
 RESEARCH REPORT NO VTT-R-01678-08 | 14.2.2008

SAFIR2010/TRICOT

Status of PORFLO code development and
simulation of the BFBT benchmark
problem
Authors: Jaakko Miettinen, Mikko Ilvonen, Ville Hovi

Confidentiality: Public

RESEARCH REPORT VTT-R-01678-08

2 (22)

Contents

1 Introduction 3

2 General strategy of development 3

3 New user interface & main branching in the code 4

4 Geometry interface & meshing for fuel bundles 8

5 Basics of PORFLO application to the BFBT benchmark 8

6 Pressure-Velocity Coupling 8

7 SIMPLE algorithm 10

7.1 Iteration procedure 11

8 SIMPLE algorithm Development 13

8.1 The effect of manipulating the pressure correction matrix 13
8.2 The effect of under-relaxation 14
8.3 SIMPLE variants 14
8.4 Assertions 15
8.5 Linear solver & preconditioning 15
8.6 Summary of some major developments of the SIMPLE approach 17
8.7 Debugging 18

9 Specification of the BFBT benchmark problem 18

10 BFBT workshop in may 2007 19

11 Results of BFBT simulations 20

RESEARCH REPORT VTT-R-01678-08

3 (22)

1 Introduction

PORFLO-related work under the TRICOT project in 2007 was divided into three tasks:

general code development, application of the code to the BFBT benchmark problem and

application to an open reactor core. Due to difficulties with the BFBT benchmark, the open

core simulation was canceled and the efforts were concentrated on general development and

on producing an acceptable simulation of the BWR fuel bundle two-phase flow, as measured

in the BFBT experiments. Main emphasis of the development work was on the SIMPLE

algorithm for pressure-velocity iterative coupling. In a related project, basic documentation

and user manual of PORFLO have been produced.

2 General strategy of development

The main strategy in PORFLO development has been to reach a numerically robust and stable

version. A reference result produced by direct solution of the matrix equations (with up to

20000 cells) is used to compare with results by iterative solution methods. For realistic results,

one million or more cells are desired. The reference solution (with the older basic ‘SMABRE’

style solution) works when convection terms are left out of the momentum equation. Diffusion

terms do not cause a problem. Special consideration has been devoted to keeping the horizontal

and vertical flow areas from differing too much, even when the grid has cells that are longer in

the vertical direction.

The necessary step towards finer grids is the use of iterative solvers. There are still convergence

problems with the CGS algorithm, but it turned out that an older solver (ADI) works even for a

problematic case of pressure / flow solution, provided that the convection term of the

momentum equation is neglected. The BFBT benchmark has thus been simulated with as many

as one million cells. It is attempted next to solve with the convection terms, and to support

further development of the new pressure-velocity coupling (SIMPLE algorithm).

The present implementation of the SIMPLE algorithm converges quite slowly, but it has the

complete terms of the momentum equation. As soon as convergence can be accelerated, a

RESEARCH REPORT VTT-R-01678-08

4 (22)

practically usable 3D two-phase solution is at hand. Work is also continued in the area of CGS

and other iterative solvers.

3 New user interface & main branching in the code

The PORFLO code used to be tailored at source code level for each individual application,

like particle bed or isolation condenser. Now a branching at the main level is available to

handle application specific input and perform various application specific initializations for

particle bed, isolation condenser, BWR fuel bundle, open PWR core and steam generator.

The most essential part of the code is the solution of the basic conservation equations for the

3-dimensional structured mesh. The basic solution includes the combined pressure field and

volumetric velocity, prediction of the void fraction and consequently the volumetric flow

distribution split into phase flow rates, explicit integration of the mass flow distribution and

consequently the mass balance error for the next time step, as well as liquid and gas energy

equations and temperature distribution in the solid structure. In future development, additional

equations may be solved for the turbulent kinetic energy and energy dissipation.

For the pressure-volumetric velocity -solution and void fraction prediction a matrix inversion

is needed. The matrix structure is a wide band sparse matrix. With the present CPU capability

and old solution algorithms, a case with typically 30000 mesh points (nodes) can be inverted.

