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1 Introduction 

 

PORFLO-related work under the TRICOT project in 2007 was divided into three tasks: 

general code development, application of the code to the BFBT benchmark problem and 

application to an open reactor core. Due to difficulties with the BFBT benchmark, the open 

core simulation was canceled and the efforts were concentrated on general development and 

on producing an acceptable simulation of the BWR fuel bundle two-phase flow, as measured 

in the BFBT experiments. Main emphasis of the development work was on the SIMPLE 

algorithm for pressure-velocity iterative coupling. In a related project, basic documentation 

and user manual of PORFLO have been produced. 

 

2 General strategy of development 

 

The main strategy in PORFLO development has been to reach a numerically robust and stable 

version. A reference result produced by direct solution of the matrix equations (with up to 

20000 cells) is used to compare with results by iterative solution methods. For realistic results, 

one million or more cells are desired. The reference solution (with the older basic ‘SMABRE’ 

style solution) works when convection terms are left out of the momentum equation. Diffusion 

terms do not cause a problem. Special consideration has been devoted to keeping the horizontal 

and vertical flow areas from differing too much, even when the grid has cells that are longer in 

the vertical direction. 

 

The necessary step towards finer grids is the use of iterative solvers. There are still convergence 

problems with the CGS algorithm, but it turned out that an older solver (ADI) works even for a 

problematic case of pressure / flow solution, provided that the convection term of the 

momentum equation is neglected. The BFBT benchmark has thus been simulated with as many 

as one million cells. It is attempted next to solve with the convection terms, and to support 

further development of the new pressure-velocity coupling (SIMPLE algorithm). 

 

The present implementation of the SIMPLE algorithm converges quite slowly, but it has the 

complete terms of the momentum equation. As soon as convergence can be accelerated, a 
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practically usable 3D two-phase solution is at hand. Work is also continued in the area of CGS 

and other iterative solvers. 

 

3 New user interface & main branching in the code 

  
The PORFLO code used to be tailored at source code level for each individual application, 

like particle bed or isolation condenser. Now a branching at the main level is available to 

handle application specific input and perform various application specific initializations for 

particle bed, isolation condenser, BWR fuel bundle, open PWR core and steam generator. 

  

The most essential part of the code is the solution of the basic conservation equations for the 

3-dimensional structured mesh. The basic solution includes the combined pressure field and 

volumetric velocity, prediction of the void fraction and consequently the volumetric flow 

distribution split into phase flow rates, explicit integration of the mass flow distribution and 

consequently the mass balance error for the next time step, as well as liquid and gas energy 

equations and temperature distribution in the solid structure. In future development, additional 

equations may be solved for the turbulent kinetic energy and energy dissipation. 

  

For the pressure-volumetric velocity -solution and void fraction prediction a matrix inversion 

is needed. The matrix structure is a wide band sparse matrix. With the present CPU capability 

and old solution algorithms, a case with typically 30000 mesh points (nodes) can be inverted. 

The full matrix to be inverted would include 900 million elements. With a sparse matrix 

approach only 58 million matrix elements needs to be processed. For bigger nodalizations, up 

to one million mesh points, iterative inversion procedures are needed. In these procedures 

with one million nodes only 9 million elements need to be stored. 

  

Before the actual solution, the boundary conditions need to be defined for diverse calculation 

cases. This part is partially case dependent. The original facility setup may be so complex that 

case specific input and output processing is needed for generating the generic nodal 

information and for extracting the most interesting results. Another alternative would be 

programming a generic interface similarly with the system codes. The case specific user 

interface was found more efficient for PORFLO, which is aimed for analyzing very different 

types of facilities. 
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In an isolation condenser, heat is generated in the heat transfer tubes condensing vapor. A 

special module in PORFLO is used for one-dimensional conservation equations inside the 

condensing tubes, and condensing efficiency is controlled by regulating the water level in the 

steam and condensate collectors. The condenser includes free water surface, with atmospheric 

pressure on that level. The final separation of liquid and vapor takes place on this level. 

Specific input handling is needed for the isolation condenser. The output is tailored according 

to the needs of the case as well. 

 

 
 
Figure 1. Model of IC pool in the simulations with PORFLO. 
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Figure 2. Pool void fraction and temperature distribution in PORFLO simulation. 
 
