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Boiling two-phase flow and the equations governing the motion of fluid in two-phase
flows are discussed in this thesis. Disposition of the governing equations in three-
dimensional complex geometries is considered from the perspective of the porous medium
concept. The equations governing motion in two-phase flows were formulated, discretized
and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE
algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is
a three-dimensional 5-equation porous media model developed at VTT by Jaakko
Miettinen. The development of two-phase flow and the resulting void fraction distribution
was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test
cases using PORFLO.
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virtauksen paineen ja nopeuden ratkaisuun vaadittavat yhtälöt formuloitiin ja diskretoitiin,
minkä jälkeen SIMPLE-algoritmiin perustuva paine- ja nopeuskentän ratkaiseva aliohjelma
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NOMENCLATURE

Latin symbols

A flow or surface area [m2]
A square matrix, whose dimensions nn× [-]
a coefficient of velocities in momentum equations [kg/s]
b coefficient of pressures and pressure corrections [ms]
b solution vector [-]
B square matrix, whose dimensions rr × [-]
CV specific heat capacity in constant volume [J/kgK]
c source term in momentum equations [kgm/s2] or [N]
C vector, whose components (C1, C2, C3) [-]
d source term in pressure and pressure correction eqs. [kg/s]
de equivalent diameter [m]
F mixture mass flow rate [kg/s]
Fx force in x-direction [N]
Fy force in y-direction [N]
Fy force in z-direction [N]
F square matrix, whose dimensions ( ) ( )rnrn −×− [-]
G vapour mass flow rate [kg/s]
f frictional coefficient [-]
f sum vector of body forces per volume [N/m3]
g acceleration due to gravity [m/s2]
h specific enthalpy [J/kg]
h'' heat transfer coefficient [W/m2K]
h''' volumetric heat transfer coefficient [W/m3K]
hfg specific latent heat of vaporization [J/kg]
i unit vector in x-direction [-]
J volumetric flow rate [m3/s]
j area averaged velocity [m/s]
j unit vector in y-direction [-]
k thermal conductivity [W/mK]
k unit vector in z-direction [-]
M mass [kg]
n arbitrary positive integer [-]
n surface normal vector [-]
P power generated inside the control volume

per unit volume [W/m3]
p pressure [Pa]
Q heat rate into the control volume per unit volume [W/m3]
r arbitrary positive integer [-]
q'' surface heat flux [W/m2]
q''' volumetric heat flux [W/m3]
T temperature [°C or K]
T surface force tensor [N/m2]
t time [s]
u specific internal energy [J/kg]
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u velocity in x-direction [m/s]
u velocity vector, whose components (u, v, w) [m/s]
V volume [m3]
Vgj drift-flux velocity [m/s]
v velocity in y-direction [m/s]
v specific volume [m3/kg]
W liquid mass flow rate [kg/s]
w velocity in z-direction [m/s]
x, y, z 3D Cartesian coordinates [m]
x unknown vector [-]

Greek symbols

void fraction (vapour fraction of fluid volume) [-]
p under-relaxation factor for pressures [-]
u under-relaxation factor for velocities [-]

coefficient [-]
mass transfer rate [kg/s]
volumetric mass transfer rate [kg/m3s]
difference [-]

x, y, z dimensions of the smallest fluid element whose macroscopic
properties are not influenced by individual molecules [-]
porosity (fluid fraction of total volume) [-]
second viscosity [Ns/m2]
dynamic viscosity [Ns/m2]
density [kg/m3]
surface stress [N/m2]
general variable (velocity, temperature etc.)
weighting factor for mass error correction [-]

Subscripts

con convection
CHF critical heat flux
d (down) bottom face of the node
e east face of the node
f fluid
fluid fluid
g (gas) vapour
I, J, K refers to the center of the node
i, j, k refers to the boundary of the node
l liquid
lg liquid to vapour
m mixture
me mass error
n north face of the node
nb neighbour
nb nucleate boiling
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s south face of the node
sat saturation
u upper face of the node
w west face of the node
wall heat transfer surface
wl wall to liquid
wg wall to vapour
xx, xy, xz… viscous stress components, where the first index denotes the face the

component is located on(x: the face perpendicular to x-axis) and the second
index denotes the direction of the force.

Superscripts

i x-direction
j y-direction
k z-direction
n timestep
o (old), value of the previous converged state
* guessed or known value
** improved value
´ correction

Abbreviations

BFBT BWR Full-size Fine-mesh Bundle Tests
BWR Boiling Water Reactor
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Levy (number)
CHF Critical Heat Flux
CPU Central Processing Unit
CT Computerized Tomography
NUPEC Nuclear Power Engineering Corporation
SIMPLE Semi-Implicit Method for Pressure Linked Equations
SIMPLEC SIMPLE-Consistent
SIMPLER SIMPLE-Revised
UDS Upwind Differencing Scheme
VOF Volume of Fluid
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1 INTRODUCTION

The thermal-hydraulics of BWR core and various heat exchangers for vapour generation

on the shell side is to a large extent concerned with two-phase flows and heat transfer,

since the coolant is mostly composed of both the liquid and vapour phases of water.

Boiling two-phase flows in narrow channels, such as the flow channels of a BWR fuel

bundle, exhibit different flow patterns, depending on the local flow conditions and void

fraction distributions. The prediction of void fraction distribution is crucial when

equipment design and operational and safety procedures are considered, since void fraction

distribution is a necessary input for the prediction of fission power distribution, flow

patterns, mass inventories of the phases, mixture densities, and most importantly: heat

transfer from the fuel rod or tube bundle to the boiling fluid and dryout prediction. High

local values of void fraction on the heat transfer surface indicate impending crisis of heat

transfer and dryout. Void fraction distribution is vital in both BWRs and steam generators

in order to produce high vapour quality steam without jeopardizing the safety margins. In

addition to increasing the efficiency of the turbine assembly by reducing the fraction of

liquid in the steam, in both BWRs and steam generators, contamination of the steam lines

and turbine assemblies in BWRs is reduced as well.

Understanding of steady-state and transient behaviour of entire nuclear processes, or its

parts, has been a challenge in process simulation since the 1960s. In the earliest models

one-dimensional (1D) numerical equations were solved for the loop thermal-hydraulics,

and  the  results  were  used  as  boundary  values  for  the  neutronics  for  calculating  the  core

power dynamics. By the end of 1960s the first three-dimensional (3D) models were

developed for steady-state calculations, in which the neutronics were solved for each fuel

element and the thermal-hydraulics were solved for a group of parallel 1D channels. Since

then the models have been expanded to transient simulation as well. Together with the

CFD model development the present thermal-hydraulic models are capable of 3D

simulation of single process components with a resolution of centimeter or millimeter

class.

The main objectives of this thesis are: (1) to present the equations that govern the boiling

two-phase flow in three-dimensional domains, in Chapters 4 and 6, (2) to briefly present
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the structure of the older solution procedure in the computer program PORFLO, in Chapter

4 and section 6.4, (3) to present the model developed for pressure-velocity solution in

transient 3D two-phase flow during this thesis, in section 6.3 and Chapters 7 and 8, and (4)

to simulate a couple of test cases with the new model in a geometry resembling a portion

of a BWR fuel bundle, in Chapter 10.

PORFLO is a three-dimensional 5-equation porosity model, developed for transient

calculations of two-phase flow in complex geometries. Most of the PORFLO code has

been developed by Jaakko Miettinen at VTT. The contribution of Mikko Ilvonen to the

development of PORFLO is mainly related to grid generation and iterative solution of

linear systems of equations.

Due to historical reasons, some aspects of the pressure-velocity solution, the handling of

momentum convection terms for instance, have been simplified in the older solution

procedure of PORFLO, to facilitate the use of a direct method in pressure-velocity

solution. Partially due to these simplifications, the code was not ready for the simulation of

a BWR fuel bundle. It was decided that an iterative method for pressure-velocity solution,

based on the SIMPLE algorithm modified for two-phase flow, is developed during this

thesis, therefore most of this thesis is focused on the formulation of equations used in

SIMPLE and the special aspects of two-phase flow that need to be considered, when

implementing the SIMPLE algorithm for two-phase flow.

As a part of this thesis, a subroutine implementing the SIMPLE algorithm was coded and

included in PORFLO, and some test cases were simulated using the newly developed

subroutine. In addition to the general progress in the development of PORFLO, which also

benefited  the  development  of  the  subroutine  that  implements  the  SIMPLE  algorithm,

substantial help on coding the subroutine, in particular, was received from Jaakko

Miettinen.
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2 BASIC APPROACHES IN MODELING TWO-PHASE FLOW

A brief comparison of the basic approaches available in two-phase flow calculations is

presented in this chapter. The different types of two-phase flow models are explored

briefly and the differences between the porous media approach and the more common

approaches in CFD are explained.

Many different types of models have been developed for two-phase flow with a different

number of conservation equations depending on the application, such as the homogenous

equilibrium model (HEM) developed mainly for safety analysis for predicting the critical

mass flow rates at blowdown. Other widely used models include the 5-equation and 6-

equation models, named after the number of conservation equations used to describe the

two-phase flow.

A complete description of the two-phase flow (6-equation model), both for 1D, 2D and 3D

domains alike, involves six equations: conservation of mass, momentum and energy

equations written for both phases. The momentum equations of both phases in 6-equation

models include terms that describe the interactions between the two phases, the

interphasial shear term for instance, which are hard to define experimentally.

Another widely used model is the 5-equation model, which has conservation of mass and

energy equations for both phases and a momentum equation for the mixture. Interaction

between the two phases, phase separation, is defined by an empirical correlation, such as

the Zuber-Findlay drift-flux model originally developed by Zuber and Findlay (1965).

The 5-equation models have a certain advantage over the 6-equations models, since

experimentally measured void fraction distributions can be developed further into drift-flux

model parameters using the total mixture flow rate, vapour flow rate and pressure

measured during the experiments. EPRI made an extensive work collecting the phase

separation data measured all over the world by that time and developed a full-range drift-

flux correlation for vertical flows, (Chexal & Lellouche 1986), against the comprehensive

data  set.  On the  other  hand  it  must  be  said  that  5-equation  models  always  depend on  an
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empirical correlation to govern the phase separation, since the underlying physics affecting

the interaction between the phases are absent.

In 6-equation models the separate momentum equations for each phase provide a way to

introduce  terms  that  account  for  various  types  of  interactions  between  the  phases;  so  in

principle, the mechanisms affecting phase separation can be modeled; instead of

replicating the results of the measurements by using an empirical correlation. These terms,

the interfacial shear or lift force, are however hard to be determined experimentally and, in

addition,  depend  strongly  on  structure  of  the  interface  that  separates  the  two  phases.

Advanced methods, such as front tracking and volume of the fluid (VOF), have been

developed to track and reconstruct the interfaces between the phases during the simulation.

The potential gained by introducing the interphasial terms in 6-equation models is best

realized in methods like VOF; otherwise approximations have to be made about the

structure of the interfaces to obtain an estimate of the terms in question. One of such

approximations, widely used in 6-equation models, is to assume that vapour is only present

as bubbles with a fixed diameter. Due to the difficulties in estimating the interphasial

terms, many 6-equation models have developed the terms directly from the drift-flux

correlation,  and  thus  provided  some experimental  basis  for  the  estimates.  An example  of

such a procedure is the 1D safety code RELAP5.

Despite all the difficulties, the 6-equation models are considered to have more potential in

the development of future codes than the 5-equation models.

The typical approach in CFD codes is to generate the calculation grid so that it follows the

interfaces between the structure and fluid according to the geometry that is being modeled.

The grid that is resulted from such a procedure is called either unstructured or body-fitted.

Another approach, which is called the concept of porous medium, is to divide the

geometry, usually orthogonally, regardless of the interfaces. The calculation nodes are

divided between the structure and the two phases. Porosity  is used to define the fraction

of the fluid from the volume of the node, VV ε=fluid , and void fraction  is used to divide

the fluid volume between the two phases, ( ) fluidfluidlgfluid 1 VVVVV αα −+=+= .
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3 PHYSICS OF BOILING

Perhaps the most profound difficulty in modeling of two-phase flow, as far as realistic

results are concerned, is the prediction of the flow regime and the related heat transfer

mode between the heat transfer surface and fluid. These two are closely interlinked; on the

other hand geometry of the flow defines the heat transfer and, at the same time, the heat

transfer affects the flow geometry and may cause an onset of a different flow pattern. In

addition, heat transfer rates between the two phases are distinctively different depending

on the prevailing flow pattern, due to differences in the interfacial area density.

Distribution of the phases is therefore an important part of the solution of the flow field,

without which any other parameters of importance in engineering applications, heat

transfer and two-phase pressure drop for instance, cannot be evaluated accurately. (Lahey

& Moody 1993, Section 5.2: pp. 224-242)

Heat transfer modes between the heat transfer surface and fluid are divided into two

categories: wetted wall heat transfer and post-dryout heat transfer. In the wetted wall heat

transfer liquid is in contact with the walls, while vapour is flowing as a dispersed phase, as

bubbles, slugs or a vapour core, inside the liquid annulus. In the post-dryout heat transfer

only vapour is contacting the walls and liquid is flowing inside the vapour as droplets or a

liquid core.

In BWR applications void fraction distributions in different subchannels along the heated

length  of  the  fuel  bundle  and  at  the  outlet  are  of  particular  interest,  since  the  local  void

fraction affects the performance, and later properties, of the fuel bundle, not to mention the

behavior  of  the  whole  reactor  due  to  feedback  effects  on  pressure  and  fission  power

generation. The thermal-hydraulic state of each fuel bundle is traditionally described in

present neutronics models with a single radial node, where as dryout prediction requires at

least one node in the radial direction for each subchannel, since dryout can be a quite

localized phenomenon. A collection of subchannel codes have been developed for dryout

prediction for a single fuel pin, in particular.

Though flow patterns and heat transfer modes have mostly been studied in circular

conduits, tubes, most of the results may still be considered useful in more intricate
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geometries, like the flow channel of a BWR fuel bundle. Flow patterns and corresponding

heat transfer regions of boiling two-phase flow in a vertical tube are presented in Figure

3.1.

Figure 3.1: Flow patterns and heat transfer regions in a vertical tube. (Collier & Thome 1996)

3.1 Flow patterns

Typically the flow patterns are divided into five categories: bubble flow, slug flow, churn

flow, annular flow, and wispy annular flow. Though some authors choose define the flow

patterns using more categories, for the scope of this thesis, these five presented below

(Collier & Thome 1996, pp. 10-13) and in Figure 3.2 are sufficient for BWR flow channel

in nominal operating conditions.

1) Bubble flow: The gas phase is dispersed as discrete bubbles in the continuous
liquid phase. The bubbles are smaller than the diameter of the tube.

2) Slug (or plug) flow: As void fraction increases the bubbles coalesce and form
larger bubbles, similar to the diameter of the tube. These bubbles are called Taylor
bubbles. The consecutive Taylor bubbles are separated by a liquid region, slugs,
which may or may not contain smaller bubbles. A liquid film separates the tube
wall and the Taylor bubble.
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3) Churn flow: When the flow is increased, the Taylor bubbles break up and liquid is
displaced more towards the tube walls.

4) Annular flow: The bulk of the liquid flows on the tube walls, as a continuous gas
phase flows, usually significantly faster, through the center of the tube. Some liquid
may be entrained in the continuous gas phase as droplets and there may be some
gas in the form of bubbles inside the liquid film. As the gas flow rate increases
ripples start to form on the liquid film, which increases the entrainment of droplets.

5) Wispy annular flow: If the liquid flow rate is increased (compared to annular
flow), the amount of liquid in the gas core increases. Increasing amount of liquid
droplets in the gas core increases the coalescence of droplets into larger lumps of
liquid, or wisps.

Figure 3.2: Flow patterns in vertical tubes. (Collier & Thome 1996, p. 11)

In addition to the flow these five flow patterns there is, of course, others, such as the

inverted annular flow occurring during reflooding, in which a liquid core or dispersed

drops flow in the center separated from the channel walls by a thin vapour layer. However,

as this thesis is more related to simulation of the wetted wall conditions, these unusual

conditions have been left out of the discussion.

3.2 Heat transfer

As was mentioned above, flow patterns, or flow regimes, have a substantial effect on heat

transfer.  Most  1D  models  rely  solely  on  correlations  to  provide  the  heat  transfer

coefficients, since they contain no information about the radial distribution of the phases.

Usually separate correlations are formulated for the heat transfer coefficients depending on
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the  prevailing  flow regime as  one  of  the  parameters,  so  that  the  heat  transfer  coefficient

changes together with the flow regime along the length of the conduit, or alternatively the

correlation can be applicable to more than one flow regimes or the formulation can be

made independent of the flow pattern. In any case, one of the parameters used in the

correlation usually has a set range, either a certain flow pattern or a set range in some

dimensional number or combination of dimensional numbers, which defines the

applicability of the correlation in question.

