

Modeling Variability in the Software Product Line

Architecture of Distributed Middleware Services

Liliana Dobrica

Faculty of Automation and Computers Science

University Politehnica of Bucharest

Spl. Independentei, 313, Sect. 6, Bucharest, Romania

Eila Niemelä

VTT Technical Research Centre of Finland

P. O. Box 1100 FIN-90571

Oulu, Finland

Abstract - The product line is defined as a middleware

services framework that includes several products. The

products realize different functionality by using various

modern software technologies of spontaneous networks.

UML provides the means to use specific variation

mechanisms to describe hierarchical systems. However,it

does not support a description of variation, as it is

required for service architecture. UML built-in extension

mechanisms refine its specification. This paper presents

the extensions of the UML for representing variations in

the software product line architecture of middleware

services. Architecture design produces descriptions at two

abstraction levels from multiple viewpoints. The modeling

of service architectures benefits from a more familiar and

widely used notation that improves stakeholders’

understanding of the architectural artifacts. A standard

based notation also enables more extensive tool support

for manipulating architecture models.

Keywords: software architecture, product line, variability,

middleware, service.

1 Introduction

 In the software product-line development the product-

line architecture (PLA) is the main tangible element shared

by all the product members. Architectural components

cover functionality common for the products in the product-

line and support the variability required for the various

products. Due to increasing complexity in the middleware

services, their architecture specification requires a more

explicit approach. It becomes important to understand how

to express variability to indicate locations in design for

which different kinds of modifications, omissions and

extensions are permitted, expected or required.

One of the most important aspects of PLAs is variation

among products, defined as variation in space [4] [10]. In

this paper, we introduce UML extensions for the design of

this kind of variability. The main goal is to specify

modeling constructs that deal with variability and represent

a profile of the extended UML concepts intended primarily

for use in distributed middleware services PLAs. We apply

the new constructs on a case study. The case study validates

the UML notation extensions for architectural models that

are designed with a proprietary method, QADA®
1
 [17].

In the case study we model the architecture of a

software framework for distributed middleware services

(DisMis) that includes the features, commons and variants,

implemented in several related products. Because we

consider the PLA as a framework we can derive the

products in a more flexible manner and with a higher

reusability degree. Our approach is based on analysis of

different sources of variation. Moreover, the PLA model

exploits not only styles and design patterns [13][5], but also

separation of concerns, intensional (vs. extensional) and

locality criteria [11]. By separating different aspects in

distinct views we manage complexity. Intensional and

locality criteria facilitate the decision about the information

that goes into PLA and what implementation specific is.

There is a difference between our case study and the

others surveyed in the literature [14] [16]. While other

studies brings to front experiences from industry that

promotes the current state of practice, we identify and apply

concepts and principles about PLA modeling as a state of

the art. We contribute in this way in theory development of

the domain. The middleware definition as “a variety of

distributed computing services and application development

supporting environments that operate between the

application logic and underlying system” [6] is similar to

software product line definition that is “a set of products

sharing a common, managed set of features that satisfy the

specific needs of a particular mission” [7]. So, building the

architecture of a framework for distributed middleware

services is equivalent to modeling a PLA. Distributed

computing services represent the shared common, managed

set of features that satisfy the specific distribution needs.

The remainder of the paper is organized as follows.

First we discuss about concepts related to service

1
 Registered Trademark of VTT Technical Research Centre

of Finland

architecture description and variability. Our focus is on

different mechanisms and sources of variability in service

architecture design. Next section introduces our original

ideas about modeling variability by UML extensions for

service architecture description. Then we apply our ideas in

a case study. Finally, in the last section we present some

discussion and concluding remarks.

2 Background

2.1 Service architecture description

Modern distributed systems are software-intensive

systems that embody service architecture and provide a

variety of services for their users. Services are constructed

by a set of software components, which are “units of

composition with contractually specified interfaces and

explicit context dependencies” [20].