The full matrix to be inverted would include 900 million elements. With a sparse matrix

approach only 58 million matrix elements needs to be processed. For bigger nodalizations, up

to one million mesh points, iterative inversion procedures are needed. In these procedures

with one million nodes only 9 million elements need to be stored.

Before the actual solution, the boundary conditions need to be defined for diverse calculation

cases. This part is partially case dependent. The original facility setup may be so complex that

case specific input and output processing is needed for generating the generic nodal

information and for extracting the most interesting results. Another alternative would be

programming a generic interface similarly with the system codes. The case specific user

interface was found more efficient for PORFLO, which is aimed for analyzing very different

types of facilities.

RESEARCH REPORT VTT-R-01678-08

5 (22)

In an isolation condenser, heat is generated in the heat transfer tubes condensing vapor. A

special module in PORFLO is used for one-dimensional conservation equations inside the

condensing tubes, and condensing efficiency is controlled by regulating the water level in the

steam and condensate collectors. The condenser includes free water surface, with atmospheric

pressure on that level. The final separation of liquid and vapor takes place on this level.

Specific input handling is needed for the isolation condenser. The output is tailored according

to the needs of the case as well.

Figure 1. Model of IC pool in the simulations with PORFLO.

RESEARCH REPORT VTT-R-01678-08

6 (22)

Figure 2. Pool void fraction and temperature distribution in PORFLO simulation.

In the particle bed dryout experiment, heat is generated by electric current conducted through

a heating coil. The test rig is located inside a constant pressure vessel and the water level

above the heated bed is controlled with a combination of level measurement and a feedwater

pump. The final separation of bubbles takes place on the water level. The calculation

geometry has cylindrical symmetry. Vapor condensation on the pressure vessel wall and heat

conduction through the steel walls have to be considered in the model as well. The bed

material itself is 0.4 mm to 3 mm diameter oxide particles, which have a specific heat

capacity and conductivity. The case specific input definition contains all these features.

In a steam generator, the heat input into the fluid via heat transfer tubes has to be described.

One nodalization is used for the tubing and another for the condensing pool. The input

specification has to define the linking between individual primary and secondary nodes. On

the secondary side, components exist for feedwater control and level measurement. The

pressure boundary condition for the vapor space is essential.

RESEARCH REPORT VTT-R-01678-08

7 (22)

Figure 3. Horizontal steam generator applied in the Loviisa VVER-440 plant..

The generation of the three-dimensional reactor core nodalization is tested first with the

TRAB-SMABRE code system. After satisfactory results, the input generation is adjusted for

the PORFLO as well.

For the BFBT calculation, the specific mesh generation algorithm requests the main

parameters for the bundle structure, like the rod diameter, pitch, rod type, channel width and

rounding. The initialization part defines the desired computational mesh, matching for all rods

a similar meshing. Inside the rods three different fields exist: uranium oxide, gas gap and

cladding. For the surface nodes, between solid and fluid nodes, the heat transfer

characteristics need to be defined and calculated dynamically every time step. Critical power

prediction needs specific handling. The inlet condition for the bundle flow is defined by the

inlet velocity, and the output boundary condition by constant pressure. The output processing

needs case specific handling as well.

A minor code modification was implemented to incorporate a more realistic momentum

boundary condition for the incoming flow. Otherwise, mass errors grow prohibitively large.

Phase separation is calculated from the drift flux model and seems to be realistic.

RESEARCH REPORT VTT-R-01678-08

8 (22)

Also, a new indexing scheme of grid cells and faces was implemented throughout the PORFLO

code, making future developments easier.

After experience has been gained from tens of applications, one could consider the possibility

for more generic user input. For example, the present user input of the Fluent code is not user-

friendly enough for versatile application.

4 Geometry interface & meshing for fuel bundles

An easy-to-use preprocessor program for fuel bundle geometry data import, meshing and

geometry-related initialization of the porosity model was completed. Various fuel designs

with different channel boxes, arrangements of fuel rods and water rods, and power

distributions are now easily imported. Meshing is not exactly body-fitted, but nevertheless

always fitted to the rods and sub-channels in the best possible way. Mesh size can be varied

easily. Various data on heated / unheated areas and volumes of the structures are delivered for

each mesh cell to be used in the PORFLO simulation.