Flow regime at any given axial position can be deciphered from flow pattern maps, which

are commonly given as a function of flow rates of the two phases. An example of a flow

pattern map is presented in Figure 3.3 for low-pressure air-water mixture in small diameter

(1-3 cm) vertical tubes. The axes represent the superficial momentum fluxes of the liquid

( )2
ff jρ  and vapour ( )2

gg jρ  phases respectively.

Figure 3.3: Flow pattern map for vertical air-water flow (Collier & Thome 1996, p. 19).
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Once a suitable correlation for the heat transfer coefficient has been selected, the heat

transfer coefficient can be calculated. In addition to the value of the heat transfer

coefficient, the temperature relations are important as well. Three essential temperatures

exist: fluid temperature, structure temperature and saturation temperature. Once the three

temperatures and the heat transfer coefficient are known, the heat flux from structure to the

surrounding fluid is given.

Codes that use correlations that depend on the prevailing flow regime are not particularly

suitable as general purpose codes, since the development of flow regimes and heat transfer

coefficients depend strongly on fluid properties and geometry of the flow channel and the

correlations have set ranges for fluid properties and flow conditions, outside of which they

no longer apply and extrapolation has proven to be difficult. However, in order to model

convective or boiling heat transfer, whose length scales are far beyond the resolution of the

typical meshes used in engineering applications, one has to resort to the use of some heat

transfer correlations. (Lahey & Moody 1993, Section 5.2: pp. 224-242)

As correlations are, in essence, nothing more than the best fit to a certain set of

experimental data, the best way to ensure accurate results on a given geometry and flow

conditions would be to produce the data set by specific experiments. However, this is often

time consuming, expensive and impractical. A wide range of correlations, often fitted to

vast sets of data, can be found in literature, but the restrictions discussed above should be

kept in mind. Special care needs to be taken when applying a code to different flow

conditions than the code was originally intended for.

2D and 3D codes have an advantage over 1D codes, since they contain information about

the distribution of the two phases. Velocities and fluid properties near the heat transfer

interfaces could be used to obtain the heat transfer coefficients from suitable correlations,

and local void fractions could be used together with the preset geometrical data to

approximate the area of the heat transfer interfaces.
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4 PORFLO TWO-PHASE SOLUTION CODE

Boiling two-phase flow calculations were performed with a porous media model called

PORFLO. The code has recently been modified to better suit the BFBT benchmark

problem by, among other things, introducing iterative solvers as an alternative for the

direct matrix solver in order to facilitate solution of bigger meshes.

In a porous media model the grid is not necessarily generated to follow the boundaries

between structures and fluid; instead, porosity is used to define the fractions of the control

volumes filled with fluid. A separate module is used to generate a non-uniform orthogonal

grid at the beginning of the simulation.

In PORFLO, the 3-dimensional two-phase flow problem is solved using a 5-equation

model, which has two equations for conservation of mass and energy, one for each phase,

and a conservation of momentum equation for the mixture. The interactions between the

two phases, phase separation, are defined by the Zuber-Findlay drift-flux model.

4.1 Structure of PORFLO

The main program is split into separate cases optimized for different applications: particle

bed, isolation condenser and BWR fuel bundle for example. The main strategies to solve

the flow problem remain the same for all applications, but initialization and fine tuning of

some parameters are case specific.

There are two distinctively different strategies to solve the pressure and velocity fields:

direct methods that combine the momentum and mass conservation equations to yield a

single system of equations for pressure, which is the older approach in PORFLO, and

iterative methods (SIMPLE), which couple the momentum and mass conservation

equations through pressure corrections. The choice between the two strategies is made in

the input file. Though these two branches differ significantly, the rest of the solution

procedure advances in a similar manner, hence most subroutines can be used in both cases.

The sequence of operations in PORFLO solution procedure is shown in Figure 4.1.
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The solution procedure starts with reading the input file tailored for a specific application,

after which the grid is generated according to the geometrical data given in the input file.

Then, the process and flow parameters are initialized. If the simulation is to be continued

from a previously simulated state, the restart file is read after initialization. The restart file

contains only dynamic data, such as pressure, mixture density, void fraction, and

volumetric flow distributions, as function of location.

The transient calculation loop starts with advancing forward in time. After that, the

interfacial and structure heat transfer are solved in separate subroutines. These subroutines

are not very sophisticated at present, since most of the coding effort so far has been

focused  on  improving  the  stability  of  the  solution.  However,  improvement  here  is

relatively easy once the stability issues are resolved first.

After the heat transfer is solved, pressure and velocity fields need to be considered. Since

pressure and velocity distributions are strongly interlinked, they have to be solved

simultaneously. At present, four different subroutines are dedicated to implement the

different solution methods, which result in volumetric flow rates for mixture in each

direction  and  the  corresponding  pressure  field.  The  bulk  of  the  coding  effort  so  far  has

been spent on improving the solution of pressure and volumetric flow distributions.
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Figure 4.1: PORFLO solution procedure.
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Advance time step
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heat transfer
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heat transfer

Solve pressure and volumetric
flow distributions

Direct method:
- Combined mass & momentum eqs.

Iterative methods:
- SIMPLE, SIMPLEC & SIMPLER

Phase separation by drift-flux model:
- Calculate separated volumetric flow rates from mixture flow rate

Void fraction
prediction

Integrate liquid &
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Phase separation is defined by the Zuber-Findlay drift-flux model. The drift-flux model is,

in essence, used to divide the mixture flow rates over each face into separate flow rates for

liquid and vapour, according to the local void fraction. The next step is to predict the void

fraction distribution at the end of the time step. This is done by implementing the

volumetric vapour flow rates, given by the drift-flux model, in a conservation equation for

vapour phase mass, which results in a system of equations, where each equation contains

the  void  fractions  of  the  central  and  neighboring  nodes.  Void  fractions  at  the  end  of  the

time step are obtained by solving this system of equations implicitly.

After the void fraction distribution is predicted and the volumetric flow rates for each

phase are known, the mass flow rates of the two phases at each interface are also given.

The mass flow rates are used to solve the enthalpy equations for each phase to obtain the

temperatures and the mass conservation equations to obtain the vapour and liquid masses

at the end of the time step. In the final step the mixture densities and the true void fraction

distributions can be calculated from the vapour and liquid masses.

4.2 Conservation equations

The conservation equations used in PORFLO for solving momentum originate from

Navier-Stokes equations, which are an application of Newton’s second law. Navier-Stokes

equations consist of three time-dependent conservation of momentum equations; one for

each direction. In 5-equation models the momentum equations are formed for the mixture

of phases, whereas continuity equations for conservation of mass and energy are

formulated for each phase. The velocities of the separate phases are obtained from the

mixture velocity using the drift-flux model.

4.2.1 Conservation of mass

The continuity equation for conservation of mass in its most general form is given through

(White 2006, p. 61):

( ) 0=⋅∇+
∂
∂ uρρ

t
. (4.1)

where density [kg/m3]
t time [s]
u velocity vector (u, v, w) [m/s]
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Using partial derivatives the continuity equation for conservation of vapour phase mass can

be expressed as follows:

( ) ( ) ( ) ( )
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where void fraction [-]
g gas density [kg/m3]

mass transfer from liquid to vapour phase [kg/m3s]
(ug, vg, wg) gas velocity in x, y and z-directions respectively [m/s]
(x, y, z) 3-dimensional Cartesian coordinates [m].

The first term (1) on the left-hand side of equation (4.2) expresses the time rate of change

of gas mass inside an infinitesimally small control volume. The second (2), third (3) and

fourth (4) terms on the left-hand side represent the changes in control volume mass due to

the difference between inflow and outflow; the net outflow of mass in x, y and z-directions

respectively. The fifth term (5) accounts for the mass transfer between the two phases.

A similar equation can be formulated for the liquid phase as well:

( )[ ] ( )[ ] ( )[ ] ( )[ ] γραραραρα
−=

∂
−∂

+
∂
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∂
−∂

+
∂
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u

t
lllllll 1111 (4.3)

where l liquid density [kg/m3]
(ul, vl, wl) liquid velocity in x, y and z-directions respectively [m/s]

The terms in the equation account for the same effects, as in the gas phase above, with the

exception that liquid mass is expressed as a fraction (1 - ) of the total mass and the mass

transfer from gas to liquid equals - .

4.2.2 Conservation of momentum

The equations governing motion of the flow in PORFLO are based on the famous Navier-

Stokes equations. The representation by White (2006, p. 68) can be written a bit differently

using the vector differential operator del, represented by the nabla symbol. A general form

of the conservation of momentum equation can be expressed through:

( ) ( )[ ]
} } }5432

1

fTuuu
+⋅∇+∇−=⊗⋅∇+

∂
∂ p

t

4484476
876

ρρ (4.4)
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where f sum vector of body forces [N/m3]
p pressure [Pa]
T surface force tensor (of rank 2) [N/m2], [ ] 3mNT =⋅∇
u velocity vector (u, v, w) [m/s]
⊗ outer product.

The left-hand side of equation (4.4) defines the inertia of the flow and consists of unsteady

acceleration (1), which measures the time rate of change of momentum of the fluid inside

the control volume, and convective acceleration (2), which measures the net outflow of

momentum  due  to  differences  in  the  velocity  field  near  the  control  volume.  The

momentum is conveyed into, or out of, the control volume by the mass flows at the node

faces. Unsteady acceleration represents the changes in the velocity field and therefore

equals zero in stationary flow, where as convective acceleration represents the acceleration

of a fluid particle in fixed coordinates, and doesn’t necessarily equal zero in stationary

flow. The right-hand side of the equation represents the forces acting on the fluid: pressure

gradient (3), surface forces (viscosity) (4) and body forces (friction and gravity) (5).

If the outer product of momentum and velocity and the components of the surface force

tensor are presented, equation (4.4) can be written as follows:
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where surface stress [N/m2].

Equation (4.5) can also be presented using partial derivatives, in which case the separate

effects of each vector component, for instance each velocity component, are presented in

its  own  term.  The  net  outflow  of  u-momentum,  momentum  in  x-direction,  is  simply  the

divergence of x-directional momentum ( mum), the first row of the tensor obtained by

calculating the outer product of momentum and velocity. First, the left-hand side of the

momentum equation is considered separately. Inertia of the flow in x-direction is defined

by the following terms:
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where m mixture density [kg/m3]
Fx force in x-direction [N]
(um, vm, wm) mixture velocity in x, y and z-directions respectively [m/s]
V (control) volume [m3].

Equation (4.6) is called a conservative form of the momentum equation. The first term (1)

is the time rate of change of mixture u-momentum, momentum in x-direction, inside the

control volume. The second (2), third (3) and fourth (4) terms represent the net fluxes of u-

momentum out of the control volume in x, y and z-directions respectively.

Using the product rule on equation (4.6) leads to the following form:
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The iterative methods in PORFLO use the conservative forms of the momentum equations

to obtain the discretized equations, whereas the direct method, the older method in

PORFLO, uses the non-conservative, or primitive, forms of the momentum equations. The

non-conservative form of u-momentum, momentum in x-direction, results from equation

(4.7) when the conservation of mass equation times um, the last four terms on the left-hand

side of the equation (4.7), is reduced from the momentum equation. This is simply because

the flow has to satisfy the continuity equation, therefore the terms mentioned equal zero.

The non-conservative form of the momentum equation for x-direction is given through
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Now that the left-hand side of the momentum equation is complete, the forces on the right-

hand side can be discussed. The forces acting in x-direction are presented below:



22

} 44 844 76444444 8444444 76 3

mmm
e

21

5,0 uu
d
f

z
u

zy
u

yx
u

xx
p

V
Fx ρµµµ ×−








∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

+
∂
∂

−=∑ , (4.9)

where de equivalent diameter [m]
f frictional coefficient
p pressure [Pa]

dynamic viscosity [Ns/m2].

The net force, in equation (4.9), is comprised of the pressure gradient (1), viscosity (2) and

the pressure loss due to friction (3). The surface stress components that appear in equation

(4.5) are not very useful, but with some approximations, presented in appendix A, the

surface stresses, in this case viscous stresses, are developed to relate the changes in the

velocity field to the resulting forces through dynamic viscosity. Combining equations (4.8)

and (4.9) leads to the final form of the momentum equation for x-direction:
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Momentum equations can be written for other directions using the same approach. In

vertical direction a term that accounts for gravitation has been added to the equation. The

momentum equations for y and z-directions respectively are given through
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where g acceleration due to gravity [m/s2].
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4.2.3 Conservation of energy

The conservation equations for energy can contain different terms depending on how

accurately the equations need to be solved. In most engineering applications some terms

are strongly dominant while the effect of others is relatively small. One approach to derive

the  energy  equations  for  each  phase  would  be  to  start  from  specific  enthalpy  equations.

Total specific enthalpy, in quite general form, can be expressed through

{
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1
2
1

m
AgzwpvuhTOT

σ
++++=

321
, (4.13)

where A surface area of liquid or vapour volume [m2]
g acceleration of gravity [m/s2]
hTOT total specific enthalpy [J/kg]
m mass of the liquid or vapour volume [kg]
p pressure [Pa]
u specific internal energy [J/kg]
v specific volume [m3/kg]
w velocity of the flow [m/s]
z vertical distance from an arbitrary level [m]

surface tension [N/m]

The right-hand side of equation (4.13) consists of specific enthalpy (1), specific kinetic

energy (2), specific potential energy (3), and specific surface tension energy (4).

Additional terms could be added to the right hand side, if necessary, to account for changes

in chemical, or other forms of, energy. However, in a BWR fuel bundle, as well as in all

the other applications of PORFLO, the energy content of the flow is properly defined with

only the specific enthalpy (Moran & Shapiro 1998, p. 78), which is a function of pressure

and temperature, as follows:

( ) pvTuh += , (4.14)

where h specific enthalpy [J/kg].

Specific enthalpies for vapour and liquid can be obtained from either (material) tables or,

more conveniently, functions, which are fitted to the same data as the tables are based on.

Since it was decided that the energy content of the flow is sufficiently defined with specific

enthalpy, the energy conservation equations for both gas and liquid phase are derived by
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formulating conservation equations for enthalpy. A general form of the enthalpy equations

is given through

( ) ( ) PQh
t
h

+=⋅∇+
∂

∂ uρρ , (4.15)

where P power generated in the control volume per unit volume [W/m3]
Q heat rate into the control volume per unit volume [W/m3]
u velocity vector, whose components (u, v, w) [m/s].

The energy conservation equations are presented below for the gas and liquid phase

respectively:
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where hg gas enthalpy [J/kg]
hl liquid enthalpy [J/kg]

wgq ′′′ heat rate from wall to vapour per unit volume [W/m3]

lgq ′′′ heat rate from liquid to vapour per unit volume [W/m3]

wlq ′′′ heat rate from wall to liquid per unit volume [W/m3].

4.3 Phase separation by drift-flux model

Phase separation, the velocity difference between vapour and liquid phase, is described by

Zuber-Findlay drift-flux model (Zuber & Findlay 1965). It contains two empirical fitting

parameters, the distribution parameter C0 and the drift-flux velocity Vgj, which are defined

by the  user.  The  model  uses  the  two parameters  to  connect  the  gas  phase  velocity  to  the

mixture velocity. The velocities ji are area averaged velocities of phase i across the cross-

section of the flow.

gjm0g VjCv += , (4.18)

where vg real gas phase velocity [m/s]
jm area averaged mixture velocity [m/s]
C0 distribution parameter
Vgj drift-flux velocity [m/s].
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The area averaged velocities can be attained from volumetric flow rates by dividing them

with cross-sectional area of the flow. Real velocities are linked to area averaged velocities

as follows:

gg vj α= , (4.19)

( ) ll 1 vj α−= , (4.20)

lgm jjj += , (4.21)

where jg area averaged gas velocity [m/s]
jl area averaged liquid velocity [m/s]
vl real liquid phase velocity [m/s].

Relative velocity between the two phases can be solved using equations (4.18), (4.19),

(4.20) and (4.21).

( )[ ]
( )α

α
−

+−−
=−=∆

1
11 gjm0

lg

VjC
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The distribution parameter and the drift-flux velocity proposed in the original paper by

Zuber and Findlay (1965) for churn-turbulent bubbly flow region are given below:

2.10 =C (4.23)
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ρ
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where g acceleration due to gravity [m/s2]
l liquid density [kg/m3]
g vapour density [kg/m3]

surface tension [N/m].

4.4 Correlations

The empirical correlations used in PORFLO, relevant for this thesis, are presented in this

section. Factors that are functions of both void fraction and porosity have been added to

some of  the  original  correlations  to  account  for  the  changes  in  heat  transfer  surface  area

due to changes in void fraction and porosity.
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4.4.1 Heat transfer correlations

Heat transfer inside a BWR fuel bundle comprises different heat transfer modes:

convective heat transfer to liquid and vapour, boiling heat transfer, condensation of vapour

to liquid when liquid temperature is subcooled and flashing of liquid when liquid is

superheated. However, since the current application of PORFLO, and the scope of this

thesis, is more concerned with the model development for wetted surface heat transfer,

more attention is given to the most important heat transfer modes in BWR nominal

conditions: boiling heat transfer and convective heat transfer to liquid and gas,

respectively. Flashing and condensation are not discussed, though models for those heat

transfer modes are included in PORFLO.