A service is the capability of an entity (the server) to

perform, upon request of another entity (the client), an act

that can be perceived and exploited by the client. Service

architectures have two abstraction levels: conceptual and

concrete [17]. Conceptual means abstract, i.e. delayed

design decisions concerning, e.g. technologies to be

selected or details in functionality, whereas the concrete

abstraction level illustrates the realization of conceptual

architecture. Architecture design produces descriptions at

both abstraction levels from four viewpoints: structural,

behavior, deployment and development.

Table 1. Service architecture descriptions.
Level of

abstraction

Views Components Relationships

Structural

(decomposition

model only)

System

Subsystem

Leaf

Passes-data-

to «data»

Passes-

control-to

«control»
Uses «uses»

Behavior

(collaboration

model only)

Service

components

Ordered

sequence of

actions

Conceptual

Deployment

(allocation

model only)

Deployment

Node

Deployment

Unit

Is-allocated-

to

Structural

(hierarchical

structure

diagram only)

Subsystem

capsules

Component

capsules at

level 1..n

Concrete

interfaces

with ports,

connectors

and protocols

Behavior State

diagram

Message

sequence

diagram

Ports, in and

out signals

Interactions

between

capsules

Concrete

Deployment Node,

device

Connection

 The structural view is concerned with the composition

of software components, whereas the behavior view takes

the dynamics into consideration. The deployment view

refers to the allocation of software components to various

computing environments. Variation in space is an integral

part of the first three views, contrary to the development

view that represents the categorization and management of

domains, technologies and work allocation. Entities of the

first three views are summarized in the Table 1.

2.2 Variability

A variability mechanism is a wide range of generalization

and specialization techniques. Jacobson [15] defines the

following variability mechanisms: inheritance, uses,

extensions, parameterization, configuration and generation.

Inheritance is used to create subtypes or subclasses that

specialize abstract types or classes at their variation point.

Use case inheritance mechanism is for uses. Extensions are

particular type-like attachments that can be used to express

variant in use case and object components.

Parameterization is used for types and classes using

templates, frames and macros. Configuration variation

points are used to declaratively or procedurally connect

optional or alternative components and variants into

complete configurations. Generation provides derived

components and various relationships from languages and

templates. When it is more suitable to select one mechanism

over another and what are the consequences of a particular

mechanism are questions that receive an answer in the paper

of Svahnberg et al. [19]. The authors establish the factors

that need to be considered for selecting an appropriate

mechanism for implementing variability and identify two

major mechanisms, configuration management and design

patterns. The most commonly used design patterns are

discussed in detail in [13] and [5]. Nevertheless, variation is

difficult to model in architectural descriptions. A PLA may

include a set of different alternatives for dealing with

variation among products. Capturing these alternatives in

various views facilitates the designer constructing a product

to have the potential solutions to choose from. Identifying

and separating sources of variation is a systematization of

concerns regarding variability management.

 Several sources of variation are introduced in [2]. There

is variation in data, where a particular data structure may

vary from one product to another. Variation in function

implies that a particular function may exist in some products

and not in others. Variation in control flow means that a

particular pattern of interaction may vary from one product

to another. Variation in technology suggests that the

platform (OS, hardware, dependence on middleware, user

interface, run-time system for programming language) may

vary in exactly the same mode as the function. Variation in

quality goals exists if particular quality goals are important

for a product and variation in environment when the style in

which a product interacts with its environment varies.

 Since the focus of this paper is on how to describe

variability on the architecture level, we will try to deal with

variability that is visible in each view. In practice, analysis

of these sources is useful when the variability is

architecturally relevant.

3 Modeling variability by UML

extensions

 UML provides the means to use specific variation

mechanisms to describe hierarchical systems [3]. However,

the standard does not support a description of variation, as

it is required for service architecture. UML supports the

refinement of its specification through three built-in

extension mechanisms: constraints, tagged values and

stereotypes. Tabular forms for specifying the new

refinements need to be organized (Fig. 1). Stereotype tables

columns identify stereotype name, the base class of the

stereotype that matches a class or subclass in the UML

metamodel, the direct parent of the stereotype being

defined, an informal description with possible explanatory

comments and constraints associated with the stereotype.

