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Abstract

Availability data typically consist of start and end times
of a system’s down periods. We propose a natural way to
plot their statistics so that Service Level Agreements con-
cerning availability can be formulated as the condition that
an empirical curve lies below a given curve.

1. Introduction

In this paper we have in mind data communications
systems, whose dependability was recently considered in
VTT’s IPLU project [2], but most of the discussion applies
more generally. The traditional way to set a quantitative re-
quirement for the availability of a system is to give a single
number like 0.99999. Such numbers are typically used in
Service Level Agreements (SLA) concerning, for example,
transmission links. A single-number characteristic is, how-
ever, quite uninformative: it tells nothing about the lengths
of the individual downtimes, which may have great signifi-
cance.

2. Definition and properties

We propose instead the use of downtime-frequency
curves that characterize the frequency of each down-period
length separately in an appropriate form. They are defined
as follows.

Consider first the characterization of the reliability of a
system or, similarly, availability of a resource, with binary
nature: at each timepoint t, it can be unequivocally stated
whether the system is up or down. Thus, its performance is
described by a {0,1}-valued stochastic process:

It = 1{system down at time t}.

The probability of failure, P(system down at time t) = E It
is already a characteristic of the reliability of the system.

Assuming stationarity and ergodicity, this number is inde-
pendent of t and obtained almost surely as the limit of the
observed relative frequency:

lim
T→∞

1
T

∫ T

0
It dt = E I0 a.s.

Let us define the ongoing down-period length at time t as

Wt = inf{s≥ t : Is = 0}− sup{s≤ t : Is = 0} .

When the system is up, we have Wt = 0. The relative share
of time spent in down-periods lasting longer than τ during
an observation period of length T is then given by the ran-
dom variable

ϕT (τ) =
1
T

∫ T

0
1{Wt>τ} dt.

Considered as a random function of τ , ϕT (τ) is non-
increasing. Its initial value ϕT (0) equals the relative overall
downtime of the system in the observation period (for ex-
ample one year).

If the system is stationary, Wt is a stationary stochastic
process, and we find that the expectation of the random
function ϕT (τ) equals the tail distribution function of the
random variable W = W0:

FT (τ) = EϕT (τ) =
1
T

∫ T

0
P(Wt > τ) dt = P(W > τ).

Using this framework, we can now formulate reliability
criteria that take into account the down-period lengths also:
let us consider the performance of the system acceptable if

ϕT (τ)≤ ψ(τ)

for some selected function ψ . The function ψ can be speci-
fied in a SLA. The network operator has to build the system
in such a way that the expected curve FT (τ) lies sufficiently
much below ψ(τ). Since the relevant values of both the
down-periods and the probabilities extend over many orders
of magnitude, the curves should be drawn in a log-plot or
even log-log plot. When the axes are selected appropriately,
the curve ψ(τ) can often be given as a straight line.
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Figure 1. The expected downtime-frequency
curves when the downtimes are Weibull dis-
tributed with exponents α = 0.5 (highest
curve), 1 (middle curve), 2 (lowest curve).

3 On/off-availability and quality-availability

The binary notion of availability is often insufficient for
communication systems. The packet transfer may work ‘re-
liably’ in both directions but proceed with much lower rate
and/or higher delays than in normal conditions. From a
mathematical point of view, however, this problem can be
reduced to the binary case simply by considering the set of
binary processes

1{q(St )≤r}, r ∈ R,

where St is the system state at time t, q is some characteristic
of it (rate, delay,. . . ), and R is the set of possible or relevant
values of that characteristic.

For example, an SLA may require that the bandwidth of
an MPLS path be higher than 50 Mbit/s with an availabil-
ity of at least 0.999. Then, the set R may contain the value
50 Mbit/s alone. However, since IP-based services are usu-
ally quite flexible with respect to bandwidth requirements,
it would make sense to require additionally that the avail-
ability of 5 Mbit/s be at least 0.99999.

One can also, at least in principle, let R be a whole inter-
val and replace the binary-case criterion that the empirical
values should lie below a curve to the two-dimensional cri-
terion that they should lie below a surface. If higher q(·)
means better quality, the monotonicities behave similarly in
both dimensions if r is replaced by some inverse parameter
β by writing, for example, r = 1/β .

4. Examples

A standard mathematical model of this kind of process
is the alternating renewal process, where the up- and down-
periods are independent random variables with distributions
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Figure 2. Data plot example (see text).

Gup and Gdown and means µup and µdown, respectively. (The
resulting formulae can in fact be generalized using the Palm
theory of stationary processes, see [1].) When It is a station-
ary version on an alternating renewal process, the distribu-
tion of W is

P(W > τ) =
1

µup + µdown

∫
∞

τ

yGdown(dy).

Note that the distribution Gup has an effect only through the
expectation µup.

Here is a formal example of such plots. Assume that the
down-periods and up-periods are independent, time unit is
one hour, the up- and down-periods have means 3000 and
1, respectively, and the down-period length has a Weibull
distribution

1−Gdown(y) = exp(−βyα),

where α and β are parameters. The choice β = Γ(1 +
1/α)α yields the desired mean 1. We can now compute
and plot the functions FT (τ) for three qualitatively different
parameter values α = 0.5, 1 and 2. This example also illus-
trates the usability of linear, log-linear and log-log plots for
various purposes.

As an example how empirical data might look like in this
framework, assume that the downtimes of a system within
a year consist of intervals with lengths 2, 2, 2, 3, 3, 5, 5,
6, 7, 9, 25, 35, 240 minutes (in ascending order). The em-
pirical tail distribution function of W is then determined by
the points marked as triangles in Figure 2. Note that the
few long down-periods have the effect that the whole point
set looks almost horizontal. The other three point sets show
the corresponding plot when 1, 2 and 3 largest values are
removed from the data set, respectively.
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