Both the boiling heat transfer and convective heat transfer alike have been extensively

studied in single tubular flow channels and annular flow channels around a heated rod. The

geometry of a BWR fuel bundle can easily be projected into these two basic geometries

piece-wise: a subchannel enclosed by four fuel rods is reminiscent of a tubular flow

channel, while the flow around a single fuel rod can be considered as a flow in an annular

geometry. This is the argumentation, why the heat transfer correlations developed for

tubular and annular flow channels can be applied to BWR fuel bundles.

It is widely established that implementation of heat transfer correlations, originally

developed for 1D calculations in steady-state and fully developed flow conditions, to 3D

domains and often transient conditions is problematic, to say the least. In the original 1D

heat transfer correlations most of the parameters are either averages or otherwise

representative values for the whole geometry: it is therefore challenging to define the

parameters used in 3D calculations so that the heat transfer rates remain dependent on the

local conditions, temperature of the fluid near the heat transfer surface for instance, while

changes in the resolution of the grid do not affect the total heat transfer rate.

The equivalent diameter is a fine example of this dilemma: It could be either calculated for

a cross-section of the fuel bundle or more locally. An assumption, that the equivalent

diameter calculated for the entire cross-section of the fuel bundle is also applicable in the
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heat transfer correlations calculated on a node-by-node basis, is used in PORFLO. The

equivalent diameter is defined through

wall

f
e

4
A

Vd = (4.25)

where Awall heated area (heated rod, solid) [m2]
de equivalent diameter [m]
Vf fluid volume [m3].

Convective heat transfer from structure to liquid and vapour is based on the Dittus-Boelter

turbulent heat transfer correlation (Dittus & Boelter 1930).
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where de equivalent diameter [m]
gcon,h ′′ convective heat transfer coefficient for vapour [W/m2K]

lcon,h ′′ convective heat transfer coefficient for liquid [W/m2K]
kg thermal conductivity of vapour [W/mK]
kl thermal conductivity of liquid [W/mK]
Pr Prandtl number [-]
Re mixture Reynolds number [-]

The mixture Reynolds number is defined as

l

emm
mRe

µ
ρ du

= (4.28)

Currently only liquid viscosity is used to calculate the Reynolds number, since liquid is the

continuous phase throughout most of the BWR flow channel.

The convective heat transfer coefficients, according to Dittus-Boelter, are applied in the

following equations for convective heat transfer to vapour and liquid, respectively:

( )αgwallgcon,
f

wall
wgcon, TTh

V
Aq −′′=′′′ (4.29)
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( )( )α−−′′=′′′ 1lwalllcon,
f

wall
wlcon, TTh

V
Aq (4.30)

where Awall surface heat transfer area [m2]
wgcon,q ′′′ volumetric heat transfer rate from wall to vapour due to

convection [W/m3]
wlcon,q ′′′ volumetric heat transfer rate from wall to liquid due to

convection [W/m3]
Tg vapour temperature [K or °C]
Tl liquid temperature [K or °C]
Twall temperature of the heat transfer surface [K or °C]
Vf fluid volume [m3].

Boiling heat transfer only occurs when temperature of the heat transfer surface exceeds the

saturation temperature of the liquid. The correlation for boiling heat transfer coefficient is

based on Thom’s correlation (Hewitt, G. F. & Delhaye, J. M. & Zuber, N. 1986), which is

a simplified correlation for the nucleate boiling region and hence very popular option in 1D

fuel bundle heat transfer models:
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where nbq nucleate boiling heat flux [W/m2]
p pressure [bar]
Tsat saturation temperature [K or °C].

The boiling heat transfer coefficient can be solved from the previous relation:
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peh 023.0
nb 1972≈′′⇒ (4.33)

where nbh ′′ boiling heat transfer coefficient [W/m2K2].

The decrease in boiling heat transfer rate with increasing void fraction has been taken into

account by including a factor that is a nonlinear function of void fraction.

( )[ ] ( ) 3,02
satwallnb

f

wall
nb 10,max α−−′′=′′′ TTh

V
Aq (4.34)

where nbq ′′′ volumetric heat transfer rate for boiling [W/m3]
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Convective heat transfer rate into liquid and boiling heat transfer rate are used to vaporize

liquid. The current limit for liquid subcooling is 30 °C; if the subcooling is more than that,

the heat transfers are used for heating the liquid. The transition is done with a ramp

function.

( )[ ] ( )
fg

wlnblsat

K30
0,K30max

h
qqTT ′′′+′′′−−

=γ , (4.35)

where hfg specific latent heat of vaporization [J/kg].

Since  the  development  of  PORFLO  is  still  in  the  testing  stage,  the  values  of  the  heat

transfer coefficients used in the heat transfer correlations are given fixed values for the test

runs. These values are listed below in Table 4.1.

Table 4.1: Heat transfer coefficients used in calculations.

Mode Symbol Value Unit

Convective heat
transfer to liquid lcon,h ′′ 50,000 W/m2K

Convective heat
transfer to vapour gcon,h ′′ 500 W/m2K

Boiling heat
transfer nbh ′′ 950,000 W/m2K2

4.4.2 Critical heat flux

Several correlations for critical heat flux that exist in the literature include mass flow rate

as one of the defining parameters, which is undesirable from the perspective of the current

application of PORFLO. Since dryout is a rather local phenomenon, the use of local values

instead of averaged values would be preferred in the correlation for critical heat flux.

Therefore, a correlation proposed by Griffith, Pearson and Lepkowski (1977) has been

selected, since it does not include mass flow rate, which facilitates the use of local values

in the correlation.
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where CHFq ′′ critical heat flux [W/m2]



30

4.4.3 Friction factor

In the current version of PORFLO friction is assumed to be evenly distributed throughout

the 3-dimensional domain. Thus the force exerted on the fluid per unit volume is defined

by a relation similar to the pressure drop in one-dimensional tubes, shown for x-direction:

mmm
e

fric,

2
1 uu

d
f

V
Fx ρ×−= (4.37)

where de hydraulic diameter of the flow channel [m]
Fx, fric force exerted on the fluid due to friction
f friction factor [-].

The friction factor could be varied depending on the flow conditions and different values

could be used for the flow across the tube bundle, in horizontal flow directions, and

vertical direction, but at the moment fixed values are set in the input file for the friction

factors (usually between 0.01 - 0.001). Correlations, such as (Blasius 1913), could be used

to evaluate the friction factor.

25.0
mRe

3165.0
=f (4.38)
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5 DISCUSSION OF PRESSURE-VELOCITY COUPLING

As was briefly mentioned in the previous chapter, velocity and pressure fields are closely

interlinked,  and  thus  have  to  be  solved  simultaneously.  There  are  two  fundamentally

different ways to do this: direct methods and iterative methods.

In direct methods the conservation equations for mixture mass are either combined with

the three mixture momentum equations to yield a single system of equations for pressure,

or otherwise solved simultaneously. One of the perks of this method is that the amount of

calculations needed for solving a problem with one system of equations is much less than a

problem with several systems of equations.

Another approach is to couple the pressures and velocities indirectly, which leads to an

iterative procedure where the approximations for pressures and velocities are improved

with every cycle. SIMPLE, Semi-Implicit Method for Pressure-Linked Equations,

algorithm is an example of an iterative method. The SIMPLE algorithm starts with guessed

pressure and velocity fields which are first input to the momentum equations to obtain

improved values for the velocities. The improved velocities are used in the pressure

correction equation, which is obtained by combining the mass and momentum

conservation equations. The pressure corrections are used to yield corrected pressures and

velocities, which are again used in the momentum equations at the start of the next cycle.

Iterative methods, like SIMPLE, require more calculations, since firstly multiple systems

of equations have to be solved during one iteration cycle, the momentum equations and the

pressure corrections, and secondly multiple iterations are needed to reach a converged

solution.  In  this  perspective  it  would  seem unreasonable  to  use  SIMPLE.  However,  fully

implicit discretization can be applied to formulate the momentum equations and all the

terms in the momentum equations, convection, diffusion and even turbulence, can be

introduced without significant hardship. The convective terms in the momentum equations

can be quite problematic in some direct methods, especially in the direct method

implemented in PORFLO.
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It is important to recognise that though SIMPLE makes no assumptions about the type of

the solver with which the systems of equations are to be solved, being an iterative

procedure itself, the intermediate solutions of the iteration cycles do not have to be solved

precisely; only the final solution is of importance. Therefore, the use of an iterative solver

and careful consideration of the convergence criteria can significantly reduce the amount

of calculations needed to perform one time step, and hence the overall computational time

is reduced as well.
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6 DISCRETIZATION OF THE GOVERNING EQUATIONS

Though thorough discussion of discretization is often dismissed in literature, the

importance of consistent discretization procedures can not be denied; consistent

implementation of the selected discretization scheme, throughout all the conservation

equations, lays the foundation for solving the flow problem. Even though solvability and

convergence are not guaranteed with a proper discretization procedure alone, the choices

made in the discretization procedure can have quite far-reaching effects.

In this chapter the basic principles and notations used in discretization are presented first.

Then, the discretization and coupling of the mass and momentum equations are presented

first  for  the  iterative  methods  and  then  for  the  direct  method,  both  of  which  are

implemented in PORFLO.

6.1 Basic principles used in discretization

The conservation equations can not be used in computations in their basic continuous

forms, but have to be transformed into the computational grid to yield equations for each

node. The grid, shown in Figure 6.1, is generated so that it is composed of cuboids,

rectangular boxes, with changing dimensions; in other words: the grid is non-uniform and

orthogonal.

Figure 6.1: A portion of the grid and positions of the velocities.
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The shaded area in Figure 6.1 represents the pressure node (I, J, K). Indexes I, J and K

refer to the center point of the control volume and indexes i, j and k refer to the control

volume faces where the velocities are located.

Backward staggering has been used to create the velocity grids in order to avoid the

pressure field checkerboard effect presented by Patankar (1980, pp. 118-120). Each

velocity component, u, v, and w, has its own unique grid. In backward staggering, the

velocity nodes are located on top of the velocity components; each velocity node is

bounded by the centerline of the pressure node with the same indexes as the velocity

component, (I, J, K) for velocities ui,J,K , and the centerline of the previous pressure node

parallel  to  the  velocity  component,  (I-1, J, K) for velocities ui,J,K, hence the expression:

backward staggered. The velocity grids are only staggered in the direction parallel to the

velocity component in question; the other grid lines remain unchanged compared to the

pressure grid. A portion of u-velocity grid, a grid for the x-directional components of

velocity, is shown in Figure 6.2. The shaded area in Figure 6.2 is the velocity node or u-

control volume (i, J, K).

Figure 6.2: A portion of u-velocity grid.

Some variables located on the faces of the control volumes are referred to with a subscript

depending on the direction where the face is located compared to the center point of the
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node: e (east), w (west), s (south), n (north), u (up) and d (down). These notations are used

mainly with flows that cross the faces, for example the mass flow rates (Fe, Fw, … ) in

Figure 6.2. The mass flow rates at each boundary are handled according to the upwind

differencing scheme, UDS, which means that the densities are taken from the pressure node

upstream of the face the flow goes through. Patankar (1980, pp. 83-85) includes a

representation of the upwind differencing scheme in his work, though he is not the inventor

of the scheme.

6.2 Notations used in discretization

Before proceeding any further some notations and abbreviations are defined that are used

throughout this thesis. As the grid is orthogonal, the formulation of the discretized

equations is simplified, since the opposite faces of the control volume have the same

surface area. The surface areas of the control volume faces are denoted by superscripts

according to the axis that goes through the face: i
KJIA ,, , j

KJIA ,,  and k
KJIA ,, . The same

notation is used with densities, porosities and dynamic viscosities as well.

During the course of the discretization process it became apparent that a certain average is

repeated quite frequently, therefore abbreviations are presented here that significantly

reduce the length of the upcoming discretized equations. Pressure, temperature, density,

void fraction, porosity and dynamic viscosity are averaged over the control volume and

thought to be located at the center point of the pressure node. The values of some of these

variables are, nevertheless, needed at the faces of the nodes; hence a proper average is

needed to approximate the values at the interfaces.

The densities at interfaces, equations (6.1) through (6.3), are simply volume averaged; the

density of the pressure node is weighted with the volume of the pressure node when

forming  the  average  over  the  u-control  volume.  In  this  case  the  weighting  of  two

contiguous nodes is performed with the length of the node, since the other two dimensions

do not change over the face of the node. These volume averaged densities are only used

with  forces  acting  on  the  fluid,  inertia,  gravity  and  friction,  not  with  flows  that  cross  the

interfaces.
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where I,J,K density of node I,J,K
I,J,K porosity of node I,J,K
x length of the node in x-direction
y length of the node in y-direction
z length of the node in z-direction.

In a porous media model an approximation is needed for evaluating the porosities inside

the velocity nodes and at the boundaries of the pressure nodes. The problem arises when

there is an abrupt change in porosities of the adjoining nodes. As the grid used in PORFLO

does  not  follow  the  surfaces  of  the  structures,  the  values  of  porosity  can  change  quite

significantly from one node to the next. In the case of BWR fuel bundle, porosities change

smoothly most of the time, since the geometry being modeled is made of round shapes and

no sharp edges are present. However, when approaching the fuel rods perpendicularly to

the surface of the fuel rod, large differences in porosities can occur while the interface

between the two nodes is in reality completely filled with fluid.

This contradiction makes it difficult to formulate the average for porosities at the node

faces that can be consistently applied throughout the calculation domain, since the flow

area, which is defined as the surface area of the node times the porosity at the node

interface, has proven to be one of the most sensitive parameters in PORFLO. Aside from

the practical point of view, there is a more fundamental issue on how the porosities at the

interfaces should be defined: on the other hand one of the axioms, and most definitely one

of the substantial strengths, of porosity modeling is that the true geometry can be

disregarded, but at the same time the true geometry ceases to exist and the information

about the interfaces is blurred. Provided that there is more detailed information about the

geometry of the structural interfaces than the porosities at each pressure node would imply,
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should  this  information  be  used  in  the  formulation  of  the  surface  flow  areas  in  the  first

place?

It would be quite straightforward to use the more detailed information about the geometry,

if available, to calculate the flow surface areas, but then again other effects of this choice

should be considered, the center point of the fluid volume for instance. Most averaging

procedures require information about the location of the center point of the fluid volume,

the point where the values averaged over the pressure nodes are thought to be located; if

the true geometry is used, the center points of the fluid volumes near the structural

interfaces, where porosity is  > 0, should be shifted away from the structure, as opposed to

the porosity approach where the center of the fluid volume would always be located in the

center point of the node; hence all the averaging procedures would be affected. If the

effects on the true center point of the fluid volume are modeled, the formulation becomes

substantially more complicated; in fact, for all practical purposes the formulation would

become similar to body-fitted.

One  approach  is  to  let  the  minimum  value  define  the  effect  of  porosity  on  velocities

through the surface area of the flow, others include harmonic averaging and volume

averaging. Harmonic and volume averaging have been tried out in the code and seem to

produce quite similar results. This might be mostly due to the fact that both of the

averaging procedures result in the same values, in BWR fuel bundle geometry, for the

horizontal direction, which is the main flow direction. Examples of harmonic and volume

averaging are presented in Figure 6.3. The rounded shape represents the surface of the fuel

rod and the shaded areas represent the fractions of the volume occupied by the fuel rod.

The lines in Figure 6.3 visualize the averaging procedures; as the line intersects with the

interface, the fraction above the interface from the total length of the interface is the

porosity at the interface according to the averaging procedure in question.
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Figure 6.3: Volume averaged and harmonically averaged porosities at the interface of two adjacent nodes.

Porosities at the interfaces are chosen to be presented as harmonic averages over the

interface, as shown in equations (6.4), (6.5) and (6.6). This form of averaging works well

when moving parallel to the surfaces of the fuel rods, but when approaching

perpendicularly to the surface of the fuel rods the surface area of the flow is often

underestimated.
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where I,J,K porosity of node I,J,K

6.3 Discretization for the iterative methods in PORFLO

A separate subroutine for pressure-velocity solution, which utilizes SIMPLE, Semi-

Implicit Method for Pressure-Linked Equations, SIMPLEC, SIMPLE-Consistent, and

SIMPLER, SIMPLE-Revised, algorithms, was created and included in PORFLO during
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this thesis. The conservation equations for mixture mass and momentum were formulated,

discretized, and coded as a part of this thesis. In this section, the discretization of

conservation equations for mixture mass and momentum is presented.