  

In the particle bed dryout experiment, heat is generated by electric current conducted through 

a heating coil. The test rig is located inside a constant pressure vessel and the water level 

above the heated bed is controlled with a combination of level measurement and a feedwater 

pump. The final separation of bubbles takes place on the water level. The calculation 

geometry has cylindrical symmetry. Vapor condensation on the pressure vessel wall and heat 

conduction through the steel walls have to be considered in the model as well. The bed 

material itself is 0.4 mm to 3 mm diameter oxide particles, which have a specific heat 

capacity and conductivity. The case specific input definition contains all these features. 

  
In a steam generator, the heat input into the fluid via heat transfer tubes has to be described. 

One nodalization is used for the tubing and another for the condensing pool. The input 

specification has to define the linking between individual primary and secondary nodes. On 

the secondary side, components exist for feedwater control and level measurement. The 

pressure boundary condition for the vapor space is essential. 
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Figure 3. Horizontal steam generator applied in the Loviisa VVER-440 plant.. 
 

The generation of the three-dimensional reactor core nodalization is tested first with the 

TRAB-SMABRE code system. After satisfactory results, the input generation is adjusted for 

the PORFLO as well. 

 

For the BFBT calculation, the specific mesh generation algorithm requests the main 

parameters for the bundle structure, like the rod diameter, pitch, rod type, channel width and 

rounding. The initialization part defines the desired computational mesh, matching for all rods 

a similar meshing. Inside the rods three different fields exist: uranium oxide, gas gap and 

cladding. For the surface nodes, between solid and fluid nodes, the heat transfer 

characteristics need to be defined and calculated dynamically every time step. Critical power 

prediction needs specific handling. The inlet condition for the bundle flow is defined by the 

inlet velocity, and the output boundary condition by constant pressure. The output processing 

needs case specific handling as well. 

 

A minor code modification was implemented to incorporate a more realistic momentum 

boundary condition for the incoming flow. Otherwise, mass errors grow prohibitively large. 

Phase separation is calculated from the drift flux model and seems to be realistic. 
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Also, a new indexing scheme of grid cells and faces was implemented throughout the PORFLO 

code, making future developments easier. 

 

After experience has been gained from tens of applications, one could consider the possibility 

for more generic user input. For example, the present user input of the Fluent code is not user-

friendly enough for versatile application. 

 

 

4 Geometry interface & meshing for fuel bundles 

 

An easy-to-use preprocessor program for fuel bundle geometry data import, meshing and 

geometry-related initialization of the porosity model was completed. Various fuel designs 

with different channel boxes, arrangements of fuel rods and water rods, and power 

distributions are now easily imported. Meshing is not exactly body-fitted, but nevertheless 

always fitted to the rods and sub-channels in the best possible way. Mesh size can be varied 

easily. Various data on heated / unheated areas and volumes of the structures are delivered for 

each mesh cell to be used in the PORFLO simulation. 

 

5 Basics of PORFLO application to the BFBT benchmark 

 

Currently PORFLO has been optimized to simulate a BWR fuel bundle. Single-phase fluid 

enters the fuel bundle from the bottom and a two-phase mixture flows out of the bundle at the 

top. The calculations are performed on a non-uniform orthogonal grid and velocities are 

solved on a backward staggered grid to prevent the checkerboard pressure field –effect. Since 

PORFLO is a porous media model, the grid need not follow the structural interfaces; instead, 

porosities are defined as a fraction occupied by the fluid from the total volume. 

6 Pressure-Velocity Coupling 

 
The former solution procedure combined the equation for mixture mass with the three mixture 

momentum equations to yield a single system of equations for pressure. The resulting 
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pressure field is then used to obtain the velocity field directly. One of the perks of this method 

is that the amount of calculations needed for solving a problem with one system of equations 

is much less than a problem with several systems of equations. Added to this, the former 

solution procedure does not require iteration within the time step. 

 

PORFLO  FLOWCHART

Geometric data as data sentences for the fixed geometry
to be modelled
Reading user parameters for the calculation options
Reading user input for the transient control. 

 START CALCULATING A NEW TIMESTEP

Calculate process control: pressure control, feedwater control

Calculate solid-fluid and fluid-fluid heat and mass transfer

Set boundary conditions for heat conduction: heating power, heat loss

Integrate solid structure and gas gap temperatures. 
Upgrade heat fluxes for the new solid temperatures. 