Finally, the notation of the stereotype is specified.

Tabular form of a Stereotype

definition

• Stereotype: Leaf

• Base Class: Subsystem

• Parent: Architectural element

• Description: ...

• Constraints: None or

self.isMandatory=true

• Tags: None

Notation: A UML package

stereotyped as «leaf»

Tabular form of a Constraint definition

• Constraint: isMandatory

• Stereotype: Leaf

• Type: UML::Datatypes::Boolean

• Description: Indicates that the

Leaf is Mandatory

Tabular form of a Tag definition

• Tag: isDynamic

• Stereotype: Capsule

• Type: UML::Datatypes::Boolean

• Description: Identifies if the

associated capsule class may be

created and destroyed dynamically.

Fig.1. Examples of stereotypes, constraints and tag

definitions.

We present in the following the main ideas about variability

that can be realized in each view for service architecture

description.

3.1 Conceptual

Conceptual structural view. Variation in this view is

divided into internal variation (within Leaf components) and

structural variation (between Leaf/ Subsystem components).

Structural variation has to offer the possibility of preventing

automatic selection of all Leaf or Subsystem components

that are bind in a System during product derivation. We

consider that a Leaf or a Subsystem could be stereotyped in:

• «mandatoryLeaf» or «mandatorySubsystem»

• «alternativeLeaf» or «alternativeSubsystem»

• «optionalAlternativeLeaf» or

«optionalAlternativeSubsystem»

• «optionalLeaf» or «optionalSubsystem».

In the case of «alternative» or «optionalAlternative»

variability of a Leaf or Subsystem, the inclusion of a letter

“A” or “B”, etc., at the bottom of the UML package symbol

points to the product requiring that specific architectural

element (Fig.2). Some of the constraints that govern

variability modeling cannot be expressed by the UML

metamodel. They concern the following:

• If a «mandatorySubsystem» only consists of

«optionalLeaf» components, at least one of them must be

selected during the derivation process; otherwise, a

«Subsystem» that only consists of «optionalLeaf»

components must be an «optionalSubsystem».

• Two «alternativeLeaf» or «alternativeSubsystem»

components of different products are exclusive, meaning

that only one can be selected for a product. The product is

specified at the bottom of the notation.

• There should be no relationships between alternative

or optionalAlternative components; they belong to different

products. All relations to an optional component must also

be optional.

The relationships of the structural view are

appropriately stereotyped: «control», «data», «uses»,

«control (opt)», «data (opt)», «uses (opt)», «control

(optAlt)», «data (optAlt)», «uses (optAlt)» (Fig.2).

Fig. 2. Variation in conceptual structural view

We define internal variation only for Leaf

components (Fig.3). A Leaf component is on the lowest

level of a structure and it models functional requirements

variable for different products.

Fig.3.Internal variation of a «mandatoryLeaf» component

The internal variation is designated by a ● symbol.

Although the symbol is not included in the UML standard,

Jacobson [15] and later Webber [22] introduced it for

variation points. The UML tag syntax
vp<<m|o><VariationName>>|<<a|oa><VariationNa

me><ProductId>> shows the parts of an internal variation

so that the reuser can build a product. Mandatory (m) or

optional (o) functionality (VariationName) of a Leaf

component is specified in the tag syntax. In the case of

alternative (a) or optionalAlternative (oa) the product

identifier (ProductId) is also specified.

Conceptual behavior view. This view is mapped

directly onto a hierarchy of UML collaboration diagrams.

The elements are roles/instances of the Subsystem

stereotypes defined in the conceptual structural view.

Variable parts of a collaboration or interaction diagram can

be represented with dashed lines or alternative branches.

Optional messages between ServiceComponents use dashed

lines with solid arrowheads. Collaboration diagrams

describe each operation that is part of the requirements

specification. Similar to the structural view, alternative and

optionalAlternative ServiceComponents may be represented

in this view. An identifier of the specific product that

requires a particular interaction should be introduced and

represented in the diagram.