5 Basics of PORFLO application to the BFBT benchmark

Currently PORFLO has been optimized to simulate a BWR fuel bundle. Single-phase fluid

enters the fuel bundle from the bottom and a two-phase mixture flows out of the bundle at the

top. The calculations are performed on a non-uniform orthogonal grid and velocities are

solved on a backward staggered grid to prevent the checkerboard pressure field –effect. Since

PORFLO is a porous media model, the grid need not follow the structural interfaces; instead,

porosities are defined as a fraction occupied by the fluid from the total volume.

6 Pressure-Velocity Coupling

The former solution procedure combined the equation for mixture mass with the three mixture

momentum equations to yield a single system of equations for pressure. The resulting

RESEARCH REPORT VTT-R-01678-08

9 (22)

pressure field is then used to obtain the velocity field directly. One of the perks of this method

is that the amount of calculations needed for solving a problem with one system of equations

is much less than a problem with several systems of equations. Added to this, the former

solution procedure does not require iteration within the time step.

PORFLO FLOWCHART

Geometric data as data sentences for the fixed geometry
to be modelled
Reading user parameters for the calculation options
Reading user input for the transient control.

 START CALCULATING A NEW TIMESTEP

Calculate process control: pressure control, feedwater control

Calculate solid-fluid and fluid-fluid heat and mass transfer

Set boundary conditions for heat conduction: heating power, heat loss

Integrate solid structure and gas gap temperatures.
Upgrade heat fluxes for the new solid temperatures.

Solve pressure and volumetric flow distribution in the inner vessel.
The pressure is solved by matrix inversion or iteratively..

Add drift flux contributions into the volumetric flow

Solve the prediction for the void fraction distribution to be used for
calculating the liquid and vapour mass flow rates.
Matrix inversion or iterative method Define mass flows.

Integrate mass and fluid temperature distributions.

If needed, write the listing output, transient plot output, distribution
plot output, debugging output and restart file.

.New step? OUTPUT , END
.No.Yes

Initialize geometrical quantities and specify materials
in different section.

INITIALIZATION OF THE CALCULATION

Initialize thermohydraulic parameters form the pressure.
Define drift flux parameters.
Printout of inital parameters. Set titles for plot-files.

Figure 4. Original SMABRE type of algorithm.

Another approach is to couple the pressures and velocities indirectly, which leads to an

iterative procedure where the approximations for pressures and velocities are improved with

every cycle.

RESEARCH REPORT VTT-R-01678-08

10 (22)

The SIMPLE algorithm has been programmed in PORFLO to be optionally used in place of the

older ‘SMABRE style’ method. An earlier implementation of SIMPLE gave good results in

multidimensional calculation of one-phase flow. The advantage of SIMPLE is that the matrix

diagonals in solution of the pressure and velocity corrections are stronger than in the SMABRE

method. Test runs have been conducted in a Master’s thesis work.

7 SIMPLE algorithm

SIMPLE algorithm, Semi-Implicit Method for Pressure-Linked Equations, is included in the

current version of PORFLO as its own subroutine. At the current configuration the subroutine

serves as an independent part that solves the pressure and velocity distributions from a given

set of data; in other words: there is no feedback from any other part of the program during the

calculation of a time step.

Another approach would be to solve all other conservation equations inside the SIMPLE-

iteration, which could be done with relatively little coding effort, if it seems necessary in the

future. Solving all other conservation equations inside the iteration loop would enable the use

of longer time steps, especially useful in transient calculations, since the solution procedure

would become more implicit, as the pressure-velocity coupling would have a feedback from

changes in pressure and heat exchange through local mixture densities.

Iterative procedures, like SIMPLE, require more calculations compared to direct pressure-

velocity coupling, since firstly multiple systems of equations have to be solved during one

iteration cycle, the momentum equations and the pressure correction, and secondly multiple

iterations are needed to reach a converged solution. In this perspective it would seem

unreasonable to use SIMPLE. However, fully implicit discretization can be applied to

formulate the momentum equations and all the terms in the momentum equations, convection,

diffusion and even turbulence, can be introduced without significant hardship. This cannot be

said about the former solution procedure.