Solve pressure and volumetric flow distribution in the inner vessel.
The pressure is solved  by matrix inversion or iteratively..

Add drift flux contributions into the volumetric flow

Solve the prediction for the void fraction distribution to be used for
calculating the liquid and vapour mass flow rates.
Matrix  inversion or iterative method Define mass flows. 

Integrate mass and fluid temperature distributions.

If needed, write the listing output, transient plot output, distribution
plot output, debugging output and restart file.

.New step? OUTPUT , END
.No.Yes

Initialize geometrical quantities and specify materials 
in different section.

INITIALIZATION OF THE CALCULATION 

Initialize thermohydraulic parameters form the pressure.
Define drift flux parameters.
Printout of inital parameters. Set titles for plot-files.

 
Figure 4. Original SMABRE type of algorithm. 
 

Another approach is to couple the pressures and velocities indirectly, which leads to an 

iterative procedure where the approximations for pressures and velocities are improved with 

every cycle. 
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The SIMPLE algorithm has been programmed in PORFLO to be optionally used in place of the 

older ‘SMABRE style’ method. An earlier implementation of SIMPLE gave good results in 

multidimensional calculation of one-phase flow. The advantage of SIMPLE is that the matrix 

diagonals in solution of the pressure and velocity corrections are stronger than in the SMABRE 

method. Test runs have been conducted in a Master’s thesis work. 

 

7 SIMPLE algorithm 

 

SIMPLE algorithm, Semi-Implicit Method for Pressure-Linked Equations, is included in the 

current version of PORFLO as its own subroutine. At the current configuration the subroutine 

serves as an independent part that solves the pressure and velocity distributions from a given 

set of data; in other words: there is no feedback from any other part of the program during the 

calculation of a time step.  

 

Another approach would be to solve all other conservation equations inside the SIMPLE-

iteration, which could be done with relatively little coding effort, if it seems necessary in the 

future. Solving all other conservation equations inside the iteration loop would enable the use 

of longer time steps, especially useful in transient calculations, since the solution procedure 

would become more implicit, as the pressure-velocity coupling would have a feedback from 

changes in pressure and heat exchange through local mixture densities. 

 

Iterative procedures, like SIMPLE, require more calculations compared to direct pressure-

velocity coupling, since firstly multiple systems of equations have to be solved during one 

iteration cycle, the momentum equations and the pressure correction, and secondly multiple 

iterations are needed to reach a converged solution. In this perspective it would seem 

unreasonable to use SIMPLE. However, fully implicit discretization can be applied to 

formulate the momentum equations and all the terms in the momentum equations, convection, 

diffusion and even turbulence, can be introduced without significant hardship. This cannot be 

said about the former solution procedure. 

 

It is important to recognize that though SIMPLE makes no assumptions about the solver 

which the systems of equations are to be solved with, being an iterative procedure itself, the 
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intermediate solutions of the iteration cycles do not have to be solved precisely; only the final 

solution is of importance. Therefore careful consideration of the convergence criteria can 

significantly reduce the amount of calculations needed to perform one time step, and hence 

the overall computational time is reduced as well. 

 

7.1 Iteration procedure 

SIMPLE and its several variants start with guessed pressure and velocity fields which are first 

input to the momentum equations to obtain improved values for the velocities. The improved 

velocities are used in the pressure correction equation, which is obtained by combining the 

mass and momentum conservation equations. The pressure corrections are used to yield 

corrected pressures and velocities, which are again used in the momentum equation at the start 

of the next cycle. The sequence of operations in SIMPLE algorithm is represented in figure 1. 

Though the current version of the code is used to simulate a steady state situation, the type of 

SIMPLE algorithm used is actually transient, since firstly the whole simulation marches 

forward in time and secondly transient terms are included in the governing equations; for 

example, inertia of the flow transferred from the previous time step is included in the 

momentum equations. 
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Figure 5. Transient SIMPLE algorithm. 

