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Boiling two-phase flow and the equations governing the motion of fluid in two-phase
flows are discussed in this thesis. Disposition of the governing equations in three-
dimensional complex geometries is considered from the perspective of the porous medium
concept. The equations governing motion in two-phase flows were formulated, discretized
and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE
algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is
a three-dimensional 5-equation porous media model developed at VTT by Jaakko
Miettinen. The development of two-phase flow and the resulting void fraction distribution
was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test
cases using PORFLO.
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NOMENCLATURE

L atin symbols

flow or surface area

sguare matrix, whose dimensions n” n
coefficient of velocities in momentum equations
coefficient of pressures and pressure corrections

solution vector

sguare matrix, whose dimensions r” r
specific heat capacity in constant volume
source term in momentum equations
vector, whose components (Cy, Cy, Cs)
source term in pressure and pressure correction egs.
o equivalent diameter

F mixture mass flow rate

Fx force in x-direction

Fy force in y-direction

Fy force in z-direction

square matrix, whose dimensions (n- r)” (n- r)
vapour mass flow rate

frictional coefficient

sum vector of body forces per volume
acceleration due to gravity

specific enthalpy

heat transfer coefficient

volumetric heat transfer coefficient
specific latent heat of vaporization

unit vector in x-direction

volumetric flow rate

area averaged velocity

unit vector in y-direction

thermal conductivity

unit vector in z-direction

mass

arbitrary positive integer

surface normal vector

power generated inside the control volume
per unit volume

pressure

heat rate into the control volume per unit volume
arbitrary positive integer

surface heat flux

volumetric heat flux

temperature

surface force tensor

time

specific internal energy

OOQWUIUQJ:D:D

o O

TS NIXN—I—TGw—TITIToSQ "N T
« = =

c~449Q9 -~ 00T

[JkgK]
[kgmVs?] or [N]
(-]

[ko/s]
[m]
[kg/s]
[N]

[N]

[N]

[-]

[ko/s]

[-]
[N/m”]
[m/s’]
[Jkg]
[W/m?K]
[W/m?K]
[Jkg]

[-]

[m°/q]
[mVs]

[-]
[W/mK]
[-]

[ka]

[-]

[-]

[W/m’]
[Pal
[W/m’]
[-]
[W/n]
[W/m’]
[°Cor K]
[N/m?]
El

[Jkg]



u velocity in x-direction [m/g]
u velocity vector, whose components (u, v, w) [m/q]
Vv volume

\Z drift-flux velocity

v velocity in y-direction

v specific volume

W liquid mass flow rate

w velocity in z-direction

XY, Z 3D Cartesian coordinates

X unknown vector

Greek symbols

a void fraction (vapour fraction of fluid volume)

ap under-relaxation factor for pressures

oy under-relaxation factor for velocities

S coefficient

r mass transfer rate

y volumetric mass transfer rate

A difference

ox, oy, o0z  dimensions of the smallest fluid element whose macroscopic
properties are not influenced by individual molecules

€ porosity (fluid fraction of total volume)
A second viscosity

U dynamic viscosity

p density

T surface stress

® general variable (velocity, temperature etc.)
) weighting factor for mass error correction
Subscripts

con convection

CHF critical heat flux

d (down) bottom face of the node

e east face of the node

f fluid

fluid fluid

g (gas) vapour

l,J, K refers to the center of the node

i, K refersto the boundary of the node

I liquid

Ig liquid to vapour

m mixture

me mass error

n north face of the node

nb neighbour

nb nucleate boiling

3

[mVs]
[mVs]
[m/kg]
[ko/s]
[mVs]

[-]

[[<g/S]
[kg/m’s]
[-]

[-]

[NS/m?]
[NS/m?]
[kg/m’]
[N/m?]
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S south face of the node

sat saturation

u upper face of the node

w west face of the node

wall heat transfer surface

wi wall to liquid

wg wall to vapour

XX, Xy, XZ... Vviscous stress components, where the first index denotes the face the
component is located on(x: the face perpendicular to x-axis) and the second
index denotesthe direction of the force.

Superscripts

i x-direction

] y-direction

k z-direction

n timestep

o] (old), value of the previous converged state

* guessed or known value

*x improved value

’ correction

Abbreviations

BFBT
BWR
CFD

CFL

CHF

CPU

CT
NUPEC
SIMPLE
SIMPLEC
SIMPLER
ubS
VOF

BWR Full-size Fine-mesh Bundle Tests
Boiling Water Reactor

Computational Fluid Dynamics
Courant-Friedrichs-L evy (number)
Critical Heat Flux

Central Processing Unit

Computerized Tomography

Nuclear Power Engineering Corporation
Semi-Implicit M ethod for Pressure Linked Equations
SIMPLE-Consistent

SIMPLE-Revised

Upwind Differencing Scheme

Volume of Fluid



1 INTRODUCTION

The thermal-hydraulics of BWR core and various heat exchangers for vapour generation
on the shell side is to a large extent concerned with two-phase flows and heat transfer,
since the coolant is mostly composed of both the liquid and vapour phases of water.
Boiling two-phase flows in narrow channels, such as the flow channels of a BWR fuel
bundle, exhibit different flow patterns, depending on the local flow conditions and void
fraction distributions. The prediction of void fraction distribution is crucial when
equipment design and operational and safety procedures are considered, since void fraction
distribution is a necessary input for the prediction of fission power distribution, flow
patterns, mass inventories of the phases, mixture densities, and most importantly: heat
transfer from the fuel rod or tube bundle to the boiling fluid and dryout prediction. High
local values of void fraction on the heat transfer surface indicate impending crisis of heat
transfer and dryout. VVoid fraction distribution is vital in both BWRs and steam generators
in order to produce high vapour quality steam without jeopardizing the safety margins. In
addition to increasing the efficiency of the turbine assembly by reducing the fraction of
liquid in the steam, in both BWRs and steam generators, contamination of the steam lines
and turbine assemblies in BWRs is reduced as well.

Understanding of steady-state and transient behaviour of entire nuclear processes, or its
parts, has been a challenge in process simulation since the 1960s. In the earliest models
one-dimensional (1D) numerical equations were solved for the loop thermal-hydraulics,
and the results were used as boundary values for the neutronics for calculating the core
power dynamics. By the end of 1960s the first three-dimensional (3D) models were
developed for steady-state calculations, in which the neutronics were solved for each fuel
element and the thermal-hydraulics were solved for a group of parallel 1D channels. Since
then the models have been expanded to transient simulation as well. Together with the
CFD model development the present thermal-hydraulic models are capable of 3D
simulation of single process components with a resolution of centimeter or millimeter

class.

The main objectives of this thesis are: (1) to present the equations that govern the boiling

two-phase flow in three-dimensional domains, in Chapters 4 and 6, (2) to briefly present



the structure of the older solution procedure in the computer program PORFLO, in Chapter
4 and section 6.4, (3) to present the model developed for pressure-velocity solution in
transient 3D two-phase flow during this thesis, in section 6.3 and Chapters 7 and 8, and (4)
to simulate a couple of test cases with the new model in a geometry resembling a portion
of a BWR fuel bundle, in Chapter 10.

PORFLO is a three-dimensional 5-equation porosity model, developed for transient
calculations of two-phase flow in complex geometries. Most of the PORFLO code has
been developed by Jaakko Miettinen at VTT. The contribution of Mikko Ilvonen to the
development of PORFLO is mainly related to grid generation and iterative solution of
linear systems of equations.

Due to historical reasons, some aspects of the pressure-velocity solution, the handling of
momentum convection terms for instance, have been simplified in the older solution
procedure of PORFLO, to facilitate the use of a direct method in pressure-velocity
solution. Partially due to these simplifications, the code was not ready for the simulation of
a BWR fuel bundle. It was decided that an iterative method for pressure-velocity solution,
based on the SIMPLE algorithm modified for two-phase flow, is developed during this
thesis, therefore most of this thesis is focused on the formulation of equations used in
SIMPLE and the specia aspects of two-phase flow that need to be considered, when
implementing the SIMPLE algorithm for two-phase flow.

As a part of this thesis, a subroutine implementing the SIMPLE algorithm was coded and
included in PORFLO, and some test cases were simulated using the newly developed
subroutine. In addition to the general progress in the development of PORFLO, which also
benefited the development of the subroutine that implements the SIMPLE algorithm,
substantial help on coding the subroutine, in particular, was received from Jaakko
Miettinen.



2 BASIC APPROACHESIN MODELING TWO-PHASE FLOW

A brief comparison of the basic approaches available in two-phase flow calculations is
presented in this chapter. The different types of two-phase flow models are explored
briefly and the differences between the porous media approach and the more common
approaches in CFD are explained.

Many different types of models have been developed for two-phase flow with a different
number of conservation equations depending on the application, such as the homogenous
equilibrium model (HEM) developed mainly for safety analysis for predicting the critical
mass flow rates at blowdown. Other widely used models include the 5-equation and 6-
equation models, named after the number of conservation equations used to describe the

two-phase flow.

A complete description of the two-phase flow (6-equation model), both for 1D, 2D and 3D
domains alike, involves six equations. conservation of mass, momentum and energy
equations written for both phases. The momentum equations of both phases in 6-equation
models include terms that describe the interactions between the two phases, the
interphasia shear term for instance, which are hard to define experimentally.

Another widely used model is the 5-equation model, which has conservation of mass and
energy eguations for both phases and a momentum equation for the mixture. Interaction
between the two phases, phase separation, is defined by an empirical correlation, such as
the Zuber-Findlay drift-flux model originally developed by Zuber and Findlay (1965).

The 5-equation models have a certain advantage over the 6-equations models, since
experimentally measured void fraction distributions can be developed further into drift-flux
model parameters using the total mixture flow rate, vapour flow rate and pressure
measured during the experiments. EPRI made an extensive work collecting the phase
separation data measured all over the world by that time and developed a full-range drift-
flux correlation for vertical flows, (Chexa & Lellouche 1986), against the comprehensive
data set. On the other hand it must be said that 5-equation models always depend on an



empirical correlation to govern the phase separation, since the underlying physics affecting

the interaction between the phases are absent.

In 6-equation models the separate momentum equations for each phase provide a way to
introduce terms that account for various types of interactions between the phases; so in
principle, the mechanisms affecting phase separation can be modeled; instead of
replicating the results of the measurements by using an empirical correlation. These terms,
the interfacial shear or lift force, are however hard to be determined experimentally and, in
addition, depend strongly on structure of the interface that separates the two phases.
Advanced methods, such as front tracking and volume of the fluid (VOF), have been
developed to track and reconstruct the interfaces between the phases during the simulation.
The potential gained by introducing the interphasial terms in 6-equation models is best
realized in methods like VOF; otherwise approximations have to be made about the
structure of the interfaces to obtain an estimate of the terms in question. One of such
approximations, widely used in 6-equation models, isto assume that vapour is only present
as bubbles with a fixed diameter. Due to the difficulties in estimating the interphasial
terms, many 6-equation models have developed the terms directly from the drift-flux
correlation, and thus provided some experimental basis for the estimates. An example of
such a procedure is the 1D safety code RELAPS.

Despite all the difficulties, the 6-equation models are considered to have more potential in

the development of future codes than the 5-equation models.

The typical approach in CFD codes isto generate the calculation grid so that it follows the
interfaces between the structure and fluid according to the geometry that is being modeled.
The grid that is resulted from such a procedure is called either unstructured or body-fitted.
Another approach, which is called the concept of porous medium, is to divide the
geometry, usually orthogonally, regardless of the interfaces. The calculation nodes are
divided between the structure and the two phases. Porosity ¢ is used to define the fraction

of the fluid from the volume of the node, V,,;, =€V , and void fraction a is used to divide

the fluid volume between the two phases, V;,q =V, +V, =aVye + (1- @ Myuq -



3 PHYSICSOF BOILING

Perhaps the most profound difficulty in modeling of two-phase flow, as far as realistic
results are concerned, is the prediction of the flow regime and the related heat transfer
mode between the heat transfer surface and fluid. These two are closely interlinked; on the
other hand geometry of the flow defines the heat transfer and, at the same time, the heat
transfer affects the flow geometry and may cause an onset of a different flow pattern. In
addition, heat transfer rates between the two phases are distinctively different depending
on the prevailing flow pattern, due to differences in the interfacia area density.
Distribution of the phases is therefore an important part of the solution of the flow field,
without which any other parameters of importance in engineering applications, heat
transfer and two-phase pressure drop for instance, cannot be evaluated accurately. (Lahey
& Moody 1993, Section 5.2: pp. 224-242)

Heat transfer modes between the heat transfer surface and fluid are divided into two
categories. wetted wall heat transfer and post-dryout heat transfer. In the wetted wall heat
transfer liquid is in contact with the walls, while vapour is flowing as a dispersed phase, as
bubbles, slugs or a vapour core, inside the liquid annulus. In the post-dryout heat transfer
only vapour is contacting the walls and liquid is flowing inside the vapour as droplets or a
liquid core.

In BWR applications void fraction digtributions in different subchannels along the heated
length of the fuel bundle and at the outlet are of particular interest, since the local void
fraction affects the performance, and later properties, of the fuel bundle, not to mention the
behavior of the whole reactor due to feedback effects on pressure and fission power
generation. The thermal-hydraulic state of each fuel bundle is traditionally described in
present neutronics models with a single radial node, where as dryout prediction requires at
least one node in the radial direction for each subchannel, since dryout can be a quite
localized phenomenon. A collection of subchannel codes have been developed for dryout

prediction for a single fuel pin, in particular.

Though flow patterns and heat transfer modes have mostly been studied in circular
conduits, tubes, most of the results may still be considered useful in more intricate
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geometries, like the flow channel of a BWR fuel bundle. Flow patterns and corresponding
heat transfer regions of boiling two-phase flow in a vertical tube are presented in Figure
3.1

'WALL AND FLUID FLOW |[HEAT TRANSFER
TEMP. VARIATION PATTERNS REGIONS

Fluid tem: Single- Convective
7, b (<=} phase heat transfer
' H vapor to vapor
' o] —m—  —
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Figure 3.1: Flow patterns and hesat transfer regionsin a vertical tube. (Collier & Thome 1996)

3.1 Flow patterns

Typically the flow patterns are divided into five categories. bubble flow, slug flow, churn
flow, annular flow, and wispy annular flow. Though some authors choose define the flow
patterns using more categories, for the scope of this thesis, these five presented below
(Collier & Thome 1996, pp. 10-13) and in Figure 3.2 are sufficient for BWR flow channel

in nominal operating conditions.

1) Bubble flow: The gas phase is digpersed as discrete bubbles in the continuous
liquid phase. The bubbles are smaller than the diameter of the tube.

2) Slug (or plug) flow: As void fraction increases the bubbles coalesce and form
larger bubbles, similar to the diameter of the tube. These bubbles are called Taylor
bubbles. The consecutive Taylor bubbles are separated by a liquid region, slugs,
which may or may not contain smaller bubbles. A liquid film separates the tube
wall and the Taylor bubble.

11



3) Churn flow: When the flow is increased, the Taylor bubbles break up and liquid is
displaced more towards the tube walls.

4) Annular flow: The bulk of the liquid flows on the tube walls, as a continuous gas
phase flows, usually significantly faster, through the center of the tube. Some liquid
may be entrained in the continuous gas phase as droplets and there may be some
gas in the form of bubbles inside the liquid film. As the gas flow rate increases
ripples start to form on the liquid film, which increases the entrainment of droplets.

5) Wispy annular flow: If the liquid flow rate is increased (compared to annular
flow), the amount of liquid in the gas core increases. Increasing amount of liquid
droplets in the gas core increases the coalescence of droplets into larger lumps of
liquid, or wisps.

Bubbly Slug Churn Wispy-annular Annular
Figure 3.2: Flow patternsin vertical tubes. (Collier & Thome 1996, p. 11)

In addition to the flow these five flow patterns there is, of course, others, such as the
inverted annular flow occurring during reflooding, in which a liquid core or dispersed
drops flow in the center separated from the channel walls by athin vapour layer. However,
as this thesis is more related to simulation of the wetted wall conditions, these unusual

conditions have been left out of the discussion.

3.2 Heat transfer

As was mentioned above, flow patterns, or flow regimes, have a substantial effect on heat
transfer. Most 1D models rely solely on correlations to provide the heat transfer
coefficients, since they contain no information about the radial distribution of the phases.
Usually separate correlations are formulated for the heat transfer coefficients depending on

12



the prevailing flow regime as one of the parameters, so that the heat transfer coefficient
changes together with the flow regime along the length of the conduit, or alternatively the
correlation can be applicable to more than one flow regimes or the formulation can be
made independent of the flow pattern. In any case, one of the parameters used in the
correlation usually has a set range, either a certain flow pattern or a set range in some
dimensional number or combination of dimensional numbers, which defines the
applicability of the correlation in question.

Flow regime at any given axial position can be deciphered from flow pattern maps, which
are commonly given as a function of flow rates of the two phases. An example of a flow
pattern map is presented in Figure 3.3 for low-pressure air-water mixture in small diameter
(1-3 cm) vertical tubes. The axes represent the superficial momentum fluxes of the liquid

(r, j2) and vapour (r j2) phases respectively.
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Figure 3.3: Flow pattern map for vertical air-water flow (Collier & Thome 1996, p. 19).
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Once a suitable correlation for the heat transfer coefficient has been selected, the heat
transfer coefficient can be calculated. In addition to the value of the heat transfer
coefficient, the temperature relations are important as well. Three essential temperatures
exist: fluid temperature, structure temperature and saturation temperature. Once the three
temperatures and the heat transfer coefficient are known, the heat flux from structure to the

surrounding fluid is given.

Codes that use correlations that depend on the prevailing flow regime are not particularly
suitable as general purpose codes, since the development of flow regimes and heat transfer
coefficients depend strongly on fluid properties and geometry of the flow channel and the
correlations have set ranges for fluid properties and flow conditions, outside of which they
no longer apply and extrapolation has proven to be difficult. However, in order to model
convective or boiling heat transfer, whose length scales are far beyond the resolution of the
typical meshes used in engineering applications, one has to resort to the use of some heat
transfer correlations. (Lahey & Moody 1993, Section 5.2: pp. 224-242)

As correlations are, in essence, nothing more than the best fit to a certain set of
experimental data, the best way to ensure accurate results on a given geometry and flow
conditions would be to produce the data set by specific experiments. However, this is often
time consuming, expensive and impractical. A wide range of correlations, often fitted to
vast sets of data, can be found in literature, but the restrictions discussed above should be
kept in mind. Special care needs to be taken when applying a code to different flow
conditions than the code was originally intended for.

2D and 3D codes have an advantage over 1D codes, since they contain information about
the distribution of the two phases. Velocities and fluid properties near the heat transfer
interfaces could be used to obtain the heat transfer coefficients from suitable correlations,
and local void fractions could be used together with the preset geometrical data to
approximate the area of the heat transfer interfaces.
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4 PORFLO TWO-PHASE SOLUTION CODE

Boiling two-phase flow calculations were performed with a porous media model called
PORFLO. The code has recently been modified to better suit the BFBT benchmark
problem by, among other things, introducing iterative solvers as an aternative for the
direct matrix solver in order to facilitate solution of bigger meshes.

In a porous media model the grid is not necessarily generated to follow the boundaries
between structures and fluid; instead, porosity is used to define the fractions of the control
volumes filled with fluid. A separate module is used to generate a non-uniform orthogonal

grid at the beginning of the simulation.

In PORFLO, the 3-dimensional two-phase flow problem is solved using a 5-equation
model, which has two equations for conservation of mass and energy, one for each phase,
and a conservation of momentum equation for the mixture. The interactions between the
two phases, phase separation, are defined by the Zuber-Findlay drift-flux model.

4.1 Structureof PORFLO

The main program is split into separate cases optimized for different applications: particle
bed, isolation condenser and BWR fuel bundle for example. The main strategies to solve
the flow problem remain the same for all applications, but initialization and fine tuning of
some parameters are case specific.

There are two distinctively different strategies to solve the pressure and velocity fields:
direct methods that combine the momentum and mass conservation equations to yield a
single system of equations for pressure, which is the older approach in PORFLO, and
iterative methods (SIMPLE), which couple the momentum and mass conservation
eguations through pressure corrections. The choice between the two grategies is made in
the input file. Though these two branches differ significantly, the rest of the solution
procedure advances in a similar manner, hence most subroutines can be used in both cases.