It is important to recognize that though SIMPLE makes no assumptions about the solver

which the systems of equations are to be solved with, being an iterative procedure itself, the

RESEARCH REPORT VTT-R-01678-08

11 (22)

intermediate solutions of the iteration cycles do not have to be solved precisely; only the final

solution is of importance. Therefore careful consideration of the convergence criteria can

significantly reduce the amount of calculations needed to perform one time step, and hence

the overall computational time is reduced as well.

7.1 Iteration procedure

SIMPLE and its several variants start with guessed pressure and velocity fields which are first

input to the momentum equations to obtain improved values for the velocities. The improved

velocities are used in the pressure correction equation, which is obtained by combining the

mass and momentum conservation equations. The pressure corrections are used to yield

corrected pressures and velocities, which are again used in the momentum equation at the start

of the next cycle. The sequence of operations in SIMPLE algorithm is represented in figure 1.

Though the current version of the code is used to simulate a steady state situation, the type of

SIMPLE algorithm used is actually transient, since firstly the whole simulation marches

forward in time and secondly transient terms are included in the governing equations; for

example, inertia of the flow transferred from the previous time step is included in the

momentum equations.

RESEARCH REPORT VTT-R-01678-08

12 (22)

Figure 5. Transient SIMPLE algorithm.

Set time step Δt
Let t = t + Δt

Set
po = p, uo = u, vo = v,

wo = w, φo = φ, ρo = ρ

Set
p* = p, u* = u,

v* = v, w* = w,

φ* = φ

STEP 1: Solve discretized momentum equations

() i
KJI

i
KJI

i
KJIKJIKJIKJiKJi cAppuaua ,,,,,,

*
,,1

*
,,

*
nbnb

*
,,,, +−−= −∑ ε

() j
KJI

j
KJI

j
KJIKJIKJIKjIKjI cAppvava ,,,,,,

*
,1,

*
,,

*
nbnb

*
,,,, +−−= −∑ ε

() k
KJI

k
KJI

k
KJIKJIKJIkJIkJI cAppwawa ,,,,,,

*
1,,

*
,,

*
nbnb

*
,,,, +−−= −∑ ε

START

Initial guess: p*, u*, v*, w*, φ*

STEP 2: Solve pressure correction equation

'
,,

'
nbnb

'
,,,, KJIKJIKJI dpbpb +=∑

u*, v*, w*

STEP 3: Correct pressure and velocities
'* ppp +=

()'
,,1

'
,,

,,

,,,,*
,,,, KJIKJI

KJi

i
KJI

i
KJI

KJiKJi pp
a

A
uu −−−=

ε

()'
,1,

'
,,

,,

,,,,*
,,,, KJIKJI

KjI

j
KJI

j
KJI

KjIKjI pp
a

A
vv −−−=

ε

()'
1,,

'
,,

,,

,,,,*
,,,, −−−= KJIKJI

KjI

j
KJI

j
KJI

kJIkJI pp
a

A
ww

ε

p'

p, u, v, w

Convergence?

STEP 4: Solve all other transport equations

KJIKJIKJI caa ,,,nbnb,,,, φφφ +=∑

No

Yes

New time step?

φ

No

STOP

Yes

RESEARCH REPORT VTT-R-01678-08

13 (22)

8 SIMPLE algorithm Development

Thus far the most profound drawback of the solution algorithm has been the lack of diagonal

dominance of the pressure correction equation when it is formulated assuming incompressible

flow, a presumption which under BWR steady state conditions seems quite valid. The lack of

diagonal dominance renders most iterative solvers in their basic form useless when solving

the pressure correction equations. Direct solvers, on the other hand, become inefficient

compared to iterative solvers when the number of calculation nodes is increased.

If transient calculations, where sudden drops in pressure occur, were to be performed on this

code, it would be best to reconsider the sequence of solving the equations. Moving all other

conservation equations inside the SIMPLE-iteration could be practical in this perspective, as

was mentioned before.