Set time step Δt 
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STEP 1: Solve discretized momentum equations 
 

( ) i
KJI

i
KJI

i
KJIKJIKJIKJiKJi cAppuaua ,,,,,,

*
,,1

*
,,

*
nbnb

*
,,,, +−−= −∑ ε  

 

( ) j
KJI

j
KJI

j
KJIKJIKJIKjIKjI cAppvava ,,,,,,

*
,1,

*
,,

*
nbnb

*
,,,, +−−= −∑ ε  

 

( ) k
KJI

k
KJI

k
KJIKJIKJIkJIkJI cAppwawa ,,,,,,

*
1,,

*
,,

*
nbnb

*
,,,, +−−= −∑ ε  

 
START 

Initial guess: p*, u*, v*, w*, φ* 

STEP 2: Solve pressure correction equation 
 

'
,,

'
nbnb

'
,,,, KJIKJIKJI dpbpb +=∑  

u*, v*, w*

STEP 3: Correct pressure and velocities 
'* ppp +=  

( )'
,,1

'
,,

,,

,,,,*
,,,, KJIKJI

KJi

i
KJI

i
KJI

KJiKJi pp
a

A
uu −−−=

ε

 

( )'
,1,

'
,,

,,

,,,,*
,,,, KJIKJI

KjI

j
KJI

j
KJI

KjIKjI pp
a

A
vv −−−=

ε

 

( )'
1,,

'
,,

,,

,,,,*
,,,, −−−= KJIKJI

KjI

j
KJI

j
KJI

kJIkJI pp
a

A
ww

ε

p'

p, u, v, w

Convergence?

STEP 4: Solve all other transport equations 
 

KJIKJIKJI caa ,,,nbnb,,,, φφφ +=∑  

No

Yes

New time step?

φ

No

 
STOP 

Yes



 

RESEARCH REPORT VTT-R-01678-08

13 (22)
 

 

 

8 SIMPLE algorithm Development 

 
Thus far the most profound drawback of the solution algorithm has been the lack of diagonal 

dominance of the pressure correction equation when it is formulated assuming incompressible 

flow, a presumption which under BWR steady state conditions seems quite valid. The lack of 

diagonal dominance renders most iterative solvers in their basic form useless when solving 

the pressure correction equations. Direct solvers, on the other hand, become inefficient 

compared to iterative solvers when the number of calculation nodes is increased. 

 

If transient calculations, where sudden drops in pressure occur, were to be performed on this 

code, it would be best to reconsider the sequence of solving the equations. Moving all other 

conservation equations inside the SIMPLE-iteration could be practical in this perspective, as 

was mentioned before. 

 

8.1 The effect of manipulating the pressure correction matrix 

A quick test was made where the diagonal dominance of the pressure correction matrix was 

artificially increased. Such modifications can be done only if the final converged solution 

remains unchanged. In this case the pressure correction can be seen as a tool to nudge the 

pressure field towards the final solution. When velocity and pressure fields satisfy each other, 

the pressure corrections, given by the pressure correction equations, approach zero, hence the 

small increase in the diagonal term has no effect; only the path to reach the converged 

solution has been changed. 

 

The pressure correction equation was solved using a direct solver, Gaussian elimination, and 

the number of SIMPLE-iterations was observed with each time step. Though the aim of this 

test ultimately is to be able to use an iterative method to solve the pressure correction 

equations, a direct method was chosen in order to eliminate the effect of convergence criterion 

of the iterative solver in the number of SIMPLE-iterations.  

 

The test showed that the artificial increase in the diagonal dominance increased the amount of 

SIMPLE-iterations with a factor of 10-1000. In a situation where most of the computational 

time is spent solving the pressure correction equations, this would mean that an iterative 

solver should be able to solve the pressure correction equations in 1/10 to 1/1000 of the time 

compared to Gaussian elimination. 
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8.2 The effect of under-relaxation 

SIMPLE algorithm needs under-relaxation, due to both the iterative nature of the procedure 

and the nonlinearity of the equations, in order to obtain a converged solution. Both the 

pressure corrections and the velocities are under-relaxed. One of the first things to do was to 

determine a robust set of under-relaxation parameters and the range where the solution seems 

to converge. A more detailed study is unnecessary, at the moment, since the rate of 

convergence varies considerably with different geometry and flow conditions. The full effect 

of the under-relaxation parameters on computational time is best seen when the number of 

SIMPLE-iterations are compared throughout the simulation. 

 

At the moment the most robust under-relaxation parameters seem to be, αp = 0.5 and αu = 0.5, 

where the under-relaxation factors are for pressure and velocity, respectively. A slight 

increase in any of them seems to decrease the number of SIMPLE-iterations, but at the same 

time the fluctuation of pressure corrections and velocities is increased within the iteration 

procedure. 