The sequence of operations in PORFLO solution procedureis shown in Figure 4.1.
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The solution procedure starts with reading the input file tailored for a specific application,
after which the grid is generated according to the geometrical data given in the input file.
Then, the process and flow parameters are initialized. If the simulation is to be continued
from a previously simulated state, the restart file is read after initialization. The restart file
contains only dynamic data, such as pressure, mixture density, void fraction, and

volumetric flow distributions, as function of location.

The transient calculation loop starts with advancing forward in time. After that, the
interfacial and structure heat transfer are solved in separate subroutines. These subroutines
are not very sophisticated at present, since most of the coding effort so far has been
focused on improving the stability of the solution. However, improvement here is
relatively easy once the stability issues are resolved first.

After the heat transfer is solved, pressure and velocity fields need to be considered. Since
pressure and velocity distributions are strongly interlinked, they have to be solved
simultaneously. At present, four different subroutines are dedicated to implement the
different solution methods, which result in volumetric flow rates for mixture in each
direction and the corresponding pressure field. The bulk of the coding effort so far has
been spent on improving the solution of pressure and volumetric flow distributions.
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Phase separation is defined by the Zuber-Findlay drift-flux model. The drift-flux model is,
in essence, used to divide the mixture flow rates over each face into separate flow rates for
liquid and vapour, according to the local void fraction. The next step is to predict the void
fraction distribution at the end of the time step. This is done by implementing the
volumetric vapour flow rates, given by the drift-flux model, in a conservation equation for
vapour phase mass, which results in a system of equations, where each equation contains
the void fractions of the central and neighboring nodes. Void fractions at the end of the
time step are obtained by solving this system of equations implicitly.

After the void fraction digtribution is predicted and the volumetric flow rates for each
phase are known, the mass flow rates of the two phases at each interface are also given.
The mass flow rates are used to solve the enthalpy equations for each phase to obtain the
temperatures and the mass conservation equations to obtain the vapour and liquid masses
at the end of the time step. In the final step the mixture densities and the true void fraction
distributions can be calculated from the vapour and liquid masses.

4.2 Conservation equations

The conservation equations used in PORFLO for solving momentum originate from
Navier-Stokes equations, which are an application of Newton's second law. Navier-Stokes
eguations consist of three time-dependent conservation of momentum equations; one for
each direction. In 5-equation models the momentum equations are formed for the mixture
of phases, whereas continuity equations for conservation of mass and energy are
formulated for each phase. The velocities of the separate phases are obtained from the
mixture velocity using the drift-flux model.

4.2.1 Conservation of mass

The continuity equation for conservation of massin its most general form is given through
(White 2006, p. 61):

—+Nxru)=0. 4.1
g FArU) (4.2)
where p density [kg/m”]
t time [
u velocity vector (u, v, w) [n/g]
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Using partial derivatives the continuity equation for conservation of vapour phase mass can

be expressed as follows:

‘H(arg)+ ‘H(argug)+ 'ﬂ(avrgvg)+ ‘ﬂ(argwg)

= +q 4.2)
133 e yhg 14aBs 1
1 2 3 4
where a void fraction [-]
Py gas density [kg/m”]
y mass transfer from liquid to vapour phase [kg/m>s]
(ug, Vg, Wg)  gas velocity in x, y and z-directions respectively [m/g]
XY 2 3-dimensional Cartesian coordinates[m].

The first term (1) on the left-hand side of equation (4.2) expresses the time rate of change
of gas mass inside an infinitessmally small control volume. The second (2), third (3) and
fourth (4) terms on the left-hand side represent the changes in control volume mass due to
the difference between inflow and outflow; the net outflow of massin x, y and z-directions

respectively. The fifth term (5) accounts for the mass transfer between the two phases.

A similar equation can be formulated for the liquid phase as well:

fle-a)r], 1l6- a)ru], 1la- a)rv], 910-a)rw]
it ix iy 1z

(4.3)

where P liquid density [kg/m”]

(uw, vi, w)  liquid velocity in x, y and z-directions respectively [m/s)]
The terms in the equation account for the same effects, as in the gas phase above, with the
exception that liquid mass is expressed as a fraction (1 - «) of the total mass and the mass

transfer from gasto liquid equals - y.

4.2.2 Conservation of momentum

The equations governing motion of the flow in PORFLO are based on the famous Navier-
Stokes equations. The representation by White (2006, p. 68) can be written a bit differently
using the vector differential operator del, represented by the nabla symbol. A general form
of the conservation of momentum equation can be expressed through:

6738
64748
—ﬂ({tu)+N>{(ru)A ul=- Ij\'l}p-)+|%=$<:_l'+f}i (4.4
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where f sum vector of body forces [N/m?’]
p pressure [Pa]
T surface force tensor (of rank 2) [N/m?], [N=T] = N/m?
u velocity vector (u, v, w) [n/g]
A outer product.

The left-hand side of equation (4.4) defines the inertia of the flow and consists of unsteady
acceleration (1), which measures the time rate of change of momentum of the fluid inside
the control volume, and convective acceleration (2), which measures the net outflow of
momentum due to differences in the velocity field near the control volume. The
momentum is conveyed into, or out of, the control volume by the mass flows at the node
faces. Unsteady acceleration represents the changes in the velocity field and therefore
equals zero in stationary flow, where as convective acceleration represents the acceleration
of a fluid particle in fixed coordinates, and doesn't necessarily equal zero in stationary
flow. The right-hand side of the equation represents the forces acting on the fluid: pressure
gradient (3), surface forces (viscosity) (4) and body forces (friction and gravity) (5).

If the outer product of momentum and velocity and the components of the surface force
tensor are presented, equation (4.4) can be written as follows:

€U U S 9 0
o) & 0 € u
S NS rv {uvw)i=-Rp+RN& ¢t U+f (4.5)
Tt & o u e g
= ’ é U
grwﬂ H gxztyztzzﬂ
where T surface stress [N/m?].

Equation (4.5) can also be presented using partial derivatives, in which case the separate
effects of each vector component, for instance each velocity component, are presented in
its own term. The net outflow of u-momentum, momentum in x-direction, is simply the
divergence of x-directional momentum (pmum), the first row of the tensor obtained by
calculating the outer product of momentum and velocity. First, the left-hand side of the
momentum equation is considered separately. Inertia of the flow in x-direction is defined
by the following terms:
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ﬂ(rmum) + 1-l‘(r mumum) + 1-l‘(r mumvm) + ﬂ(rmumwm) = é i (46)
it fix Ty flz \Y
where Pm mixture density [kg/m”]
Fx force in x-direction [N]
(Um, Vim, Wm) mixture velocity in x, y and z-directions respectively [m/s]
V (control) volume [m?].

Equation (4.6) is called a conservative form of the momentum equation. The first term (1)
is the time rate of change of mixture u-momentum, momentum in x-direction, inside the
control volume. The second (2), third (3) and fourth (4) terms represent the net fluxes of u-

momentum out of the control volume in X, y and z-directions respectively.

Using the product rule on equation (4.6) leads to the following form:

1t X Ty 1z
TR (U I (G I (G
1AMaaa4 49924 M aaa4 KB

Conservati on of mass equation ” uy,

_a F, (4.7)
ay

The iterative methods in PORFLO use the conservative forms of the momentum equations
to obtain the discretized equations, whereas the direct method, the older method in
PORFLO, uses the non-conservative, or primitive, forms of the momentum equations. The
non-conservative form of u-momentum, momentum in x-direction, results from equation
(4.7) when the conservation of mass equation times um, the last four terms on the left-hand
side of the equation (4.7), is reduced from the momentum equation. This is simply because
the flow has to satisfy the continuity equation, therefore the terms mentioned equal zero.
The non-conservative form of the momentum equation for x-direction is given through

r ﬂu—m+r u %+rmva+rmwm Tu, :é FX. (4.8)

"t "™ qx Ty 1z v

Now that the left-hand side of the momentum equation is complete, the forces on the right-
hand side can be discussed. The forces acting in x-direction are presented below:
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where de equivalent diameter [m]

f frictional coefficient

p pressure [Pa]

u dynamic viscosity [Ns'm?].

The net force, in equation (4.9), is comprised of the pressure gradient (1), viscosity (2) and
the pressure loss due to friction (3). The surface stress components that appear in equation
(4.5) are not very useful, but with some approximations, presented in appendix A, the
surface stresses, in this case viscous stresses, are developed to relate the changes in the
velocity field to the resulting forces through dynamic viscosity. Combining equations (4.8)
and (4.9) leads to the final form of the momentum equation for x-direction:

W 4oy My oy U TU

rm m—m m™m m m
qt X Ty 9z

(4.10)

_.Tp, T fuo, ¥ fu uo, T e ‘Hug_05 frmum|u

ix ‘ng X g ‘Hyg g ‘Hzg 2o d, o

Momentum equations can be written for other directions using the same approach. In
vertical direction aterm that accounts for gravitation has been added to the equation. The
momentum equations for y and z-directions respectively are given through

rm%-*_rmum%-*_rmvmﬂﬂ_ rmwmﬂﬂL
X z
y f and (4.12)
=T, 1 L& o, 1&g, vo, 1 L& WO o5 — I Vi Vi
‘Hy xé fxg ‘Hyg ‘Hyg zé Mzg d,
rmﬂ:;:m _i_rmumﬂﬂﬂ_i_rmvmﬂ;?,m +rme ﬂ;?,m
X z
y L (412)
= Tp, g, fwo, e fwo, N&,Wo o Wl - 70
‘ﬂz xé Txg ‘ﬂyg Ty 12& ‘ﬂz de
where g acceleration due to gravity [mVs?].
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4.2.3 Conservation of energy

The conservation equations for energy can contain different terms depending on how
accurately the equations need to be solved. In most engineering applications some terms
are strongly dominant while the effect of othersis relatively small. One approach to derive
the energy equations for each phase would be to start from specific enthalpy equations.
Total specific enthalpy, in quite general form, can be expressed through

As
+ =

hTOT:l:'IbP:y+E=Vy:2+% {, (4.13)

2 4

surface area of liquid or vapour volume [m?]
acceleration of gravity [m/s’]

oT total specific enthalpy [Jkg]
mass of the liquid or vapour volume [kg]
pressure [Pa]
specific internal energy [Jkg]
specific volume [m*/kg]
velocity of the flow [/
vertical distance from an arbitrary level [m]
surface tension [N/m]

where

AaNsS<co3zza>»

The right-hand side of equation (4.13) consists of specific enthalpy (1), specific kinetic
energy (2), specific potential energy (3), and specific surface tension energy (4).
Additional terms could be added to the right hand side, if necessary, to account for changes
in chemical, or other forms of, energy. However, in a BWR fuel bundle, as well asin all
the other applications of PORFLO, the energy content of the flow is properly defined with
only the specific enthalpy (Moran & Shapiro 1998, p. 78), which is a function of pressure

and temperature, as follows:

h=u(T)+ pv, (4.14)
where h specific enthalpy [Jkqg].

Specific enthalpies for vapour and liquid can be obtained from either (material) tables or,
more conveniently, functions, which are fitted to the same data as the tables are based on.

Since it was decided that the energy content of the flow is sufficiently defined with specific
enthalpy, the energy conservation equations for both gas and liquid phase are derived by
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formulating conservation equations for enthalpy. A general form of the enthalpy equations
is given through

ﬂ({th)+|<|>‘(l’hu):Q+P, (4.15)

P power generated in the control volume per unit volume [W/m?]
Q heat rate into the control volume per unit volume [W/m®]
u velocity vector, whose components (u, v, w) [nVs].

where

The energy conservation equations are presented below for the gas and liquid phase

respectively:

flar,h,) tlar,ng,)  lar ) flar,hw,)

=q¥ + 4.16
fit fix Ty TR (419
flt- a)rn], - @) A @bl g6 )] e e
it fix Ty 1z
where hy gas enthalpy [Jkg]
h, liquid enthalpy [Jkq]
a%, heat rate from wall to vapour per unit volume [W/m®]
ol heat rate from liquid to vapour per unit volume [W/m?]
qq heat rate from wall to liquid per unit volume [W/m?].

4.3 Phase separation by drift-flux model

Phase separation, the velocity difference between vapour and liquid phase, is described by
Zuber-Findlay drift-flux model (Zuber & Findlay 1965). It contains two empirical fitting
parameters, the distribution parameter Co and the drift-flux velocity Vg, which are defined
by the user. The model uses the two parameters to connect the gas phase velocity to the
mixture velocity. The velocities j; are area averaged velocities of phase i across the cross-
section of the flow.

Vy =Cojm +Vy (4.18)
where Vg real gas phase velocity [m/g]
Jm area averaged mixture velocity [m/s]
Co distribution parameter
\Z drift-flux velocity [m/g].
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The area averaged velocities can be attained from volumetric flow rates by dividing them

with cross-sectional area of the flow. Real velocities are linked to area averaged velocities

asfollows:
jg=avy, (4.19)
j=0@-av, (4.20)
In =gt (4.21)
where Ig area averaged gas velocity [m/g]
Ji area averaged liquid velocity [m/s)]
Vi real liquid phase velocity [m/g].

Relative velocity between the two phases can be solved using equations (4.18), (4.19),
(4.20) and (4.21).

Du=v,-y = o a)c(:f_' al])j’“ AL (4.22)

The distribution parameter and the drift-flux velocity proposed in the original paper by
Zuber and Findlay (1965) for churn-turbulent bubbly flow region are given below:

C,=12 (4.23)
1808 (- r )i
Vy =188 — 55— (4.24)
e I u
where g acceleration due to gravity [mVs?]

P liquid density [kg/m”]
Py vapour density [kg/m’]
o surface tension [N/m].

4.4 Correlations

The empirical correlations used in PORFLO, relevant for this thesis, are presented in this
section. Factors that are functions of both void fraction and porosity have been added to
some of the original correlations to account for the changes in heat transfer surface area

due to changes in void fraction and porosity.
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4.4.1 Heat transfer correlations

Heat transfer insde a BWR fuel bundle comprises different heat transfer modes:
convective heat transfer to liquid and vapour, boiling heat transfer, condensation of vapour
to liquid when liquid temperature is subcooled and flashing of liquid when liquid is
superheated. However, since the current application of PORFLO, and the scope of this
thesis, is more concerned with the model development for wetted surface heat transfer,
more attention is given to the most important heat transfer modes in BWR nominal
conditions: boiling heat transfer and convective heat transfer to liquid and gas,
respectively. Flashing and condensation are not discussed, though models for those heat
transfer modes are included in PORFLO.

Both the boiling heat transfer and convective heat transfer alike have been extensively
studied in single tubular flow channels and annular flow channels around a heated rod. The
geometry of a BWR fuel bundle can easily be projected into these two basic geometries
piece-wise: a subchannel enclosed by four fuel rods is reminiscent of a tubular flow
channel, while the flow around a single fuel rod can be considered as a flow in an annular
geometry. This is the argumentation, why the heat transfer correlations developed for
tubular and annular flow channels can be applied to BWR fuel bundles.

It is widely established that implementation of heat transfer correlations, originally
developed for 1D calculations in steady-state and fully developed flow conditions, to 3D
domains and often transient conditions is problematic, to say the least. In the original 1D
heat transfer correlations most of the parameters are either averages or otherwise
representative values for the whole geometry: it is therefore challenging to define the
parameters used in 3D calculations so that the heat transfer rates remain dependent on the
local conditions, temperature of the fluid near the heat transfer surface for instance, while
changes in the resolution of the grid do not affect the total heat transfer rate.

The equivalent diameter is a fine example of this dilemma: It could be either calculated for

a cross-section of the fuel bundle or more locally. An assumption, that the equivalent
diameter calculated for the entire cross-section of the fuel bundle is also applicable in the
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heat transfer correlations calculated on a node-by-node basis, is used in PORFLO. The
equivalent diameter is defined through

d, =M (4.25)
A/\Idl
where Awall heated area (heated rod, solid) [m?]
de equivalent diameter [m]
Vi fluid volume [m?].

Convective heat transfer from structure to liquid and vapour is based on the Dittus-Boelter
turbulent heat transfer correlation (Dittus & Boelter 1930).

k

he¢, = 0.023d—' Re® pr4 (4.26)
he., = 0.023% Re>? pro* (4.27)
where de equivalent diameter [m]
h,.q convective heat transfer coefficient for vapour [W/m?K]
he,, convective heat transfer coefficient for liquid [W/m?K]

thermal conductivity of vapour [W/mK]
thermal conductivity of liquid [W/mK]
Prandtl number [-]

mixture Reynolds number [-]

L

The mixture Reynolds number is defined as

= UG (4.28)

m

Re

m

Currently only liguid viscosity is used to calculate the Reynolds number, since liquid isthe
continuous phase throughout most of the BWR flow channel.

The convective heat transfer coefficients, according to Dittus-Boelter, are applied in the

following equations for convective heat transfer to vapour and liquid, respectively:

q(%u,wg = 'i\/Ndl h(%n,g(Twall - Tg)a (429)
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o8, =D hg (T, - T)1- a) (4.30)

Vi
where Aual surface heat transfer area [m?]

A%, wg volumetric heat transfer rate from wall to vapour due to
convection [W/m’]

a%, i volumetric heat transfer rate from wall to liquid due to
convection [W/m?’]

Ty vapour temperature [K or °C]

T liquid temperature [K or °C]

Twall temperature of the heat transfer surface [K or °C]

Vi fluid volume [m?].

Boiling heat transfer only occurs when temperature of the heat transfer surface exceeds the
saturation temperature of the liquid. The correlation for boiling heat transfer coefficient is
based on Thom's correlation (Hewitt, G. F. & Delhaye, J. M. & Zuber, N. 1986), which is
asimplified correlation for the nucleate boiling region and hence very popular option in 1D
fuel bundle heat transfer models:

.05

(T - To)=22.5285m 2 o oousp (4.31)
el0’ g
where O nucleate boiling heat flux [W/m?]
p pressure [bar]
Tea saturation temperature [K or °C].

The boiling heat transfer coefficient can be solved from the previous relation:

. 10° 1

— 2
Oy _TSZZW(TWEJI - Ta) (4.32)

b h§ »1972¢>™F (4.33)

where hg, boiling heat transfer coefficient [W/m?K?].

The decrease in boiling heat transfer rate with increasing void fraction has been taken into

account by including a factor that is a nonlinear function of void fraction.
- A\Ndl 2 0,3
QQ—TW[maX(TWm - Tsx ’0)] (1' a) (434)
f
where qq volumetric heat transfer rate for boiling [W/m?]
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Convective heat transfer rate into liquid and boiling heat transfer rate are used to vaporize
liquid. The current limit for liquid subcooling is 30 °C; if the subcooling is more than that,
the heat transfers are used for heating the liquid. The transition is done with a ramp

function.

g=mex|30K - (T, - 7,).0] (af + )

0K . (4.35)

where hig specific latent heat of vaporization [Jkg].

Since the development of PORFLO is till in the testing stage, the values of the heat
transfer coefficients used in the heat transfer correlations are given fixed values for the test
runs. These values are listed below in Table 4.1.

Table 4.1: Heat transfer coefficients used in caculations.
Mode Symbol Value Unit

Convective heat hé(on |

2
transfer to liquid 50,000 | W/mK

Convective heat hé(on .

2
transfer to vapour 500 WK

Bailing heat he 950,000 | W/m2K2

transfer

4.4.2 Critical heat flux

Several correlations for critical heat flux that exist in the literature include mass flow rate
as one of the defining parameters, which is undesirable from the perspective of the current
application of PORFLO. Since dryout is arather local phenomenon, the use of local values
instead of averaged values would be preferred in the correlation for critical heat flux.
Therefore, a correlation proposed by Griffith, Pearson and Lepkowski (1977) has been
selected, since it does not include mass flow rate, which facilitates the use of local values

in the correlation.
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P

2
hfgrg rg

where A% critical heat flux [W/m?]
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4.4.3 Friction factor

In the current version of PORFLO friction is assumed to be evenly distributed throughout
the 3-dimensional domain. Thus the force exerted on the fluid per unit volume is defined
by arelation similar to the pressure drop in one-dimensional tubes, shown for x-direction:

I:x,fric - 1'

f
=-- ——rpuyu 4.37
V 2 de m m| m| ( )
where de hydraulic diameter of the flow channel [m]
Fx fric force exerted on the fluid due to friction
f friction factor [-].

The friction factor could be varied depending on the flow conditions and different values
could be used for the flow across the tube bundle, in horizontal flow directions, and
vertical direction, but at the moment fixed values are set in the input file for the friction
factors (usually between 0.01 - 0.001). Correlations, such as (Blasius 1913), could be used

to evaluate the friction factor.

