB2
s,a taken

separately. In particular, as remarked earlier, the MPP in sets of the typeB2
s,a is always a multiple

of a single covariance functionΓ2(s, ·).
Let us consider the eventB1

x,s,t,a with fixed parameterst ≤ s≤ 0, a≥ x. By the stationarity
of the increments, the eventB1

x,s,t,a is stochastically equivalent to

B̃1
x,s,t,a = {Z1

u ≥ (c−m1)u+x−a ∀u∈ [s− t,−t]}.

This in turn is very close to the form appearing in Theorem 1. The only difference is that the
functionu 7→ (c−m1)u+x−a does not go through the origin whena> x, but this modification
is easily seen to be nonessential. Indeed, it suffices to assume that for eachh ∈ (0,−t) there
exists a functionζh∈Rsuch thatζh(u) = (c−m1)u+x−a for u∈ [h,−t], which is more or less
always true (for all ‘usual’ processes at least). For the cases= t, chooseh so small that the most
probable path in{Zu ≥ (c−m1)u+x−a ∀u∈ [h,−t]} is above the lineu 7→ (c−m1)u+x−a
for all u∈ [0,−t].

The case thatζh(−t) ≤ 0 is not interesting, because the corresponding most probable path
of Z1 would be identically zero. Assume then thatζh(−t) > 0, and letβ ∗ be the most probable
path inB̃1

x,s,t,a. Now there are two possibilities.

– Case 1.The MPP isβ ∗ = a−x−m1|t|
v1(t)

Γ1(|t|, ·) if

a−x−m1|t|
v1(t)

Γ1(|t|,u)≥ (c−m1)u+x−a for u∈ [s− t,−t],

– Case 2.In the remaining case, we can, in principle, determine the MPPβ ∗ with the methods
developed in [8], see Theorem 1.



Case 1 basically refers to the solution when one would requireZ1
u ≥ (c−m1)u+x−a just

for u =−t. Hence, an optimization is done over a larger set, and, evidently, if the resulting path
is in the smaller set̃B1

x,s,t,a, we are done.
In Case 2, it is probably always true thatβ ∗(−t) = ζh(−t), although we have not been able

to prove this in general. When this holds, the corresponding queue length path has a busy period
that starts at the point whereβ ∗ hitsζh first time afters− t, and ends at time−t. The dichotomy
of the cases 1 and 2 is essentially the same as that observed in [2], and has a longer history in the
form of the so-called ‘empty buffer approximation’ of Berger and Whitt [14, 15]. Our findings
so far can be summarized as follows.

Proposition 1. Let x> 0, and let(γ1,γ2) ∈ R be an MPP pair of the event{Q2
0 ≥ x}. Then,

there are numbers s> 0 and a≥ x such that

γ2(·) =−a−m2s
v2(s)

Γ2(−s, ·).

With the input(γ1,γ2), the busy period of Q2 covering the origin starts at time−s.
We always have Q10(γ1,γ2) = 0. Regarding the form ofγ1, there are two possibilities. Either

γ1(·) =
a−x−m1t

v1(t)
Γ1(−t, ·), (Case 1)

where s and a are the same numbers as withγ2, and t is some number such that t≥ s; or Q1 has
a busy period starting later than time−s and ending at time 0 (Case 2).

The resulting decay rate is12||γ1||2R1
+ 1

2||γ2||2R2
.

TheRough Full Link Approximation(RFLA) (see [1, 2]) is the following heuristic to obtain
an approximation of‖(γ1,γ2)‖R in Case 2: take the MPPs of the events{A1

t ≥ ct} and{A2
t ≥ x},

and minimize their joint norm w.r.t.t > 0. The first event is close to the occurrence of a busy
period of lengtht (”Full Link Approximation” in [1]), which in turn is close to our exact de-
scription of Case 2, where the starting points of the class 1 busy period and the class 2 queue do
not coincide.

5 MOST PROBABLE PATHS OF EXCEEDING A DELAY
THRESHOLD

In this section we focus on the most probable path (and the resulting decay rate) for the event
of the virtual delay of the low priority queue exceeding some predefined threshold. Noting that
Q1

0 = C2
0 in the definition of the virtual waiting time (2), we have

{V2
0 ≥ t}= {Q1

0 +Q2
0 +A1

u ≥ cu, ∀u∈ [0, t]}
= {C2

0 +sup
s≤0

(−A2
s− (C2

0−C2
s))+A1

u ≥ cu, ∀u∈ [0, t]}

= {sup
s≤0

(−A2
s +sup

v≤s
(cv−A1

v))+A1
u ≥ cu, ∀u∈ [0, t]}

= { sup
v≤s≤0

(−A2
s−A1

v +cv)≥ sup
u∈[0,t]

(cu−A1
u)}

=
⋃

v≤s≤0

{A1(v,u)≥−A2(s,0)+c(u−v), ∀u∈ [0, t]},
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Fig. 1.The shapes of the most probable paths for fractional Brownian motion (H = 0.8) in the set{Zu−ζ (u)≥ 0,∀u∈ [τ1,τ2]}.