 

8.3 SIMPLE variants 

When the basic SIMPLE algorithm has been coded, the introduction of other SIMPLE 

variants, such as SIMPLEC, SIMPLE-Consistent, and SIMPLER, SIMPLE-Revised, is 

relatively straightforward; only minor modifications or additions are needed. The current 

version of the code includes both SIMPLEC and SIMPLER algorithms. At the current 

configuration, though relatively little testing has been done, SIMPLEC seems quite 

promising, since it requires virtually no more computation effort than SIMPLE and most 

papers that have compared the performance of the two algorithms report a significant 

reduction in the number of iterations per time step. 

 

However, if the solution of other conservation equations is performed within the SIMPLE-

iteration, SIMPLER might prove to be more useful. At the present the computational effort to 

calculate a certain amount of iterations is doubled when using SIMPLER, without similar 

reduction in number of iterations needed to reach a converged solution. 
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8.4 Assertions 

Some assertions have been included in the code to monitor the iteration procedure. One of 

them simply monitors the maximum values of velocities and compares them with Courant’s 

criteria. Though fully implicit discretization has been used to formulate the momentum 

equations, old values of local mixture densities still have to be used, which makes the overall 

procedure stringent to Courant’s criteria. Another assertion aims to detect inconsistent mass 

flow rates in momentum equations over consecutive horizontal planes. Due to an averaging 

process of the velocity node mass flow rates the latter is not trivial, but a necessity, in order to 

reach a valid solution. 

 

8.5 Linear solver & preconditioning 

At the moment the effect of preconditioning on the usefulness of an iterative solver, namely 

CGS, which is a Krylov subspace method, is being studied; the reasons for this being the 

possible savings in computational time and the ability to solve bigger systems. 

 

In 3D problems, the size of the linear set of difference equations easily grows prohibitively 

large. For example, a 100 x 100 x 100 Cartesian computational grid has one million grid cells, 

and thus the coefficient matrix A of the linear set is a million-by-million one. Solving by 

basic matrix manipulations is not possible because of the memory needed for matrix elements 

and the CPU time for float operations. On the other hand, in iterative methods the most CPU-

intensive basic operation is usually the product of A and some vector. Then, it is sufficient to 

store only the non-zero elements of A and the number of float operations basically grows 

linearly with the number of grid cells; of course, additional work may also result in the form 

of more iteration rounds needed for convergence in a larger problem. Furthermore, it is 

straightforward to parallelize the computation. 

 

PORFLO is a code for solving 3D fluid dynamics problems for water and steam. A fast and 

memory-efficient iterative solver was needed for larger problem sizes. The coefficient matrix 

may be non-symmetric. A preliminary comparison study of some appropriate well-known 

iterative solver algorithms (GMRES, BCG, QMR, CGS, BICGSTAB, CGNR) was performed 

with typical equation sets of PORFLO. The CGS (Conjugate Gradient Squared) algorithm 

turned out to be a fast and robust one, and has since been extensively used in PORFLO. 
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CGS belongs to the class of so-called Krylov subspace methods [Saad 2003, p. 151]. An m-

dimensional Krylov subspace has the form κm (A, v) = span {v, Av, A2v, …, Am-1v} and 

contains all the vectors x of Rn that can be written as x = p(A)v, where p is a polynomial of 

degree m-1 or less. Essentially, the inverse A-1 is approximated by p(A), where p is a suitable 

polynomial. This is accomplished by projecting the problem onto a Krylov subspace and the 

approximation to the solution vector is extracted from the subspace. The dimension m of the 

subspace increases during the iteration. The residual is minimized in each successive 

subspace. Theoretically, complete convergence is reached when m equals problem size. The 

m basis vectors tend to become linearly dependent, which can be corrected by some 

orthogonalization scheme or, like CGS, the intrinsically nonorthogonal Lanczos 

biorthogonalization algorithm for non-symmetric matrices. As a historical note, the Krylov 

methods were discovered in the 1950s but abandoned for decades because of the inherent loss 

of linear independence. Basic algorithms based on Lanczos biorthogonalization require a 

matrix-by-vector product by both A and AT, but the latter only contributes to certain scalars 

needed by the algorithm. The CGS algorithm avoiding the operations with AT was developed 

by Sonneveld in 1984. 