Conceptual deployment view. In UML a deployment

diagram shows the structure of the nodes on which the

components are deployed. The elements related to a

deployment diagram are Node and Component.

DeploymentNode for service architecture is a UML Node

that represents a processing platform for various services.

The notation used for DeploymentNode is a Node

stereotyped as «DeploymentNode». UML notation for Node

(a 3-dimensional view of a cube) is appropriate for this

architectural element. A DeploymentUnit is composed of

one or more conceptual leaf components. Clustering is done

according to a mutual requirement relationship between

leafs. It cannot be split or deployed on more than one node.

The stereotype, «deploymentUnit» is a specialization of the

ArchitecturalElement stereotype and applies only to

Subsystem, which is a subclass of Classifier in the UML

metamodel. The other stereotypes «mandatory»

,«mandatoryActive», «mandatoryPassive», «optional» and

«alternative» are specializations of the DeploymentUnit and

also apply to Subsystem. Exclude is introduced as a new

stereotype of UML association.

3.2 Concrete

Concrete structural view. The notation in this view

includes a means to represent the decomposition of Capsule

components. This feature allows step-by-step understanding

of more and more details of the PLA. Decomposition is also

used to show possible variations. A Capsule cannot only be

decomposed into componentCapsules, but it can also be

decomposed so that new functionality is revealed.

Decomposition relationships exists between abstract

components. Concrete components are obtained by

specialization. The Capsules notation specifies a particular

product (A) or a subset of products (B, C) at the bottom of

the symbol. Looking top-down (Fig.4), the

AbstractComponents encapsulated in the «TopCapsule» are

decomposed into «subsystemCapsule» abstract components:

CapsuleS1,.., CapsuleSN. Decomposition continues on

«component1Capsule», « component2Capsule» and so on, if

necessary. In each component, abstract functions of the

corresponding sub-domains are collected, which are subsets

of the parent abstract functions. For each product, each

abstract component is specialized in a «concrete

Component». This view may include indication of products

or product sets, thus providing information about the

reusability of each component.

Capsule1

<<topCapsule>>

CapsuleSN

<<subsystemCapsule>>

.....
CapsuleS1

<<subsystemCapsule>>

Capsule11

<<component1Capsule>>

Capsule21

<<component2Capsule>>

.....

.....CapsuleC1

<<concreteComponent>>

CapsuleCM

<<concreteComponent>>

.....

A B,C

Abstract

Components

Concrete Components

and Products

Composition/

Decomposition

Specialization/Inheritance

Fig.4 Variation in concrete structural view.

Concrete behavior view. This view is mostly

modeled using two main diagrams: a state diagram and a

message sequence diagram. This view describes how the

system reacts in response to external stimuli. State diagrams

are used with the concrete structural view’s entities:

capsules, ports and protocols. Standard UML state diagrams

are recommended for modeling the behavior of capsules,

which in combination with inheritance facilitates reuse.

Variability is included in notation and state decomposition.

As for notation, parts that are not needed in all products are

represented with dashed lines (optional states) or a different

filling pattern and Product_Id (alternative states). State

decomposition is the other source for variants. The

decomposition of a state may be shown by a small symbol

in the top left corner of a state symbol.

Concrete deployment view. This view is mapped

directly on the deployment diagram of UML. UML

deployment diagrams are less well explained in the standard

than other elements of UML. However, nodes - the UML

elements which represent processing elements – are

Classifiers in UML, which means that they can have

instances, play roles in collaborations, realize interfaces,

etc. They can also contain instances of components.

4 Case study

4.1 Description and analysis

The starting point of our exercise represents

descriptions of core classes implemented for the four

products that focus on distribution of middleware services

[21]. The products are: a dynamic distributed platform

(DDP), a Bluetooth connectivity component for Java

(BCC), a Jini service framework (JSF), and a video camera

demonstration (VCD) for JSF. DDP, is a framework for

distributed applications. DDP performs all that is required

for the task of distribution, to connect pieces of distributed

applications that may reach each other over various means

of communications. BCC is an example of a component that

can establish connectivity through new media, protocols and

connectivity methods. BCC is used in applications that

employ spontaneous wireless communications. The JSF, is

described as a) It creates a set of extensible classes that

would automatically perform the most important functions

required from a Jini service or service user. b) It transfers

legacy client-server applications into Jini services with

minimal changes, and c) It creates a new Jini service that

has distinct types of services for a service user and a service

session. The VCD system represents a distributed

application that proves the functionality of JSF. The

provided service is a live video stream from a camera. The

service user needs all necessary code from the service for

viewing the video stream. The differences between these

products express variation in our PLA.