0.3165
f= RB (4.38)

m
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5 DISCUSSION OF PRESSURE-VELOCITY COUPLING

As was briefly mentioned in the previous chapter, velocity and pressure fields are closaly
interlinked, and thus have to be solved simultaneously. There are two fundamentally
different ways to do this: direct methods and iterative methods.

In direct methods the conservation equations for mixture mass are either combined with
the three mixture momentum equations to yield a single system of equations for pressure,
or otherwise solved simultaneously. One of the perks of this method is that the amount of
calculations needed for solving a problem with one system of equations is much less than a
problem with several systems of equations.

Another approach is to couple the pressures and velocities indirectly, which leads to an
iterative procedure where the approximations for pressures and velocities are improved
with every cycle. SIMPLE, Semi-Implicit Method for Pressure-Linked Equations,
algorithm is an example of an iterative method. The SIMPLE algorithm starts with guessed
pressure and velocity fields which are first input to the momentum equations to obtain
improved values for the velocities. The improved velocities are used in the pressure
correction equation, which is obtained by combining the mass and momentum
conservation equations. The pressure corrections are used to yield corrected pressures and
velocities, which are again used in the momentum equations at the start of the next cycle.

Iterative methods, like SIMPLE, require more calculations, since firstly multiple systems
of equations have to be solved during one iteration cycle, the momentum equations and the
pressure corrections, and secondly multiple iterations are needed to reach a converged
solution. In this perspective it would seem unreasonable to use SSIMPLE. However, fully
implicit discretization can be applied to formulate the momentum equations and all the
terms in the momentum equations, convection, diffusion and even turbulence, can be
introduced without significant hardship. The convective terms in the momentum equations
can be quite problematic in some direct methods, especially in the direct method
implemented in PORFLO.
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It is important to recognise that though SIMPLE makes no assumptions about the type of
the solver with which the systems of equations are to be solved, being an iterative
procedure itself, the intermediate solutions of the iteration cycles do not have to be solved
precisely; only the final solution is of importance. Therefore, the use of an iterative solver
and careful consideration of the convergence criteria can significantly reduce the amount
of calculations needed to perform one time step, and hence the overall computational time
is reduced as well.
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6 DISCRETIZATION OF THE GOVERNING EQUATIONS

Though thorough discussion of discretization is often dismissed in literature, the
importance of consistent discretization procedures can not be denied; consistent
implementation of the selected discretization scheme, throughout all the conservation
equations, lays the foundation for solving the flow problem. Even though solvability and
convergence are not guaranteed with a proper discretization procedure alone, the choices

made in the discretization procedure can have quite far-reaching effects.

In this chapter the basic principles and notations used in discretization are presented first.
Then, the discretization and coupling of the mass and momentum equations are presented
first for the iterative methods and then for the direct method, both of which are
implemented in PORFLO.

6.1 Basic principlesused in discretization

The conservation equations can not be used in computations in their basic continuous
forms, but have to be transformed into the computational grid to yield equations for each
node. The grid, shown in Figure 6.1, is generated s0 that it is composed of cuboids,
rectangular boxes, with changing dimensions; in other words: the grid is non-uniform and

orthogonal.

-1 I | +1

Figure 6.1: A portion of the grid and positions of the velocities.
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The shaded area in Figure 6.1 represents the pressure node (I, J, K). Indexes I, J and K
refer to the center point of the control volume and indexes i, j and k refer to the control
volume faces where the velocities are located.

Backward staggering has been used to create the velocity grids in order to avoid the
pressure field checkerboard effect presented by Patankar (1980, pp. 118-120). Each
velocity component, u, v, and w, has its own unique grid. In backward staggering, the
velocity nodes are located on top of the velocity components; each velocity node is
bounded by the centerline of the pressure node with the same indexes as the velocity
component, (I, J, K) for velocities u; 3 , and the centerline of the previous pressure node
parallel to the velocity component, (I-1, J, K) for velocities u; ;x, hence the expression:
backward staggered. The velocity grids are only staggered in the direction parallel to the
velocity component in question; the other grid lines remain unchanged compared to the
pressure grid. A portion of u-velocity grid, a grid for the x-directional components of
velocity, is shown in Figure 6.2. The shaded area in Figure 6.2 is the velocity node or u-
control volume (i, J, K).

i i U o1k | !
J+L-f b ——I>+J --------------
41 TV|-1,1+1,Kf n ]+V|,j+1,|<

F

i Ui-1,0K w Uok  nFe U+1JK
e e e B e e B

| -2 -1 I | +1
Figure 6.2: A portion of u-velocity grid.

Some variables located on the faces of the control volumes are referred to with a subscript
depending on the direction where the face is located compared to the center point of the
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node: e (east), w (west), s (south), n (north), u (up) and d (down). These notations are used
mainly with flows that cross the faces, for example the mass flow rates (Fe, Fw, ...) In
Figure 6.2. The mass flow rates a each boundary are handled according to the upwind
differencing scheme, UDS, which means that the densities are taken from the pressure node
upstream of the face the flow goes through. Patankar (1980, pp. 83-85) includes a
representation of the upwind differencing scheme in hiswork, though he is not the inventor
of the scheme.

6.2 Notations used in discretization

Before proceeding any further some notations and abbreviations are defined that are used
throughout this thesis. As the grid is orthogonal, the formulation of the discretized
equations is simplified, since the opposite faces of the control volume have the same

surface area. The surface areas of the control volume faces are denoted by superscripts
according to the axis that goes through the face: A ., A, and A, .. The same

notation is used with densities, porosities and dynamic viscosities as well.

During the course of the discretization process it became apparent that a certain average is
repeated quite frequently, therefore abbreviations are presented here that significantly
reduce the length of the upcoming discretized equations. Pressure, temperature, density,
void fraction, porosity and dynamic viscosity are averaged over the control volume and
thought to be located at the center point of the pressure node. The values of some of these
variables are, nevertheless, needed at the faces of the nodes; hence a proper average is
needed to approximate the values at the interfaces.

The densities at interfaces, equations (6.1) through (6.3), are simply volume averaged; the
density of the pressure node is weighted with the volume of the pressure node when
forming the average over the u-control volume. In this case the weighting of two
contiguous nodes is performed with the length of the node, since the other two dimensions
do not change over the face of the node. These volume averaged densities are only used
with forces acting on the fluid, inertia, gravity and friction, not with flows that cross the
interfaces.
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ri — el-l,J,KDXI-l,J,Krl-l,J,K +e| ,J,KDXI ,J,KrI,J,K (6 1)
1, JK — f
el-l,J,KDXI-l,J,K + eI,J,K DXI,J,K

— el J-1K Dyl ,J-1K r 1,J-1,K + el ,J.K Dyl J,K r 1,J,K

rl = (6.2
e el ,J—l,KDyI,J—l,K + el ,J,KDYI J,K
rk - eI,J,K—lDZI,J,K—lrI,J,K—l+eI,J,KDZI,J,KrI,J,K (6 3)
1,J,K .
el ,J,K—lDZI J,K-1 + el J,K DZI J,K
where PIIK density of node I,J,K
E1IK porosity of node I,J,K
AX length of the node in x-direction
Ay length of the node in y-direction
Az length of the node in z-direction.

In a porous media model an approximation is needed for evaluating the porosities inside
the velocity nodes and at the boundaries of the pressure nodes. The problem arises when
there is an abrupt change in porosities of the adjoining nodes. As the grid used in PORFLO
does not follow the surfaces of the structures, the values of porosity can change quite
significantly from one node to the next. In the case of BWR fuel bundle, porosities change
smoothly most of the time, since the geometry being modeled is made of round shapes and
no sharp edges are present. However, when approaching the fuel rods perpendicularly to
the surface of the fuel rod, large differences in porosities can occur while the interface

between the two nodes is in reality completely filled with fluid.

This contradiction makes it difficult to formulate the average for porosities at the node
faces that can be consistently applied throughout the calculation domain, since the flow
area, which is defined as the surface area of the node times the porosity a the node
interface, has proven to be one of the most sensitive parameters in PORFLO. Aside from
the practical point of view, there is a more fundamental issue on how the porosities at the
interfaces should be defined: on the other hand one of the axioms, and most definitely one
of the substantial strengths, of porosity modeling is that the true geometry can be
disregarded, but at the same time the true geometry ceases to exist and the information
about the interfaces is blurred. Provided that there is more detailed information about the

geometry of the structural interfaces than the porosities at each pressure node would imply,
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should this information be used in the formulation of the surface flow areas in the first

place?

It would be quite straightforward to use the more detailed information about the geometry,
if available, to calculate the flow surface areas, but then again other effects of this choice
should be considered, the center point of the fluid volume for instance. Most averaging
procedures require information about the location of the center point of the fluid volume,
the point where the values averaged over the pressure nodes are thought to be located; if
the true geometry is used, the center points of the fluid volumes near the structural
interfaces, where porosity is e > 0, should be shifted away from the structure, as opposed to
the porosity approach where the center of the fluid volume would always be located in the
center point of the node; hence al the averaging procedures would be affected. If the
effects on the true center point of the fluid volume are modeled, the formulation becomes
substantially more complicated; in fact, for all practical purposes the formulation would
become similar to body-fitted.

One approach is to let the minimum value define the effect of porosity on velocities
through the surface area of the flow, others include harmonic averaging and volume
averaging. Harmonic and volume averaging have been tried out in the code and seem to
produce quite similar results. This might be mostly due to the fact that both of the
averaging procedures result in the same values, in BWR fuel bundle geometry, for the
horizontal direction, which is the main flow direction. Examples of harmonic and volume
averaging are presented in Figure 6.3. The rounded shape represents the surface of the fuel
rod and the shaded areas represent the fractions of the volume occupied by the fuel rod.

The lines in Figure 6.3 visualize the averaging procedures; as the line intersects with the

interface, the fraction above the interface from the total length of the interface is the

porosity at the interface according to the averaging procedure in question.
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Volume averaged porosity: Harmonically averaged porosity:
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Figure 6.3: Volume averaged and harmonically averaged porosities at the interface of two adjacent nodes.

Porosities at the interfaces are chosen to be presented as harmonic averages over the
interface, as shown in equations (6.4), (6.5) and (6.6). This form of averaging works well
when moving parallel to the surfaces of the fuel rods, but when approaching
perpendicularly to the surface of the fuel rods the surface area of the flow is often
underestimated.

DXI —l,J,KeI J,K + DXI ,J,Kel -1J K

e, = (6.4)

DXI—l,J,K + DXI J,K
j _ DyI,J—l,KeI J,K +DYI ,J,Kel J-1LK 65
el JK T ( - )

DYI J-1K + DYI J,K
k — DZI ,J,K—lel J,K + DZI ,J,Kel J,K-1 6 6
el JK T DZ + DZ ( - )

1,J,K-1 1,J,K

where E1IK porosity of node I,J,K

6.3 Discretization for theiterative methodsin PORFLO
A separate subroutine for pressure-velocity solution, which utilizes SIMPLE, Semi-

Implicit Method for Pressure-Linked Equations, SIMPLEC, SIMPLE-Consistent, and
SIMPLER, SIMPLE-Revised, algorithms, was created and included in PORFLO during
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this thesis. The conservation equations for mixture mass and momentum were formulated,
discretized, and coded as a part of this thesis. In this section, the discretization of

conservation equations for mixture mass and momentum is presented.

The discretization procedure follows the guidelines set by Patankar (1980) and later
introduced in (Versteeg & Malalasekera 2006), with the exception that some modifications
are made to accommodate two-phase flow, since the algorithms presented in the references
are intended for one-phase flow. Though the pressure-velocity solution in 5-equation
models consists of equations formulated for the mixture of phases, which are similar to the
eguations governing one-phase flow, some additional terms have to be introduced to
account for the peculiarities of two-phase flow, changes in mixture density caused by
phase change for instance.

The flow is assumed to be fully incompressible, which leads to an ill-conditioned system
of equations for pressure corrections; there is practically no diagonal dominance in most of
the domain, which in turn renders most iterative solvers, without preconditioning, unable
to solve the system of equations. This will be discussed in more detail in the remainder of
this thesis; the purpose here is merely to point out how much effect some basic
assumptions can have on the solution procedure.

6.3.1 Discretization of the mass conservation equations

Since the object is to derive discretized equations for the mixture of the phases, the
discretization could be started from conservation equations for mixture mass. However, if
the derivation is begun by combining the separate mass equations for the two phases,
eguations (4.2) and (4.3), one of the fundamental disadvantages of 5-equation models
becomes evident.

far,) . flar u,) . flarv,) . Tar ,w,)

it ix Ty 1z -9
fle- a)r ], 9l@- a)rul, 1la-a)ru], gl@- a)rw]_
it ix iy 1z
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The conservation equations for liquid and vapour mass can be summed together to form an

equation for the mixture of the two phases:

lar, +@- a)r| .\ flar u, +(@- a)ru|
It x
+ ﬂ[argvg +(1- a)rlv|] + ﬂ[argwg + (1- a)rlvvl]
Ty 1z

(6.7)

=9-9g

The expression inside the square brackets of the time derivative term, the first term on the
left-hand side of equation (6.7), is the definition of mixture density, which is statistical in
its nature; at any given instant a portion « of the control volume is filled with vapour while
portion 1 - «a is filled with liquid, the mixture density is simply the volume average of the
two densities. To combine the mass fluxes inside the square brackets of the second, third,
and fourth terms on the left-hand side, the velocities of the two phases need to be equal for

the mixture mass to be conserved.

However, after the mixture flow rates and the pressure field are solved, the phase velocities
are obtained from drift-flux correlation. If velocity differences between the phases exig,
the conservation equation for mixture mass based on mixture density is no longer valid.
The resulting error in mass balance has to be corrected during the simulation or the errors
grow prohibitedly large and the simulation crashes.

If the phase velocities are assumed to be equal, the conservation equation for mixture mass
can be expressed using the mixture densities:

ﬂrm + ﬂ(fmum) + 1-[(rmvm) + ﬂ(mem) - 0 (68)
Tt Tx Ty Tz

Discretized equations for conservation of mixture mass are derived by integrating equation

(6.8) over the control volume shown in Figure 6.4 and time step At.
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Figure 6.4: A control volume and its surrounding velocities.

t+Dt t+Dt < <
( —ndtdV + i m_m2 + m_ms 4+ n_n’-dtdv =0 (69)
R

Before integration is possible an assumption is needed about how the variables, velocities
for instance, vary with time. One possibility is to propose the following, shown for the net

outflow of mixture mass:

~

GtV
u

P4 iR
— bll \\\eﬂ(rmum) + ﬂ(r me) + ﬂ(rme)E dvyu (610)
fve Tx Ty Tz o

v e(rou)  1(rov) 9 w,)
i m + m™m + m m
tog fix Ty 1z

n

+(L- bﬁ dﬁﬂ(fmum)+ r V) | T(r )0 dvyDt
b

fve T Ty fz 4

Superscript n denotes the values at the beginning of the time step, and superscript n + 1
denotes the values at the end of the time step. The weighting factor f usually has values
between 0 and 1, depending on the selected temporal discretization scheme: f = 0 for the
explicit scheme, p = 0.5 for the Crank-Nicolson scheme, and g = 1 for the fully implicit
scheme.
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Since quite severe restrictions for the length of the time step exist in both the explicit and
the Crank-Nicolson scheme, the fully implicit scheme is selected. In the incompressible
formulation, the Courant’s criterion for the velocity of the flow has to be obeyed when
using explicit or Crank-Nicholson schemes, but, in principle, longer time steps could be
used when implicit discretization is chosen. Courant’s criterion for the speed of sound,
however, is not relevant for incompressible flows, since the propagation velocity of the

pressure wave is infinite.

After the discretization scheme is established, to simplify the formulation, the superscripts
nand n + 1 are dropped and the values at the beginning of the time step are referred to with
a superscript o, for old, and the values at the end of the time step have no superscripts.
Furthermore, if the time rate of change in mixture density, the first term on the left-hand
side of equation (6.9), is presumed to be congtant during the time step At, the temporal

integration of equation (6.9) is unambiguous.

~

Gtav =0
u

t+Dt t+Dt 2
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(6.11)
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The time rate of change of mixture density is integrated over the control volume, shown in

Figure 6.4 to obtain the change in control volume mass:

-ro r.-r?
B thr lGVDE = €,V , ¢ [ Y Dt (6.12)
\Y
where Viak volume of the pressure node [m’]
E1IK porosity of the pressure node [-]
r. mixture density at the end of the time step [kg/m’)]
re mixture density at the beginning of the time step [kg/m’].

The second volume integral containing net outflow of mixture mass on the left-hand side
of equation (6.11) is transformed into surface integrals over the surface area of the control
volume shown in Figure 6.4. The divergence theorem (Adams 1999, p. 946) defines the

42



relation between the surface integral over a closed surface S and the volume integral over a

volume V that is bounded by the surface S

Therelation is given through

‘HC

N = = \\\a‘[
Cj +C,j +Ck)xadS = 2 Qv (6.13)
i +c. @ gy 1
where C vector C = (Cii +C,j +C.k)
(i,],k) unit vectorsin the directions of the coordinate axes
n normal vector of surface S.

The divergence theorem is applied on equation (6.11) to transform the volume integrals

inside the square brackets into surface integrals over the faces of the control volume:
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The densities at the node faces are taken from the node upstream of the interface,
according to the upwind differencing scheme (Patankar 1980, pp. 83-85). Porosities at the
interfaces are given in equations (6.4), (6.5) and (6.6).
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Notation (U, ) Means maximization between u,, , and zero; max (U, .0).

The discretized equation for mixture mass is obtained by combining the results of
eguations (6.12) and (6.15) and dividing by the length of the time step At.

el ,J,KVI,J,K M

— |
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6.3.2 Discretization of the volume conservation equations

Instead of trying to conserve the mixture mass, some two-phase CFD codes, phase coupled
SIMPLE algorithm (Vasquez & lvanov 2000) in Fluent for example, attempt to conserve
the volume of the mixture, hence avoiding the discrepancies between mixture mass flow
rates based on mixture densities and the true mass flow rates of the two phases. Stosic and
Stevanovic (2002) present a method similar to the phase coupled SIMPLE in Fluent,
though the name of the program the method is implemented in is not mentioned. The
derivation of conservation equations for mixture volume begins with the conservation
eguations for liquid and vapour volume.
ﬂ_a+ﬂ(aug)+ﬂ(avg)+ﬂ(awg) g

=+Z (6.17)
It X i% Iz Iy

10- a), 1a- a)], 1@-an], M6-aw]_ o (6.18)
qt ix Ty 1z r

The conservation equations for liquid and vapour volume are summed together, to form an
eguation for the mixture:
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1+ﬂ[aug +(1- a)u.]+ﬂ[avg +(1- a)\’u]+'"[an +(1- a)w] _ &L i% (6.19)
i Tx Ty Tz géfg g

The expressions inside the square brackets in the second, third, and fourth terms on the

left-hand side of equation (6.19) are the definitions of mixture velocities in x, y, and z-
directions, respectively. The only term on the right-hand side of the equation accounts for
the change in volume due to boiling or condensation. If the square brackets in equation
(6.19) are replaced with the appropriate components of mixture velocity, the final form of

the conservation equation for mixture volume is compl ete.

v T, 281 io (6.20)

1, T,
¥ 14 4&44& Lo 0

To obtain discretized forms of the volume conservation equations, equation (6.20) is
integrated over the control volume, shown in Figure 6.4, and time step At. Integration of
the time dependent term (1) is handled first:

t+Dt q t+Dt
oJ(1) dth - 09| skVigkdt = D(e| 2V ,J,K)O DV )k - (6.21)

t Vv

For simplicity the term A(e;3xViak) In equation (6.21) is marked with AV, ;k, since it
represents the change in volume during the time step, change in volume of the fluid to be
exact. The second, third, and fourth terms (2) on the left-hand side of equation (6.20)
constitute the divergence of velocity: hence the divergence theorem can once again be
applied to transform the volume integrals into surface integrals over the control volume
faces.
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The subscripts m, denoting the values of mixture velocities, are dropped to abbreviate the
formulation. Porosities at the interfaces are taken according to equations (6.4), (6.5) and
(6.6).

s B
v € ﬂX ﬂy ﬂZ u
= (eli+l,J,Kui+l,J,K - € ,J,Kui,J,K) i,J,KDt (6.23)
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The only term (3) on the right-hand side of equation (6.20), which accounts for the change
in volume of the mixture due to evaporation or condensation is integrated over the control
volume and time step At, as the time dependent term above.