8.1 The effect of manipulating the pressure correction matrix

A quick test was made where the diagonal dominance of the pressure correction matrix was

artificially increased. Such modifications can be done only if the final converged solution

remains unchanged. In this case the pressure correction can be seen as a tool to nudge the

pressure field towards the final solution. When velocity and pressure fields satisfy each other,

the pressure corrections, given by the pressure correction equations, approach zero, hence the

small increase in the diagonal term has no effect; only the path to reach the converged

solution has been changed.

The pressure correction equation was solved using a direct solver, Gaussian elimination, and

the number of SIMPLE-iterations was observed with each time step. Though the aim of this

test ultimately is to be able to use an iterative method to solve the pressure correction

equations, a direct method was chosen in order to eliminate the effect of convergence criterion

of the iterative solver in the number of SIMPLE-iterations.

The test showed that the artificial increase in the diagonal dominance increased the amount of

SIMPLE-iterations with a factor of 10-1000. In a situation where most of the computational

time is spent solving the pressure correction equations, this would mean that an iterative

solver should be able to solve the pressure correction equations in 1/10 to 1/1000 of the time

compared to Gaussian elimination.

RESEARCH REPORT VTT-R-01678-08

14 (22)

8.2 The effect of under-relaxation

SIMPLE algorithm needs under-relaxation, due to both the iterative nature of the procedure

and the nonlinearity of the equations, in order to obtain a converged solution. Both the

pressure corrections and the velocities are under-relaxed. One of the first things to do was to

determine a robust set of under-relaxation parameters and the range where the solution seems

to converge. A more detailed study is unnecessary, at the moment, since the rate of

convergence varies considerably with different geometry and flow conditions. The full effect

of the under-relaxation parameters on computational time is best seen when the number of

SIMPLE-iterations are compared throughout the simulation.

At the moment the most robust under-relaxation parameters seem to be, αp = 0.5 and αu = 0.5,

where the under-relaxation factors are for pressure and velocity, respectively. A slight

increase in any of them seems to decrease the number of SIMPLE-iterations, but at the same

time the fluctuation of pressure corrections and velocities is increased within the iteration

procedure.

8.3 SIMPLE variants

When the basic SIMPLE algorithm has been coded, the introduction of other SIMPLE

variants, such as SIMPLEC, SIMPLE-Consistent, and SIMPLER, SIMPLE-Revised, is

relatively straightforward; only minor modifications or additions are needed. The current

version of the code includes both SIMPLEC and SIMPLER algorithms. At the current

configuration, though relatively little testing has been done, SIMPLEC seems quite

promising, since it requires virtually no more computation effort than SIMPLE and most

papers that have compared the performance of the two algorithms report a significant

reduction in the number of iterations per time step.

However, if the solution of other conservation equations is performed within the SIMPLE-

iteration, SIMPLER might prove to be more useful. At the present the computational effort to

calculate a certain amount of iterations is doubled when using SIMPLER, without similar

reduction in number of iterations needed to reach a converged solution.

RESEARCH REPORT VTT-R-01678-08

15 (22)

8.4 Assertions

Some assertions have been included in the code to monitor the iteration procedure. One of

them simply monitors the maximum values of velocities and compares them with Courant’s

criteria. Though fully implicit discretization has been used to formulate the momentum

equations, old values of local mixture densities still have to be used, which makes the overall

procedure stringent to Courant’s criteria. Another assertion aims to detect inconsistent mass

flow rates in momentum equations over consecutive horizontal planes. Due to an averaging

process of the velocity node mass flow rates the latter is not trivial, but a necessity, in order to

reach a valid solution.

8.5 Linear solver & preconditioning

At the moment the effect of preconditioning on the usefulness of an iterative solver, namely

CGS, which is a Krylov subspace method, is being studied; the reasons for this being the

possible savings in computational time and the ability to solve bigger systems.