 In the following we will analyze each source of

variation that brings variants for DisMiS PLA. Variation in

function: DDP, JSF and VCD have the same functional

requirements, i.e. distribution of applications. BCC requires

a different communication protocol. Variation in data: We

distinguish VCD that uses multimedia streams. Variation in

control flow: We identified a proxy pattern in DDP, JSF

and VCD, asynchronous operations in BCC and, a lookup

service in JSF. Variation in technology: Jini technology,

RMI and TCP/IP are necessary in JSF and VCD, Nokia

DTL1 connectivity card and Windows OS are required by

BCC, and JPG format for streams is used in VCD.

Variation in quality goals: Interoperability, scalability,

adaptability, and fidelity are few of the quality

characteristics that could vary for this framework.

Reusability, maintainability, modifiability, portability and

extensibility may vary when evolution is of concern.

Variation in environment: A particular component of our

framework may be invoked from either C++ or Java. The

invocation mechanism may vary from one product to

another. Java Media Framework is required by VCD.

4.2 Modeling DisMiS PLA variability

Designing the architecture of the DisMis framework

gives us several challenges. Through the analysis of each

product we discovered one by one the common abstract

components and variant ones. We assumed DDP as a

reference product because it is the most complete as PL

functionality. Then we design our framework by

reengineering. Results are presented in the following.

Conceptual level. The conceptual structural view of

the framework represents a set of layers, «subsystem»-s that

have assigned modules (Fig.5). Modules are «leaf»-s or

other «subsystem»-s . For practical reasons we didn’t

represent the whole decomposition from high-level to

lower-level/detailed in one diagram. This would become

very difficult for reading by other stakeholders, users of this

view. The level of description of conceptual components is

appropriate when it reveals an understanding of the coarse-

grain common and variable features included in each

product member. From the point of view of a PL DisMiS

has several particularities. Firstly, BCC is included in the

PL as a single feature and is represented by a «leaf». Thus,

we get a variant introduced in a «leaf».

CommunicationProtocol «leaf» internal variation is

specified as •vpa alternative BluetoothProtocol. Secondly,

the re-design of the Discovery Service «subsystem» of

DDP was necessary. Based on principles about separation

of concerns and locality the components with

communication features are gathered in the most

appropriate «subsystem». Thus, Multicast Communication,

DataResolver and UDPProtocol are all configured in the

CommunicationServices «subsystem».

Fig. 5. Conceptual structural view

The conceptual behavior view of the DisMis

framework specifies the dynamic actions the system

produces and participates as well as their ordering and

synchronization and gives an understanding about the

dynamic aspects of services. We analyzed the behavior of

the conceptual components associated in JSF. We

discovered that the presence of the Lookup Service in this

diagram gives a dependency on Jini technology. This cannot

totally suit on the concept of distributed services for a

spontaneous environment. This dependency has been

managed in DisMiS by applying a variability mechanism.

The distributed system has to stay functional even though

the directory service may be shut down. We introduced a

conditional clause (parameterization). Thus, a branch in

collaboration diagram (emphasized with solid arrows) on

the active condition gives a service possibility to

communicate with another active service in the network.

The conceptual deployment view consists of

DeploymentNode components and DeploymentUnit

components allocated to nodes. UML stereotypes of

different types of deployment units are necessary in this

view. It is significant to note «mandatory»,

«mandatoryActive» and «mandatoryPassive» variants

deployment units in nodes.

.