\\\t+Dt & &1 1 &1 1
-Og‘é_'__dtdv eIJKVIJK _'_—Dt G!JK _'_—Dt (6.24)

rg 1 o} Fg Tig 2
Combining the results of equations (6.21), (6.23), and (6.24) and dividing both sides of the
resulting equation by the length of the time step At, the final versions of the discretized

eguations for conservation of mixture volume are obtained:

DV, 5k +(i i ) i
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The terms inside the parenthesis on the left-hand side of equation (6.25) constitute the
volumetric net outflow. The first term on the left-hand side is particularly useful: if local
differences in mixture densities exist, which are not caused by phase change, but say by
differences in temperatures, the equation would not conserve mass, hence inherently
resulting in erroneous mass balance; the first term provides a way to correct the mass
balance.
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6.3.3 Discretization of the momentum equationsfor SIMPLE

The discretization of the momentum equations is presented only for u-momentum,
momentum in x-direction, since the discretization procedure is analogous in all the three
directions. The discretized momentum equations for y and z-directions are presented in
appendix B. For the sake of clarity the derivation of viscous terms has been excluded from
this discussion and can be seen in appendix A.

The derivation starts with the conservative form of conservation of momentum, equation
(4.6). The conservative form of u-momentum, without the viscous force terms on the right-
hand side, is given through

T i)y M ndnthn) , T thVo) , W nhWo) - T0_g5e F 11 626y
fit X Ty lz fix .

Equation (6.26) is integrated over the control volume and time step At. Temporal

discretization is presented first.

6.3.3.1 Temporal discretization

Tempora discretization is quite straightforward compared to spatial discretization: the time
rate of change of control volume u-momentum, the first term on the left-hand side of
equation (6.26), is presumed to be constant within the time step while fully implicit
discretization is chosen for other variables. Values at the beginning of the time step are
referred to with a superscript o, for old, and the variables without superscripts are
considered to represent the values at the end of the time step.

t+Dt t+Dt < N
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6.3.3.2 Spatial discretization

The spatial discretization is performed by integrating equation (6.28) over the u-control
volume shown in Figure 6.5. Backward staggering has been used to create the indexing of
the velocity grid; small indexes (i, j, k), which denote the faces, the locations of the
velocities, are set before the capital indexes, (I, J, K), denoting the control volume centers.
The mass flow rates at each boundary (Fe, Fw, Fn, €tc.) of the u-control volume are handled
according to the upwind differencing scheme, which means that the densities are taken
from the node upstream of the interface.
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Figure 6.5: A u-control volume and its neighboring vel ocities.
Integration of the time dependent term, first term on the left-hand side of equation (6.28),
and the forces acting on the fluid in x-direction, the terms inside the square brackets on the
right-hand side of equation (6.28), is performed first.

\“(rmum - r’%u’%)dVDt

\%

(6.29)

! [ri Uy - (r Sue ]
:E(e"lv‘]va"le'K+e|,J,KVI,J,K) 1,J,K¥i,J,K ~ 1,J,K JK Dt
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- % die% (el»l,J,KVI»l,J,K + el ,J,KVI J,K )r II ,J,Kui,J,K ‘ui*,J,K ‘D" (630)
-

P, JK T pl»l,J,K )elI ,J,KA:,J,KD

The volume integrals of the momentum transfer terms, the terms inside the square brackets

on the left-hand side of equation (6.28), are transformed into surface integrals over the u-

control volume faces by implementing the divergence theorem and integrated over the

surface area. Integration over the surface of the control volume yields the net outflow of u-

momentum:

AN

B ) | (7 Vi) | 07 )0
X Ty iz Hd

v €
= @?{rmumumi_ +r ouv j+ rmumme) dA
A

- @‘irmumumi_) X dA, + @\irmumumi_) (- 7)dA,
A Ay (6.31)
+@\irmumvm I)xj_dph +@\irmumvm I)>(' I)dpg
A, A

+@‘1rmumme)>42dAJ +@‘irmumwmlz)>(- k)dAj
A A

= Feue - quw + I:nun - Fsus + I:uuu - qud

The subscripts m, in equation (6.31) denoting values of the mixture of phases, are dropped

in the last stage to avoid multiple subscripts. The mass flow rates at the u-control volume

faces, presented below, are handled according to the upwind differencing scheme: the

densities are taken from the node upstream of the interface.

1 i
Fe ZE r ,J,Kel ,J,KA,J,K (ui,J,K +ui+l,J,K)’ (6'32)
_1 i
Fw _Erl—l,J,Kel-l,J,KA,J,K (ui—l,J,K +ui,J,K)’ (6'33)
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Fs :%elj—l,J,KAj—l,J,K[<Vl—l,j,K>rI—l,J—l,K - <' VI-l,j,K>rI-l,J,K]
. , (6.34)
+EeIJ,J,KAJ,J,K[<Vl,j,K>rI,J—l,K < Vi jK>r| J K]
1
F, = 29| 1J+1KA1 1J+1K[<VI lJ+lK>rI-l,J,K B <' VI—l,j+l,K>rI—l,J+l,K]
. , (6.35)
29| J+1KA J+1K[<VI J+1K>rI,J,K B <' VI,j+l,K>rI,J+l,K]
P = 26 Ay W) s (- Wi )1
47 51K ALk -1k /T -1 K-1 -13k/11-13.K
) and (6.36)
+Eelk,J,KAk,J,K [<W| ,J,k>rI,J,K—l < Wi g k>rl J K]
Ry =2 A sl Wosen) s~ (- Wossen) Mo
u T o T-1a K10 Kk N1 ke /-1 K 1-1,3k+1/ 0 1-1,3 K4
(6.37)

1 « K [ ]
+Ee| ,J,K+1A1 J.K+ <W| ,J,k+l>rI,J,K - <' \NI,J,k+l>rI,J,K+l

Notation <v|,lyij> means maximization between v, , ; , and zero; max(vl_lyjyK ,O). It can be

seen, from equation (6.31) and equations (6.32) through (6.37), that the momentum
transfer terms are nonlinear in terms of velocity. To make solution possible, the
momentum transfer terms have to be linearized. In most implicitly formulated iterative
methods the velocities from which the mass flow rates at the boundaries are calculated, the
velocities in equations (6.32) through (6.37), are taken from the previous iteration, and the
velocities that are conveyed by the mass flow rates are solved, the velocities that are
multiplied by the mass flow ratesin the last stage of equation (6.31).

The u-components of the velocities at the u-control volume boundaries in equation (6.31)
have to be considered next. One approach is to assume that the velocities at the boundaries
are merely averages of the adjacent nodes. However, perhaps a better approach is to take
the values of the velocities from upstream of the boundaries letting the mass flow rates,
calculated from the velocities of the previous iteration, determine the direction of the flow
at the interfaces. The latter approach leads to the following two forms:
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\\\eﬂ(rmumum) ﬂ(f mUme) ﬂ(f mume)EdV
v e x Ty 1z u
= I:eue - quw + I:nun - Fsus + Fuuu - qud

= (<Fe>ui,J,K - <' Fe>ui+1,J,K)' (<Fw>ui-1,J,K - <' Fw>ui,J,K)+(<Fn>ui,J,K - <' F > J+1K)(6 38)
- (<Fs>ui,J-l,K - <' Fs>ui,J,K)+(<Fu>ui,J,K - <' Fu>ui,J,K+1)' (<Fd>ui,J,K-1' <' Fd>ui,.],K)

=(Fo)+(- R+ (R (- F)+(R)+(- P
F

- <' > i+1,d,K < > i-1,J,K < n> i J+LK <Fs>ui,J—l,K - <' Fu>ui,J,K+l_ <Fd>ui,J,K—l

or

“‘eﬂ(rmumum) ﬂ(rmumvm) ﬂ(rmumwm)udv
v e Tx Ty 1z 0

(6.39)
=[F)+(F)+(F)+(- F)+(- F)+(- F)+(Fo- F)+(F - F)+(F,- F)lu

- <' Fe>ui+l,J,K - <Fw>ui—:LJ,K - <' Fn>ui,J+1,K - <Fs>ui,J—LK - <' Fu>ui,J,K+1' <Fd>ui,J,K—l

These two seemingly different forms are in fact equivalent; the maximizations are merely
performed differently. The form in equation (6.39) is equivalent to the 1-dimensional
representation in (Versteeg & Malalasekera 2006, pp. 146-147) though the derivation
procedure is quite different. When the results of equations (6.29), (6.30), and (6.39) are
substituted into the temporally discretized equation (6.28) the momentum equation for x-
direction can be expressed through

[0}

RN T

Dt
=

(el 1J,K I 1J,K el J,KVI,J,K

(Fa)+(F) (R (- B+ (- R+ R+ (Fo- B)+ (R - B)+(Fe- Follus (6.40)

(F,
<Fw> i-1,J,K < s>u|,J—l,K +<Fd>ui,J,K-1+<' Fe> i+1,d,K < Fn> i,J+LK <' u>ui,J,K+l

N

+

f1 ) "
% d_E(e' A lJK+e|JKV|JK)I',IJKU|JK‘U|JK‘ (pIJK- P lJK) IJKAJK

The terms in equation (6.40) can be rearranged so that al the terms containing velocities
Uik ae moved to the left-hand side and the others to the right-hand side of the equation.
Thus,
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[(Fu) +(F) (R +(- R+ (- B+ (- B (R R+ (R~ R+ (R~ Fo)+el sl
:< > i-13,K +< >UIJ 1K < > IJK-1+<' I:e>ui+1,J,K +<' Fn>ui,.]+iLK +<' Fu>ui,J,K+1 ,(6.41)
(pIJK pl-l,J,K)eJKAIJK Clak

where
: 1 21 1f 0
€ J.K ZE(eI—l,J,KVI—l,J,K t€ ,J,KVI J.K )r| J Kth 2 d ‘ Ui, K‘i and (6-42)
(%]
i 1 i (o] ulc? ,
C J K = E(el-l,J,KVI-l,J,K + € ,J,KVI J.K )(ru ,K) ﬁ (6-43)

Finally, if the coefficients of velocities are marked (a; sk, &-13k,-..), €quation (6.41) can be

written in a more compact form:

a'i,J,Kui,J,K = a1'-1,J,Kui-l,J,K + a1',J-1,Kl'li,J-1,K + a'i,J,K-ll'li,J,K-l
+ a1'+1,J,Kl'li+l,J,K + a1',J+1,Kl'li,J+l,K + a1',J,K+lui,J,K+1 ’ (644)

- (pI,J,K - pl—l,J,K)eIi,J,KA\i,J,K +C:,J,K

where the coefficients of velocities are given through

a5k =(F) +(F)+{Fo) (- F)+(- F)+(- F)
+(Fe' I:w)-l'(Fn' Fs)+(Fu' Fd)+eli,J,K]
(6.45)

(Fa

(- F)

6.4 Discretization for the direct method in PORFLO

&.15k <Fw & 5.1k <Fs & k-1
a1'+l,J,K :<' Fe> ai,J+l,K :<' Fn> ai,J,K+l

The procedure of the direct method for pressure-velocity solution implemented in
PORFLO is presented in this section. There were three subroutines in PORFLO for
pressure-velocity solution before this thesis, which all implemented the same direct
method; only the solution of the resulting system of equations was done differently. These
subroutines were originally intended for particle bed simulations, in which the solution of
pressure and velocity fields is in many ways less complicated than in BWR fuel bundle
geometry, since the effects of diffusion and momentum convection in the cross flow
direction can be ignored in momentum equations governing the flow in particle beds.
Nevertheless, these new features have been implemented in the old solution procedure.
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The direct method for pressure-velocity solution in PORFLO combines the conservation
equations for mixture mass with the three mixture momentum equations to obtain a single
system of equations for pressure. The pressure equations have been formulated to be
slightly compressible, which under BWR conditions is questionable. Solution of the
pressure equations by iterative solvers is facilitated by this formulation, however, the time
accuracy is most likely impaired. After the pressure field is obtained, it is used to derive
the velocity fields algebraically. Since the derivation of the discretized equations used in
the direct method for pressure-velocity solution in PORFLO is lengthy and the scope of
this thesis is more on representing the work done during this thesis, the discretized forms
are merely given or the derivation is presented only partially.

6.4.1 Discretized forms of the volume conservation equations

To be precise, the form of the conservation equations, which are combined with the
momentum equations in PORFLO, is actually conservation of mixture volume.
Nevertheless, the formulation has been started from conservation equations for vapour and
liquid mass. The final form of the discretized equation for conservation of mixture volume
is given through

éa ﬂl’g_l_(l- a)‘ﬂr,@ (pI,J,K- pIO,J,K)

e .V
+[(Jm)i+l,J,K - (Jm)i,J,K]
+[(Jm)l,j+l,K - (Jm)l,j,K] : (6'46)
+[(Jm)|,J,k+1' (Jm)I,J,k]
@l 10
:G!,J,K - _:
Fg 1 g 1k

Superscript o is used to refer to the values at the beginning of the time step and the
variables without superscripts are taken from the end of the time step, whenever possible.
The first term on the left-hand side of the equation constitutes the change in volume due to
changes in control volume pressure, and the terms inside the square brackets constitute the
compressibility of the two-phase fluid. The second, third, and fourth terms on the left-hand
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side form the volumetric net outflow. The only term on the right-hand side represents the

change in mixture volume due to phase change.

6.4.2 Discretized forms of the momentum equations

Unlike the discretization procedure for the iterative methods, the discretization of the
momentum equations for the direct method in PORFLO starts with the non-conservative,
or primitive, forms of the momentum equations. The non-conservative form of u-

momentum, momentum in x-direction, without the viscous terms is shown below.

Wy, Wy, Wy g Moo TP g5 T fu (647

" g x v ™ T X d.

Equation (6.47) is integrated over the control volume, shown in Figure 6.6, and time step
At.

e L e - —
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Figure 6.6: U-control volume and its surrounding vel ocities.



lrli,J,Kui,J,K 3 (rli,J,K )oui(?J,KJ
Dt

1

E (el—l,J,KVI—l,J,K té ,J,KVI J.K )

+<Fi>(ui,J,K - ui-l,J,K)+<' Fi>(ui+l,J,K - ui,J,K)
+<Fj>(ui,J,K - ui,J-l,K)+<' Fj>(ui,J+l,K - ui,J,K)

+<Fk>(ui,J,K - ui,J,K-1)+<' Fk>(ui,J,K+1' ui,J,K)
R

2 d,
- (

(6.48)

1 i o
E (el —l,J,KVI -1,J,K + el ,J,KVI J,K )r | ,J,Kui,J,K ui,J ,K‘

P, JK T P, -1,J K )elI J K A1I J K

Notation (F,) means maximization between F; and zero; max(F;, 0). The fully implicit
discretization scheme has been used in integration: superscript o denotes the values at the

beginning of the time step and the variables without superscripts are considered to be the
values at the end of the time step.

In the non-conservative formulation, the mass flow rates in each direction of the coordinate
axes are averaged over the u-control volume and assumed to go through both of the faces
perpendicular to the direction of the mass flow rate. Mass flow rates F; are calculated using
velocities Vi jk, Vi-1jk, Vij+1,k, and Vi-1j+1k, Fi are calculated using Wi jx, Wi-1,5x W x+1, and
Wi.1gx+1, and F; are calculated using only uijk. The mass flow rates Fi, Fj, and Fi in u-

momentum equations, equation (6.48) are given through

Fi :e:,J,KAi,J,K (rl»l,J,K<ui,J,K>- r|,J,K<' ui,J,K>) (6'49)
Fj :%elj—l,Jﬂ,K A1j-1,J+1,K (rl—l,J,K <V|-1,j+1,K>' I35k <' Viigjak >)

+%elj,3+l,K A1j,J+1,K (rI,J,K <V|,j+1,K>' rl,J+1,K<' VI,j+1,K>)
(6.50)

1ol Aluael )
i i
+Zel—l,J,KA—l,J,K r|-1,J-1,K<V|-1,j,K>' r|-1,J,K<' VI—l,j,K>

+%elj,J,KA1j,J,K(rI,J—l,K<VI,j,K>_ r|,J,K<' VI,j,K>)
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k
F el»l,J,K+1A|—l,J,K+1(rI—l,J,K<WI—l,J,k+1>_ r|-1,J,K+1<' WI—l,J,k+l>)

N, DNEFP DN NP

k k
€ 3K+ ,J,K+1(rI,J,K <W| ,J,k+1>' r|,J,K+1<' W ,J,k+l>)

+

(6.51)

k k
€1k N 1k (r|-1,J,K-1<W|-1,J,k>' r|-1,J,K<' WI—l,J,k>)

+

+_elk,J,KA1k,J,K (rI,J,K-l<WI ,J,K>' r|,J,K<' W 5k >)

The direct method in PORFLO is formulated using mixture flow rates, J,, instead of
velocities. Equation (6.48) is rearranged so that the terms containing the central velocity
U sk are moved to the left-hand side and all the other terms to the right-hand side of the
equation. Then, the velocities are transformed into flow rates using the flow areas the
particular velocity goes through.

é%(ell,J,KVILJ'K ek )r'l ) Kg;t +%dl ‘f( K)';ji :
+F +F +F ]m(%)mx
+eﬂ}f;ﬁ(‘]m)i'““ . ﬁ(%)mx

F - F
+ek<—k>(‘] )iJ,K 1”7 ek<—kk>(‘]m)i,J,K+l
1,3.K-17Y g k-1 1,0,K+17Y 3 K+

+1(e| 13k Vi lJK+eIJKVIJK)(r )0 ('Jm)IOJK
2 e kA sk K e kA sk

- (pI,J,K - pl—l,J,K )e:,J,KAi,J,K (6-52)

6.4.3 Combining the volume conservation and momentum equations

In the current version of the direct method for pressure-velocity solution in PORFLO the

pressure equation, obtained by combining the volume conservation and momentum
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eguations, is solved only once during each time step. Due to both the nonlinearity of the
momentum equations and the fact that information about the direction of the flow is
needed when calculating the mass flow rates, some values have to be known, hence the
pressure equation can not be solved fully implicitly, even though fully implicit
discretization has been used to derive the discretized equations. As the pressure equation is
solved only once during each time step, these known values are taken from the beginning
of the time step, which makes the overall solution procedure more explicit and therefore

stringent to Courant’s criteria.

To combine the volume conservation and momentum equations, the central flow rates of
each momentum equation are solved and substituted into the volume conservation
equations. The central flow rate (Jn)i sk of equation (6.52) is solved by dividing both sides
of the equation by the coefficient of the central flow rate. All the variables on the left-hand
side of equation (6.52) which are included in terms that do not contain pressures, aswell as
the variables in the coefficient of the central velocity, are given values from the beginning
of the time step, hence they can be combined and handled as a constant, ¢; ;. Furthermore,
if the terms inside the brackets in the coefficients of the central flow rates in u-momentum

eguations are denoted as & ; k, the central flow rate (Jn)iax can be solved:

(e|i JK A1I JK )2 (

Prok - pl»l,J,K) (6.53)
a5k

(‘]m)i,J,K = CI,J,K -

The momentum equations in other directions are handled similarly:

e i P
('Jm)l,j,K :CI,j,K - ('JQA(H JK T P ,J»l,K) (654)
1,],K
e k 2
() =c(a#(p Prok1) (6.55)
1,Jk

Equations (6.53), (6.54), and (6.55) are written for each flow rate at the boundaries of the
pressure node and substituted into the volume conservation equation, (6.46), to yield an

equation for the pressure:
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€a ﬂfg+(l- a)‘ﬂr.@ (pI,J,K_ pIO,J,K)

€, ki gk é— u
8/ q Tp r ‘ﬂpgl,m Dt
€ (oS (€0 A ] :
+g3|+1,3,|< - ( Lt LJ’K) (p|+l,J,K - pl,J,K)' Ci,J,K A K (pI,J,K - pl-l,J,K )u
g RN a5k H
. . . . . . (6.56)
? (eJ + '6‘1J + )2 (elJ J KA1J J K )2 L’J (
+§C|,j+1,|< - L ek (p|+l,J,K Y ,J,K)' CI,j,K + = = (pI,J,K - pI,J-l,K )u
8 & & ik H
(Aé (ek + A1k ¥ )2 (ek A1k K )2 u
+§C| Jk+ T LA Lo (pl JK+ T P ,J,K)' G J .k AL, (pl JK T P ,J,K-l)l',’l
QA 5k A 5k H
@ 10
=G« ? - I‘__
g N N
The terms are rearranged to obtain the final form of the pressure equation:
NV . 2 . ; 2 ; ; 2 ; ; 2
J[ (e; +l,J,KA1I+l,J,K) (e; J.K '0‘1I ,J,K) (e|J,J+1,K A1],J+1,K) (eIJ,J,K A1],J,K)
i + + +
1 Ak a5k a juk a i«
K k 2 K kP 4 'R
+(eI,J,K+lA1,J,K+l) +(eI,J,KA1,J,K) +eI,J,KVI,J,K giﬂrg +(1' a)ﬂﬁg tjp
e U 1,J.K
& jkn & 5k Dt & ip rio p gI,J,Kb
. : 2 ; ; 2
(€ A i) (kA )
P HI3,K T pl—l,J,K
a1k a5k
. ' 2 ; ; 2
(eIJ,J+l,K A1J,J+1,K) (eIJ,J,K A1],J,K)
s Pragk - Pi a1k
a juak a ik
k k 2 k k 2
_ (eI,J,K+lA1,J,K+l) D _ (e|,J,KA1,J,K) p
— 1,J,K+1 1,J,K-1
Q) jn a5k
@l 10
:C|,J,K - C|+:LJ,K +CI,j,K - CI,j+:LK +C|,J,k - C|,J,k+1+Gf,J,K r - I’__
9 '3 5k
(6.57)

€.xVisk €a ry (t-a)qr0
41Kk & 9 +( )ﬂ lﬂ Pk
Dt e, Tp r ﬂpgl,J,K

It will become evident in the next chapter that the pressure equation of the direct method in
PORFLO bears a strong resemblance to the pressure equation of the SIMPLER algorithm.
After the pressure field is solved, the flow rates are calculated from equations (6.53),
(6.54), and (6.55).