In 3D problems, the size of the linear set of difference equations easily grows prohibitively

large. For example, a 100 x 100 x 100 Cartesian computational grid has one million grid cells,

and thus the coefficient matrix A of the linear set is a million-by-million one. Solving by

basic matrix manipulations is not possible because of the memory needed for matrix elements

and the CPU time for float operations. On the other hand, in iterative methods the most CPU-

intensive basic operation is usually the product of A and some vector. Then, it is sufficient to

store only the non-zero elements of A and the number of float operations basically grows

linearly with the number of grid cells; of course, additional work may also result in the form

of more iteration rounds needed for convergence in a larger problem. Furthermore, it is

straightforward to parallelize the computation.

PORFLO is a code for solving 3D fluid dynamics problems for water and steam. A fast and

memory-efficient iterative solver was needed for larger problem sizes. The coefficient matrix

may be non-symmetric. A preliminary comparison study of some appropriate well-known

iterative solver algorithms (GMRES, BCG, QMR, CGS, BICGSTAB, CGNR) was performed

with typical equation sets of PORFLO. The CGS (Conjugate Gradient Squared) algorithm

turned out to be a fast and robust one, and has since been extensively used in PORFLO.

RESEARCH REPORT VTT-R-01678-08

16 (22)

CGS belongs to the class of so-called Krylov subspace methods [Saad 2003, p. 151]. An m-

dimensional Krylov subspace has the form κm (A, v) = span {v, Av, A2v, …, Am-1v} and

contains all the vectors x of Rn that can be written as x = p(A)v, where p is a polynomial of

degree m-1 or less. Essentially, the inverse A-1 is approximated by p(A), where p is a suitable

polynomial. This is accomplished by projecting the problem onto a Krylov subspace and the

approximation to the solution vector is extracted from the subspace. The dimension m of the

subspace increases during the iteration. The residual is minimized in each successive

subspace. Theoretically, complete convergence is reached when m equals problem size. The

m basis vectors tend to become linearly dependent, which can be corrected by some

orthogonalization scheme or, like CGS, the intrinsically nonorthogonal Lanczos

biorthogonalization algorithm for non-symmetric matrices. As a historical note, the Krylov

methods were discovered in the 1950s but abandoned for decades because of the inherent loss

of linear independence. Basic algorithms based on Lanczos biorthogonalization require a

matrix-by-vector product by both A and AT, but the latter only contributes to certain scalars

needed by the algorithm. The CGS algorithm avoiding the operations with AT was developed

by Sonneveld in 1984.

The CGS algorithm can be derived from BCG (biconjugate gradient method) by certain

algebraic manipulations. BCG in turn can be derived from the Lanczos biorthogonalization

procedure. For PORFLO, the CGS algorithm is provided by the subroutine cgs_solver_sparse.

For the multiplications by matrix A, the memory- and CPU-efficient subroutine

matmul_sparse is used. These multiplications consume most of the CPU time of the

algorithm. Potential failures to continue iterating include scalar scaling factors α and β

becoming zero or infinite. Other known problems are build-up of rounding errors or even

floating point overflow due to the squaring of the residual (which is inherent to CGS),

especially when convergence is irregular. There are variants of CGS with smoothing of the

convergence behavior.

The BFBT benchmark application revealed new problems in the PORFLO iterative linear

solver, which was previously believed to be universal, stable and robust. In the basic (older)

solution method employed in PORFLO, the pressure solution must be very accurate in order

to calculate a realistic flow field. Currently, preconditioning techniques are being studied to

overcome the difficulties. Possibilities include suitable multiplications of the equations or

other kind of explicit preconditioning matrix used inside the solver algorithm. Other

techniques include artificially increasing the diagonal dominance, tuning the CGS shadow

RESEARCH REPORT VTT-R-01678-08

17 (22)

residual vector, or explicit residual refinement. Unfortunately, no universally reliable method

for solving an arbitrary large linear system exists today, and so development must partially

proceed through trial and error for each specific problem.

There are frequent problems with large matrices where the solver either stagnates at a nearby

point of the correct solution vector, or starts to diverge after visiting a nearby point in the

solution space. Especially the pressure matrix is very weakly diagonally dominant, with only

0.01 % dominance. The void prediction is easier to iterate, because the diagonal dominance is

in the range of 2 - 20 %. The iterative matrix inversion is the only possibility for inverting

large matrices. The simplest methods, Jacobi, one-directional Gauss-Seidel and two-

directional Gauss-Seidel, work already for the void fraction prediction with a reasonable

convergence in less that 50 iteration steps. The convergence of the pressure matrix inversion

is more complex. 5000 iterations is not sufficient with Jacobi and Gauss-Seidel iterations.

