
 RESEARCH REPORT VTT-R-08256-08

Embedded systems in portable
devices – research report
Authors: Tero Haatanen, Kristiina Hytönen, Jarkko Leino, Mikko Metso, Timo

Niemirepo

Confidentiality: Public

TUTKIMUSRAPORTTI VTT-R-08256-08

2 (22)

Contents

Abbreviations...3

1 Introduction...4

2 Goal..5

3 Description ...5

3.1 Overview of the demonstration software...6
3.1.1 Microphone subsystem ..6
3.1.2 Camera subsystem ..6
3.1.3 Camera controller subsystem ..7
3.1.4 Camera viewer and controller subsystem ..7
3.1.5 Sound meter subsystem ..7
3.1.6 EMSYS NoTA demo service messages...7

3.2 Demonstrator Implementation...10
3.2.1 FPGA implementation..10
3.2.2 Video camera control ...11

3.3 Running the demonstration system...13
3.3.1 Physical setup..13
3.3.2 About The Nota Stack..13
3.3.3 Building the Demo Applications ...13
3.3.4 Running the Demo ...14
3.3.5 Running the Demo When Using the Embedded NoTA Stack14

3.4 NoTA – Development Tools Identification...16
3.4.1 Stub generator files..16

3.4.1.1 Service stub .. 16
3.4.1.2 Client stub... 17

3.4.2 Inadequate stubs ...17
3.4.3 Developer’s wish list ..18

3.4.3.1 Node definition tool ... 18
3.4.3.2 From stub generator to node generator.. 19

4 Limitations ..20

5 Results ...21

6 Conclusions..22

7 Summary ..22

References ..22

TUTKIMUSRAPORTTI VTT-R-08256-08

3 (22)

Abbreviations

AN Application Node

Application nodes are parts of a NoTA (sub)system that can interact with
other nodes, but do not offer services of their own

SN Service Node

Just as application nodes can be thought of as clients, service nodes are
analogous to servers. Service nodes can accept connections from
application nodes or other service nodes, and can also initiate contact with
other service nodes

NODE In this document, the term node alone can refer either to AN or to SN.

HIN, H_IN High Interconnect.

The top layer of the interconnect stack, which communicates with the nodes
in the network

LIN, L_IN Low Interconnect.

The bottom part of the interconnect stack, responsible for communicating
with the physical network

HIF High Interconnect Interface.

The part of H_IN visible to application developers

SIS Service Interface Specification.

A description of the services offered by a service node.

SID Service Identifier.

A unique identifier for each service node that is registered in the network

TUTKIMUSRAPORTTI VTT-R-08256-08

4 (22)

1 Introduction

The EMSYS (Embedded Systems in portable devices) project was started at VTT
in order to deepen the know-how of today’s software technologies in embedded
programming. A new architecture called NoTA (Network on Terminal
Architecture) was introduced to the public during 2008. It is anticipated that
NoTA will gain wide acceptance among telecom industry partners in the near
future. The purpose of NoTA is to seamlessly interconnect devices offered by
different manufacturers in order to integrate them into a system consisting of a
network of devices. The EMSYS project focuses on embedded systems, and
specifically on applying the NoTA protocol stack to such systems.

NoTA is a service based modular device architecture framework [1] as shown in
Figure 1-1. The Device Interconnect Protocol (DIP) is the backbone of the NoTA
architecture. DIP is also modular and its parts are High Interconnect (H_IN) layer
and Low Interconnect (L_IN) layer. L_IN provides a uniform socket based
communication mechanism between any two network endpoints. H_IN handles
service registration, discovery, access and security. H_IN uses L_IN through the L
interface (L_IF). The application node (AN) and service node (SN) use the H_IN
through the H interface (H_IF).

Figure 1-1 NoTA Interconnect [1]

TUTKIMUSRAPORTTI VTT-R-08256-08

5 (22)

2 Goal

In this project, a small group of devices were to be integrated into a logical entity
functioning via a communication channel between the devices. The
communications channel was to be implemented using the NoTA stack. Another
objective was also to research the feasibility of an FPGA (Field Programmable
Gate Array) as one type of a NoTA implementation core component. A NoTA
demonstration platform was to be ready by the end of the project (30th of
September, 2008).

3 Description

At the beginning of the project, the NoTA demonstration platform was sketched
as shown in Figure 3-1. It consists of a stereo microphone system connected to a
printed circuit board with an FPGA circuit on it. The FPGA calculates the
direction of the stronger sound amplitude measured by the microphones in real
time, and sends that information to a computer acting as a NoTA service node.
Also, a video camera with tilt control is connected to the same PC. By default, the
computer steers the camera in the direction where the higher sound amplitude was
observed.