58



6.5 Discretization of the energy conservation equations

Recalling the enthalpy equations for vapour and liquid phase presented previoudly:

flar h,) . Tlar hyu,) . flar ;hyv,) . flar hw,)

ft x fly o osra¥ (59
10 a)r ], sl0- a)rnu] w0 a)r ], S0 a)rin] e e e
fit ix Ty 1z
where a¥, heat rate from the fuel rod to vapour per unit volume [W/m?],
qg heat rate from liquid to vapour per unit volume [W/m°®| and
qq heat rate from the fuel rod to liquid per unit volume [W/m®].

As before with the other conservation equations discussed, the conservation equations of
vapour and liquid are integrated over the control volume and time step to obtain the
discretized forms. Fully implicit time discretization is chosen, and the time rate of change
term is presumed to be congtant during the time step. The variables without superscripts
are considered to be the values at the end of the time step; t + At. Temporal integration is
performed first. For vapour:

“8 'ﬂ(arghg)dt +”8 g‘ﬂ(arghgug) N 'ﬂ(arghgvg) 'IT(z:zrghgwg udt _ ‘*&q% + g
g e T Ty a
0 [(arghg)— ( ) ]Dt +éﬂ(arghgug)+ ﬂ("’U@Jhgvg) ﬂ(‘argh@JW@J)th (6.60)
Dt € ™ Ty Z
= (o + ag)ox
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And for liquid:

ngcjt +t+g} ﬂ[(1' a)rlhlul] + ﬂ[(]-' a)rlhlvl] + ﬂ[(]-' a)rlhlvvl][,]dt

t t | fix ﬂy 1z
= - of)
0 {[(1 a)rlh];:)'l::(l' a)rlhl]o}u (6.61)
L 1l0- a)rnu] |, 90 a)rhv] | 90 a)rhw]d,
1 ix Ty 1z
= (- aox

Spatial integration is performed over the control volume in Figure 6.4. The transient and

source terms are integrated first. For vapour:

aﬁb[(arghg)ﬁ(arghg)o] VD=6,V lerin)oc-lrnhdy g

Dt

\%

QDa% + qlg‘(“')dvDt =€ ,3xViak (Q% + qu:)Dt (6.63)

\%

And for liquid:

0 a)rnl-[e- a)rnlh g,

! N (6.64)
=e . IJK{[(l- a)rlhl]I,J,K_ [(1' a)rlhl]l'J'K}Dt
T Dt
C\E\E\{q\%" Q%f)dVDt =€ ,kViik (q\%" %f)Dt (6.65)

If the local values of void fraction and the densities of the phases at the end of the time step
are unknown, which is the case when the void fractions and material properties are solved
only once during the time step, values at the beginning of the time step have to be used
instead. By doing so, the solution procedure as a whole becomes more explicit. If the
solution of the enthalpy equations, void fractions and material properties is moved inside
the SIMPLE iteration loop, the enthalpy equations could be solved during each SIMPLE

60



iteration. Then the values at the end of the previous iteration could be used to approximate
the values at the end of the time step. Iterative solution over the entire solution procedure,
together with the subroutine that implements the SIMPLE family of algorithms, is
presented in section 8.3.

The divergence theorem is once again applied to transform the volume integrals of the
convective terms, in equations (6.60) and (6.61), into surface integrals over the faces of the
control volume. The implementation of the divergence theorem on the convective terms of
the temporally integrated conservation equation for vapour enthalpy, equation (6.60) is
presented below.

c\ﬁgﬂ(&rghgug) N 'ﬂ(arghgvg) N ‘ﬂ(arghgwg)

u
X Ty 1z Hd

= @‘{arghgugi_+arghgvgi+ar h,w, k)mdA

g9 9
—éiarghgugl . X dA, +@£arghgug| ><( i)dAN
+@ﬁar Vi) e X J%ﬁ@far Vi) o Taa
+@gar shyw,k) g YA, +@gar shyw,k) » {- koA,
A Ay

— A i i i

- e|+1,J,KA|+1,J,K (arghgug)i+l’J’K - eI,J,KA1,J,K (arghgug )i,J,K
j j j j

+t€ ,J+1,KA1,J+1,K (arghgvg)|’j+l’K -6 ,J,KA1,J,K (arghgvg)m—’K

+elk,J,K+1A1k,J,K+1(arghgwg )| J k+1 - elk,J,K Alk,J,K (arghgwg )| Jk (666)

The separate terms consist of the mass flow rate of vapour times the enthalpy at each
boundary of the pressure node. The values of the enthalpies at the boundaries are defined
by the direction of the mass flow rate, according to the upwind differencing scheme. When
all the results of the spatial integration for the vapour phase, equations (6.62), (6.63) and
(6.66), are combined, after some algebra the final form of the discretized equation for
conservation vapour enthalpy is given through:
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(- G)l) - (G
(- G0 s - (G, (6.67)

G;)
(- Glhy) - @),
(¥ )?JK

IJK uK(Q%’LQKQ)

where
G, = sk Ao @) () o)~ () () ) (6.68)
Gy = euicAnsclra) o (0), ) o) - ()] (6.69)
G, = €A v @ o) i (06 ) - @) sl (), ) (6.70)
6. =l Alars), o (W) )- ar) < (), ) 6.7)
Gy =€y sal@rs) s () )~ @ry) sl (), )] (6.72)
Gy = el A llery) )., )- (arg)|JK<( w),, )] (6.73)
M), =esViaxlary) (6:74)

The vapour mass flow rates at the boundaries, (Ge, Gw, Gn, ...), are referred to with a

subscript according to the direction of the boundary in relation to the center point of the

node. Notation <Ge> means maximization between the vapour mass flow rate a the

boundary east of the center point, Ge, and zero.

When the same procedure is done with the equations of the liquid phase, the discretized
form of the conservation equation for liquid enthalpy is obtained.
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where

- (- W), ok - (W)
o= W)
(M.)

(6.75)

)IJlK
)

1,J,K-1

_el JKVI JK(q\% qm

W, = &y Al )] () ) - 18- )]s W) )} - 676)
W, =5 A @)r] () - 10- @)l (- Wb 679
W, = s ALyt @) ] () ) - 18- @) (- ).l 678
W, =l ALl @)r ] (), ) - [0 @)rd - )b 679
W, = €, aA - @) ] (W) - [0 @) ] - (W), )} (6.80)

Wu = elk,J,KAk,J,K{[(l- a)rI]I,J,K»l<(\NI )|,J,k>' [(1' a)r|]|,J,K<' (\NI)I,J,k>} (6'81)

(M) 5k =@Vl a)r ] s« (6.82)
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7 THE SSMPLE FAMILY OF ALGORITHMS

As mentioned above in Chapter 5, SIMPLE, Semi-Implicit Method for Pressure-Linked
Equations, algorithm is an iterative method for pressure-velocity solution, in which the
pressure and velocity fields are coupled through pressure corrections. The pressure
corrections are used to obtain improved values for pressures and velocities at the end of
each iteration. Iteration is continued until the pressure and velocity fields satisfy each
other.

There are two distinctively different version of the SIMPLE algorithm: steady-state and
transent. The steady-state SIMPLE algorithm is easily derived from its transient
counterpart, by omitting the time dependent terms. Although steady-state results are
presented in Chapter 10, the form of the SIMPLE algorithm implemented in PORFLO isin
fact transient, since the original solution procedure in PORFLO was also transient.

The SIMPLE algorithm, upon which the other algorithms of this group are based, was first
introduced by S. V. Patankar. Presentation of the SIMPLE algorithm can be found in
(Patankar 1980, pp. 113-131). Since then, several minor adjustments have been proposed,
to further improve the algorithm, many of which are referred to with an additional suffix,
SIMPLEC for instance. The base of the SIMPLE algorithm, however, has remained
relatively unchanged through the years. Another fact that indicates the usefulness of the
SIMPLE algorithm is its relatively recent implementations in multi-phase CFD codes: at
least Fluent versions 6.0 and above include Phase Coupled SIMPLE algorithm, presented
in (Vasquez & lvanov 2000), as an optional solution method.

The SIMPLE algorithm is presented in the next section, and after that the modifications
made in SIMPLER and SIMPLEC explained. As a part of this thesis a subroutine was
created, which implements the three SIMPLE variants presented in the following sections.



7.1 TheSIMPLE algorithm

The SIMPLE algorithm uses the discretized equations for mixture mass and momentum to
formulate a correction for the pressure field. The pressure corrections are needed, since the
velocity field that results from the solution of the momentum equations does not
necessarily satisfy continuity. The pressure correction is a way to correct the imbalances in
the conservation of mass, or volume, depending on the conservation equations the pressure
corrections are based on.

For the sake of clarity and brevity, the viscous terms have been excluded from the
eguations, since it’ s quite straightforward to include them in the velocity coefficients of the
momentum equations. The discretized conservation equations for mixture momentum can

be presented for x, y and z-direction respectively as follows:

ai J, Kui J.K = a'i-l.] Kui-l.] K +ai J-lKui J-1K +ai J, K-lui J,K-1

(7.1)
T kUnak T skl gk T 5 kel gk ™ (pl JK T pl—l,J,K) € s, KA JK | JK
A ikViik T & kVicnjk +4q, -1k Vi i1k +a|,j,K-1VI,j,K-1 (7 2)
+a|+1j KVI41,.K +4q, J+k Vi ek +4q, kY KT (pI,J,K - pI,J-l,K) €, KAI okt | JK
AWk T AWk T 5 Wik T 5 e aW g ker (7 3)

k k k
+ aI +1,.],kWI +1,J .k + aI ,.]+1,kWI J+Lk + aI ,.],k+1WI Jk+1 " (pl JK T pl ,J,K-l)el J,K A J,K + CI J,K

SIMPLE algorithm starts with a guessed pressure field p* and guessed velocity fields u*,
v¥and w*, which are used to calculate the velocity coefficients (a; 3k, ai-1.5k, €tc.), and the
momentum source terms in equations (7.1) through (7.3). The discretized momentum
eguations, (7.1) through (7.3), are solved to obtain improved velocities u**, v** and w**,
shown for x-direction below.

a'i,.],Kui,.],K = a'i-l,.],Kui-l,.Il,K +a’i,J-l,Kui,J-l,K +a1',J,K-lui,J,K-l (7 4)

Kk *k Kk * * i
+ a1+l,.II,Kui+l,.II,K + a1,.]+l,Kui,.Z|+l,K + a1,.],K+lui,J,K+l - (pI,J,K - pl-l,J,K) I J, KA J.K I J,K

Corrected values and corrections are related as shown below:

p=p +p, (7.5)

u=u" +u, (7.6)
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v=Vv +v and (7.7)
W=W W, (7.8)

Here, superscript ~ denotes the correction and the variables without superscripts are the
corrected values of the variables in question. The corrected pressure and velocity fields
have to satisfy the momentum equations as well as the guessed fields. To formulate
equations for the corrections the momentum equations for the improved velocities are
subtracted from the momentum equations for the corrected fields.

For x-direction, subtracting (7.4) from (7.1) gives

ai,.],K (ui,.],K - |J K) a. 1,J K( i-1,J,K ui—l,J,K)+ai,J—l,K (ui,J—l,K - ui,J—l,K)
+a1',J,K-l(ui,J,K-l- ui,J,K—l)+a1'+l,J,K (ui+l,J,K - ui+l,J,K)+a1',J+l,K (ui,J+l,K - ui,;|+1,K)' (79)

+a~i,J,K+1(ui,J,K+1' u:,;,K+l)_ [(pl JK T p:,J,K)_ (pl-l,J,K - p:—l,J,K )]elI ,J,KAIi,J,K

It is seen that the terms in the parentheses are the corrections p’, in equation (7.5), and u’,
in equation (7.6), defined above. Substituting the corrections into equation (7.9) leads to
the following form:

a1'.]K i'JK:ailJKui'lJK+a1'JlKui'.]lK+a1'JKlui'JKl ' . . (710)
+a1+l.] Ku|+lJ K +a1 .]+lKu| J+LK +a1 J, K+l i,J, K+~ (pl J.K - pl-l,J,K )eII,J,KA\I,J,K
At this point, an approximation is introduced to simplify the velocity correction: the effects
of the neighboring velocity terms on the velocity correction are neglected. After the

neighbouring velocity terms are omitted, the velocity correction can be solved from
equation (7.10).

. e ! . .
ui,J,K =- %A’J’K(pl,u( - pl-:LJ,K) (7-11)
i,J,K

Applying the velocity correction, (7.11), back to equation (7.6), the corrected velocities for

x-direction can be obtained.

e ! . .
i M(pl k- pl-l,J,K) (7.12)
ai,J,K

ui,J,K - ui,J,K
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Corrected velocity components for other directions can be derived using the same

procedure.
S teJ KAjJK ' '
VI,j,K - VI,j,K - (p| JK T Py ,J—l,K) (7-13)
al,j,K
k k
— kA ( : ' )
W Jk T W Jk Py JK T Py JK-1 (7-14)
1,d.k

The equations for corrected velocities contain pressure corrections. In most of the SIMPLE
algorithms intended for single-phase flow, such as the original version proposed by
Patankar (1980, pp. 113-131), the mass conservation eguation is used together with the
continuity equation to provide these pressure corrections. The same procedure is followed
here, with the exception that conservation equations for mixture mass and momentum are
used, since two-phase flow is in question. An aternative approach using mixture volume,
instead of mixture mass, as the basis for the pressure correction equations is presented in
section 8.1. The discretized forms of conservation equations for mixture mass were given
in equation (6.16) and are repeated here in equation (7.15) for convenience.

(rI,J,K B rI(?J,K)
Dt

Helnnc (s o) + 7 asl Uas)
sl (U + T u.JK>)AJK

+let (fu,J,K<V.,,-+1,K> k(- Vijak) ) (7.15)
-l o)+ - Vi A
k

+[e| ,J,K+l(rI,J,K<WI ,J,k+1> + rI,J,K+l< W 5 k+l>)

k
- eI,J,K(rI,J,K—l<\NI,J,k>+rl JK -W Jk )]A JK ~

el ,J,KVI J.K

To clarify the formulation, the cumbersome maximization terms are combined and the
densities at the boundaries are denoted with pn, referring to the mixture densities at the
boundaries.
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(rI,J,K B rI(?J,K)
Dt

i i i

+ [el +1,J,K (r mui+l,J,K )- el J,K (r mui,J,K )]AI J,K
i i i

+ [el J+1LK (f mVI Lj+LK ) - el J.K (f mVI K )]A J,K

k k k —
+ [el J ,K+l(rmWI ,J,k+l) - el J.K (r mWI J.k )]A JK T O

el ,J,KVI J.K

Substituting the corrected velocities, (7.12), (7.13) and (7.14),

continuity equation (7.16) yields:

o
e .\ (rI,J,K - rI,J,K)
LIKVIIK T ~
Dt
, - é @ e A1 al
i i Py * 14,3, K Y0k [ capy
+e|+1,J,KA1,J,K§rm Uik - (p|+l,J,K - P JK):U
e a1+lJ K mﬂ’J’K
. € e A o]
i i ~ * 1,J,K J,K ' iy
- eI,J,KA,J,K (frm Uik - (pIJK p|-1,J,K)3;I
e A 5«
) € & el A au
J J A * Z1LIHLK 7Y JHLK [ . =
+6 ,J+l,KA1,J,K (frm A JHLK T (p| ik~ Piok ):U
e a LK QQLHLK
. € @ e Aj au
j j A * 1,.K7Y 0K
- eI,J,KA,J,K ?rm§V| a (p| JK T~ p| J-1K )—U
e 1K le 0K
€ @& e, A au
k k A 1,J,K+17Y,J,K+1 ! T
+é ,J,K+1A1 J.K ?rm§W JkH a (p|,J,K+1' P sk ):U
e 1,d K+l le,J,kﬂ
é & A ol
k k ~ | JKTY IK ' e _
€laxA gl’méw Ik " a (pl ik~ By ,J,K—l)zl;l =0
e 1,d .k qu,k

(7.16)

into the discretized

(7.17)

Here, coefficients (ajsk, ai+1k,...) are the central coefficients of the corresponding

momentum equations; &k and a.1 3k are taken from u-momentum equations, a jk and

a j+1,k from v-momentum equations, and ajx and a jk+1 are taken from w-momentum

eguations. The mixture densities at each boundary of the pressure node are handled

according to the upwind differencing scheme: the latest values of the velocities at each

boundary are used to provide the direction where the densities are taken from. With some

manipulation the pressure correction equation, (7.17), can be rearranged so that the

pressure terms are shown separately:
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:(e|+1JK iJK)ZGG’a Z+1JK (el.]K iJK)ZEEJK
(e. .]+1KA1 J K)Z%g L (e| J, KA1 J K)Zéer_%j’K
(e. J,K+1 k.] K)z%gjkﬂ (9| JK kJ K)zgg JkEpl JK
( €10k iJK)ZéEf_g p|'+1,JK ( € 1k IJK)w 9 Pii1ak
€ & Gk €ea g,k
( € J+1KA1 J K)zé?’?9 p; J+LK +(elj,J,K A1j,J,K )26?49 P 1k
g j+1k eag;x
+(eIk,J,K+1 k,J,K )zg%%”ﬂ pI',J,K+1+(eIk,J,KAk,J,K )Zg}wfg” p;,J,K—l
[e(roue ) - (roue )+ v elal) - (rvelal),
( ) (7.18)
+(rmW**ekAk)| Jk T (rmW**ekAk)l a6 ,J,KVI JK ME

Dt Q

Using coefficients (b jk, bi-19k,...) for the pressure corrections and denoting the terms

inside the brackets on the right-hand side with d, , , leadsto the final form of the pressure

correction equation:

bl J.K pl J.K = bl +1,J K pl +1,J,K + bl—l,J,K pl—l,J,K + bl J+LK pl J+LK

‘ ‘ ‘ ‘ , (7.19)
0k Pk TB sk Pk T s kP Tk

B3 Pl =@ B P+ (7.20)
The pressure corrections, which are obtained by solving the system of equations (7.19), are
used to correct the pressure and velocity fields using equations (7.5), (7.12), (7.13) and
(7.14). The corrected pressures and velocities are in turn used as the guessed values in the
beginning of the next iteration. Iteration is continued until convergence is established. The
main phases and the sequence of operations of the transient SIMPLE algorithm are shown

in Figure 7.1.
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START

p| Initia guess: p*, u*, v*, w*, £
A

STEP 1: Solve discretized momentum equations (7.1), (7.2) and (7.3)

*k _ o ke * * i i i

ai,J,Kui,J,K - a. Uy, - (pI,J,K - pl—l,J,K )eI,J,KALJ,K +CI,J,K
a Vn« _ o Vn« _ ( * _ * )eJ J +CJ
1, K Vi K T a Vi, pI,J,K pI,J—l,K |,J,KA|,J,K

1,J,K

a W** _ o W** _ ( * _ * )ek k +Ck
1,3,k 70,3,k _a. a‘nb nb pI,J,K pI,J,K—l I,J,KA1,J,K 1,J,K

u* =u, v*=vy,

U**, Vk*’ Wr*
A 4
STEP 2: Solve pressure correction equation (7.19)

f o f f
V\/* f* f bI,J,K pI,J,K :a bnbpnb+dI,J,K
=W, =
0
A y
STEP 3: Correct pressure and velocities (egs. 7.5, 7.12, 7.13 and 7.14)
p=p+p
e, A : :
Uk =Wk - M(pl JK T pl-l,J,K)
ai,J,K
. ej Alj ) )
VI,j,K :Vl,j,K - M(pI,J,K - pI,J-l,K)
aI,j,K
w e A : :
Wiok =Wk M(pl ak - B ,J,K-l)
1,j,K
pl ul Vl W
No A
( Convergence? )
Yes
Set time step At y
Let t;e: At STEP 4: Solve all other transport equations
p°=p, W=u, V=v,

wW=w, f°=f, p°=p

f...=3 a.f
aI,J,K 1,J,K _a a'nb nb +Cf,I,J,K

f
Yes A

77N\

New time step? )
No

STOP

Figure 7.1: Thetrangent SIMPLE agorithm.
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7.2 TheSIMPLER algorithm

The most profound drawback of the SIMPLE agorithm is that it doesn’t preserve a good
initial guess for the velocity field, if the pressure field is guessed poorly. In the SSIMPLER,
SIMPLE Revised, algorithm the discretized continuity equation and the momentum
eguations are used to derive an additional equation for pressure, which is solved first to
provide a more accurate guess for the pressure to be input into the discretized momentum
eguations. The rest of the procedure is the same as in SIMPLE, with the exception that the
pressure correction is used to update only the velocities. In other words, compared to the
SIMPLE algorithm, SIMPLER employs a more accurate form for the pressure to preserve
a good initial guess for the velocity. The SIMPLER algorithm is presented in (Patankar
1980, pp. 131-133).