 

The CGS algorithm can be derived from BCG (biconjugate gradient method) by certain 

algebraic manipulations. BCG in turn can be derived from the Lanczos biorthogonalization 

procedure. For PORFLO, the CGS algorithm is provided by the subroutine cgs_solver_sparse. 

For the multiplications by matrix A, the memory- and CPU-efficient subroutine 

matmul_sparse is used. These multiplications consume most of the CPU time of the 

algorithm. Potential failures to continue iterating include scalar scaling factors α and β 

becoming zero or infinite. Other known problems are build-up of rounding errors or even 

floating point overflow due to the squaring of the residual (which is inherent to CGS), 

especially when convergence is irregular. There are variants of CGS with smoothing of the 

convergence behavior. 

 

The BFBT benchmark application revealed new problems in the PORFLO iterative linear 

solver, which was previously believed to be universal, stable and robust. In the basic (older) 

solution method employed in PORFLO, the pressure solution must be very accurate in order 

to calculate a realistic flow field. Currently, preconditioning techniques are being studied to 

overcome the difficulties. Possibilities include suitable multiplications of the equations or 

other kind of explicit preconditioning matrix used inside the solver algorithm. Other 

techniques include artificially increasing the diagonal dominance, tuning the CGS shadow 
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residual vector, or explicit residual refinement. Unfortunately, no universally reliable method 

for solving an arbitrary large linear system exists today, and so development must partially 

proceed through trial and error for each specific problem. 

 

There are frequent problems with large matrices where the solver either stagnates at a nearby 

point of the correct solution vector, or starts to diverge after visiting a nearby point in the 

solution space. Especially the pressure matrix is very weakly diagonally dominant, with only 

0.01 % dominance. The void prediction is easier to iterate, because the diagonal dominance is 

in the range of 2 - 20 %. The iterative matrix inversion is the only possibility for inverting 

large matrices. The simplest methods, Jacobi, one-directional Gauss-Seidel and two-

directional Gauss-Seidel, work already for the void fraction prediction with a reasonable 

convergence in less that 50 iteration steps. The convergence of the pressure matrix inversion 

is more complex. 5000 iterations is not sufficient with Jacobi and Gauss-Seidel iterations. 

Convergence can be achieved with disturbed equations (converges easily, if only small 

changes) with the ADI method (altering direction implicit) for the pressure matrix in less than 

2000 iterations. But the ADI solution includes axis equations solved with a 3-band matrix 

inversion implicitly. 

 

Better convergence is striven for by iterative matrix inversions. At present, good convergence 

characteristics have been obtained for the 100000 mesh points nodalization. The problematic 

part in these solutions is the so-called CGS shadow residual, which is commonly under 

scientific discussions in international meetings. Probably the best way forwards is 

understanding iterative solutions detailed enough. In parallel with this work the set up of 

equations may need to be improved. The problematic term is the mass error in the pressure 

equation. The question is, how efficiently the mass error term is put into the equations for the 

next time step. When the convergence problems for the iterative solution have been clarified, 

the whole work can be concentrated on making then physical model more exact. 

 

8.6 Summary of some major developments of the SIMPLE 
approach 

 

During each SIMPLE iteration round, momentum has to be calculated / solved. It used to be 

calculated pointwise, using old (explicit, known) values of velocity in the neighboring cells. 
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Now momentum is actually solved from a system of equations, one of the three components at a 

time.  

 

Under-relaxation of velocities has been implemented and is now performed at the end of each 

SIMPLE iteration for the corrected velocities, one at a time. There was an older approach of 

performing the under-relaxation in connection with solving the momentum equations. Separated 

under-relaxation makes it easier and clearer to set the momentum equations and monitor the 

SIMPLE iterative procedure. The relaxation coefficients of velocities are not (or, are only 

optionally) fed into the pressure correction equation, as decreasing them could increase the 

pressure correction inappropriately.  

 

The criterion of accepted convergence in SIMPLE is the maximum proposed pressure 

correction (typically 0.2 Pa). Other possibilities include velocity or pressure changes from one 

iteration round to another.  

 

8.7 Debugging 

As might be expected, most of the coding effort has been spent on debugging the program. 