D istributionFram ew ork

<<Capsule::subsystem Capsule>>

AdaptationLayer

<<Capsule::subsystem Capsule>>

ApplicationServices

<<Capsule::Com ponent1Capsule>>

System Services

<<Capsule::Com ponent2Capsule>>

Platform Services

<<Capsule::Com ponent2Capsule>>

Com m unicationServices

<<Capsule::Com ponent2Capsule>>

Com m unicationProtocol

<<Capsule::Com ponent3Capsule>>

Com m Protocols

<<Capsule::ConcreteCom ponent>>

(from D D PConcreteCom m Services)

D D PApplicationServices

<<Capsule::ConcreteCom ponent>>

(from ConcreteD D P)

JiniApplicationServices

<<Capsule::ConcreteCom ponent>>

(from ConcreteJiniFram ew ork)

JiniAdaptationLayer

<<Capsule::ConcreteCom ponent>>

(from ConcreteJiniFram ew ork)

VCD AdaptationLayer

<<Capsule::ConcreteCom ponent>>

(from VCD Concrete)

D isM isFram ew ork

<<Capsule::topCapsule>>

AbstractD istributionFram ew ork

<<Capsule::subsystem Capsule>>

VCD D istributionFram ew ork

<<Capsule::ConcreteCom ponent>>

(from V CD Concrete)

D istributionAndCom m unicationServices

<<Capsule::Com ponent1Capsule>>

JiniServices

<<Capsule::ConcreteCom ponent>>

(from ConcreteJiniFram ew ork)

D D PD istrAndCom m Services

<<Capsule::ConcreteCom ponent>>

(from ConcreteD D P)

BluetoothProtocolCapsule

<<Capsule::ConcreteCom ponent>>

(from ConcreteBCC)

Fig. 6. Variation of products in the concrete structural view of DisMiS PLA.

Concrete level. Structural, behavior and deployment

views have been developed for modeling architecture on

this level. Due to the limited space, we discuss only about

the variability modeling. Variability from various sources is

represented in the concrete structural view by using

architectural elements and relationships extended from the

UML standard. Thus, components are subsystem capsules

or component capsules at level 1..n, and relationships are

concrete interfaces with ports, connectors and protocols.

Decomposition relationships describe the hierarchical

structure of abstract components (Fig. 6). The vertical range

of abstract components consists of several levels, from the

topCapsule component (DisMis Framework) to

component3Capsule level component (Communication

Protocol). Inheritance mechanism and specialization are

used to obtain various concrete components. Products could

be DDP, Jini, BCC or VCD and their acronyms are

automatically included by the modeling tool in the name of

each component.

5 Discussion and conclusions

This paper has described how UML can be extended

to address the challenges of variability in space of software

PLAs for middleware services. A new UML profile has

been defined to be integrated in a systematic approach.

UML extensibility mechanisms are used to express

diagrammatic notations of each view of the architecture.

Integrated use of a profile and a design method allow

extensive and systematic design of software PLAs.

Other researchers have tried to use ADLs or extend

UML for variability specification in PLA. Like us, they

have introduced new symbols tagged to UML elements. In

PRAISE [12] UML package represents a hot spot with the

stereotype <<hot spot>> any collaboration is tagged with a

variant with “variation point”. Variability is also visible in

the UML models with the variation points technique defined

in SPLIT [8] providing information for a reuser to choose a

variant. The mechanism of attaching attributes to each

variation point, by using a class to represent it, defines the

transformation to apply when doing a derivation. However,

using this technique systematically requires development of

specific scripts and programs to manage it, since it is not

integrated in UML design tools. Webber [22] goes a step

further and shows a reuser how to build a variant in VPM..

This study inspired us in extending UML notation.

Explicit modeling of the similarities and variations

among members of the product lines by using the UML

notation is allowed using various views. We identified

KobrA [1] and a view integration approach described in

[14]. All these methods have some similarities with our

approach, but none of them provides PLA extensions that

could be used to describe all kinds of variations possible in

PLA. PLA has been prepared for change by studying

various sources of variability that are visible in architecture

description. Concrete components were defined for the

prime reason of encapsulating variabilities, while abstract

components were provided with the optimal balance

generic/specific based on the different sources of variation

analyzed for each product. Recently, our approach support

representation of variation in functionality, data, control,

technology and environment. Variation in quality goals is

partly supported. Our future focus is on representing

execution qualities, such as reliability and availability, in

architectural models. Execution qualities are important in

service architectures that our model is intended for.