The discretized momentum equations (7.1), (7.2) and (7.3) are rearranged as follows.

j i i i
_aanbub+CI,J,K eI,J,KA,J,K
ui,J,K - : - (p| JK T pl—l,J,K) (7-21)
ai,J,K ai,J,K
_ é A Vio +Clj,J,K elj,J K Aj,J,K
VI,j,K - - (p| JK T ] ,J—l,K) (7-22)
a, K a, K
j k Kk k
_aanbub+CI,J,K eI,J,KA,J,K
W Jk T : - (p| JK T P ,J,K—l) (7-23)

a'I J.k a'I J .k

At this point, the first terms on the right-hand sides of the equations are defined as pseudo-

velocities
A 3l *G
aiy\]YK - b“~'nb 1,J,K , (7.24)
ai,J,K
& 3V, *C/
V) | =212 and (7.25)
i -
1,j,K
A Wy, +¢f
W,y = o (7.26)

a'I J.k
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Applying the pseudo-velocities in the discretized momentum equations, (7.21), (7.22) and

(7.23), leads to the following forms:

~ "5'|i J K'Aﬁi J.K
Uk =U k- a (pI,J,K - pl—l.J,K)’
i,J.K
S teJ KA1JJ K
VI,j,K =V, ik a (pI,J,K - pI,J-:LK) and
1,j,K
k k
—\R eI,J,KA,J,K
Wik =Wk a (pI,J,K - pI,J,K—l)'
1,d .k

(7.27)

(7.28)

(7.29)

Next step is to combine these with the continuity equation for conservation of mixture

mass to obtain the pressure equation, shown below.

(0]
vV (rI,J,K - rI,J,K)
€ axViax Dt
6 e, A
i i X ~ 1+1,3,K TV +1,3,K
ek Ak ?rméuiﬂ,J,K } (
e Q10 K
_ - é & e, A
i i N ~ 1,J,K ,J.K
- €5k A Lk ?rméui,J K~ —(
e & 5k
) ) e e ej A1]
j j A % 1,I+LK 7Y 31,k
6 5k A g1k & &Y jaak (
e A juk
_ - é @ el A
j i a 4 LIKY, 3K
- eI,J,KAI,J,K ?rm Vijk~ —(
e al,j,K

4 k k
+ e k gl’ &, eI,J,K+lA|,J,K+l(
€ ,J,K+1A,J,K+l§ mé 1Jk+L ™ a
e 1,J,k+1
4 k k
k v & & ek Ak (
-6 ,J,KAI,J,K ?rmé 1Jk ™
e aI,J,k

The equation (7.30) can be further rearranged.
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&/, i 28, 0 i i a8, 0
g PN i - i i _
e(el+1,J,K +1,J,K) — +(eI,J,K ,J,K) Q_mT
é € a Gk eadg,x
j j 2ad 1, O ( j j )2<’ff 0
+(e| ,J+1,KA1,J+1,K) ¢+ + el,J,KALJ,K c—+
e a gk eag,;k
o pa. o (6, oA, O )
+(e| ,J,K+1A1,J,K+1) Q_mT & kA ok Q_mT ub 5k
ea g kn ea g,
(. i 2ad ., 0 ( i i )289’ 0
_(el+1,J,K +1,.],K) Q_mT p|+1,J,K + el JKTY I K Q_mT pl—l,J,K
€a gk eag;x
i i a8, O - i a0
j j : j j :
+(e| ,J+1,KA1,J+1,K) ¢+ Pk +(e| ,J,KA1,J,K) ¢+ Pi -1k
€a gk eag;x
K K 2ad , 0 ( K K )Zﬁ 0
+(e| J K+ ,J,K+1) Q_mT pI,J,K+1 + € JKTY I K Q_mT pI,J,K—l
ea g eadg,x
RN RN Gl Al Gal Al
[+ (rmue A )i,J,K } (rmue A )i+l,J,K +(rmve A )I,j,K ) (rmve A )I,j+l,K
o \s
~ ok Ak ~ ok Ak (rI,J,K - Ik )u
+(rmWe A )I,J,k - (rmWe A )I,J,k+l - €axViak Dt u (7.31)
u

Using coefficients (b gk, bi-13k,...) for discretized pressures leads to the final form of the

pressure equation:

bl J,K pl J.K = bI +1,J,K pl +1,J,K + bl -1,J K pl—l,J,K + bl J+LK pl J+LK

, (7.32)
+ bI J-1,K pl J-1K + bI J,K+1L pl J,K+1 + bI ,J,K—lpl J,K-1 + dI J,K

bI JK pl JK = é. bnb pnb + dI,J,K ) (733)

This pressure field is used as an input for the SIMPLE algorithm, the rest of the procedure
is unaffected, with the exception that the obtained pressure correction is only used to
correct the velocities, not the pressure. The sequence of operations for the transient
SIMPLER algorithm is presented in Figure 7.2.
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START

»| Initia guess: u*, v*, wt, £~

A 4

STEP 1: Cdculate pseudo-vel ocities a,v,w (egs. 7.24, 7.25 and 7.26)

A 4

STEP 2: Solve pressureequation by, p, ;¢ = é bRy +d ;¢ (732

Setp*=p
v

STEP 3: Solve discretized momentum equations (7.1), (7.2) and (7.3)

*k _ o ke * * i i i
ai,J,Kui,J,K - a. Uy, - (pI,J,K - pl—l,J,K )eI,J,KALJ,K +CI,J,K

*k

o *k * * i i i
al,j,KVI,j,K a &V, - (pI,J,K - pI,J-l,K )el,J,KAI,J,K *+G J,K

p’=p, W=u, V=v,
wW=w, f°=f, p°=p

*k _ [o] *k * * k k k
aI,J,kWI,J,k =a Wy, - (pI,J,K - pI,J,K—l)eI,J,KA,J,K +CI,J,K
Sat
U**, Vk*’ Wr*
u* =u, v*=vy, Jv
wF=w, f°=f STEP 4: Solve pressure correction equation (7.19)
f o f f
bI,J,K P.k=a bnb P + dI,J,K
Y
D
A
STEP 5: Correct velocities (egs. 7.12, 7.13 and 7.14)
e, A : :
ui,J,K :ui,J,K - %(pux - pl-l,J,K)
i,J,K
o elj,J,K A1J,J,K ' '
Vijk =Vijk - —(pl,J,K - pI,J-l,K)
1,7.K
w e A : :
WI,J,k :Wl,J,k - M(pl,J,K - pI,J,K-l)
1,j,K
u, v, w
No A
( Convergence? )
Yes
Set time step At : _
Lett=t+ At STEP 6: Solve all other transport equations
Sat

fo..=3 a.f
aI,J,K 1K = a a'nb nb +Cf,I,J,K

f

A

A

Yes

New time step? )
No

77N\

STOP

Figure 7.2: Thetrangent SIMPLER algorithm




7.3 TheSIMPLEC algorithm

The SIMPLEC, SIMPLE Consistent, algorithm follows the same approach as SIMPLE,
with the exception that the effect of the neighbouring velocity corrections on the pressure
correction of the central node is attempted to be included in the pressure correction
equations. In SIMPLE the whole neighbouring velocity correction terms were dropped
from the equation, whereas in SIMPLEC the neighbouring velocity corrections are
assumed to be so close to one another that the coefficients can be summed together.
Approximations introduced in SIMPLEC are shown below for x-direction:

U .. =a u +a u +a u
a1.]KI.]K a'Il.]KIl.]K a1.]lKI.:|lK a1.:|Kl|.:|Kl (734)

! i i
+a1+l.] Ku|+lJ K +a1.]+lKu| J+1LK +a1 J, K+l i,J,K+1 (pl JK T pl—l,J,K )eI,J,KA,J,K

b ai,.],Kui',.],K' » ai-l,J,Kui‘,J,Kv + ai,J-l,Kui',J,K' + ai,J,K-'lui',J,K | | | (7.35)
+ &5 kUigk + & jakUigk + &5 kaligk - (pl ak~ Pk )elI ,J,KAI,J,K

U (ai,J,K - é. anb)Ji‘,J,K =- (pl JK T p;-l.J,K )eli,J,K Ai,J,K (736)

B ‘ e i ‘ ‘

U Uk =" #Agf’;b(pl,u( - pl-:LJ,K) (7-37)

Velocity corrections for other directions can be obtained using the same approach.
Corrected velocities for all three directions are given through:

- e, A . .
ui,J,K :ui,J,K - ﬁ(ﬂ JK T pl—l,J,K)’ (7-38)

j i
V... =V . . - LAJK p - p ) and (7.39)
I,j.K 1,j,K | K a anb ( 1,J,K 1,J l,K)

k k
— *% A ] ]
W Jk T W Jk T | lJiK aJ ;ﬂb (p| JK T pI,J,K—l)' (7-40)

The pressure correction equation is otherwise the same asin SIMPLE, but the coefficients
of pressure corrections contain the sum of the neighbouring coefficients of the momentum
eguation as well.
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+(rmw**ekAk) - (rmw**ekAk)

1.J.k =
u

If the coefficients of pressure corrections are denoted as (b jk, bi-13k,...) and the terms

inside the brackets on the right-hand side of the equation are denoted as d, , .

bl J.K pl J.K = bl +1,J K pl +1,J,K + bl—l,J,K pl—l,J,K + bl J+LK pl J+LK

. . . . : (7.42)
+ bl J-1,K pl J-1LK + bl J,K+L pl J,K+1 + bl ,J,K—lpl J,K-1 + dl J,K
bl J,K p; J,K = é. bnb p;1b + d;,J,K * (743)

Otherwise the SIMPLEC algorithm follows the same procedure as SIMPLE, only the
coefficients of the pressure corrections and the velocity correction equations are altered.
The main steps of the transient SIMPLEC algorithm are shown in Figure 7.3.
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Figure 7.3: The transent SIMPLEC agorithm.




7.4 Pressureand velocity under-relaxation

The pressure and velocity corrections in the SIMPLE family of algorithms need to be
under-relaxed to attain stabile convergence; the corrections are not used in its entirety, only
a fraction of the correction or the iteratively improved value is used. The pressure

correction is under-relaxed with an under-relaxation factor oy as follows:

IOF,GJN,K = p|*,J,K ta, p; JK (7.44)
where Pk corrected pressure [Pa],
Pk old pressure [Pal,
P, K pressure correction [Pa], and
a under-relaxation factor for pressure [-].

p

The under-relaxation factors have values between [0, 1], however the corrections could be
over-relaxed by choosing a value greater than one. The SIMPLE variants require different
under-relaxation factors for pressure: while SIMPLE requires moderate under-relaxation,
very little, if any, is needed in SIMPLEC. Due to the fact that pressure corrections are not
used in SIMPLER to correct the pressure, no under-relaxation is needed for pressure either.

The velocities are corrected with the pressure corrections through the following equations:

e, A . .
ui,J,K = ui,J,K - %(Q JK T pl—l,J,K) (7-45)
i,J.K
w8 A . .
VI,j,K :VI,j,K - %(pux - b ,J»l,K) (7-46)
1,j.K
k k
*%k e A ] v
W J .k =W Jk T %(Q JK T pI,J,K—l) (7-47)
1,d.k
where u, v, w arethe x, y and z-components of velocity respectively [m/g],
** denotes the values after the solution of the momentum
eguations.

The velocities are under-relaxed with a factor «,. All the velocity components are under-
relaxed with the same factor, despite the fact that different under-relaxation factors could
be defined for each direction. Velocity under-relaxation is shown for x-direction:
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WSk =al sk + (1' a, )uir,]:]%K (7.48)

where u™ under-relaxed new velocity [nVs]
u corrected new velocity [m/s]
T corrected velocity at the previous iteration [nVg].

The momentum equations can be modified to contain the velocity under-relaxations, so
that the under-relaxations do not have to be performed separately. The velocitiesthat are
input to the momentum equations have been corrected using the pressure correctionsin
equations (7.45), (7.46) and (7.47). Momentum equation for x-direction can be written as

2 i i i
ai,J,Kui,J,K = a AUy, - (p| JK T pl-l,J,K )e| ,J,KA1,J,K +C| JK (7-49)

To get the under-relaxed form of the momentum equation, equation (7.49) is first divided
by the coefficient of the central velocity node, a ;.
1

ui,J,K = a [é AUy - (p| JK pl»l,J K )e|i ,J,K'A\i,J,K +C: ,J,K] (7-50)
i,d,K

Then, both sides of the momentum equation are multiplied by the factor o, and after that
(1- a,)u"% isadded to both sides:

a,u ;. +(1-a,u} =4 [8 Up- (P k- Pk )e kAL k +C
J,K ( ) J,K aiy‘]YK [a a‘nb b ( 1,J,K | l,J,K) I,J,KA,J,K I,J,K] (751)

+ (1' a, )uirj:]%K

It can be noticed that the left-hand side of the equation is just the under-relaxed new
velocity:
1

uirj?,,vK = = [é AUy, - (p| JK T pl—l,J,K )e:,J,KAi,J,K +C|i ,J,K]+(1' au)uirj:],K' (7-52)

i,J,K

As the momentum equations are solved in the beginning of each iteration, the neighbouring
velocities, in equation (7.52), are taken from the end of the previous iteration without

relaxation and u'y', isthe velocity obtained two iterations earlier without relaxation.
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8 DEVELOPMENT OF THE CODE

When developing new code or applying old codes to new conditions, much of the coding
effort is spent on testing and debugging the code —this work makes no exception. The first
few months of development were spent on getting the simulations started. The combined
effects of the errors, both in the older main code and in the subroutine which implements
the SIMPLE variants, complicated the development in the beginning. The errors in the
code are harder to backtrack when the effects of several errors are combined; in addition
some of the errors only manifest themselves after the simulation reaches a certain point,
and sufficient amount of void fraction has been created, for example.

Apart from the obvious bugs in the code, problematic behaviour inherent to the solution
algorithm or the disposition of the governing equations was encountered on few occasions:
these findings are discussed in this Chapter.

8.1 Basisfor the pressure correction equation

The single-phase versions of the SIMPLE algorithm use the mass conservation equation to
formulate the pressure correction equation, as presented in (Patankar 1980) and (Versteeg
& Malaasekera 2007), but due to the relative differences in phase velocities, the
conservation equation for mixture mass in 5-equation models based on mixture density is
not accurate; a topic which was briefly visited in section 6.3.1. A term needs to be
introduced to correct the inherent error in mass balance resulting from the use of mixture
density.

During the development of the code it became apparent that as soon as sufficient boiling
occurs the pressure correction equation based on conservation of mixture mass can no
longer provide velocity fields that satisfy continuity and the resulting mass errors increase
gradually, even though the mass errors accumulated up until a certain time step are
corrected during the next. In an attempt to counter this, the pressure correction equations

were formulated again starting from the conservation of mixture volume instead of mass.
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The conservation equation for mixture volume is not flawless either: if local differencesin
mixture densities exist, the mass balance is not preserved, since the conservation equation
for mixture volume only preserves the volume of the mixture and has no bearing on the
conservation of mass. However, the resulting error in mass balance can be corrected, as
opposed to the previously discussed formulation based on conservation of mixture mass. It
seems that the crucial factor that prevents the mass conservation equation from correcting
itself is the fact that the correction term itself contains the flawed mixture density; the
correction term of the volume conservation equation, on the other hand, does not contain
the mixture density, nor do the other terms in the equation for that matter.

If the velocities at each boundary of the pressure node in the conservation equation for
mixture volume, equation (6.25), are replaced with the corrected velocities in equations
(7.12), (7.13) and (7.14) the pressure correction equations based on conservation of

mixture volume are obtained.

DVi sk i i !
D,t, +(el+1,J,Kui+1,J,K "6 kUK )A,J,K
| | | (8.1)
+(e| aakVijk T Gk ik )A K
®e1 19
K k k = ? T
+(e. RE AL ,J,K\NI,J,k)A| KT G’vJvK r ) I’__
g ]
~ DV, ;¢ i i é .. €l Ao (o "
U D[ 16k &gk - ;(p'ﬂ@m " Pk )L’J
{ &1k t
@ e, A : SN
i aox 1,0, kMY 3K A
"Gk - —(p"J’K i p"l’J’K)WA’J’K
) &k %
[ é. teJ+1KAjJK ' ' u
*l € &)k " ;(pl aak " Prak )U
T @ aI,j+1,K g
o é e, A , , W
i x 13Kk 0K A
- eI,J,K ell,j,K - —(pLJ,K - p|,J-1,K)WA1,J,K
& th
- k k )
é € s xaA ' -\
[ " 10Kk 0K '
FIE k1@ 5~ —(p' sk ™ Prox )L’J
1, k41 ¢
p K K U 0
é e A , : U F1 19
K sk 1,9,KTY 3K -~ Ak = T
"ok @M k- —(pI,J,K - pl,J,K-l)L,VA,J,K =G,k -1 (82
8 & 5k q) rq g

81



Equation (8.2) is rearranged so that the terms containing the pressure corrections remain on

the left-hand side, the terms containing the pressure correction of the central node, p, ,

are combined and the rest is moved to the right-hand side of the equation.

2

(eli+l,.],KA|i,J,K )2 + (elI ,J,KAIi,J,K )2 + (elj,.]+l,KA|j,.],K)

a1'+1,J,K ai,.],K al,j+l,K

@D> > D~

. : 2 2 2~
j j k k k k
+ (el ,J,KA|,J,K) + (el ,J,K+1A|,J,K) + (eI,J,KA1,J,K) u

'{Jp| JK
a LK & 5k A 5k H
i Y i i R j j )2
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- pI,J-l,K - P, JK+ T P, JK-1
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+ (ekAkW )I,J,k - (ekAkW )I gk T G,J,Kg_ —Ii lljtJ’K u
Fe Tig ¢! (8.3)

The right-hand side of the pressure correction equation is essentially the conservation
equation for mixture volume, which is comprised of the volumetric flow rates at the
boundaries, the change in mixture volume due to boiling and the time rate of change in
mixture volume AV, ; k/At. The time rate of change in mixture volume is used to introduce
the effect of the explicitly calculated mass error correction into the pressure correction
equations. At the end of the time step, the mass inventories of both liquid and vapour in
each node are given. These can be used together with the densities of the phases to
calculate the volume the mass content of the node requires. The difference of the required
volume and the fluid volume of the node is used as a correction term in the pressure

correction equations as follows:

DV| J.K — g(MI)T),J,K + (MQ)T,J,K -e V 3>(W_ma (84)
Dt g(n)l,J,K (rg)l,J,K 1J.K |,J,KH Dt

The term containing the square brackets in equation (8.4) is called mass error, despite the
fact that it has the same units as volumetric flow rates, m/s. It is nevertheless called mass

error since it is derived from the vapour and liquid masses inside the control volume at the
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end of the previous time step. The portion of the mass error corrected during the time step

is controlled by the factor wme.