The discretization procedure follows the guidelines set by Patankar (1980) and later

introduced in (Versteeg & Malalasekera 2006), with the exception that some modifications

are made to accommodate two-phase flow, since the algorithms presented in the references

are intended for one-phase flow. Though the pressure-velocity solution in 5-equation

models consists of equations formulated for the mixture of phases, which are similar to the

equations governing one-phase flow, some additional terms have to be introduced to

account for the peculiarities of two-phase flow, changes in mixture density caused by

phase change for instance.

The flow is assumed to be fully incompressible, which leads to an ill-conditioned system

of equations for pressure corrections; there is practically no diagonal dominance in most of

the domain, which in turn renders most iterative solvers, without preconditioning, unable

to solve the system of equations. This will be discussed in more detail in the remainder of

this  thesis;  the  purpose  here  is  merely  to  point  out  how  much  effect  some  basic

assumptions can have on the solution procedure.

6.3.1 Discretization of the mass conservation equations

Since the object is to derive discretized equations for the mixture of the phases, the

discretization could be started from conservation equations for mixture mass. However, if

the derivation is begun by combining the separate mass equations for the two phases,

equations (4.2) and (4.3), one of the fundamental disadvantages of 5-equation models

becomes evident.
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The conservation equations for liquid and vapour mass can be summed together to form an

equation for the mixture of the two phases:

( )[ ] ( )[ ]

( )[ ] ( )[ ]
γγ

ρααρρααρ

ρααρρααρ

−=
∂

−+∂
+

∂
−+∂

+

∂
−+∂

+
∂

−+∂

z
ww

y
vv

x
uu

t
llggllgg

llgglg

11

11

(6.7)

The expression inside the square brackets of the time derivative term, the first term on the

left-hand side of equation (6.7), is the definition of mixture density, which is statistical in

its nature; at any given instant a portion  of the control volume is filled with vapour while

portion 1 -  is filled with liquid, the mixture density is simply the volume average of the

two densities. To combine the mass fluxes inside the square brackets of the second, third,

and fourth terms on the left-hand side, the velocities of the two phases need to be equal for

the mixture mass to be conserved.

However, after the mixture flow rates and the pressure field are solved, the phase velocities

are obtained from drift-flux correlation. If velocity differences between the phases exist,

the conservation equation for mixture mass based on mixture density is no longer valid.

The resulting error in mass balance has to be corrected during the simulation or the errors

grow prohibitedly large and the simulation crashes.

If the phase velocities are assumed to be equal, the conservation equation for mixture mass

can be expressed using the mixture densities:
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Discretized equations for conservation of mixture mass are derived by integrating equation

(6.8) over the control volume shown in Figure 6.4 and time step t.
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Figure 6.4: A control volume and its surrounding velocities.
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Before integration is possible an assumption is needed about how the variables, velocities

for instance, vary with time. One possibility is to propose the following, shown for the net

outflow of mixture mass:
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Superscript n denotes  the  values  at  the  beginning  of  the  time step,  and  superscript n +  1

denotes the values at the end of the time step. The weighting factor  usually has values

between 0 and 1, depending on the selected temporal discretization scheme:  = 0 for the

explicit scheme,  = 0.5 for the Crank-Nicolson scheme, and  =  1  for  the  fully  implicit

scheme.
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Since quite severe restrictions for the length of the time step exist in both the explicit and

the Crank-Nicolson scheme, the fully implicit scheme is selected. In the incompressible

formulation, the Courant’s criterion for the velocity of the flow has to be obeyed when

using explicit or Crank-Nicholson schemes, but, in principle, longer time steps could be

used when implicit discretization is chosen. Courant’s criterion for the speed of sound,

however, is not relevant for incompressible flows, since the propagation velocity of the

pressure wave is infinite.

After the discretization scheme is established, to simplify the formulation, the superscripts

n and n + 1 are dropped and the values at the beginning of the time step are referred to with

a superscript o, for old, and the values at the end of the time step have no superscripts.

Furthermore, if the time rate of change in mixture density, the first term on the left-hand

side of equation (6.9), is presumed to be constant during the time step t, the temporal

integration of equation (6.9) is unambiguous.
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The time rate of change of mixture density is integrated over the control volume, shown in

Figure 6.4 to obtain the change in control volume mass:
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where VI,J,K volume of the pressure node [m3]
I,J,K porosity of the pressure node [-]

mρ mixture density at the end of the time step [kg/m3]
o
mρ mixture density at the beginning of the time step [kg/m3].

The second volume integral containing net outflow of mixture mass on the left-hand side

of equation (6.11) is transformed into surface integrals over the surface area of the control

volume shown in Figure 6.4. The divergence theorem (Adams 1999, p. 946) defines the
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relation between the surface integral over a closed surface S and the volume integral over a

volume V that is bounded by the surface S.

The relation is given through
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where C vector ( )kCjCiCC 321 ++=

),,( kji unit vectors in the directions of the coordinate axes
n normal vector of surface S.

The divergence theorem is applied on equation (6.11) to transform the volume integrals

inside the square brackets into surface integrals over the faces of the control volume:
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The densities at the node faces are taken from the node upstream of the interface,

according to the upwind differencing scheme (Patankar 1980, pp. 83-85). Porosities at the

interfaces are given in equations (6.4), (6.5) and (6.6).
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Notation KJiu ,,1+  means maximization between KJiu ,,1+  and zero; ( )0,max ,,1 KJiu + .

The discretized equation for mixture mass is obtained by combining the results of

equations (6.12) and (6.15) and dividing by the length of the time step t.
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6.3.2 Discretization of the volume conservation equations

Instead of trying to conserve the mixture mass, some two-phase CFD codes, phase coupled

SIMPLE algorithm (Vasquez & Ivanov 2000) in Fluent for example, attempt to conserve

the volume of the mixture, hence avoiding the discrepancies between mixture mass flow

rates based on mixture densities and the true mass flow rates of the two phases. Stosic and

Stevanovic (2002) present a method similar to the phase coupled SIMPLE in Fluent,

though the name of the program the method is implemented in is not mentioned. The

derivation of conservation equations for mixture volume begins with the conservation

equations for liquid and vapour volume.
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The conservation equations for liquid and vapour volume are summed together, to form an

equation for the mixture:
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The expressions inside the square brackets in the second, third, and fourth terms on the

left-hand side of equation (6.19) are the definitions of mixture velocities in x, y, and z-

directions, respectively. The only term on the right-hand side of the equation accounts for

the change in volume due to boiling or condensation. If the square brackets in equation

(6.19) are replaced with the appropriate components of mixture velocity, the final form of

the conservation equation for mixture volume is complete.
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To obtain discretized forms of the volume conservation equations, equation (6.20) is

integrated over the control volume, shown in Figure 6.4, and time step t. Integration of

the time dependent term (1) is handled first:
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For  simplicity  the  term  ( I,J,KVI,J,K) in equation (6.21) is marked with VI,J,K,  since  it

represents the change in volume during the time step, change in volume of the fluid to be

exact. The second, third, and fourth terms (2) on the left-hand side of equation (6.20)

constitute the divergence of velocity: hence the divergence theorem can once again be

applied to transform the volume integrals into surface integrals over the control volume

faces.
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The subscripts m, denoting the values of mixture velocities, are dropped to abbreviate the

formulation. Porosities at the interfaces are taken according to equations (6.4), (6.5) and

(6.6).
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The only term (3) on the right-hand side of equation (6.20), which accounts for the change

in volume of the mixture due to evaporation or condensation is integrated over the control

volume and time step t, as the time dependent term above.
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Combining the results of equations (6.21), (6.23), and (6.24) and dividing both sides of the

resulting  equation  by  the  length  of  the  time  step  t,  the  final  versions  of  the  discretized

equations for conservation of mixture volume are obtained:
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The terms inside the parenthesis on the left-hand side of equation (6.25) constitute the

volumetric net outflow. The first term on the left-hand side is particularly useful: if local

differences in mixture densities exist, which are not caused by phase change, but say by

differences in temperatures, the equation would not conserve mass, hence inherently

resulting in erroneous mass balance; the first term provides a way to correct the mass

balance.
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6.3.3 Discretization of the momentum equations for SIMPLE

The discretization of the momentum equations is presented only for u-momentum,

momentum in x-direction, since the discretization procedure is analogous in all the three

directions. The discretized momentum equations for y and z-directions are presented in

appendix B. For the sake of clarity the derivation of viscous terms has been excluded from

this discussion and can be seen in appendix A.

The derivation starts with the conservative form of conservation of momentum, equation

(4.6). The conservative form of u-momentum, without the viscous force terms on the right-

hand side, is given through
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Equation  (6.26)  is  integrated  over  the  control  volume  and  time  step  t. Temporal

discretization is presented first.

6.3.3.1 Temporal discretization

Temporal discretization is quite straightforward compared to spatial discretization: the time

rate of change of control volume u-momentum, the first term on the left-hand side of

equation (6.26), is presumed to be constant within the time step while fully implicit

discretization is chosen for other variables. Values at the beginning of the time step are

referred to with a superscript o, for old, and the variables without superscripts are

considered to represent the values at the end of the time step.
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6.3.3.2 Spatial discretization

The spatial discretization is performed by integrating equation (6.28) over the u-control

volume shown in Figure 6.5. Backward staggering has been used to create the indexing of

the velocity grid; small indexes (i,  j,  k), which denote the faces, the locations of the

velocities, are set before the capital indexes, (I, J, K), denoting the control volume centers.

The mass flow rates at each boundary (Fe, Fw, Fn, etc.) of the u-control volume are handled

according to the upwind differencing scheme, which means that the densities are taken

from the node upstream of the interface.

Figure 6.5: A u-control volume and its neighboring velocities.

Integration of the time dependent term, first term on the left-hand side of equation (6.28),

and the forces acting on the fluid in x-direction, the terms inside the square brackets on the

right-hand side of equation (6.28), is performed first.
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The volume integrals of the momentum transfer terms, the terms inside the square brackets

on the left-hand side of equation (6.28), are transformed into surface integrals over the u-

control volume faces by implementing the divergence theorem and integrated over the

surface area. Integration over the surface of the control volume yields the net outflow of u-

momentum:
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The subscripts m, in equation (6.31) denoting values of the mixture of phases, are dropped

in the last stage to avoid multiple subscripts. The mass flow rates at the u-control volume

faces, presented below, are handled according to the upwind differencing scheme: the

densities are taken from the node upstream of the interface.
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Notation KjIv ,,1−  means maximization between KjIv ,,1−  and zero; ( )0,max ,,1 KjIv − . It can be

seen, from equation (6.31) and equations (6.32) through (6.37), that the momentum

transfer terms are nonlinear in terms of velocity. To make solution possible, the

momentum transfer terms have to be linearized. In most implicitly formulated iterative

methods the velocities from which the mass flow rates at the boundaries are calculated, the

velocities in equations (6.32) through (6.37), are taken from the previous iteration, and the

velocities that are conveyed by the mass flow rates are solved, the velocities that are

multiplied by the mass flow rates in the last stage of equation (6.31).

The u-components of the velocities at the u-control volume boundaries in equation (6.31)

have to be considered next. One approach is to assume that the velocities at the boundaries

are merely averages of the adjacent nodes. However, perhaps a better approach is to take

the  values  of  the  velocities  from upstream of  the  boundaries  letting  the  mass  flow rates,

calculated from the velocities of the previous iteration, determine the direction of the flow

at the interfaces. The latter approach leads to the following two forms:
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or
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These two seemingly different forms are in fact equivalent; the maximizations are merely

performed differently. The form in equation (6.39) is equivalent to the 1-dimensional

representation in (Versteeg & Malalasekera 2006, pp. 146-147) though the derivation

procedure is quite different.  When the results of equations (6.29), (6.30), and (6.39) are

substituted into the temporally discretized equation (6.28) the momentum equation for x-

direction can be expressed through
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The terms in equation (6.40) can be rearranged so that all the terms containing velocities

ui,J,K are moved to the left-hand side and the others to the right-hand side of the equation.

Thus,
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where
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Finally, if the coefficients of velocities are marked (ai,J,K, ai-1,J,K,… ), equation (6.41) can be

written in a more compact form:
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where the coefficients of velocities are given through
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6.4 Discretization for the direct method in PORFLO

The procedure of the direct method for pressure-velocity solution implemented in

PORFLO is presented in this section. There were three subroutines in PORFLO for

pressure-velocity solution before this thesis, which all implemented the same direct

method; only the solution of the resulting system of equations was done differently. These

subroutines were originally intended for particle bed simulations, in which the solution of

pressure and velocity fields is in many ways less complicated than in BWR fuel bundle

geometry, since the effects of diffusion and momentum convection in the cross flow

direction can be ignored in momentum equations governing the flow in particle beds.

Nevertheless, these new features have been implemented in the old solution procedure.
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The direct method for pressure-velocity solution in PORFLO combines the conservation

equations for mixture mass with the three mixture momentum equations to obtain a single

system of equations for pressure. The pressure equations have been formulated to be

slightly compressible, which under BWR conditions is questionable. Solution of the

pressure equations by iterative solvers is facilitated by this formulation, however, the time

accuracy is most likely impaired. After the pressure field is obtained, it is used to derive

the velocity fields algebraically. Since the derivation of the discretized equations used in

the direct method for pressure-velocity solution in PORFLO is lengthy and the scope of

this thesis is more on representing the work done during this thesis, the discretized forms

are merely given or the derivation is presented only partially.

6.4.1 Discretized forms of the volume conservation equations

To  be  precise,  the  form  of  the  conservation  equations,  which  are  combined  with  the

momentum equations in PORFLO, is actually conservation of mixture volume.

Nevertheless, the formulation has been started from conservation equations for vapour and

liquid mass. The final form of the discretized equation for conservation of mixture volume

is given through
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Superscript o is used to refer to the values at the beginning of the time step and the

variables without superscripts are taken from the end of the time step, whenever possible.

The first term on the left-hand side of the equation constitutes the change in volume due to

changes in control volume pressure, and the terms inside the square brackets constitute the

compressibility of the two-phase fluid. The second, third, and fourth terms on the left-hand
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side form the volumetric net outflow. The only term on the right-hand side represents the

change in mixture volume due to phase change.

6.4.2 Discretized forms of the momentum equations

Unlike the discretization procedure for the iterative methods, the discretization of the

momentum equations for the direct method in PORFLO starts with the non-conservative,

or primitive, forms of the momentum equations. The non-conservative form of u-

momentum, momentum in x-direction, without the viscous terms is shown below.
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Equation (6.47) is integrated over the control volume, shown in Figure 6.6, and time step
t.

Figure 6.6: U-control volume and its surrounding velocities.
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Notation iF  means maximization between Fi and zero; max(Fi, 0). The fully implicit

discretization scheme has been used in integration: superscript o denotes the values at the

beginning of the time step and the variables without superscripts are considered to be the

values at the end of the time step.

In the non-conservative formulation, the mass flow rates in each direction of the coordinate

axes are averaged over the u-control volume and assumed to go through both of the faces

perpendicular to the direction of the mass flow rate. Mass flow rates Fj are calculated using

velocities vI,j,K, vI-1,j,K, vI,j+1,K, and vI-1,j+1,K, Fk are calculated using wI,J,k, wI-1,J,k, wI,J,k+1, and

wI-1,J,k+1, and Fi are calculated using only ui,J,K. The mass flow rates Fi, Fj, and Fk in u-

momentum equations, equation (6.48) are given through
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The direct method in PORFLO is formulated using mixture flow rates, Jm, instead of

velocities. Equation (6.48) is rearranged so that the terms containing the central velocity

ui,J,K are moved to the left-hand side and all the other terms to the right-hand side of the

equation. Then, the velocities are transformed into flow rates using the flow areas the

particular velocity goes through.
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6.4.3 Combining the volume conservation and momentum equations

In the current version of the direct  method for pressure-velocity solution in PORFLO the

pressure equation, obtained by combining the volume conservation and momentum
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equations, is solved only once during each time step. Due to both the nonlinearity of the

momentum  equations  and  the  fact  that  information  about  the  direction  of  the  flow  is

needed when calculating the mass flow rates, some values have to be known, hence the

pressure equation can not be solved fully implicitly, even though fully implicit

discretization has been used to derive the discretized equations. As the pressure equation is

solved only once during each time step, these known values are taken from the beginning

of the time step, which makes the overall solution procedure more explicit and therefore

stringent to Courant’s criteria.