Convergence can be achieved with disturbed equations (converges easily, if only small

changes) with the ADI method (altering direction implicit) for the pressure matrix in less than

2000 iterations. But the ADI solution includes axis equations solved with a 3-band matrix

inversion implicitly.

Better convergence is striven for by iterative matrix inversions. At present, good convergence

characteristics have been obtained for the 100000 mesh points nodalization. The problematic

part in these solutions is the so-called CGS shadow residual, which is commonly under

scientific discussions in international meetings. Probably the best way forwards is

understanding iterative solutions detailed enough. In parallel with this work the set up of

equations may need to be improved. The problematic term is the mass error in the pressure

equation. The question is, how efficiently the mass error term is put into the equations for the

next time step. When the convergence problems for the iterative solution have been clarified,

the whole work can be concentrated on making then physical model more exact.

8.6 Summary of some major developments of the SIMPLE
approach

During each SIMPLE iteration round, momentum has to be calculated / solved. It used to be

calculated pointwise, using old (explicit, known) values of velocity in the neighboring cells.

RESEARCH REPORT VTT-R-01678-08

18 (22)

Now momentum is actually solved from a system of equations, one of the three components at a

time.

Under-relaxation of velocities has been implemented and is now performed at the end of each

SIMPLE iteration for the corrected velocities, one at a time. There was an older approach of

performing the under-relaxation in connection with solving the momentum equations. Separated

under-relaxation makes it easier and clearer to set the momentum equations and monitor the

SIMPLE iterative procedure. The relaxation coefficients of velocities are not (or, are only

optionally) fed into the pressure correction equation, as decreasing them could increase the

pressure correction inappropriately.

The criterion of accepted convergence in SIMPLE is the maximum proposed pressure

correction (typically 0.2 Pa). Other possibilities include velocity or pressure changes from one

iteration round to another.

8.7 Debugging

As might be expected, most of the coding effort has been spent on debugging the program.

Some of the most severe errors found include saving the improved velocities after momentum

equations. A simple mistake in an if-sentence prevented the velocities nearest to the fuel rods

from being updated during the iteration, which lead to decrease in velocity near the fuel rods.

In a situation where the friction has been set uniform across the whole domain, this was

clearly illogical. However, the source of this was quite hard to backtrack, since due to the

strong coupling between pressure correction and momentum equations the symptoms were

seen everywhere.

9 Specification of the BFBT benchmark problem

The BFBT problem tackled in TRICOT so far is that of Phase 1 (void distribution

benchmark), Exercise 1 (steady-state sub-channel grade benchmark). In this problem, the

boiling flow does not change in time, except of course for the two-phase turbulent

fluctuations. The simulated void fraction field is, in the end, expressed as average values in a

mesh whose elements correspond to the sub-channels between fuel rods. Simulation is

compared with measurements of an X-ray computer tomography scanner located at 50 mm

RESEARCH REPORT VTT-R-01678-08

19 (22)

above the heated length. The spatial resolution of the measurements is as fine as 0.3 mm x 0.3

mm, but the time taken by one scan is 15 s, so that only a steady-state time average is

acquired. The simulations by PORFLO start with a cold bundle immersed in water-only flow.

After turning on the heating power, the heater rods reach their operating temperature in less

than 10 s, after which one may observe an increasing simulated void fraction. A detailed

comparison with measurements was not yet performed, as several refinements of the

simulation are still in progress.

10 BFBT workshop in may 2007

Jaakko Miettinen participated in the BFBT workshop in Paris to discuss the problems of the

simulation with other experts. Whereas isolation condensers and steam generators are macro

scale facilities for the PORFLO application, and the particle bed dryout experiment is a

medium scale facility, the BFBT experiment can be considered as a micro scale application

for the PORFLO code. The aimed mesh size in the cross section is 1.5 mm. The resolution of

the most accurate measurements for the void fraction is 0.3 mm. But this mesh size would be

too small, because the 3.6 m long rod bundle needs to be modeled in the vertical direction as

well with 50 - 200 mesh points.