8.2 Diagonal dominance of the pressure correction equations

The most profound difficulty in the solution of SIMPLE-type algorithms formulated
assuming incompressible flow, from a strictly numerical perspective, is the weakly
diagonally dominant coefficient matrix of the pressure correction equations, which makes
iterative solution of the pressure correction equations challenging. The pressure correction
eguations, or pressure equations for that matter, bear a noticeable resemblance to Poisson
equations, hence they are frequently called the pressure Poisson equations (Wesseling
2001, p. 251). A two-dimensional Poisson equation is given in Kreyszig (1999, p. 962)
which can easily be expanded to athree-dimensional domain:

~

N2u = f(x,y,2). (8.5)

To point out the similarity between pressure correction equations and Poisson equations,
the pressure correction equations are examined briefly. The pressure correction equations,
as used in thisthesis, begin with the conservation of mixture volume
e 0
1+‘|Tum+‘ﬂv w, _ &1 10

mp—_M=gG—- —7. (8.6)
imw x Ty 19z rq g

In the incompressible formulation the time dependent term, the first term on the left-hand
side of equation (8.6), is constant, independent of pressure, asis the only term on the right-
hand side. The second, third and fourth terms on the left-hand side constitute the
divergence of velocity. After combining the constant terms into c, equation (8.6) can be

written as follows:

N:u=c (8.7)

The next step isto introduce the effects of pressure corrections on each velocity component
to the conservation equation for mixture volume. If each velocity component of u is
replaced with the essence of the corrected velocities, equations (7.12) through (7.14), (note
that the corrections (7.12) through (7.14) are discretized while equation (8.7) is not) the
following form is obtained:
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*-%{zc. (8.8)

~ 2. Dp . Dp
N>§ "D’ V-E, w

QIO

Divergence of the known velocity components, which congtitutes the volumetric net
outflow, is moved to the right-hand side and combined with the constant c. The terms
inside the parentheses containing the pressure corrections are nothing more than the spatial
derivatives of pressure corrections in each direction of the coordinate axes; hence equation
(8.8) is reduced to the following form:

NxNp =N?p =c¢ (8.9
The constant term ¢, which is essentially the sum volumetric net outflow and the correction

terms over each node, is a function of space, ¢ = f(x,y, z), asin equation (8.5).

When the pressure Poisson equation obtained by assuming incompressible flow is
discretized over a three-dimensional domain, a set of equations, presented previously in
eguation (8.3), results:
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It is seen that the diagonal term, the terms inside the square brackets on the left-hand side,
consists of the sum of off-diagonal entries. the consequences of this will be explained
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shortly. The pressure correction equations can be rewritten compiling the diagonal and off-

diagonal terms into a coefficient matrix A.

AX =b (8.11)
where A coefficient matrix of pressure corrections
X avector containing the pressure corrections
b the entries on right-hand side of the pressure correction
eguations.

In order to specify the type of the coefficient matrix of the pressure correction equations,
some definitions need to be introduced.

According to Kreyszig (1999, p. 922), a diagonally dominant matrix A = [ay] isann " n
matrix such that

2y ;é 2y j=1K,n (8.12)
tj

where the sum is taken over all the off-diagonal entries in row j. The matrix is strictly
diagonally dominant if there is a strong inequality in equation (8.12) for all j.

By definition, (Kreyszig 1999, p. 923), anirreducible matrix A cannot be brought into the

form
é Cu
(:a u (8.13)
&0 Fg

by interchanging rows or columns (or both); here O is a zero matrix and B and F are any

r rand (n-r) (n- r) matrices.

And finally, by definition in (Stewart 1998, p. 219) a matrix A is said to be irreducibly

diagonally dominant if:

1. Alsirreducible,
2. A isdiagonaly dominant with strict inequality in at least one row (in eg. 8.12).
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According to these definitions the coefficient matrix of the pressure correction equations is
irreducibly diagonally dominant, since it is irreducible and the sum of off-diagonal
entries equals the diagonal in the whole domain except in the outlet, where the diagonal
entries are greater than the sum of off-diagonals. Iterative solution of systems

asAX = b with irreducibly or weakly diagonally dominant coefficient matrixes is well

known to be troublesome; small changes in the coefficient matrix A or the solution b
cause huge changes in the iteratively solved vector X, and vice versa. Truncation errors

make the matter even worse.

To facilitate iterative solution of the pressure correction equation, asmall artificial increase
in the diagonal terms of the coefficient matrix in pressure correction equations was
proposed. Wesseling (2001, p. 240) provides a brief overview of the procedure which is
called the artificial compressibility method. Manipulation of the sort is only possible when
the final solution of the converged state at the end of the time step remains unaltered.
While it is evident that, by artificially increasing the diagonal terms of the coefficient
matrix, the solution of the pressure correction equations after each iteration is altered, the
converged state at the end of the time step, however, remains the same, since the effect of
the artificial increase in the diagonal of the coefficient matrix approaches zero when the
pressure corrections approach zero, which is the case when approaching a converged
solution. In other words: the path to convergence is atered by artificially increasing the
diagonal dominance of the coefficient matrix, but the final solution of the flow field is not.

The pressure correction equations were solved using a direct solver, Gaussian elimination,
and the number of SIMPLE iterations needed to reach a converged solution was observed.
Though the goal of this test was to study the possibility to use iterative solvers already
coded in PORFLO, and the usability of iterative solvers in general, a direct method was
used to eliminate the effect of convergence criterion of the iterative solver on the number
of SIMPLE iterations.

The tests revealed that a relative increase of approximately 1% in the diagonal entries

increased the number of SIMPLE iterations by a factor of 10-1000, depending on the flow
conditions. In a situation where most of the CPU-time is spent solving the pressure
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correction equations, this would mean that iterative solvers would have to be substantially

faster than direct methods, in order to gain any benefit from the artificial increase.

8.3 Increasing the implicitness of the overall solution

The former structure of the solution procedure in PORFLO, presented in Figure 4.1,
regardless of the choice between direct or iterative methods for pressure-velocity solution,
was non-iterative as a whole; meaning that, as the procedure advances, each stage of the
solution procedure is visited only once during the time step. Then, the values of many
variables, such as mixture densities, have to be taken from the beginning of the time step,
even though fully implicit discretization scheme was used to formulate the discretized
mass and momentum conservation equations. This increases the explicitness of the overall
solution procedure, and renders it more conditional on Courant’s criterion, which means
that the flow cannot travel more than the length of the node during the time step.

To make the solution procedure more implicit, an option was added which allows iterative
solution over the whole solution procedure when using the subroutine that implements the
SIMPLE family of algorithms. In essence the solution of all the variables, temperatures,
densities, void fractions, mass flow rates and masses of the two phases, are brought inside
the SIMPLE iteration loop. The iterative solution procedure is shown in Figure 8.1.
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Figure 8.1: Iterative solution procedure in PORFLO. (cf. Figure 4.1)



The iterative solution mode is more sensitive to disturbances and prone to oscillations,
since there are more variables that are updated during the iteration; more moving parts, so
to say. When using the iterative solution mode, shown in Figure 8.1, the void fraction
prediction is not needed; actually it may be an unnecessary source of disturbance.

Some tests have been performed to study the usefulness of the iterative solution mode,
which indicate that the iterative mode performs as well as the non-iterative mode when
using short time steps. Time steps longer than the Courant’s criterion suggests have not
been tested, even though fully implicit discretization combined with the iterative solution
mode should be able to handle them. Using equal time steps the iterative and non-iterative
solution modes converge after the same number of iterations, which indicates that with
short time steps the essence of SIMPLE-type algorithms, the pressure correction, limits the
rate of convergence, while changes in transported properties have little effect.

As mentioned, the iterative solution mode is less stabile than the non-iterative mode.
Oscillatory behaviour was encountered during the tests. While the definitive cause for this
behaviour is unknown, it seems that a poor choice of parameters in the drift-flux model
was at least partly responsible. If problems with stability persist, the transported properties,
such as mixture density and void fraction, could be under-relaxed in a similar manner the
velocities are under-relaxed at the end of each iteration.
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9 BWRFULL-SIZE FINE-MESH BUNDLE TESTS

Measurements for the BFBT (BWR Full-size Fine-mesh Bundle Tests) benchmark were
conducted in an out-of-pile test facility by Nuclear Power Engineering Corporation
(NUPEC). NUPEC has carried out void fraction measurement tests as a part of a national
project sponsored by the Japanese Ministry of International Trade (MITI). The BFBT
benchmark problems are based on a vast library of measurements under a full scale of

BWR operating conditions and several transients as well. (Inoue 1995, p. 629)

The detailed fine-mesh void fraction distribution and critical power data provided in the
BFBT benchmark lay a solid foundation for advanced understanding and modeling of the
two-phase flow phenomena in real BWR bundles and provide a great opportunity to assess
and compare the results of simulations with other participants. Until recently such a high
quality measurements of the void fraction distribution inside a real BWR geometry have
not been available, but under proprietary possession instead. As opposed to the prevailing
empirical approach, the development of more mechanistic models for the requirements of
the design concepts of future reactors require detailed measurements in order to elucidate
the separate mechanism leading to a certain result: the only way to improve the probability

of accurate results in untested conditions.

9.1 Description of thetest facility

The test facility is shown in Figure 9.1. Demineralized water is used as a coolant, which is
circulated by the circulation pump (1). Three valves (3) of different sizes are used to
control the coolant flow. The coolant is preheated in atubular preheater (4) before it flows
into the test section (5), which contains the test assembly. Water heats up in the test section
and forms a two-phase flow, which is directed to the separator (7). The steam separated
from the two-phase mixture in the separator is then condensed in the steam drum (8) by a
spray of subcooled water. A part of the condensed water is directed to the spray pump (10)
that drives the coolant through two air-cooled heat exchangers into the spray lines (9), the
rest is returned back to the circulation pump. The system pressure is controlled by four
valves of different sizes connected to the spray lines. The pressurizer (6) controls the

system pressure at low power levels. The maximum operating conditions for the test
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facility are 10.3 MPa in pressure, 315°C in temperature, 12 MW in heating power, and 33
kg/s in coolant flow rate. (Nuclear Energy Agency 2005, pp. 15-16)
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Figure 9.1: Diagram of the test facility. (Nuclear Energy Agency 2005, p. 16)
Thetest section is a pressure vessel that contains a flow channel and the test assembly. The
test assembly consists of electrically heated rods, shown in Figure 9.2, that simulate the
fuel rods. Each of these rods can be individually heated to smulate the power profile of an
actual reactor. Five different types of test assemblies were used to simulate the effects of
different types of fuel bundles with different amount of unheated rods and different axial
power profile. A view of the test section is shown in Figure 9.3. (Nuclear Energy Agency

2005, pp. 15-16)
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9.2 Void fraction measurement

The void fraction measurement system consists of two different types of X-ray measuring
devices: The X-ray CT-scanner (Computed or Computerized Tomography) and the X-ray
densitometer, which are shown in Figure 9.4. The X-ray CT-scanner measures the void
fraction distribution at a point just above the heated length. The X-ray densitometers are
placed at three different locations along the heated length. (Nuclear Energy Agency 2005,
pp. 17-21)

X-ray =

.-.‘:‘.I_: l
1 1

) iy ™N
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Figure 9.4: Void fraction measurement system. (Nuclear Energy Agency 2005, p. 18)

Fine mesh void distributions were measured under steady-state conditions using the X-Ray
CT-scanner which was located at 5 cm above the heated length. The X-ray CT-scanner
consists of an X-ray tube and 512 detectors. In fine mesh void distribution measurements
the CT-scanner is rotated around the test section at a fixed axial position. Complete
projection data are obtained with a 360° rotation around the test section. The channel walls

and rods at the path of the X-ray CT-scanner are made of Be and the pressure vessel is
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made of Ti to reduce X-ray attenuation in the structures. The effects of two-phase flow
fluctuations are avoided by time-averaging the data of repeated measurements. The
measuring system is capable of a resolution as small as 0.3 mm times 0.3 mm. (Nuclear
Energy Agency 2005, pp. 17-21)

The X-ray CT-scanner is also used to measure the cross-sectional void fraction in transient
gituations, in which case the scanner is not rotated but fixed. The cross-sectional void
fraction is averaged over nine repetitions of the same transient. (Nuclear Energy Agency
2005, p. 17)

The X-ray densitometer measurements were performed at three different axial positions.
The X-ray beam was aimed between the rows of heated rods. One measurement was taken
of each gap between the rows. As the measurements were repeated nine times, the whole
cross-section of the bundle was covered. The data attained using this method is called
“Densitometer Chordal Averaged Void Fraction”, which were used to evaluate the axial
void fraction distribution and the bundle averaged void fraction. (Nuclear Energy Agency
2005, p. 17)

94



10 SIMULATIONS

VTT has participated in the NUPEC BFBT benchmark and this thesis is closely related to
the work done during the benchmark. The objective of this thesis originally was to
simulate the steady-state exercises of the BFBT benchmark using the porous media model
PORFLO. Due to unexpected difficulties during the development of the code, the current
status of the program is not as far as expected at the beginning of this thesis, and thus the
benchmark exercises cannot be simulated using the full (8 ~ 8) fuel bundle, but a smaller
(2" 2) fuel bundle isused instead.

The foremost limiting factor is the time needed for the simulations; the current code is not
parallelized in any way, so the simulations have to be performed on a single processor. In
addition to having to settle for the use of a single processor, the only solver capable of
solving the linear syssem of equations, the pressure correction equations formulated
assuming incompressible flow, already coded in PORFLO is based on Gaussian
elimination, which is both CPU and memory-intensive. To sum up: the time needed for the
simulations with this limitation reduces the maximum number of nodes to about 30,000.

Another limiting factor is the proportions of the fuel bundle; the length of the fuel bundle is
3.6 m, while the width of the channel box is 132.5 mm, which forces the length of the fuel
bundle to be divided into sufficiently large number of consecutive nodes. Therefore, a
compromise has to be made between the horizontal and vertical resolution of the grid. It
was proposed in the early stages of testing that, with the absence of a turbulence model, the
grid needed to be relatively much finer in the horizontal than in the vertical direction in
order to capture any cross-flow effects. It was decided that 18 nodes would be appropriate
for the horizontal direction, and the length of the fuel bundle, 3.6 m, was divided into 36
nodes for the parameter variations and into 90 nodes for the transient simulation, both of

which are presented below, to keep the number of the nodes manageable.

Now that the horizontal resolution is limited to 18 times 18 nodes, attempts to simulate the
BFBT benchmark exercises using the full (8 = 8) fuel bundle were abandoned. This is
simply because the horizontal resolution, of 18 times 18 nodes, is not sufficient for the (8

"~ 8) fuel bundle, since each fuel rod and the annular flow channel surrounding it would
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have to be described with only four nodes. If each subchannel is described using only four
nodes, calculations of phase separation and heat transfer would be pointless, since all the
variables would not have any gradients in the horizontal direction inside the fluid and, for
all practical purposes, the same results could be obtained with 1D calculations.

As soon as an iterative solver capable of solving the pressure correction equations is
included in PORFLO, the number of the nodes and the size of the calculation domain can
be increased and the horizontal resolution of the grid can be refined. At the moment
simulations with the SIMPLE-type algorithms using the full-size (8 ~ 8) fuel bundle are

out of reach.

10.1 Variations of the under -relaxation factors

Variations of the under-relaxation factors were performed on a (2 ~ 2) fuel bundle. The
calculation grid was constructed of 18 consecutive nodes in the horizontal directions and
36 inthe vertical direction. A horizontal cross-section of the calculation grid fitted over the
(2" 2) fuel bundle and is presented in Figure 10.1. The channel box is 36.4 mm by 36.4
mm and the corners are rounded with a corner radius of 4 mm. The fuel rods are 12.3 mm

in diameter and the pitch isset a 16.2 mm.
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Figure 10.1: A horizontal cross-section of the calculation grid.

96



While the under-relaxation parameters were varied the rest of the parameters affecting the
solution were kept constant. The constant parameters and flow conditions are presented in
Table 10.1. The simulations were started from a previousy simulated state, in which the
heating power had been kept constant at 140 kW for some time, to allow the temperatures
to settle. During the parameter variations, the power was linearly increased to 240 kW in
two seconds, after which the power level was maintained constant. The purpose of this
power transient was to provide more demanding conditions for the algorithms in order to
make any differences between the results more distinct.

Table 10.1: Constant parameters and flow conditions in parameter variations.

Parameter Value Unit
System pressure
(pressure at outlet) 60 bar
Mass flux at inlet 1500 kg/m’s
Inlet enthal py 1100 kJkg
Inlet density 7787 kg/m?
Heating power min&40kw +5ok?W’ Dt 240kw® | kw
e a2
Time step 0.002 S
Friction factor for horizontal flow 0.01 -
Friction factor for vertical flow 0.01 -

The number of iterations needed to reach a converged solution at the end of each time step
was observed throughout the simulations. Convergence at the end of the time step is
determined by observing the convergence criteria; two conditions need to be fulfilled: the
maximum residual of the mass conservation equation, or equally the right-hand side of the
pressure correction equation, has to be less than 10™*® kg/s and the sum of the residuals of
the mass conservation equation has to be less than 10™° kg/s.

10.1.1 Variations of the under-relaxation factorsin SSIMPLE

The under-relaxation factor variations were performed in simulations that lasted two
seconds, the length of the power transient. The constant parameters presented above were
used and the total number of SIMPLE iterations to complete the two second power

transient was calculated. The parameter variations and results are compiled in Table 10.2.
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Table 10.2: Thetotal number of SIMPLE iterations at 2 seconds
after the start of the power transient.

Under-relaxation Under-rel axati.o.n Number of iterations
factor for pressure | factor for velocities
. o at 2 seconds

0.30 0.70 34,007
0.50 0.30 18,944
0.50 0.40 18,879
0.50 0.50 18,783
0.50 0.60 18,705
0.50 0.70 18,639
0.60 0.30 15,195
0.60 0.40 15,063
0.60 0.50 14,982
0.60 0.60 14,881
0.60 0.70 14,784
0.70 0.30 12,467
0.70 0.40 12,347
0.70 0.50 12,229
0.70 0.60 12,108
0.70 0.70 12,019

The number of iterations needed to obtain a converged solution at the end of each time step
remained relatively constant during the simulations, only a slight increase, of similar
proportion in each variation, was observed towards the end of the simulations, which
indicates a dight dependence to ether increasing velocities or void fractions. It is seen,
from Table 10.2, that the cumulative number of iterations is strongly dependent on the
under-relaxation factor for pressure, ap, while the influence of the velocity under-
relaxation, oy, is moderate compared to pressure under-relaxation. Increase in either the
under-relaxation factor for pressure or velocities decreases the cumulative number of
iterations. According to these results the most aggressive set of under-relaxation factors, ap
= 0.7 and a, = 0.7, converges the fastest.

10.1.2 Variations of the under-relaxation factorsin SIMPLEC

The under-relaxation factors for pressure were varied a bit differently in SIMPLEC,
compared to SIMPLE, since SIMPLEC requires very little, if any, pressure under-
relaxation. The under-relaxation factor for pressure was varied as 0.9, 0.95 and 0.99, while
the velocities were under-relaxed with a factor ranging from 0.5 to 0.8. The SIMPLEC
simulations lasted four seconds; hence the number of iterations at the end of the power
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transient, at two seconds, is presented for comparison between SIMPLE and SIMPLEC.
The power level was kept constant at 240 kW after the two second mark; otherwise the
conditions stated for SIMPLE variations are applied in SSIMPLEC simulations as well. The
under-relaxation parameter variations and results at the end of the power transient, at 2
seconds, and at the end of the simulation, 4 seconds, are compiled in Table 10.3.