where we recall thatAi(t1, t2) = Ai
t2−Ai

t1. Hence, analogously to (1), we have

{V2
0 ≥ t}=

⋃
v≤s≤0

⋃
a∈R

(
D1

t,s,v,a∩D2
s,a

)
, (5)

whereD1
t,s,v,a

.= {A1(v,u)≥−a+c(u−v) ∀u∈ [0, t]} andD2
s,a

.= B2
s,a = {A2(s,0) = a}. After

fixing s, t,v,a with v < s≤ 0 ≤ t, the stochastically equivalent problem is to study the set
D̃1

t,s,v,a
.= {Z1

u ≥ (c−m1)u−a,∀u∈ [−v,−v+ t]}. Hence, we have again reduced our problem
to an event in which the unions precede intersections, and, as a consequence, we can again
invoke Theorem 1.

6 EXAMPLES

In our setting, the most probable path of the second class traffic is always a multiple ofΓ (s, ·).
Thus we restrict ourselves to finding the most probable path either inB̃1

s,t,a or in D̃1
t,s,v,a. Define

for 0≤ τ1≤ τ2, Uτ1,τ2

.= { f : f (u)≥ ζ (u), u∈ [τ1,τ2]}, whereζ (u) .=−a+buwith a≥ 0 and
b> 0. It is easy to see that both̃Bs,t,a andD̃t,s,v,a can be written in this form. (In the delay setting,
it is possible thata < 0, corresponding to negativeA2

s. For positively correlated processes, this
situation can be ruled out by the ‘waste of energy’ argument.)

With β ∗ = argmin{‖ f‖ : f ∈Uτ1,τ2} andβS(·)
.= E [Z· |Zs = ζ (s) ∀s∈ S], Theorem 1 states

that the MPP for non-smooth processes (such as fBm) is always of the formβS∗ with some
S∗ ⊂ [τ1,τ2]. For smooth processes (like iOU), we sometimes need conditions on derivatives.

In the following, we show the MPP s for fBm and iOU. The casea = τ1 = 0 corresponds
to the busy period problem which was studied in [8, 5]. For other parameter values, the proofs
of [9] hold with minor changes. Once these paths are known, the corresponding norms are
determined; then calculation of the rate function is a straightforward, though computationally
involved, minimization problem in 3 dimensions.

For fractional Brownian motion, essentially three different shapes are possible:

(i) If requiring that f (τ2) = ζ (τ2) leads to a feasible path, we are done, i.e.,β ∗ = β{τ2}. The
left column in Fig. 1.
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Fig. 2.The shapes of the most probable paths for integrated Orstein-Uhlenbeck input in the set{Zu−ζ (u)≥ 0,∀u∈ [τ1,τ2]}.

(ii) Else, requiref (τi) = ζ (τi), i = 1,2. If this leads to feasible path, we are done, i.e.,β ∗ =
β{τ1,τ2}. The upper plot in the middle in Fig. 1.

(iii) Otherwise, there exists an intervalS∗ ⊂ [τ1,τ2/2], such thatβS∗∪{τ2} is the most probable
path. The intervalS∗ has to be determined numerically, as there are no analytical results
available. The lower plot in the middle and the right column in Fig. 1.

For integrated Ornstein-Uhlenbeck input, (i) and (ii) are the same as with fBm. In addition
to that, there are two other possible shapes:

(iii)’ If a > 0 and neither (i) nor (ii), then there exists the least likely point

s∗
.= arg max

s∈[τ1,τ2]
inf{‖ f‖ : f (τ2) = ζ (τ2), f (s)≥ ζ (s)}

such thatβ{s∗,τ2} is the most probable path. The upper plot in the right column in Fig. 2.
(iv) If a = τ1 = 0, requiring f ′(0) = ζ ′(0) and f (τ2) = ζ (τ2) leads to the most probable path.

The lower plot in the right column in Fig. 2.

7 CONCLUDING REMARKS

The main result of this paper is a rigorous derivation of the many-sources large-deviation asymp-
totics, and corresponding most probable paths, in a priority system fed by Gaussian sources. The
implication to engineering applications is that the heuristic, and easily evaluated, Rough Full
Link Approximation (RFLA) can now also be motivated mathematically. Numerical studies –
not shown in this paper, for closely related tandem queues see [9] – indicate that the RFLA-
based rate functions and true rate functions are numerically almost indistinguishable.

Another remarkable aspect of our results is that the union-intersection expressions (4) and
(5) are general and by no means restricted to the Gaussian case. The Gaussian case is just the
simplest to handle because the rate function is then given through the nicely behaving RKHS
norm. We expect that analogous large deviation results for priority systems can be derived for
much more general types of input processes, and the basic division into Case 1 and Case 2 is
generic.
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