To combine the volume conservation and momentum equations, the central flow rates of

each momentum equation are solved and substituted into the volume conservation

equations. The central flow rate (Jm)i,J,K of equation (6.52) is solved by dividing both sides

of the equation by the coefficient of the central flow rate. All the variables on the left-hand

side of equation (6.52) which are included in terms that do not contain pressures, as well as

the variables in the coefficient of the central velocity, are given values from the beginning

of the time step, hence they can be combined and handled as a constant, ci,J,K. Furthermore,

if the terms inside the brackets in the coefficients of the central flow rates in u-momentum

equations are denoted as ai,J,K, the central flow rate (Jm)i,J,K  can be solved:
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The momentum equations in other directions are handled similarly:
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Equations (6.53), (6.54), and (6.55) are written for each flow rate at the boundaries of the

pressure node and substituted into the volume conservation equation, (6.46), to yield an

equation for the pressure:
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The terms are rearranged to obtain the final form of the pressure equation:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) o
,,

,,

l

l

g

g

,,,,

,,lg
,,1,,,,,1,,,,,1,,

1,,
,,

2
,,,,

1,,
1,,

2
1,,1,,

,1,
,,

2
,,,,

,,1
,1,

2
,1,,1,

,,1
,,

2
,,,,

,,1
,,1

2
,,1,,1

,,

,,

l

l

g

g

,,,,

,,

2
,,,,

1,,

2
1,,1,,

,,

2
,,,,

,1,

2
,1,,1,

,,

2
,,,,

,,1

2
,,1,,1

1

11

1

KJI

KJI

KJIKJI

KJI

KJIkJIkJIKjIKjIKJiKJi

KJI
kJI

k
KJI

k
KJI

KJI
kJI

k
KJI

k
KJI

KJI
KjI

j
KJI

j
KJI

KJI
KjI

j
KJI

j
KJI

KJI
KJi

i
KJI

i
KJI

KJI
KJi

i
KJI

i
KJI

KJI

KJI

KJIKJI

kJI

k
KJI

k
KJI

kJI

k
KJI

k
KJI

KjI

j
KJI

j
KJI

KjI

j
KJI

j
KJI

KJi

i
KJI

i
KJI

KJi

i
KJI

i
KJI

p
ppt

V

cccccc

p
a

A
p

a
A

p
a

A
p

a
A

p
a

A
p

a
A

p
ppt

V
a

A
a

A

a
A

a
A

a
A

a
A













∂
∂−

+
∂
∂

∆
+











−Γ+−+−+−=

−−

−−

−−



















∂
∂−

+
∂
∂

∆
+++







+++

+++

−+
+

++

−+
+

++

−+
+

++

+

++

+

++

+

++

ρ
ρ

αρ
ρ
αε

ρρ

εε

εε

εε

ρ
ρ

αρ
ρ
αεεε

εεεε

 (6.57)

It will become evident in the next chapter that the pressure equation of the direct method in

PORFLO bears a strong resemblance to the pressure equation of the SIMPLER algorithm.

After the pressure field is solved, the flow rates are calculated from equations (6.53),

(6.54), and (6.55).
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6.5 Discretization of the energy conservation equations

Recalling the enthalpy equations for vapour and liquid phase presented previously:
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where wgq ′′′ heat rate from the fuel rod to vapour per unit volume [W/m3],

lgq ′′′ heat rate from liquid to vapour per unit volume [W/m3] and

wlq ′′′ heat rate from the fuel rod to liquid per unit volume [W/m3].

As before with the other conservation equations discussed, the conservation equations of

vapour and liquid are integrated over the control volume and time step to obtain the

discretized forms. Fully implicit time discretization is chosen, and the time rate of change

term is presumed to be constant during the time step. The variables without superscripts

are considered to be the values at the end of the time step; t + t. Temporal integration is

performed first. For vapour:
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And for liquid:
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Spatial integration is performed over the control volume in Figure 6.4. The transient and

source terms are integrated first. For vapour:
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And for liquid:
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If the local values of void fraction and the densities of the phases at the end of the time step

are unknown, which is the case when the void fractions and material properties are solved

only  once  during  the  time step,  values  at  the  beginning  of  the  time step  have  to  be  used

instead. By doing so, the solution procedure as a whole becomes more explicit. If the

solution of the enthalpy equations, void fractions and material properties is moved inside

the SIMPLE iteration loop, the enthalpy equations could be solved during each SIMPLE
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iteration. Then the values at the end of the previous iteration could be used to approximate

the values at the end of the time step. Iterative solution over the entire solution procedure,

together with the subroutine that implements the SIMPLE family of algorithms, is

presented in section 8.3.

The divergence theorem is once again applied to transform the volume integrals of the

convective terms, in equations (6.60) and (6.61), into surface integrals over the faces of the

control volume. The implementation of the divergence theorem on the convective terms of

the temporally integrated conservation equation for vapour enthalpy, equation (6.60) is

presented below.
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The separate terms consist of the mass flow rate of vapour times the enthalpy at each

boundary of the pressure node. The values of the enthalpies at the boundaries are defined

by the direction of the mass flow rate, according to the upwind differencing scheme. When

all the results of the spatial integration for the vapour phase, equations (6.62), (6.63) and

(6.66), are combined, after some algebra the final form of the discretized equation for

conservation vapour enthalpy is given through:
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where
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( ) ( )
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,,g,,,,,,g αρε= (6.74)

The vapour mass flow rates at the boundaries, (Ge, Gw, Gn,  … ),  are  referred  to  with  a

subscript  according  to  the  direction  of  the  boundary  in  relation  to  the  center  point  of  the

node. Notation eG  means maximization between the vapour mass flow rate at the

boundary east of the center point, Ge, and zero.

When the same procedure is done with the equations of the liquid phase, the discretized

form of the conservation equation for liquid enthalpy is obtained.
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7 THE SIMPLE FAMILY OF ALGORITHMS

As mentioned above in Chapter 5, SIMPLE, Semi-Implicit Method for Pressure-Linked

Equations, algorithm is an iterative method for pressure-velocity solution, in which the

pressure and velocity fields are coupled through pressure corrections. The pressure

corrections are used to obtain improved values for pressures and velocities at the end of

each iteration. Iteration is continued until the pressure and velocity fields satisfy each

other.

There  are  two  distinctively  different  version  of  the  SIMPLE  algorithm:  steady-state  and

transient. The steady-state SIMPLE algorithm is easily derived from its transient

counterpart, by omitting the time dependent terms. Although steady-state results are

presented in Chapter 10, the form of the SIMPLE algorithm implemented in PORFLO is in

fact transient, since the original solution procedure in PORFLO was also transient.

The SIMPLE algorithm, upon which the other algorithms of this group are based, was first

introduced by S. V. Patankar. Presentation of the SIMPLE algorithm can be found in

(Patankar 1980, pp. 113-131). Since then, several minor adjustments have been proposed,

to further improve the algorithm, many of which are referred to with an additional suffix,

SIMPLEC  for  instance.  The  base  of  the  SIMPLE  algorithm,  however,  has  remained

relatively unchanged through the years. Another fact that indicates the usefulness of the

SIMPLE algorithm is its relatively recent implementations in multi-phase CFD codes: at

least Fluent versions 6.0 and above include Phase Coupled SIMPLE algorithm, presented

in (Vasquez & Ivanov 2000), as an optional solution method.

The SIMPLE algorithm is presented in the next section, and after that the modifications

made  in  SIMPLER  and  SIMPLEC  explained.  As  a  part  of  this  thesis  a  subroutine  was

created, which implements the three SIMPLE variants presented in the following sections.
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7.1 The SIMPLE algorithm

The SIMPLE algorithm uses the discretized equations for mixture mass and momentum to

formulate a correction for the pressure field. The pressure corrections are needed, since the

velocity field that results from the solution of the momentum equations does not

necessarily satisfy continuity. The pressure correction is a way to correct the imbalances in

the conservation of mass, or volume, depending on the conservation equations the pressure

corrections are based on.

For the sake of clarity and brevity, the viscous terms have been excluded from the

equations, since it’s quite straightforward to include them in the velocity coefficients of the

momentum equations. The discretized conservation equations for mixture momentum can

be presented for x, y and z-direction respectively as follows:
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SIMPLE algorithm starts with a guessed pressure field p* and guessed velocity fields u*,

v*and w*, which are used to calculate the velocity coefficients (ai,J,K, ai-1,J,K, etc.), and the

momentum source terms in equations (7.1) through (7.3). The discretized momentum

equations, (7.1) through (7.3), are solved to obtain improved velocities u**, v** and w**,

shown for x-direction below.

( ) i
KJI

i
KJI

i
KJIKJIKJIKJiKJiKJiKJiKJiKJi

KJiKJiKJiKJiKJiKJiKJiKJi

cAppuauaua

uauauaua

,,,,,,
*

,,1
*

,,
**

1,,1,,
**

,1,,1,
**

,,1,,1

**
1,,1,,

**
,1,,1,

**
,,1,,1

**
,,,,

+−−+++

++=

−++++++

−−−−−−

ε
 (7.4)

Corrected values and corrections are related as shown below:

'* ppp += , (7.5)

'** uuu += , (7.6)
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'** vvv +=  and (7.7)

'** www += . (7.8)

Here,  superscript  ´  denotes  the  correction  and  the  variables  without  superscripts  are  the

corrected values of the variables in question. The corrected pressure and velocity fields

have  to  satisfy  the  momentum  equations  as  well  as  the  guessed  fields.  To  formulate

equations for the corrections the momentum equations for the improved velocities are

subtracted from the momentum equations for the corrected fields.

For x-direction, subtracting (7.4) from (7.1) gives
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It is seen that the terms in the parentheses are the corrections p´, in equation (7.5), and u´,

in equation (7.6), defined above. Substituting the corrections into equation (7.9) leads to

the following form:
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At this point, an approximation is introduced to simplify the velocity correction: the effects

of  the  neighboring  velocity  terms  on  the  velocity  correction  are  neglected.  After  the

neighbouring velocity terms are omitted, the velocity correction can be solved from

equation (7.10).
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Applying the velocity correction, (7.11), back to equation (7.6), the corrected velocities for

x-direction can be obtained.
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Corrected velocity components for other directions can be derived using the same

procedure.
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The equations for corrected velocities contain pressure corrections. In most of the SIMPLE

algorithms intended for single-phase flow, such as the original version proposed by

Patankar (1980, pp. 113-131), the mass conservation equation is used together with the

continuity equation to provide these pressure corrections. The same procedure is followed

here, with the exception that conservation equations for mixture mass and momentum are

used, since two-phase flow is in question. An alternative approach using mixture volume,

instead of mixture mass, as the basis for the pressure correction equations is presented in

section 8.1. The discretized forms of conservation equations for mixture mass were given

in equation (6.16) and are repeated here in equation (7.15) for convenience.

( )

( )[
( )]

( )[
( )]

( )[
( )] 0,,,,,,,,1,,,,

1,,1,,1,,,,1,,

,,,,,,,,,1,,,

,1,,1,,1,,,,1,

,,,,,,,,,,1,,

,,1,,1,,1,,,,1

o

,,,,

=−+−

−++

−+−

−++

−+−

−++

∆
−

−

++++

−

++++

−

++++

k
KJIkJIKJIkJIKJI

k
KJI

kJIKJIkJIKJI
k

KJI

j
KJIKjIKJIKjIKJI

j
KJI

KjIKJIKjIKJI
j

KJI

i
KJIKJiKJIKJiKJI

i
KJI

KJiKJIKJiKJI
i

KJI

I,J,KI,J,K
KJIKJI

Aww

ww

Avv

vv

Auu

uu

t
V

ρρε

ρρε

ρρε

ρρε

ρρε

ρρε

ρρ
ε

(7.15)

To clarify the formulation, the cumbersome maximization terms are combined and the

densities at the boundaries are denoted with m, referring to the mixture densities at the

boundaries.
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Substituting the corrected velocities, (7.12), (7.13) and (7.14), into the discretized

continuity equation (7.16) yields:
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Here, coefficients (ai,J,K, ai+1,J,K,… ) are the central coefficients of the corresponding

momentum equations; ai,J,K and ai-1,J,K are taken from u-momentum equations, aI,j,K and

aI,j+1,K from  v-momentum  equations,  and aI,J,k and aI,J,k+1 are  taken  from  w-momentum

equations. The mixture densities at each boundary of the pressure node are handled

according to the upwind differencing scheme: the latest values of the velocities at each

boundary are used to provide the direction where the densities are taken from. With some

manipulation the pressure correction equation, (7.17), can be rearranged so that the

pressure terms are shown separately:
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Using coefficients (bI,J,K, bI-1,J,K,… ) for the pressure corrections and denoting the terms

inside the brackets on the right-hand side with '
,, KJId  leads to the final form of the pressure

correction equation:

'
,,

'
1,,1,,

'
1,,1,,

'
,1,,1,

'
,1,,1,

'
,,1,,1

'
,,1,,1

'
,,,,

KJIKJIKJIKJIKJIKJIKJI

KJIKJIKJIKJIKJIKJIKJIKJI

dpbpbpb

pbpbpbpb

++++

++=

−−++−−

++−−++ , (7.19)

'
,,

'
nbnb

'
,,,, KJIKJIKJI dpbpb += ∑ . (7.20)

The pressure corrections, which are obtained by solving the system of equations (7.19), are

used to correct the pressure and velocity fields using equations (7.5), (7.12), (7.13) and

(7.14). The corrected pressures and velocities are in turn used as the guessed values in the

beginning of the next iteration. Iteration is continued until convergence is established. The

main phases and the sequence of operations of the transient SIMPLE algorithm are shown

in Figure 7.1.
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Figure 7.1: The transient SIMPLE algorithm.
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7.2 The SIMPLER algorithm

The most profound drawback of the SIMPLE algorithm is that it doesn’t preserve a good

initial guess for the velocity field, if the pressure field is guessed poorly. In the SIMPLER,

SIMPLE Revised, algorithm the discretized continuity equation and the momentum

equations are used to derive an additional equation for pressure, which is solved first to

provide a more accurate guess for the pressure to be input into the discretized momentum

equations. The rest of the procedure is the same as in SIMPLE, with the exception that the

pressure correction is used to update only the velocities. In other words, compared to the

SIMPLE algorithm, SIMPLER employs a more accurate form for the pressure to preserve

a good initial guess for the velocity. The SIMPLER algorithm is presented in (Patankar

1980, pp. 131-133).

The discretized momentum equations (7.1), (7.2) and (7.3) are rearranged as follows:
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At this point, the first terms on the right-hand sides of the equations are defined as pseudo-

velocities
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Applying the pseudo-velocities in the discretized momentum equations, (7.21), (7.22) and

(7.23), leads to the following forms:
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Next step is to combine these with the continuity equation for conservation of mixture

mass to obtain the pressure equation, shown below.
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The equation (7.30) can be further rearranged.
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Using coefficients (bI,J,K, bI-1,J,K,… ) for discretized pressures leads to the final form of the

pressure equation:
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,,1,,1,,1,,1,,,1,,1,

,1,,1,,,1,,1,,1,,1,,,,

++++

++=

−−++−−

++−−++ , (7.32)

KJIKJIKJI dpbpb ,,nbnb,,,, += ∑ . (7.33)

This pressure field is used as an input for the SIMPLE algorithm, the rest of the procedure

is unaffected, with the exception that the obtained pressure correction is only used to

correct the velocities, not the pressure. The sequence of operations for the transient

SIMPLER algorithm is presented in Figure 7.2.
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Figure 7.2: The transient SIMPLER algorithm
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7.3 The SIMPLEC algorithm

The SIMPLEC, SIMPLE Consistent, algorithm follows the same approach as SIMPLE,

with the exception that the effect of the neighbouring velocity corrections on the pressure

correction of the central node is attempted to be included in the pressure correction

equations. In SIMPLE the whole neighbouring velocity correction terms were dropped

from the equation, whereas in SIMPLEC the neighbouring velocity corrections are

assumed to be so close to one another that the coefficients can be summed together.

Approximations introduced in SIMPLEC are shown below for x-direction:
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Velocity corrections for other directions can be obtained using the same approach.

Corrected velocities for all three directions are given through:
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The pressure correction equation is otherwise the same as in SIMPLE, but the coefficients

of pressure corrections contain the sum of the neighbouring coefficients of the momentum

equation as well.
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If  the  coefficients  of  pressure  corrections  are  denoted  as  (bI,J,K, bI-1,J,K,… )  and  the  terms

inside the brackets on the right-hand side of the equation are denoted as '
,, KJId .

'
,,

'
1,,1,,

'
1,,1,,

'
,1,,1,

'
,1,,1,

'
,,1,,1

'
,,1,,1

'
,,,,

KJIKJIKJIKJIKJIKJIKJI

KJIKJIKJIKJIKJIKJIKJIKJI

dpbpbpb

pbpbpbpb

++++

++=

−−++−−

++−−++ , (7.42)

'
,,

'
nbnb

'
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Otherwise the SIMPLEC algorithm follows the same procedure as SIMPLE, only the

coefficients of the pressure corrections and the velocity correction equations are altered.

The main steps of the transient SIMPLEC algorithm are shown in Figure 7.3.