Some of the most severe errors found include saving the improved velocities after momentum 

equations. A simple mistake in an if-sentence prevented the velocities nearest to the fuel rods 

from being updated during the iteration, which lead to decrease in velocity near the fuel rods. 

In a situation where the friction has been set uniform across the whole domain, this was 

clearly illogical. However, the source of this was quite hard to backtrack, since due to the 

strong coupling between pressure correction and momentum equations the symptoms were 

seen everywhere.  

9 Specification of the BFBT benchmark problem 

 

The BFBT problem tackled in TRICOT so far is that of Phase 1 (void distribution 

benchmark), Exercise 1 (steady-state sub-channel grade benchmark). In this problem, the 

boiling flow does not change in time, except of course for the two-phase turbulent 

fluctuations. The simulated void fraction field is, in the end, expressed as average values in a 

mesh whose elements correspond to the sub-channels between fuel rods. Simulation is 

compared with measurements of an X-ray computer tomography scanner located at 50 mm 
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above the heated length. The spatial resolution of the measurements is as fine as 0.3 mm x 0.3 

mm, but the time taken by one scan is 15 s, so that only a steady-state time average is 

acquired. The simulations by PORFLO start with a cold bundle immersed in water-only flow. 

After turning on the heating power, the heater rods reach their operating temperature in less 

than 10 s, after which one may observe an increasing simulated void fraction. A detailed 

comparison with measurements was not yet performed, as several refinements of the 

simulation are still in progress. 

 

10 BFBT workshop in may 2007 

 

Jaakko Miettinen participated in the BFBT workshop in Paris to discuss the problems of the 

simulation with other experts. Whereas isolation condensers and steam generators are macro 

scale facilities for the PORFLO application, and the particle bed dryout experiment is a 

medium scale facility, the BFBT experiment can be considered as a micro scale application 

for the PORFLO code. The aimed mesh size in the cross section is 1.5 mm. The resolution of 

the most accurate measurements for the void fraction is 0.3 mm. But this mesh size would be 

too small, because the 3.6 m long rod bundle needs to be modeled in the vertical direction as 

well with 50 - 200 mesh points. 

 

The benchmark includes several tasks and it is based on the accurate measurements for the 

BWR test bundles carried out at JNES (Japan Nuclear Safety organization). The phase I of the 

benchmark includes the prediction for the void fraction distribution as four exercises: 

 

Exercise 1 - Steady state sub-channel average void fraction 

Exercise 2 - Steady state sub-channel microscopic void fraction 

Exercise 3 - Transient macroscopic void fraction 

Exercise 4 - Uncertainty analysis for the void fraction 

 

Phase II of the benchmark includes prediction of critical heat flux as four exercises: 

 

Exercise 0 - Steady state pressure drop in the bundle 

Exercise 1 - Steady state critical power in the bundle 

Exercise 2 - Transient critical power in the bundle 
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Exercise 3 - Uncertainty analysis for the critical power 

 

The benchmark project as a whole has been started already two years earlier and VTT had no 

possibilitiy to participate in the work from the beginning. But after participating in the latest 

project meeting of May 8-9, the benchmark coordination promised that VTT and other late-

started organizations can still participate in all parts of the exercise. In TRAB-SMABRE 

development the bundle phenomena need to be described in such detail that the BFBT 

benchmark with modeling of subcooled boiling, void fraction distribution and dryout 

mechanism greatly supports the system code development as well. Thus participation in the 

complete work can be greatly emphasized. 

 

11 Results of BFBT simulations 

 

At the moment the simulations reach several seconds in real time to a point where significant 

boiling occurs. The effect of viscosity was studied in the latest runs. One of them did not 

include viscosity and in the other viscosity varied in horizontal planes along the length of the 

fuel bundle. The one without viscosity reported higher local values of both void fractions and 

horizontal flow rates, whereas the other with vertically varying viscosity had more even 

distribution of the variables in question. Maximum local void fractions have reached values 

from 0.6-1.0 depending on whether viscosity is included in the simulation or not. 
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Figure 6. The most coarse mesh studied for the BFBT calculation 
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Figure 7. The fine mesh  used for the subchannel studies for the BFBT calculation. The 
present results are for the 2 x 2 test bundle used for the numerical study with different 
solutions. 
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Figure 8. Void fraction and temperature distributions on different axial levels for the 
numerical study 2x2 bundle. 
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