The camera tilt angle can also be controlled from a laptop PC having a NoTA
application node software implemented on it. The application node is connected to
the service node through a NoTA interconnect that uses TCP/IP for data transport.
In addition to video control command transmission, also video stream can be
transferred all the way from the video camera to the NoTA service node and
through the NoTA interconnect to the NoTA application node.

AN2

NoTA

SN1

NoTA

NoTA
Interconnect

NoTA
Interconnect

FPGA
ADC

DAC
RAM LED

Digital I/O

PCI

image
stream &

tilt control

AN1
SN2

NoTA

NoTA

NoTA
Interconnect

NoTA
Interconnect

FPGA
ADC

DAC
RAM LED

Digital I/O

FPGA
ADC

DAC
RAM LED

Digital I/O

PCI

Ethernet

image
stream &

tilt control

SN2

SN1

AN1
AN2
SN3

AN3

AN4
AN5

AN6

AN2

NoTA

SN1

NoTA

NoTA
Interconnect

NoTA
Interconnect

FPGA
ADC

DAC
RAM LED

Digital I/O

PCI

image
stream &

tilt control

AN1
SN2

NoTA

NoTA

NoTA
Interconnect

NoTA
Interconnect

FPGA
ADC

DAC
RAM LED

Digital I/O

FPGA
ADC

DAC
RAM LED

Digital I/O

PCI

Ethernet

image
stream &

tilt control

SN2

SN1

AN1
AN2
SN3

AN3

AN4
AN5

AN6

Figure 3-1 EMSYS demonstrator platform setup

This chapter is divided into several sub-chapters. The first sub-chapter explains
the general structure of the demo application. The second sub-chapter describes
the implementation of the demonstrator (FPGA and video camera control). The

TUTKIMUSRAPORTTI VTT-R-08256-08

6 (22)

third sub-chapter describes running the demo in more detail. The last sub-chapter
studies NoTA development tools.

3.1 Overview of the demonstration software

The demonstration platform consists of a desktop PC offering microphone and
camera services and a laptop client using them. Figure 3-2 shows NoTA
subsystems and message flows between the subsystems.

SN2SN1

AN3 AN4
AN5

AN1
AN2
SN3

AN6

Microphone subsystem

Camera controller
subsystem

Sound meter
subsystem

Camera subsystem

Camera viewer & controller
subsystem

Sound meter
subsystemEM_Sound_msg

EM_Sound_msg

EM_Sound_msg
EM_RequestCameraImages_msg

EM_PanCamera_msg

EM_HomeCamera_msg

EM_SetCameraController_msg

EM_PanCamera_msg

EM_Image_msg

desktop PC laptop PC

SN2SN1

AN3 AN4
AN5

AN1
AN2
SN3

AN6

Microphone subsystem

Camera controller
subsystem

Sound meter
subsystem

Camera subsystem

Camera viewer & controller
subsystem

Sound meter
subsystemEM_Sound_msg

EM_Sound_msg

EM_Sound_msg
EM_RequestCameraImages_msg

EM_PanCamera_msg

EM_HomeCamera_msg

EM_SetCameraController_msg

EM_PanCamera_msg

EM_Image_msg

desktop PC laptop PC

Figure 3-2 Message flows between software components

The desktop PC has three NoTA subsystems. The first subsystem is a microphone
service node. The second subsystem is a camera service node. The third
subsystem steers the camera in the direction where the stronger sound amplitude
was perceived. The laptop PC has a camera viewer and controller subsystem. The
sound meter subsystem can be simultaneously run in the desktop and laptop PCs.
All NoTA service nodes implemented in the demonstration can serve multiple
NoTA clients (ANs) at the same time.

3.1.1 Microphone subsystem

The microphone subsystem contains a microphone service node (SN1) that offers
a simple service of sending a sound amplitude difference to all connected clients
automatically. The amplitude difference is a signed 32-bit integer. Negative
values mean that sound is coming from a microphone on the left and positive
values that the sound is coming from a microphone on the right. The message is
sent every 100 ms.

The microphone service node operates also in a role of a resource manager for the
NoTA interconnect.