77

Figure 7.3: The transient SIMPLEC algorithm.
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7.4 Pressure and velocity under-relaxation

The pressure and velocity corrections in the SIMPLE family of algorithms need to be

under-relaxed to attain stabile convergence; the corrections are not used in its entirety, only

a fraction of the correction or the iteratively improved value is used. The pressure

correction is under-relaxed with an under-relaxation factor p as follows:

'
,,

*
,,

new
,, KJIpKJIKJI ppp α+= (7.44)

where new
,, KJIp corrected pressure [Pa],

*
,, KJIp old pressure [Pa],

'
,, KJIp pressure correction [Pa], and

pα under-relaxation factor for pressure [-].

The under-relaxation factors have values between [0, 1], however the corrections could be

over-relaxed by choosing a value greater than one. The SIMPLE variants require different

under-relaxation factors for pressure: while SIMPLE requires moderate under-relaxation,

very little, if any, is needed in SIMPLEC. Due to the fact that pressure corrections are not

used in SIMPLER to correct the pressure, no under-relaxation is needed for pressure either.

The velocities are corrected with the pressure corrections through the following equations:
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where u, v, w are the x, y and z-components of velocity respectively [m/s],
** denotes the values after the solution of the momentum

equations.

The velocities are under-relaxed with a factor u. All the velocity components are under-

relaxed with the same factor, despite the fact that different under-relaxation factors could

be defined for each direction. Velocity under-relaxation is shown for x-direction:
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( ) 1
,,,,

new
,, 1 −−+= n

KJiuKJiuKJi uuu αα (7.48)

where unew under-relaxed new velocity [m/s]
u corrected new velocity [m/s]
un-1 corrected velocity at the previous iteration [m/s].

The momentum equations can be modified to contain the velocity under-relaxations, so

that the under-relaxations do not have to be performed separately. The velocities that are

input to the momentum equations have been corrected using the pressure corrections in

equations (7.45), (7.46) and (7.47). Momentum equation for x-direction can be written as
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i
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To get the under-relaxed form of the momentum equation, equation (7.49) is first divided

by the coefficient of the central velocity node, ai,J,K.
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Then, both sides of the momentum equation are multiplied by the factor u and after that

( ) 1
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KJiu uα  is added to both sides:
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It can be noticed that the left-hand side of the equation is just the under-relaxed new

velocity:
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a
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As the momentum equations are solved in the beginning of each iteration, the neighbouring

velocities, in equation (7.52), are taken from the end of the previous iteration without

relaxation and 1
,,

−n
KJiu  is the velocity obtained two iterations earlier without relaxation.
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8  DEVELOPMENT OF THE CODE

When developing new code or applying old codes to new conditions, much of the coding

effort is spent on testing and debugging the code –this work makes no exception. The first

few months of development were spent on getting the simulations started. The combined

effects of the errors, both in the older main code and in the subroutine which implements

the SIMPLE variants, complicated the development in the beginning. The errors in the

code are harder to backtrack when the effects of several errors are combined; in addition

some of the errors only manifest themselves after the simulation reaches a certain point,

and sufficient amount of void fraction has been created, for example.

Apart from the obvious bugs in the code, problematic behaviour inherent to the solution

algorithm or the disposition of the governing equations was encountered on few occasions:

these findings are discussed in this Chapter.

8.1 Basis for the pressure correction equation

The single-phase versions of the SIMPLE algorithm use the mass conservation equation to

formulate the pressure correction equation, as presented in (Patankar 1980) and (Versteeg

& Malalasekera 2007), but due to the relative differences in phase velocities, the

conservation equation for mixture mass in 5-equation models based on mixture density is

not  accurate;  a  topic  which  was  briefly  visited  in  section  6.3.1.  A  term  needs  to  be

introduced to correct the inherent error in mass balance resulting from the use of mixture

density.

During the development of the code it became apparent that as soon as sufficient boiling

occurs the pressure correction equation based on conservation of mixture mass can no

longer provide velocity fields that satisfy continuity and the resulting mass errors increase

gradually, even though the mass errors accumulated up until a certain time step are

corrected during the next. In an attempt to counter this, the pressure correction equations

were formulated again starting from the conservation of mixture volume instead of mass.
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The conservation equation for mixture volume is not flawless either: if local differences in

mixture densities exist, the mass balance is not preserved, since the conservation equation

for mixture volume only preserves the volume of the mixture and has no bearing on the

conservation of mass. However, the resulting error in mass balance can be corrected, as

opposed to the previously discussed formulation based on conservation of mixture mass. It

seems that the crucial factor that prevents the mass conservation equation from correcting

itself is the fact that the correction term itself contains the flawed mixture density; the

correction term of the volume conservation equation, on the other hand, does not contain

the mixture density, nor do the other terms in the equation for that matter.

If the velocities at each boundary of the pressure node in the conservation equation for

mixture volume, equation (6.25), are replaced with the corrected velocities in equations

(7.12), (7.13) and (7.14) the pressure correction equations based on conservation of

mixture volume are obtained.
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Equation (8.2) is rearranged so that the terms containing the pressure corrections remain on

the left-hand side, the terms containing the pressure correction of the central node, '
,, KJIp ,

are combined and the rest is moved to the right-hand side of the equation.
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The right-hand side of the pressure correction equation is essentially the conservation

equation for mixture volume, which is comprised of the volumetric flow rates at the

boundaries, the change in mixture volume due to boiling and the time rate of change in

mixture volume VI,J,K t. The time rate of change in mixture volume is used to introduce

the effect of the explicitly calculated mass error correction into the pressure correction

equations. At the end of the time step, the mass inventories of both liquid and vapour in

each node are given. These can be used together with the densities of the phases to

calculate the volume the mass content of the node requires. The difference of the required

volume and the fluid volume of the node is used as a correction term in the pressure

correction equations as follows:
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The term containing the square brackets in equation (8.4) is called mass error, despite the

fact that it has the same units as volumetric flow rates, m3/s. It is nevertheless called mass

error since it is derived from the vapour and liquid masses inside the control volume at the
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end of the previous time step. The portion of the mass error corrected during the time step

is controlled by the factor me.

8.2 Diagonal dominance of the pressure correction equations

The most profound difficulty in the solution of SIMPLE-type algorithms formulated

assuming incompressible flow, from a strictly numerical perspective, is the weakly

diagonally dominant coefficient matrix of the pressure correction equations, which makes

iterative solution of the pressure correction equations challenging. The pressure correction

equations, or pressure equations for that matter, bear a noticeable resemblance to Poisson

equations, hence they are frequently called the pressure Poisson equations (Wesseling

2001, p. 251). A two-dimensional Poisson equation is given in Kreyszig (1999, p. 962)

which can easily be expanded to a three-dimensional domain:

( )zyxf ,,2 =∇ u . (8.5)

To point out the similarity between pressure correction equations and Poisson equations,

the pressure correction equations are examined briefly. The pressure correction equations,

as used in this thesis, begin with the conservation of mixture volume
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In the incompressible formulation the time dependent term, the first term on the left-hand

side of equation (8.6), is constant, independent of pressure, as is the only term on the right-

hand side. The second, third and fourth terms on the left-hand side constitute the

divergence of velocity. After combining the constant terms into c, equation (8.6) can be

written as follows:

c=⋅∇ u (8.7)

The next step is to introduce the effects of pressure corrections on each velocity component

to the conservation equation for mixture volume. If each velocity component of u is

replaced with the essence of the corrected velocities, equations (7.12) through (7.14), (note

that the corrections (7.12) through (7.14) are discretized while equation (8.7) is not) the

following form is obtained:
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Divergence of the known velocity components, which constitutes the volumetric net

outflow, is moved to the right-hand side and combined with the constant c.  The  terms

inside the parentheses containing the pressure corrections are nothing more than the spatial

derivatives of pressure corrections in each direction of the coordinate axes; hence equation

(8.8) is reduced to the following form:

cpp =∇=∇⋅∇ '2' (8.9)

The constant term c, which is essentially the sum volumetric net outflow and the correction

terms over each node, is a function of space, ( )zyxfc ,,= , as in equation (8.5).

When the pressure Poisson equation obtained by assuming incompressible flow is

discretized over a three-dimensional domain, a set of equations, presented previously in

equation (8.3), results:
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It is seen that the diagonal term, the terms inside the square brackets on the left-hand side,

consists of the sum of off-diagonal entries: the consequences of this will be explained
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shortly. The pressure correction equations can be rewritten compiling the diagonal and off-

diagonal terms into a coefficient matrix A.

bx =A (8.11)

where A coefficient matrix of pressure corrections
x a vector containing the pressure corrections
b the entries on right-hand side of the pressure correction

equations.

In order to specify the type of the coefficient matrix of the pressure correction equations,

some definitions need to be introduced.

According to Kreyszig (1999, p. 922), a diagonally dominant matrix A = [ajk] is an n ×  n

matrix such that

∑
≠

=≥
jk

jkjj njaa ,,1 K (8.12)

where  the  sum  is  taken  over  all  the  off-diagonal  entries  in  row j. The matrix is strictly

diagonally dominant if there is a strong inequality in equation (8.12) for all j.

By definition, (Kreyszig 1999, p. 923), an irreducible matrix A cannot be brought into the

form













F0

CB
(8.13)

by interchanging rows or columns (or both); here 0 is a zero matrix and B and F are any

rr ×  and ( ) ( )rnrn −×−  matrices.

And finally, by definition in (Stewart 1998, p. 219) a matrix A is  said to be irreducibly

diagonally dominant if:

1. A is irreducible,

2. A is diagonally dominant with strict inequality in at least one row (in eq. 8.12).
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According to these definitions the coefficient matrix of the pressure correction equations is

irreducibly diagonally dominant, since it is irreducible and the sum of off-diagonal

entries  equals  the  diagonal  in  the  whole  domain  except  in  the  outlet,  where  the  diagonal

entries  are  greater  than  the  sum  of  off-diagonals.  Iterative  solution  of  systems

as bx =A with irreducibly or weakly diagonally dominant coefficient matrixes is well

known to be troublesome; small changes in the coefficient matrix A or the solution b

cause huge changes in the iteratively solved vector x ,  and vice versa. Truncation errors

make the matter even worse.

To facilitate iterative solution of the pressure correction equation, a small artificial increase

in the diagonal terms of the coefficient matrix in pressure correction equations was

proposed. Wesseling (2001, p. 240) provides a brief overview of the procedure which is

called the artificial compressibility method. Manipulation of the sort is only possible when

the  final  solution  of  the  converged  state  at  the  end  of  the  time  step  remains  unaltered.

While it is evident that, by artificially increasing the diagonal terms of the coefficient

matrix, the solution of the pressure correction equations after each iteration is altered, the

converged state at the end of the time step, however, remains the same, since the effect of

the artificial increase in the diagonal of the coefficient matrix approaches zero when the

pressure corrections approach zero, which is the case when approaching a converged

solution. In other words: the path to convergence is altered by artificially increasing the

diagonal dominance of the coefficient matrix, but the final solution of the flow field is not.

The pressure correction equations were solved using a direct solver, Gaussian elimination,

and the number of SIMPLE iterations needed to reach a converged solution was observed.

Though  the  goal  of  this  test  was  to  study  the  possibility  to  use  iterative  solvers  already

coded in  PORFLO,  and  the  usability  of  iterative  solvers  in  general,  a  direct  method was

used to eliminate the effect of convergence criterion of the iterative solver on the number

of SIMPLE iterations.

The tests revealed that a relative increase of approximately 1% in the diagonal entries

increased the number of SIMPLE iterations by a factor of 10-1000, depending on the flow

conditions. In a situation where most of the CPU-time is spent solving the pressure
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correction equations, this would mean that iterative solvers would have to be substantially

faster than direct methods, in order to gain any benefit from the artificial increase.

8.3 Increasing the implicitness of the overall solution

The former structure of the solution procedure in PORFLO, presented in Figure 4.1,

regardless of the choice between direct or iterative methods for pressure-velocity solution,

was non-iterative as a whole; meaning that, as the procedure advances, each stage of the

solution procedure is visited only once during the time step. Then, the values of many

variables, such as mixture densities, have to be taken from the beginning of the time step,

even though fully implicit discretization scheme was used to formulate the discretized

mass and momentum conservation equations. This increases the explicitness of the overall

solution procedure, and renders it more conditional on Courant’s criterion, which means

that the flow cannot travel more than the length of the node during the time step.

To make the solution procedure more implicit, an option was added which allows iterative

solution over the whole solution procedure when using the subroutine that implements the

SIMPLE family  of  algorithms.  In  essence  the  solution  of  all  the  variables,  temperatures,

densities, void fractions, mass flow rates and masses of the two phases, are brought inside

the SIMPLE iteration loop. The iterative solution procedure is shown in Figure 8.1.
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Figure 8.1: Iterative solution procedure in PORFLO. (cf. Figure 4.1)
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The iterative solution mode is more sensitive to disturbances and prone to oscillations,

since there are more variables that are updated during the iteration; more moving parts, so

to say. When using the iterative solution mode, shown in Figure 8.1, the void fraction

prediction is not needed; actually it may be an unnecessary source of disturbance.

Some tests have been performed to study the usefulness of the iterative solution mode,

which indicate that the iterative mode performs as well as the non-iterative mode when

using short time steps. Time steps longer than the Courant’s criterion suggests have not

been tested, even though fully implicit discretization combined with the iterative solution

mode should be able to handle them. Using equal time steps the iterative and non-iterative

solution modes converge after the same number of iterations, which indicates that with

short time steps the essence of SIMPLE-type algorithms, the pressure correction, limits the

rate of convergence, while changes in transported properties have little effect.

As  mentioned,  the  iterative  solution  mode  is  less  stabile  than  the  non-iterative  mode.

Oscillatory behaviour was encountered during the tests. While the definitive cause for this

behaviour  is  unknown,  it  seems  that  a  poor  choice  of  parameters  in  the  drift-flux  model

was at least partly responsible. If problems with stability persist, the transported properties,

such as mixture density and void fraction, could be under-relaxed in a similar manner the

velocities are under-relaxed at the end of each iteration.
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9 BWR FULL-SIZE FINE-MESH BUNDLE TESTS

Measurements  for  the  BFBT  (BWR Full-size Fine-mesh Bundle Tests) benchmark were

conducted in an out-of-pile test facility by Nuclear Power Engineering Corporation

(NUPEC). NUPEC has carried out void fraction measurement tests as a part of a national

project sponsored by the Japanese Ministry of International Trade (MITI). The BFBT

benchmark problems are based on a vast library of measurements under a full scale of

BWR operating conditions and several transients as well. (Inoue 1995, p. 629)

The detailed fine-mesh void fraction distribution and critical power data provided in the

BFBT benchmark lay a solid foundation for advanced understanding and modeling of the

two-phase flow phenomena in real BWR bundles and provide a great opportunity to assess

and compare the results of simulations with other participants. Until recently such a high

quality measurements of the void fraction distribution inside a real BWR geometry have

not been available, but under proprietary possession instead. As opposed to the prevailing

empirical approach, the development of more mechanistic models for the requirements of

the design concepts of future reactors require detailed measurements in order to elucidate

the separate mechanism leading to a certain result: the only way to improve the probability

of accurate results in untested conditions.

9.1 Description of the test facility

The test facility is shown in Figure 9.1. Demineralized water is used as a coolant, which is

circulated  by  the  circulation  pump  (1).  Three  valves  (3)  of  different  sizes  are  used  to

control the coolant flow. The coolant is preheated in a tubular preheater (4) before it flows

into the test section (5), which contains the test assembly. Water heats up in the test section

and forms a two-phase flow, which is directed to the separator (7). The steam separated

from the two-phase mixture in the separator is then condensed in the steam drum (8) by a

spray of subcooled water. A part of the condensed water is directed to the spray pump (10)

that drives the coolant through two air-cooled heat exchangers into the spray lines (9), the

rest is returned back to the circulation pump. The system pressure is controlled by four

valves of different sizes connected to the spray lines. The pressurizer (6) controls the

system pressure at low power levels. The maximum operating conditions for the test
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facility are 10.3 MPa in pressure, 315°C in temperature, 12 MW in heating power, and 33

kg/s in coolant flow rate. (Nuclear Energy Agency 2005, pp. 15-16)

Figure 9.1: Diagram of the test facility. (Nuclear Energy Agency 2005, p. 16)

The test section is a pressure vessel that contains a flow channel and the test assembly. The

test assembly consists of electrically heated rods, shown in Figure 9.2, that simulate the

fuel rods. Each of these rods can be individually heated to simulate the power profile of an

actual reactor. Five different types of test assemblies were used to simulate the effects of

different types of fuel bundles with different amount of unheated rods and different axial

power profile. A view of the test section is shown in Figure 9.3. (Nuclear Energy Agency

2005, pp. 15-16)
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Figure 9.2: Cross-sectional view of a heated rod. (Inoue 1995, p. 632)

Figure 9.3: Cross-sectional view of the test section. (Nuclear Energy Agency 2005, p. 16)
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9.2 Void fraction measurement

The void fraction measurement system consists of two different types of X-ray measuring

devices: The X-ray CT-scanner (Computed or Computerized Tomography) and the X-ray

densitometer, which are shown in Figure 9.4. The X-ray CT-scanner measures the void

fraction distribution at a point just above the heated length. The X-ray densitometers are

placed at three different locations along the heated length. (Nuclear Energy Agency 2005,

pp. 17-21)

Figure 9.4: Void fraction measurement system. (Nuclear Energy Agency 2005, p. 18)

Fine mesh void distributions were measured under steady-state conditions using the X-Ray

CT-scanner which was located at 5 cm above the heated length. The X-ray CT-scanner

consists of an X-ray tube and 512 detectors. In fine mesh void distribution measurements

the  CT-scanner  is  rotated  around  the  test  section  at  a  fixed  axial  position.  Complete

projection data are obtained with a 360° rotation around the test section. The channel walls

and  rods  at  the  path  of  the  X-ray  CT-scanner  are  made  of  Be  and  the  pressure  vessel  is
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made of Ti to reduce X-ray attenuation in the structures. The effects of two-phase flow

fluctuations are avoided by time-averaging the data of repeated measurements. The

measuring system is capable of a resolution as small as 0.3 mm times 0.3 mm. (Nuclear

Energy Agency 2005, pp. 17-21)

The X-ray CT-scanner is also used to measure the cross-sectional void fraction in transient

situations, in which case the scanner is not rotated but fixed. The cross-sectional void

fraction  is  averaged  over  nine  repetitions  of  the  same transient.  (Nuclear  Energy  Agency

2005, p. 17)

The X-ray densitometer measurements were performed at three different axial positions.