The benchmark includes several tasks and it is based on the accurate measurements for the

BWR test bundles carried out at JNES (Japan Nuclear Safety organization). The phase I of the

benchmark includes the prediction for the void fraction distribution as four exercises:

Exercise 1 - Steady state sub-channel average void fraction

Exercise 2 - Steady state sub-channel microscopic void fraction

Exercise 3 - Transient macroscopic void fraction

Exercise 4 - Uncertainty analysis for the void fraction

Phase II of the benchmark includes prediction of critical heat flux as four exercises:

Exercise 0 - Steady state pressure drop in the bundle

Exercise 1 - Steady state critical power in the bundle

Exercise 2 - Transient critical power in the bundle

RESEARCH REPORT VTT-R-01678-08

20 (22)

Exercise 3 - Uncertainty analysis for the critical power

The benchmark project as a whole has been started already two years earlier and VTT had no

possibilitiy to participate in the work from the beginning. But after participating in the latest

project meeting of May 8-9, the benchmark coordination promised that VTT and other late-

started organizations can still participate in all parts of the exercise. In TRAB-SMABRE

development the bundle phenomena need to be described in such detail that the BFBT

benchmark with modeling of subcooled boiling, void fraction distribution and dryout

mechanism greatly supports the system code development as well. Thus participation in the

complete work can be greatly emphasized.

11 Results of BFBT simulations

At the moment the simulations reach several seconds in real time to a point where significant

boiling occurs. The effect of viscosity was studied in the latest runs. One of them did not

include viscosity and in the other viscosity varied in horizontal planes along the length of the

fuel bundle. The one without viscosity reported higher local values of both void fractions and

horizontal flow rates, whereas the other with vertically varying viscosity had more even

distribution of the variables in question. Maximum local void fractions have reached values

from 0.6-1.0 depending on whether viscosity is included in the simulation or not.

RESEARCH REPORT VTT-R-01678-08

21 (22)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
BFBT fuel bundle and PORFLO grid

x coordinate [mm]

y
co

or
di

na
te

 [m
m

]

Figure 6. The most coarse mesh studied for the BFBT calculation

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
BFBT fuel bundle and PORFLO grid

x coordinate [mm]

y
co

or
di

na
te

 [m
m

]

Figure 7. The fine mesh used for the subchannel studies for the BFBT calculation. The
present results are for the 2 x 2 test bundle used for the numerical study with different
solutions.

RESEARCH REPORT VTT-R-01678-08

22 (22)

Bundle study grid level 2.0 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0

0.2

0.4

0.6

0.8

1

Void fraction

Bundle study grid level 2.0 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

200

250

300

350

400

Temperature (C)

Bundle study grid level 2.6 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0

0.2

0.4

0.6

0.8

1

Void fraction

Bundle study grid level 2.6 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

200

250

300

350

400

Temperature (C)

Bundle study grid level 3.4 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0

0.2

0.4

0.6

0.8

1

Void fraction

Bundle study grid level 3.4 m

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Width (m)

200

250

300

350

400

Temperature (C)

Figure 8. Void fraction and temperature distributions on different axial levels for the
numerical study 2x2 bundle.

	1 Introduction
	2 General strategy of development
	3 New user interface & main branching in the code
	4 Geometry interface & meshing for fuel bundles
	5 Basics of PORFLO application to the BFBT benchmark
	6 Pressure-Velocity Coupling
	7 SIMPLE algorithm
	7.1 Iteration procedure

	8 SIMPLE algorithm Development
	8.1 The effect of manipulating the pressure correction matrix
	8.2 The effect of under-relaxation
	8.3 SIMPLE variants
	8.4 Assertions
	8.5 Linear solver & preconditioning
	8.6 Summary of some major developments of the SIMPLE approach
	8.7 Debugging

	9 Specification of the BFBT benchmark problem
	10 BFBT workshop in may 2007
	11 Results of BFBT simulations