Table 10.3: Thetotal number of SIMPLEC-iterations at 2 and 4 seconds
after the start of the power transient.

fggg?f'érels;ggpe fal.;gjrefr(-)rre\llaelxggizr; Number of iterations | Number of iterations
o o at 2 seconds at 4 seconds
0.90 0.50 10,277 21,361
0.90 0.60 10,177 21,241
0.90 0.70 10,059 21,093
0.90 0.80 9,886 20,826
0.95 0.50 9,395 19,482
0.95 0.60 9,266 19,328
0.95 0.70 9,167 19,200
0.95 0.80 9,044 19,045
0.99 0.50 8,555 17,830
0.99 0.60 8,499 17,656
0.99 0.70 8,441 17,522
0.99 0.80 8,327 17,386

As with SIMPLE variations above, a slight increase in the number of iterations needed to
obtain a converged solution was observed towards the end of the simulations, indicating a
dight dependence to either increasing velocities or void fractions, and again, the
cumulative number of iterations is strongly dependent on the under-relaxation factor for
pressure, ap, wWhile the effect of the velocity under-relaxation factor, oy, is marginal.
Increase in either of the under-relaxation factors decreases the cumulative number of
iterations. Since divergent behaviour was not encountered, the use of the most aggressive
set of under-relaxation factors, a, = 0.99 and a,, = 0.80, is suggested.

10.2 Transient ssimulation

The development of boiling two-phase flow and the transient behavior of the code were
studied in a test case, in which the mass flux a inflow was first accelerated from 150
kg/m?’s to the desired level of 1500 kg/m?s, which corresponds to an acceleration of 0.2 to
2.0 m/s in the flow velocity. After the flow was accelerated, the heating power was
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gradually increased to 240 kW. Otherwise, the constant parameters and flow conditions
presented in Table 10.1 are valid for this test case as well. The simulation was performed
using the SIMPLEC algorithm with 0.90 and 0.70 for the under-relaxation factors of
pressure and velocities, respectively. The calculation grid fitted over the (2 = 2) fuel
bundle is identical to the grid used in the parameter variations above in the horizontal
direction: the grid consists of 18 consecutive nodes in the horizontal directions, see Figure
10.1. The length of the fuel bundle is divided into 90 nodes, instead of the 36 used in the
parameter variations, which brings the total number of nodes to 29,160.

Some variables, which are relevant mainly for debugging purposes, are monitored during
the simulation in PORFLO; these variables are chosen so that the development of the
simulation is easy to follow and unrealistic states are clearly indicated. The most
informative ones, maximum void fraction, maximum mixture velocity, maximum cladding
temperature and maximum pressure are presented in Figures 10.2 through 10.5 (blue lines),
with the heating power (red lines) plotted on the second y-axes in al the figures. Since the
figures represent the maximum values of the chosen variables, the location of the values
can vary during the simulation.

The sudden increase in heating power at 3.7 seconds was caused by a malfunction in the
restart procedure: a system failure on the computer, which the test case was executed on,
ended the simulation prematurely and, as the simulation was restarted, a bug in the restart
routine increased the power to 240 kW immediately after the restart. Since this 7.7 second
run lasted 7 weeks on a single 2390 MHz AMD Opteron CPU operating on Linux 2.4.21-
20.ELsmp (x86_64) platform, and since the initial goal of this run was to obtain the steady-
state void fraction distribution at the end of the run, the simulation was not repeated due to
this minor setback.
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Figure 10.2: Maximum void fraction (blue) and heating power (red).
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Figure 10.3: Maximum mixture velocity (blue) and heating power (red).
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Figure 10.4: Maximum cladding temperature (blue) and heating power (red).
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Figure 10.5: Maximum pressure (blue) and heating power (red).

10.3 Steady-state results

The steady-state results, such as the void fraction distribution and the velocity profiles,
were obtained as the transient simulation, presented above, reached a converged state. It is
seen that especially maximum void fraction in Figure 10.2, maximum cladding
temperature in Figure 10.4, and maximum pressure in Figure 10.5, have converged quite
nicely. Some oscillation can be seen in the maximum velocity in Figure 10.3, but the
amplitude of the oscillation is decreasing towards the end of the simulation. The following
results, which are plotted on 3D contours at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations, for
the void fraction distribution in Figure 10.6, for the velocity difference between vapour and
liquid in Figure 10.7, for the temperature profile in Figure 10.8, and for the mixture

velocity profile in Figure 10.9, were obtained and are presented below.
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Figure 10.6: Void fraction digributions a 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.
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Figure 10.7: Velocity difference between vapour and liquid at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.
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11 DISCUSSION OF SIMULATION RESULTS

The results of the under-relaxation factor variations are pretty much what was to be
expected; the cumulative number of iterations, using both SSIMPLE and SIMPLEC, was
strongly dependent on the under-relaxation factor for pressure, while the influence of the
velocity under-relaxation was virtually negligible compared to pressure under-relaxation.
Increase in either the under-relaxation factor for pressure or velocities decreased the
cumulative number of iterations at the end of the preset transient. In all of the parameter
variations, both SIMPLE and SIMPLEC alike, the number of iterations needed to reach a
converged state at the end of the time step increased towards the end of the simulation,
which indicates a slight dependence on either void fraction or mixture velocity.

A bit surprisingly, divergence of the solution was not encountered in any of the test cases,
despite the fact that quite aggressive combinations of the under-relaxation factors were
tested, the last SIMPLEC variation, ap = 0.99 and a,, = 0.80, in particular. The reason for
the steady convergence might be that the whole solution procedure used in PORFLO was
non-iterative, meaning that the pressure-velocity solution had no feedback from the
changes in fluid properties and heat transfer during the SIMPLE or SIMPLEC-iterations.
In addition, the pressure-velocity solution probably benefited from the use of such short
time steps, 2 ms which is in compliance with the Courant’s criterion for velocity of the
flow, since the inertia terms in the mixture momentum equations are increased compared to

the convective terms.

In light of the results of the under-relaxation factor variations, the use of SIMPLEC with
aggressive under-relaxation factors, such as ap = 0.99 and «, = 0.80, is suggested when
using non-iterative solution mode with short time-steps (below the CFL limit), since no
effect on convergence was witnessed, and since the savings in CPU-time compared to the
SIMPLE algorithm are substantial: 14 — 30 percent in all of the SIMPLEC variations
compared to the most aggressive combination of under-relaxation factors using SIMPLE,
ap = 0.70 and ay = 0.70. When longer time steps or iterative solution mode is used, these
results may no longer apply and further testing might be necessary.
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Though no sign of divergent behavior was encountered in the under-relaxation factor
variations, some oscillations are visible in the results of the transient simulation performed
onthe (18 © 18 °~ 90) noddization. The maximum void fraction, and maximum mixture
velocity in particular, experienced oscillations as the mixture flow rate was increased due
to fully developed boiling. The amplitude of the oscillations might be somewhat distorted,
since it is the maximum values that were plotted. Nevertheless, the oscillations are redl,
since the fact that the location of the maximum value might change during the transient
does not mean that local oscillations do not exist; in fact, local oscillations might be even
larger. These minor oscillations are not too critical regarding the stability of the code, after
all the oscillations seemed to dampen towards the end of the smulation, but the cause of
the oscillations should be studied further.

Excluding the minor oscillations in maximum void fraction and maximum mixture
velocity, the rest of the parameters plotted in Figures 10.2 through 10.5 display promising
behaviour; the changes during the power transient are smooth and the maximum values
settle down to a certain level shortly after the maximum power has been reached. Figure
10.5, maximum pressure, in particular, is interesting, since the result of the incompressible
formulation is clearly visible. During the acceleration of the inflow rate (0 — 0.4 s), the
maximum pressure, which is essentially the pressure difference measured over the length
of the fuel bundle, is gradually increasing due to the increase in flow resistance. But as
soon as the mass flux at inlet reaches the desired level and after which the flow rate is kept
constant, the maximum pressure instantly drops down to a constant value. The difference
in the maximum pressures between the two instants is the pressure difference needed to
accelerate the fluid particles along the whole length of the fuel bundle.

The rapid increase in boiling, from approximately 2.5 to 4.5 s, increases the volumetric
flow rate of the mixture, and temporarily the mass flow rate in the upper parts of the fuel
bundle as well, which causes an increase in the pressure difference between inflow and
outflow. The temporary increase in the mass flow rate a the upper parts of the fuel bundle
is caused by the increase in creation of void fraction, which decreases the total mass
inventory of the fuel bundle. By continuity: if the mass flow rate at inlet remains constant,
the mass flow rate at outlet must increase for the total mass inventory to be decreased.
After the boiling rate has converged, the pressure difference between inflow and outflow
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settles down to a value which is defined by the sum of pressure loss due to friction and the

hydrostatic pressure of the fluid column.

There is much to say about the steady-state results obtained at the end of the transient
simulation. The void fraction distribution, Figure 10.6, is smooth along most of the length
of the fuel bundle, which indicates that the phase separation is modeled correctly.
However, if the horizontal resolution could be increased, the functioning of the drift-flux
model would become more visible. The only concern is the area in the middle of the flow
channel, which has lower void fractions than the area near the fuel rods; it seems possible
that the proportions of the calculation grid could affect the propagation of void fraction in
the horizontal direction. In addition to the void fraction distribution, the distribution of the
velocity difference between the phases, Figure 10.7, is smooth as well, and follows the
shape of the void fraction distribution quite nicely, which is to be expected, since the

velocity difference is essentially a function of the local void fraction.

The temperature profiles, Figure 10.8, are otherwise quite satisfactory, but there seems to
be a negative temperature gradient in the radial direction in few locations right next to the
fuel rods where the grid lines are perpendicular to the surface of the fuel rods. This might
be due to an error in the heat transfer calculations, but the possibility of this being caused
by an error in the recording of the data has to be excluded first.

The mixture velocity profiles, Figure 10.9, are the least convincing of the results. Large
differences in the local velocity gradientsin the radial direction exist throughout the length
of the fuel bundle, and there are significant spikes in the nodes that contact the fuel rods,
but again especially in those nodes that contact the fuel rods perpendicular to the grid lines.
As can be seen in Figure 10.1, these are the nodes that have the smallest fluid fractions.

The pressure distribution, which is the other part of the pressure-velocity solution, is not
presented as a figure, since it is completely flat in the radial direction. This in turn
indicates, contrary to the jagged velocity profile, that the solution procedure is working. It
seems that the mixture velocity distribution, most of all, is affected by the compromises
made in the grid generation; the flow area for horizontal flow is 20 times larger than for
vertical flow, in the nodalization used to obtain these results. This means that the
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convective terms in the horizontal direction can easily have more effect in the momentum
equations than the convective terms in the vertical direction, even though the velocities in
the cross-flow direction are significantly smaller than in vertical direction. As was briefly
mentioned, there is no turbulence model available in the current version of PORFLO,
which undeniably affects the results, again the velocity distribution in particular.

In conclusion to the performance of the code in transient ssimulations, despite some minor
oscillations, quite encouraging results were obtained using non-iterative solution mode and
time steps shorter than the CFL limit for flow velocity. As far as the steady-state results are
concerned, much needs to be improved: both the horizontal and vertical resolution need to
be increased to further validate the results and to facilitate the solution of the full (8 =~ 8)

fuel bundle.
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12 CONCLUSIONS

The most important objectives of this thesis were to develop an iterative method based on
the SIMPLE agorithm for pressure velocity solution, and to demonstrate its usefulness in
two-phase flow simulations in BWR fuel bundle geometry. Most of the effort was spent on
debugging the main program in PORFLO and the subroutine that implements the SIMPLE
variants. One of the first tasks, once the code was functioning properly, wasto determine a
set of under-relaxation factors that provide both stabile and fast convergence, and to
compare the performance of SIMPLE and SIMPLEC.

According to the results presented in section 10.1, when using a non-iterative solution
mode with time-steps below the CFL limit for flow velocity, relatively large values of the
under-relaxation factors produced fastest convergence in both SIMPLE and SIMPLEC
smulations. The fastest convergence was achieved using a, = 0.70 and a, = 0.70 for the
under-relaxation factors in the SIMPLE algorithm, and a, = 0.99 and ay = 0.80 in the
SIMPLEC algorithm. In addition to this, SIMPLEC was found to be substantially faster in
al of the parameter variations compared to SIMPLE with the fastest set of under-
relaxation factors.

Though the results of the simulations are not completely satisfactory, the application of the
SIMPLE variants in two-phase flow simulation was successfully demonstrated. No further
conclusions, regarding the functioning of the subroutine that implements the SIMPLE
variants, can be drawn at this moment, since substantial compromises in the nodalization

were made.

The mixture velocity profiles in Figure 10.9, in particular, cause concern about the
functioning of PORFLO, since in a situation where the friction factor was set uniform over
the entire domain, the mixture velocity profiles should most likely be smoother. Before the
cause of such jagged velocity profiles can be determined, the resolution of the calculation
grid must be improved in both the horizontal and vertical directions.

First priority in the future development of PORFLO should therefore be given to the

development of iterative solution of the linear systems of equations, in order to facilitate
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the solution of a larger number of grid points. In addition to the compromises made in
nodalization, the absence of a turbulence model is questionable, and may affect the mixture
velocities profiles in particular. Hence the development of turbulence modeling should be
considered in the future. Once these two improvements, mentioned above, are introduced
in PORFLO, the applicability of the solution procedure developed during this thesis, or 5-
eguation models in a more general sense, in two-phase simulation can be fully assessed.

Nevertheless, the development of PORFLO has been noticeable during the period of this
thesis, and several obstacles have been overcome both in the older solution procedure, as
well as in the newly developed one. From the perspective of future code development, the
subroutine developed during this thesis provides a basis for the implementation of the
phase coupled SIMPLE algorithm, if 6-equation models areto be tested in PORFLO.
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APPENDIX A DISCUSSION OF VISCOUS FORCES

Viscous forces acting on a fluid element are defined by nine viscous stress components, six

of which are independent in isotropic fluids, shown in Figure A.1
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Figure A.1: Stress components on the faces of the control volume.

The force resulting from surface stress is the product of stress component and surface area.
The net force in x-direction is the sum of viscous forces acting in x-direction. Stress
components in x-direction are shown in Figure A.2
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Figure A.2: Stress components in x-direction.



The net force in x-direction:

, o
Fue= Gt ol g, T at 1t
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The total force per unit volume in x-direction is.

st_ﬂt 1-[yx_+_ﬂl‘zx
\ ix My 1z

, (A.2)

or equivalently, when the surface stress components are written as a tensor of rank 2, the

net force per unit volume in x-direction is simply the divergence of the surface stress

components:
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Equations (A.2) and (A.3) contain as unknowns the viscous stress components. A more
practical version of these equations can be derived by introducing a suitable model for the
viscous stresses. Newton's law of viscosity uses two constants of proportionality, x« and 4,
to relate snear stresses to fluid velocities. Dynamic viscosity, x, is used to relate stresses to
linear deformations and the second viscosity, A, relates the stresses to volumetric

deformation. The volumetric deformation is simply:

)= =+ (A.4)

According to White (2006, pp. 65-68) the nine viscous stresses are:
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These viscous stresses can be substituted into equation (A.2) to obtain the net force per unit

volume in x-direction:
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The terms are often rearranged so that the less significant ones are moved to the back and
combined inside brackets.
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At this point an approximation is made: the terms inside the square brackets can be
ignored, since their magnitude is insignificant compared to the first three terms. After this
approximation the viscous net force per unit volume in x-direction is reduced to the
following form:
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The discretized form of the viscous net force in x-direction is obtained by integrating
equation (A.8) over the u-control volume and time step At.
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Implicit time discretization is selected, hence
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The divergence theorem can be implemented to transform the volume integrals into surface

integrals.
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where the porosities at the pressure node boundaries are defined as presented before:
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Similar expressions are used for dynamic viscosities at the u-control volume boundaries:

m=m,y (A22)
my =M.k (A.23)
m = Iﬁ-,mﬂ,K DX, 1k t ’ﬁ,Jﬂ,K DX, 5.1k (A.24)
IDXI -1,J+,K + IDXI J+HLK
) DX . +m. Dx
m= m 1,J,KDX| l,J,K+ D’:Z,J,K 1,J.K (A.25)
1-1J,K 1,d,K
m = nf—l,J,K+lDXI—l,J,K+l + an,KleDXI J,K+L (A.26)
DX|-1,J,K+1 +Dx JK+L
m = nf—l,J,KDXI—l,J,K + an,KDXI J K+ (A_27)

DXI-l,J,K + DXI J,K

where the dynamic viscosities at the pressure node faces are given through
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Using these expressions for the dynamic viscosities and porosities the discretized equation

(A.12) is shortened significantly. In addition, the porosities, equations (A.19) through

(A.21), need to be calculated only once during the whole simulation and the dynamic

viscosities, equations (A.22) through (A.30), only once during each time step, hence the

computational time is reduced when using these abbreviations.

Discretized viscous force in x-direction:
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Since the analogy is quite obvious, the discretized viscous net forces per unit volume are

merely presented for y and z-directions.



The viscous net force per unit volume in y-direction is given through

where

and the dynamic viscosities at the v-control volume faces can be expressed through
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The viscous net force per unit volume in z-direction is given through
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and the dynamic viscosities at the v-control volume faces can be expressed through
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APPENDIX B DISCRETIZED FORMSOF THE MOMENTUM
EQUATIONSFOR SIMPLE

The discretized momentum equation in y-direction (v-momentum):
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=Lt |
d _§e| ,J—l,KA1,J-l,K VVI,J—l,k rI,J-l,K—l_ - W J-1k rI,J—l,K

and

+ 1elk,J,KAk,J,Kk\NI,J,k>rI,J,K—l < W Jk>rl JK]

k

F.=->e6 J- 1K+1A1+1J lK+l[<WI J- lk+l>rI,J—l,K - <' \NI,J—l,k+l>rI,J—l,K+l]

2
1
b2
¢! | |
29| J, K+1A JK+H <W| J k+l>rI,J,K - <' W ,J,k+l>rl J.K+1

F)+(F, - F)]IJK (B.2)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)



The discretized momentum equation in z-direction (w-momentum):

%(VI sk Vi K) €\ 3k l IkJ L EX -Dtr'k’J’K)OW'O’J:kJ

+H(F)+ (F)+ (R)+(- R +(- B)+(- R+ (Fo- R)+(F- R)+(Fo- Rlwoe B9)

:< > 1-1,J k <F> 1,3-1k < > I.]kl+< F>W|+1,J,k+<' Fn>W|,J+1,k+<' Fu>W|,J,k+1

- %dlerlk,J,Kelk,J,K%( 1,J,K- 1t | J K)Wl J k‘ 1,d.k (pI,J,K - pI,J,K—l)eIk,J,KAk,J,K
[<FW>+<F5>+<Fd>+<_ Fe>+<_ Fn>+<_ Fu>+(Fe- FW)+(FH- Fs)

1 @l 1f;. @
+(Fu - Fd)+E(\/I ,J,K—1+VI ,J,K)elk,J,KrIk,J,Kga-l-Ed_e‘Wl ,J,k‘%wl J.k

< > 1-1,J k < >W| J- 1k+<Fd>WI ,J,k-1+<' Fe>W|+1,J,k+<' I:n>W| J+Lk +<' I:u>W| J k+1 (Bllo)
( IJK pIJKl)IJKAkJK l 1,J,K- 1+\/IJK)Ik.]K(rlk,.],K)O\Noll’]\]’k
%(\/I J K- 1+\/I J K)elk,J,KrIk,J,Kg
where
1, [
Fu :Ee| ,J,K—1A1 ,J,K-1[<ui,J,K-1>r|-1,J,K-1' <' ui,J,K—l>rI,J,K—l]
(B.11)
+%eli,J,KA\i,J,K[<ui,J,K>rI—l,J,K - <' ui,J,K>rI,J,K]
1
F.= 29|+1J K- 1A1+1J K- 1[<Ui+1,J,K-1>r|,J,K-1' <' ui+l,J,K—l>r|+l,J,K—l]
: (B.12)
29;+1J KA+1J K[<ui+l,J,K>rI,J,K - <' ui+l,J,K>r|+l,J,K]
1 .
Fo = Zel J K- 1A1 J K- 1[<V| jK- 1>r|,J-1,K-1' <' VI,j,K-l>rI,J,K-l]
. (B.13)
+EeIJ,J,KAJ,J,K[<Vl,j,K>rI,J—l,K B <' VI,j,K>rI,J,K]
L |
F, _Eel ,J+1,K-1A1 ,J+1,K-1<V|,j+1,K-1>r|,J,K-1' <' VI,j+l,K—l>rI,J+l,K—l
L | (B.14)
+EeIJ,J+l,K AJ,J+1,K [<Vl,j+l,K>rI,J K" <' VI,j+l,K>rI,J+l,K]
Fy :%rl,m-ﬁ iAW W) and (B.15)
F, :£r|,J,Ke| ,J,KAk,J,K (W| ax tW, ,J,k+l)' (B.16)