The X-ray beam was aimed between the rows of heated rods. One measurement was taken

of each gap between the rows. As the measurements were repeated nine times, the whole

cross-section of the bundle was covered. The data attained using this method is called

“Densitometer Chordal Averaged Void Fraction”, which were used to evaluate the axial

void fraction distribution and the bundle averaged void fraction. (Nuclear Energy Agency

2005, p. 17)
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10 SIMULATIONS

VTT has participated in the NUPEC BFBT benchmark and this thesis is closely related to

the work done during the benchmark. The objective of this thesis originally was to

simulate the steady-state exercises of the BFBT benchmark using the porous media model

PORFLO. Due to unexpected difficulties during the development of the code, the current

status of the program is not as far as expected at the beginning of this thesis, and thus the

benchmark exercises cannot be simulated using the full (8 ×  8) fuel bundle, but a smaller

(2 ×  2) fuel bundle is used instead.

The foremost limiting factor is the time needed for the simulations; the current code is not

parallelized in any way, so the simulations have to be performed on a single processor. In

addition  to  having  to  settle  for  the  use  of  a  single  processor,  the  only  solver  capable  of

solving the linear system of equations, the pressure correction equations formulated

assuming incompressible flow, already coded in PORFLO is based on Gaussian

elimination, which is both CPU and memory-intensive. To sum up: the time needed for the

simulations with this limitation reduces the maximum number of nodes to about 30,000.

Another limiting factor is the proportions of the fuel bundle; the length of the fuel bundle is

3.6 m, while the width of the channel box is 132.5 mm, which forces the length of the fuel

bundle to be divided into sufficiently large number of consecutive nodes. Therefore, a

compromise has to be made between the horizontal and vertical resolution of the grid. It

was proposed in the early stages of testing that, with the absence of a turbulence model, the

grid needed to be relatively much finer in the horizontal than in the vertical direction in

order to capture any cross-flow effects. It was decided that 18 nodes would be appropriate

for the horizontal direction, and the length of the fuel bundle, 3.6 m, was divided into 36

nodes for the parameter variations and into 90 nodes for the transient simulation, both of

which are presented below, to keep the number of the nodes manageable.

Now that the horizontal resolution is limited to 18 times 18 nodes, attempts to simulate the

BFBT benchmark exercises using the full (8 ×  8) fuel bundle were abandoned. This is

simply because the horizontal resolution, of 18 times 18 nodes, is not sufficient for the (8

×  8) fuel bundle, since each fuel rod and the annular flow channel surrounding it would



96

have to be described with only four nodes. If each subchannel is described using only four

nodes, calculations of phase separation and heat transfer would be pointless, since all the

variables would not have any gradients in the horizontal direction inside the fluid and, for

all practical purposes, the same results could be obtained with 1D calculations.

As soon as an iterative solver capable of solving the pressure correction equations is

included in PORFLO, the number of the nodes and the size of the calculation domain can

be  increased  and  the  horizontal  resolution  of  the  grid  can  be  refined.  At  the  moment

simulations with the SIMPLE-type algorithms using the full-size (8 ×  8)  fuel  bundle  are

out of reach.

10.1 Variations of the under-relaxation factors

Variations of the under-relaxation factors were performed on a (2 ×  2)  fuel  bundle.  The

calculation grid was constructed of 18 consecutive nodes in the horizontal directions and

36 in the vertical direction. A horizontal cross-section of the calculation grid fitted over the

(2 ×  2) fuel bundle and is presented in Figure 10.1. The channel box is 36.4 mm by 36.4

mm and the corners are rounded with a corner radius of 4 mm. The fuel rods are 12.3 mm

in diameter and the pitch is set at 16.2 mm.

Figure 10.1: A horizontal cross-section of the calculation grid.

36.4 mm

36.4 mm

12.3 mm

16.2 mm
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While the under-relaxation parameters were varied the rest of the parameters affecting the

solution were kept constant. The constant parameters and flow conditions are presented in

Table 10.1. The simulations were started from a previously simulated state, in which the

heating power had been kept constant at 140 kW for some time, to allow the temperatures

to settle. During the parameter variations, the power was linearly increased to 240 kW in

two seconds, after which the power level was maintained constant. The purpose of this

power transient was to provide more demanding conditions for the algorithms in order to

make any differences between the results more distinct.

Table 10.1: Constant parameters and flow conditions in parameter variations.
Parameter Value Unit

System pressure
(pressure at outlet) 60 bar

Mass flux at inlet 1500 kg/m2s
Inlet enthalpy 1100 kJ/kg
Inlet density 778,7 kg/m3

Heating power 





 ∆×+ kW240,

s
kW50kW140min t kW

Time step 0.002 s
Friction factor for horizontal flow 0.01 -

Friction factor for vertical flow 0.01 -

The number of iterations needed to reach a converged solution at the end of each time step

was observed throughout the simulations. Convergence at the end of the time step is

determined by observing the convergence criteria; two conditions need to be fulfilled: the

maximum residual of the mass conservation equation, or equally the right-hand side of the

pressure correction equation, has to be less than 10-13 kg/s and the sum of the residuals of

the mass conservation equation has to be less than 10-10 kg/s.

10.1.1 Variations of the under-relaxation factors in SIMPLE

The under-relaxation factor variations were performed in simulations that lasted two

seconds, the length of the power transient. The constant parameters presented above were

used  and  the  total  number  of  SIMPLE  iterations  to  complete  the  two  second  power

transient was calculated. The parameter variations and results are compiled in Table 10.2.
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Table 10.2: The total number of SIMPLE iterations at 2 seconds
after the start of the power transient.

Under-relaxation
factor for pressure

p

Under-relaxation
factor for velocities

u

Number of iterations
at 2 seconds

0.30 0.70 34,007
0.50 0.30 18,944
0.50 0.40 18,879
0.50 0.50 18,783
0.50 0.60 18,705
0.50 0.70 18,639
0.60 0.30 15,195
0.60 0.40 15,063
0.60 0.50 14,982
0.60 0.60 14,881
0.60 0.70 14,784
0.70 0.30 12,467
0.70 0.40 12,347
0.70 0.50 12,229
0.70 0.60 12,108
0.70 0.70 12,019

The number of iterations needed to obtain a converged solution at the end of each time step

remained relatively constant during the simulations, only a slight increase, of similar

proportion in each variation, was observed towards the end of the simulations, which

indicates a slight dependence to either increasing velocities or void fractions. It is seen,

from  Table  10.2,  that  the  cumulative  number  of  iterations  is  strongly  dependent  on  the

under-relaxation factor for pressure, p,  while  the  influence  of  the  velocity  under-

relaxation, u, is moderate compared to pressure under-relaxation. Increase in either the

under-relaxation factor for pressure or velocities decreases the cumulative number of

iterations. According to these results the most aggressive set of under-relaxation factors, p

= 0.7 and u = 0.7, converges the fastest.

10.1.2 Variations of the under-relaxation factors in SIMPLEC

The  under-relaxation  factors  for  pressure  were  varied  a  bit  differently  in  SIMPLEC,

compared to SIMPLE, since SIMPLEC requires very little, if any, pressure under-

relaxation. The under-relaxation factor for pressure was varied as 0.9, 0.95 and 0.99, while

the velocities were under-relaxed with a factor ranging from 0.5 to 0.8. The SIMPLEC

simulations lasted four seconds; hence the number of iterations at the end of the power



99

transient, at two seconds, is presented for comparison between SIMPLE and SIMPLEC.

The power level was kept constant at 240 kW after the two second mark; otherwise the

conditions stated for SIMPLE variations are applied in SIMPLEC simulations as well. The

under-relaxation  parameter  variations  and  results  at  the  end  of  the  power  transient,  at  2

seconds, and at the end of the simulation, 4 seconds, are compiled in Table 10.3.

Table 10.3: The total number of SIMPLEC-iterations at 2 and 4 seconds
after the start of the power transient.

Under-relaxation
factor for pressure

p

Under-relaxation
factor for velocities

u

Number of iterations
at 2 seconds

Number of iterations
at 4 seconds

0.90 0.50 10,277 21,361
0.90 0.60 10,177 21,241
0.90 0.70 10,059 21,093
0.90 0.80 9,886 20,826
0.95 0.50 9,395 19,482
0.95 0.60 9,266 19,328
0.95 0.70 9,167 19,200
0.95 0.80 9,044 19,045
0.99 0.50 8,555 17,830
0.99 0.60 8,499 17,656
0.99 0.70 8,441 17,522
0.99 0.80 8,327 17,386

As with SIMPLE variations above, a slight increase in the number of iterations needed to

obtain a converged solution was observed towards the end of the simulations, indicating a

slight dependence to either increasing velocities or void fractions, and again, the

cumulative number of iterations is strongly dependent on the under-relaxation factor for

pressure, p, while the effect of the velocity under-relaxation factor, u, is marginal.

Increase in either of the under-relaxation factors decreases the cumulative number of

iterations. Since divergent behaviour was not encountered, the use of the most aggressive

set of under-relaxation factors, p = 0.99 and u = 0.80, is suggested.

10.2 Transient simulation

The development of boiling two-phase flow and the transient behavior of the code were

studied in a test case, in which the mass flux at inflow was first accelerated from 150

kg/m2s to the desired level of 1500 kg/m2s, which corresponds to an acceleration of 0.2 to

2.0  m/s  in  the  flow  velocity.  After  the  flow  was  accelerated,  the  heating  power  was
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gradually increased to 240 kW. Otherwise, the constant parameters and flow conditions

presented in Table 10.1 are valid for this test case as well. The simulation was performed

using  the  SIMPLEC  algorithm  with  0.90  and  0.70  for  the  under-relaxation  factors  of

pressure and velocities, respectively. The calculation grid fitted over the (2 ×  2) fuel

bundle is identical to the grid used in the parameter variations above in the horizontal

direction: the grid consists of 18 consecutive nodes in the horizontal directions, see Figure

10.1. The length of the fuel bundle is divided into 90 nodes, instead of the 36 used in the

parameter variations, which brings the total number of nodes to 29,160.

Some variables, which are relevant mainly for debugging purposes, are monitored during

the  simulation  in  PORFLO;  these  variables  are  chosen  so  that  the  development  of  the

simulation is easy to follow and unrealistic states are clearly indicated. The most

informative ones, maximum void fraction, maximum mixture velocity, maximum cladding

temperature and maximum pressure are presented in Figures 10.2 through 10.5 (blue lines),

with the heating power (red lines) plotted on the second y-axes in all the figures. Since the

figures represent the maximum values of the chosen variables, the location of the values

can vary during the simulation.

The sudden increase in heating power at 3.7 seconds was caused by a malfunction in the

restart procedure: a system failure on the computer, which the test case was executed on,

ended the simulation prematurely and, as the simulation was restarted, a bug in the restart

routine increased the power to 240 kW immediately after the restart. Since this 7.7 second

run lasted 7 weeks on a single 2390 MHz AMD Opteron CPU operating on Linux 2.4.21-

20.ELsmp (x86_64) platform, and since the initial goal of this run was to obtain the steady-

state void fraction distribution at the end of the run, the simulation was not repeated due to

this minor setback.
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Figure 10.2: Maximum void fraction (blue) and heating power (red).
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Figure 10.3: Maximum mixture velocity (blue) and heating power (red).
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Figure 10.4: Maximum cladding temperature (blue) and heating power (red).
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Figure 10.5: Maximum pressure (blue) and heating power (red).

10.3 Steady-state results

The steady-state results, such as the void fraction distribution and the velocity profiles,

were obtained as the transient simulation, presented above, reached a converged state. It is

seen that especially maximum void fraction in Figure 10.2, maximum cladding

temperature in Figure 10.4, and maximum pressure in Figure 10.5, have converged quite

nicely. Some oscillation can be seen in the maximum velocity in Figure 10.3, but the

amplitude of the oscillation is decreasing towards the end of the simulation. The following

results, which are plotted on 3D contours at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations, for

the void fraction distribution in Figure 10.6, for the velocity difference between vapour and

liquid in Figure 10.7, for the temperature profile in Figure 10.8, and for the mixture

velocity profile in Figure 10.9, were obtained and are presented below.
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Figure 10.6: Void fraction distributions at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.

Figure 10.7: Velocity difference between vapour and liquid at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.
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Figure 10.8: Temperature distributions at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.

Figure 10.9: Mixture velocity distributions at 1.0 m, 2.0 m, 3.0 m and 3.54 m elevations.
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11 DISCUSSION OF SIMULATION RESULTS

The  results  of  the  under-relaxation  factor  variations  are  pretty  much  what  was  to  be

expected;  the  cumulative  number  of  iterations,  using  both  SIMPLE  and  SIMPLEC,  was

strongly dependent on the under-relaxation factor for pressure, while the influence of the

velocity under-relaxation was virtually negligible compared to pressure under-relaxation.

Increase in either the under-relaxation factor for pressure or velocities decreased the

cumulative number of iterations at the end of the preset transient. In all of the parameter

variations, both SIMPLE and SIMPLEC alike, the number of iterations needed to reach a

converged state at the end of the time step increased towards the end of the simulation,

which indicates a slight dependence on either void fraction or mixture velocity.

A bit surprisingly, divergence of the solution was not encountered in any of the test cases,

despite the fact that quite aggressive combinations of the under-relaxation factors were

tested, the last SIMPLEC variation, p = 0.99 and u = 0.80, in particular. The reason for

the steady convergence might be that the whole solution procedure used in PORFLO was

non-iterative, meaning that the pressure-velocity solution had no feedback from the

changes in fluid properties and heat transfer during the SIMPLE or SIMPLEC-iterations.

In addition, the pressure-velocity solution probably benefited from the use of such short

time  steps,  2  ms  which  is  in  compliance  with  the  Courant’s  criterion  for  velocity  of  the

flow, since the inertia terms in the mixture momentum equations are increased compared to

the convective terms.

In light of the results of the under-relaxation factor variations,  the use of SIMPLEC with

aggressive under-relaxation factors, such as p =  0.99  and u = 0.80, is suggested when

using non-iterative solution mode with short time-steps (below the CFL limit), since no

effect on convergence was witnessed, and since the savings in CPU-time compared to the

SIMPLE algorithm are substantial: 14 – 30 percent in all of the SIMPLEC variations

compared to the most aggressive combination of under-relaxation factors using SIMPLE,

p = 0.70 and u = 0.70. When longer time steps or iterative solution mode is used, these

results may no longer apply and further testing might be necessary.
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Though no sign of divergent behavior was encountered in the under-relaxation factor

variations, some oscillations are visible in the results of the transient simulation performed

on the (18 ×  18 ×  90) nodalization. The maximum void fraction, and maximum mixture

velocity in particular, experienced oscillations as the mixture flow rate was increased due

to fully developed boiling. The amplitude of the oscillations might be somewhat distorted,

since  it  is  the  maximum  values  that  were  plotted.  Nevertheless,  the  oscillations  are  real,

since the fact that the location of the maximum value might change during the transient

does not mean that local oscillations do not exist; in fact, local oscillations might be even

larger. These minor oscillations are not too critical regarding the stability of the code, after

all the oscillations seemed to dampen towards the end of the simulation, but the cause of

the oscillations should be studied further.