6 References

[1] Atkinson C., J. Bayer, D. Muthig, “Component-based

Product Line Development: The KobrA Approach”, SPLC1,

Kluwer Academic Publishers, pp. 289-310, 2000.

[2] F. Bachmann, L. Bass, “Managing Variability in Software

Architectures”, ACM SIGSOFTSoft. Eng. Notes, vol. 26, pp.

126-132, 2001.

[3] Booch, G., Rumbaugh, J., Jacobson, I., “The Unified

Modeling Language User Guide”, Addison-Wesley, 2004, 2nd Ed.

[4] Bosch J., “Design&Use of Software Architecture –

Adopting and Evolving a Product Line Approach”, Addison-

Wesley, 2000.

[5] Buschmann F., Jäkel C., Meunier R., Rohnert H., Stahl M.,

“Pattern-oriented Software Architecture – A System of Patterns”,

John Willey&Sons, 1996.

[6] Charles J.,”Middleware moves to the forefront”, Computer,

vol. 22, pp. 52-, 1999.

[7] P. Clements, L. Northrop, “Software Product Lines -

Practices and Patterns”, Addison-Wesley, 2002.

[8] Coriat M., J. Jourdan, F. Boisbourdin, “The SPLIT

Method”, SPLC1, Kluwer Academic, pp. 147-166, 2000.

[9] Dobrica, L., Niemelä, E., “Using UML Notation

Extensions to Model Variability in Product-line Architecture”,

Procs. of ICSE’03 Wshp. On SVM, Oregon, , 2003, pp. 8-13.

[10] Dobrica L., Niemelä E., “A strategy for analyzing product

line software architectures”, VTT Publications, 2000.

[11] Eden A.H., Kazman R., “Architecture, Design,

Implementation”, ICSE 2003.

[12] El Kaim, W., Cherki, S., Josset, P., Paris, F., “Domain

Analysis and Product-Line Scoping”, Procs. of SPL: Economics,

Architectures, and Implications, June 2000.

[13] Gamma E., Helm R., Johnson R., Vlissides J., “Design

Patterns: Elements of Reusable Object-oriented Software”,

Addison-Wesley , Reading MA, 1995.

[14] Gomaa H, M. Gianturco, “Domain modeling for WWW

based on Software Product Lines with UML”, ICSR-7, LNCS

2319, pp. 78-99, Springer-Verlag 2002.

[15] Jacobson, I., Griss, M., Jonsson, P., “Software Reuse-

Architecture, Process and Organization for Business Success”.

ACM Press, New York, NY, 1997.

[16] Jaring M., Bosch J., “Representing Variability in Software

Product Lines: A Case Study”, SPLC2, 2002.

[17] Matinlassi, M., Niemelä, E. Dobrica, L. “Quality-driven

Architecture Design and quality Analysis method”, VTT

Publications 456, Espoo, Finland, 2002

[18] Purhonen, A., Niemelä, E., Matinlassi,, M.. ”Viewpoints of

DSP software and service architectures”. JSS, Vol. 69.

[19] Svahnberg M., J van Gurp, J. Bosch, “A taxonomy of

Variability Realization Techniques”, Blekinge Institute of

Technology, Sweden 1103-1581, 2002.

[20] Szyperski C. “Component Software –Beyond Object –

Oriented Programming”, Pearson Ed., Harlow UK, 1997.

[21] Vaskivuo T., “Software architecture for decentralised

distribution services in spontaneous networks”, Espoo 2003, VTT

Publications 490.

[22] Webber D. and H. Gomaa, “Modeling variability with the

variation point model”, ICSR-7, LNCS 2319, pp.109-122,

Springer-Verlag Berlin Heidelberg 2002.