Excluding the minor oscillations in maximum void fraction and maximum mixture

velocity, the rest of the parameters plotted in Figures 10.2 through 10.5 display promising

behaviour; the changes during the power transient are smooth and the maximum values

settle down to a certain level shortly after the maximum power has been reached. Figure

10.5, maximum pressure, in particular, is interesting, since the result of the incompressible

formulation  is  clearly  visible.  During  the  acceleration  of  the  inflow  rate  (0  –  0.4  s),  the

maximum pressure, which is essentially the pressure difference measured over the length

of the fuel bundle, is gradually increasing due to the increase in flow resistance. But as

soon as the mass flux at inlet reaches the desired level and after which the flow rate is kept

constant, the maximum pressure instantly drops down to a constant value. The difference

in  the  maximum  pressures  between  the  two  instants  is  the  pressure  difference  needed  to

accelerate the fluid particles along the whole length of the fuel bundle.

The rapid increase in boiling, from approximately 2.5 to 4.5 s, increases the volumetric

flow rate of the mixture, and temporarily the mass flow rate in the upper parts of the fuel

bundle as well, which causes an increase in the pressure difference between inflow and

outflow. The temporary increase in the mass flow rate at the upper parts of the fuel bundle

is caused by the increase in creation of void fraction, which decreases the total mass

inventory of the fuel bundle. By continuity: if the mass flow rate at inlet remains constant,

the mass flow rate at outlet must increase for the total mass inventory to be decreased.

After the boiling rate has converged, the pressure difference between inflow and outflow
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settles down to a value which is defined by the sum of pressure loss due to friction and the

hydrostatic pressure of the fluid column.

There is much to say about the steady-state results obtained at the end of the transient

simulation. The void fraction distribution, Figure 10.6, is smooth along most of the length

of the fuel bundle, which indicates that the phase separation is modeled correctly.

However, if the horizontal resolution could be increased, the functioning of the drift-flux

model would become more visible. The only concern is the area in the middle of the flow

channel, which has lower void fractions than the area near the fuel rods; it seems possible

that the proportions of the calculation grid could affect the propagation of void fraction in

the horizontal direction. In addition to the void fraction distribution, the distribution of the

velocity difference between the phases, Figure 10.7, is smooth as well, and follows the

shape of the void fraction distribution quite nicely, which is to be expected, since the

velocity difference is essentially a function of the local void fraction.

The temperature profiles, Figure 10.8, are otherwise quite satisfactory, but there seems to

be a negative temperature gradient in the radial direction in few locations right next to the

fuel rods where the grid lines are perpendicular to the surface of the fuel rods. This might

be due to an error in the heat transfer calculations, but the possibility of this being caused

by an error in the recording of the data has to be excluded first.

The mixture velocity profiles, Figure 10.9, are the least convincing of the results. Large

differences in the local velocity gradients in the radial direction exist throughout the length

of the fuel bundle, and there are significant spikes in the nodes that contact the fuel rods,

but again especially in those nodes that contact the fuel rods perpendicular to the grid lines.

As can be seen in Figure 10.1, these are the nodes that have the smallest fluid fractions.

The pressure distribution, which is the other part of the pressure-velocity solution, is not

presented as a figure, since it is completely flat in the radial direction. This in turn

indicates, contrary to the jagged velocity profile, that the solution procedure is working. It

seems that the mixture velocity distribution, most of all, is affected by the compromises

made in the grid generation; the flow area for horizontal flow is 20 times larger than for

vertical flow, in the nodalization used to obtain these results. This means that the
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convective terms in the horizontal direction can easily have more effect in the momentum

equations than the convective terms in the vertical direction, even though the velocities in

the cross-flow direction are significantly smaller than in vertical direction. As was briefly

mentioned, there is no turbulence model available in the current version of PORFLO,

which undeniably affects the results, again the velocity distribution in particular.

In conclusion to the performance of the code in transient simulations, despite some minor

oscillations, quite encouraging results were obtained using non-iterative solution mode and

time steps shorter than the CFL limit for flow velocity. As far as the steady-state results are

concerned, much needs to be improved: both the horizontal and vertical resolution need to

be increased to further validate the results and to facilitate the solution of the full (8 ×  8)

fuel bundle.
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12 CONCLUSIONS

The most important objectives of this thesis were to develop an iterative method based on

the SIMPLE algorithm for pressure velocity solution, and to demonstrate its usefulness in

two-phase flow simulations in BWR fuel bundle geometry. Most of the effort was spent on

debugging the main program in PORFLO and the subroutine that implements the SIMPLE

variants. One of the first tasks, once the code was functioning properly, was to determine a

set of under-relaxation factors that provide both stabile and fast convergence, and to

compare the performance of SIMPLE and SIMPLEC.

According to the results presented in section 10.1, when using a non-iterative solution

mode with time-steps below the CFL limit for flow velocity, relatively large values of the

under-relaxation factors produced fastest convergence in both SIMPLE and SIMPLEC

simulations.  The fastest convergence was achieved using p = 0.70 and u = 0.70 for the

under-relaxation factors in the SIMPLE algorithm, and p =  0.99  and u = 0.80 in the

SIMPLEC algorithm. In addition to this, SIMPLEC was found to be substantially faster in

all of the parameter variations compared to SIMPLE with the fastest set of under-

relaxation factors.

Though the results of the simulations are not completely satisfactory, the application of the

SIMPLE variants in two-phase flow simulation was successfully demonstrated. No further

conclusions, regarding the functioning of the subroutine that implements the SIMPLE

variants, can be drawn at this moment, since substantial compromises in the nodalization

were made.

The mixture velocity profiles in Figure 10.9, in particular, cause concern about the

functioning of PORFLO, since in a situation where the friction factor was set uniform over

the entire domain, the mixture velocity profiles should most likely be smoother. Before the

cause of such jagged velocity profiles can be determined, the resolution of the calculation

grid must be improved in both the horizontal and vertical directions.

First priority in the future development of PORFLO should therefore be given to the

development of iterative solution of the linear systems of equations, in order to facilitate
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the solution of a larger number of grid points. In addition to the compromises made in

nodalization, the absence of a turbulence model is questionable, and may affect the mixture

velocities profiles in particular. Hence the development of turbulence modeling should be

considered in the future. Once these two improvements, mentioned above, are introduced

in PORFLO, the applicability of the solution procedure developed during this thesis, or 5-

equation models in a more general sense, in two-phase simulation can be fully assessed.

Nevertheless, the development of PORFLO has been noticeable during the period of this

thesis, and several obstacles have been overcome both in the older solution procedure, as

well as in the newly developed one. From the perspective of future code development, the

subroutine developed during this thesis provides a basis for the implementation of the

phase coupled SIMPLE algorithm, if 6-equation models are to be tested in PORFLO.
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APPENDIX A DISCUSSION OF VISCOUS FORCES

Viscous forces acting on a fluid element are defined by nine viscous stress components, six

of which are independent in isotropic fluids, shown in Figure A.1

Figure A.1: Stress components on the faces of the control volume.

The force resulting from surface stress is the product of stress component and surface area.

The net force in x-direction is the sum of viscous forces acting in x-direction. Stress

components in x-direction are shown in Figure A.2

Figure A.2: Stress components in x-direction.

xx

xz xy

zz

zx

zy

zx

zz
zy

yy

yy

yx

yx

yz

yz

xx

xz
xy

xx

xz xy

zz

zx

zy

zx

zz
zy

yy

yy

yx

yx

yz

yz

xx

xz
xy

x
y

z

x
y

z

xx

y
y
yx

yx δ
τ

τ
∂

∂
+ z

z
zx

zx δττ
∂

∂
+

x
x
xx

xx δττ
∂

∂
+

zx

yx



The net force in x-direction:
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The total force per unit volume in x-direction is:
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or equivalently, when the surface stress components are written as a tensor of rank 2, the

net force per unit volume in x-direction is simply the divergence of the surface stress

components:
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Equations (A.2) and (A.3) contain as unknowns the viscous stress components. A more

practical version of these equations can be derived by introducing a suitable model for the

viscous stresses. Newton’s law of viscosity uses two constants of proportionality,  and ,

to relate shear stresses to fluid velocities. Dynamic viscosity, , is used to relate stresses to

linear deformations and the second viscosity, , relates the stresses to volumetric

deformation. The volumetric deformation is simply:
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According to White (2006, pp. 65-68) the nine viscous stresses are:
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These viscous stresses can be substituted into equation (A.2) to obtain the net force per unit

volume in x-direction:
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The terms are often rearranged so that the less significant ones are moved to the back and

combined inside brackets.
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At this point an approximation is made: the terms inside the square brackets can be

ignored, since their magnitude is insignificant compared to the first three terms. After this

approximation the viscous net force per unit volume in x-direction is reduced to the

following form:
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The discretized form of the viscous net force in x-direction is obtained by integrating

equation (A.8) over the u-control volume and time step t.
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Implicit time discretization is selected, hence
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The divergence theorem can be implemented to transform the volume integrals into surface

integrals.
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where
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where the porosities at the pressure node boundaries are defined as presented before:
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Similar expressions are used for dynamic viscosities at the u-control volume boundaries:

KJI ,,e µµ = (A.22)
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where the dynamic viscosities at the pressure node faces are given through
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Using these expressions for the dynamic viscosities and porosities the discretized equation

(A.12) is shortened significantly. In addition, the porosities, equations (A.19) through

(A.21), need to be calculated only once during the whole simulation and the dynamic

viscosities, equations (A.22) through (A.30), only once during each time step, hence the

computational time is reduced when using these abbreviations.

Discretized viscous force in x-direction:
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Since the analogy is quite obvious, the discretized viscous net forces per unit volume are

merely presented for y and z-directions.



The viscous net force per unit volume in y-direction is given through
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and the dynamic viscosities at the v-control volume faces can be expressed through
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The viscous net force per unit volume in z-direction is given through
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where
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and the dynamic viscosities at the v-control volume faces can be expressed through
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APPENDIX B DISCRETIZED FORMS OF THE MOMENTUM
EQUATIONS FOR SIMPLE

The discretized momentum equation in y-direction (v-momentum):

( ) ( )[ ]
[ ( ) ( ) ( )]

( ) ( ) j
KJI

j
KJIKJIKJIKjIKjIKJIKJI

j
KJI

j
KJI

KjIKjIKjIKjIKjIKjI

KjI

KjI
j

KJIKjI
j

KJIj
KJIKJIKJI

AppvvVV
d
f

vFvFvFvFvFvF

vFFFFFFFFFFFF
t

vv
VV

,,,,,1,,,
*

,,,,,,,1,,,,,
e

1,,u,1,n,,1e1,,d,1,s,,1w

,,dusnweunedsw

o
,,

o
,,,,,,

,,,,,1,

2
1

2
1

2
1

εερ

ρρ
ε

−−

+++−−−

−

−−+−

−+−+−+++=

−+−+−+−+−+−++++
∆

−
+

 (B.1)

[ ( ) ( )

( ) ( )

( ) ( ) ( )
t

v
VVApp

vFvFvFvFvFvF

vv
d
f

t
VVFF

FFFFFFFFFF

KjIj
KJI

j
KJIKJIKJI

j
KJI

j
KJIKJIKJI

KjIKjIKjIKjIKjIKjI

KjIKjI
j

KJI
j

KJIKJIKJI

∆
++−−

−+−+−+++=













+

∆
++−+

−+−+−+−+−+++

−−

+++−−−

−

o
,,o

,,,,,,,1,,,,,,1,,,

1,,u,1,n,,1e1,,d,1,s,,1w

,,
*

,,
e

,,,,,,,1,du

snweunedsw

2
1

2
11

2
1

ρεε

ρε
 (B.2)

where

[ ]
[ ]KJIKJiKJIKJi

i
KJI

i
KJI

KJIKJiKJIKJi
i

KJI
i

KJI

uuA

uuAF

,,,,,,1,,,,,,

,1,,1,,1,1,1,,1,,1,w

2
1
2
1

ρρε

ρρε

−−+

−−=

−

−−−−−−−

, (B.3)

[ ]
[ ]KJIKJiKJIKJi

i
KJI

i
KJI

KJIKJiKJIKJi
i

KJI
i

KJI

uuA

uuAF

,,1,,1,,,,1,,1,,1

,1,1,1,1,1,,1,1,1,1,1,1e

2
1
2
1

+++++

−+−+−−+−+−+

−−+

−−=

ρρε

ρρε
, (B.4)

( )KjIKjI
j

KJIKJIKJI vvAF ,,,1,,1,,1,,1,s 2
1

+= −−−− ερ , (B.5)

( )KjIKjI
j

KJIKJIKJI vvAF ,1,,,,,,,,,n 2
1

++= ερ , (B.6)

[ ]
[ ]KJIkJIKJIkJI

k
KJI

k
KJI

KJIkJIKJIkJI
k

KJI
k

KJI

wwA

wwAF

,,,,1,,,,,,,,

,1,,1,1,1,,1,,1,,1,d

2
1
2
1

ρρε

ρρε

−−+

−−=

−

−−−−−−−

 and (B.7)

[ ]
[ ]1,,1,,,,1,,1,,1,,

1,1,1,1,,1,1,1,1,1,11,1,u

2
1
2
1

+++++

+−+−−+−+−++−

−−+

−−=

KJIkJIKJIkJI
k

KJI
k

KJI

KJIkJIKJIkJI
k

KJI
k

KJI

wwA

wwAF

ρρε

ρρε
. (B.8)



The discretized momentum equation in z-direction (w-momentum):

( ) ( )[ ]
[ ( ) ( ) ( )]

( ) ( ) k
KJI

k
KJIKJIKJIkJIkJIKJIKJI

k
KJI

k
KJI

kJIkJIkJIkJIkJIkJI

kJI

kJI
k

KJIkJI
k

KJIk
KJIKJIKJI

AppwwVV
d
f

wFwFwFwFwFwF

wFFFFFFFFFFFF
t

ww
VV

,,,,1,,,,
*

,,,,,,1,,,,,,
e

1,,u,1,n,,1e1,,d,1,s,,1w

,,dusnweunedsw

o
,,

o
,,,,,,

,,,,1,,

2
1

2
1

2
1

εερ

ρρ
ε

−−

+++−−−

−

−−+−

−+−+−+++=

−+−+−+−+−+−++++
∆

−
+

 (B.9)

[ ( ) ( )

( ) ( )

( ) ( ) ( )

( ) gVV

t
w

VVApp

wFwFwFwFwFwF

ww
d
f

t
VVFF

FFFFFFFFFF

k
KJI

k
KJIKJIKJI

kJIk
KJI

k
KJIKJIKJI

k
KJI

k
KJIKJIKJI

kJIkJIkJIkJIkJIkJI

kJIkJI
k

KJI
k

KJIKJIKJI

,,,,,,1,,

o
,,o

,,,,,,1,,,,,,1,,,,

1,,u,1,n,,1e1,,d,1,s,,1w

,,
*

,,
e

,,,,,,1,,du

snweunedsw

2
1

2
1

2
11

2
1

ρε

ρεε

ρε

+−

∆
++−−

−+−+−+++=













+

∆
++−+

−+−+−+−+−+++

−

−−

+++−−−

−

 (B.10)

where

[ ]

[ ]KJIKJiKJIKJi
i

KJI
i

KJI

KJIKJiKJIKJi
i

KJI
i

KJI

uuA

uuAF

,,,,,,1,,,,,,

1,,1,,1,,11,,1,,1,,w

2
1

2
1

ρρε

ρρε

−−+

−−=

−

−−−−−−−

, (B.11)

[ ]
[ ]KJIKJiKJIKJi

i
KJI

i
KJI

KJIKJiKJIKJi
i

KJI
i

KJI

uuA

uuAF

,,1,,1,,,,1,,1,,1

1,,11,,11,,1,,11,,11,,1e

2
1
2
1

+++++

−+−+−−+−+−+

−−+

−−=

ρρε

ρρε
, (B.12)

[ ]
[ ]KJIKjIKJIKjI

j
KJI

j
KJI

KJIKjIKJIKjI
j

KJI
j

KJI

vvA

vvAF

,,,,,1,,,,,,,

1,,1,,1,1,1,,1,,1,,s

2
1
2
1

ρρε

ρρε

−−+

−−=

−

−−−−−−−

, (B.13)

[ ]
[ ]KJIKjIKJIKjI

j
KJI

j
KJI

KJIKjIKJIKjI
j

KJI
j

KJI

vvA

vvAF

,1,,1,,,,1,,1,,1,

1,1,1,1,1,,1,1,1,1,1,1,n

2
1
2
1

+++++

−+−+−−+−+−+

−−+

−−=

ρρε

ρρε
, (B.14)

( )kJIkJI
k

KJIKJIKJI wwAF ,,1,,1,,1,,1,,d 2
1

+= −−−− ερ  and (B.15)

( )1,,,,,,,,,,u 2
1

++= kJIkJI
k

KJIKJIKJI wwAF ερ . (B.16)