3.1.2 Camera subsystem

The camera subsystem contains a camera service node (SN2) that offers control
and image stream services. For the demonstration, camera panning operations

TUTKIMUSRAPORTTI VTT-R-08256-08

7 (22)

(home, left, right) were implemented. An application node can also request a
stream of images from the camera service node. Images are sent at a constant
speed (by default 10 frames per second). The application node can also stop the
image stream if images are not desired any more.

3.1.3 Camera controller subsystem

The camera controller subsystem is responsible for steering the camera into the
direction of a microphone where a louder sound is detected. The subsystem
contains the functionality of three NoTA nodes, one service node (SN3) and two
application nodes. The microphone application node (AN1) receives sound
difference messages from the microphone SN (SN1). The camera control
application node (AN2) sends camera panning messages to the camera SN (SN2).
The service application node allows turning the automatic camera control ON or
OFF. When the automatic control is disabled, the camera can still be controlled
manually from a remote AN connected directly to the camera SN.

3.1.4 Camera viewer and controller subsystem

Image client is a graphical GTK2.0+ toolkit application to provide the visual
feedback in the demo. It shows the user the Web camera view at a rate of about 10
FPS. The user interface includes buttons to manually turn the Web camera and to
activate or deactivate the automatic sound volume based camera control.

Image client connects to two service nodes over the NoTA network, the camera
controller subsystem (SN3) and the camera subsystem (SN2). Having two
simultaneous client connections is handled by using GTK threading. The main
thread runs the UI and takes care of sending button-initiated command messages
to the two servers. Another thread receives image messages from the camera
subsystem and updates the camera image on the application window. Only two
NoTA Hsockets are needed as the same camera subsystem socket can be used to
send data while waiting or reading data back from the socket in another thread.
The other socket is used just to send control mode commands to the camera
controller subsystem.

3.1.5 Sound meter subsystem

The sound meter subsystem is a simple GUI that shows the current sound
amplitude difference graphically. It consists of a microphone application node
(AN3, AN6) that receives sound difference messages. The subsystem was written
in C++ using the gtkmm library. This demonstrates that a NoTA stack can easily
be also used in C++ applications. It also runs simultaneously between multiple
clients.

3.1.6 EMSYS NoTA demo service messages

The actual binary form of the EMSYS demo service messages is shown below.
They are similar to the Stubgen tool defined data messages even though we didn’t
use Stubgen to generate the messages.

The message that one party sends is received by the other. We define the interface
here from the sending point of view.

TUTKIMUSRAPORTTI VTT-R-08256-08

8 (22)

See NoTA documentation for full details on the service messaging syntax.
uns8...64 define unsigned integers of the specified bit size. int8...64 define signed
integers of the specified size.

The general format of the NoTA service message is shown first, followed by the
EMSYS demo specific messages.

TUTKIMUSRAPORTTI VTT-R-08256-08

9 (22)

uns8 Signal id length code 0xA1 (one byte) or 0xA2 (two bytes).
uns8/uns16 Signal id, one or two bytes, can be chosen freely to label messages
<argument token type> Defines the type of the following data.
<argument token value(s)> The actual data bytes.

 LAPTOP CLIENT (AN4-AN5) SENDS

 REQUEST WEB CAMERA IMAGES FROM THE IMAGE SERVER (SN2)

uns8 0xA1 Short id.
uns8 0x12 Message number.
true/false 0x01/0x02 Start (true) / stop (false) receiving).

The server responds by starting or stopping to send the "Send camera image"
messages (at a rate about 10 FPS).

 HOME CAMERA (IMAGE SERVER)

uns8 0xA1 Short id.
uns8 0x40 Message number.
null 0x00 No parameters

The server does not respond.

 TURN CAMERA (IMAGE SERVER)

uns8 0xA1 Short id.
uns8 0x41 Message number.
uns8 0x21 Arg. type int8.
int8 -128…127 The number of steps to turn the camera.

The server does not respond.

 SET AUTOMATIC/MANUAL CAMERA CONTROL FOR THE CAMERA CONTROLLER

uns8 0xA1 Short id.
uns8 0x31 Message number.
true/false 0x01/0x02 Automatic (true)/manual (false) control.

The server does not respond.

 CAMERA CONTROLLER (AN1-AN2,SN3) SENDS

 TURN CAMERA (IMAGE SERVER)

uns8 0xA1 Short id.
uns8 0x41 Message number.
uns8 0x21 Arg. type int8.
int8 -128…127 The number of steps to turn the camera.

The server does not respond.

 SOUND SERVER (SN1) SENDS

 SEND SOUND DIRECTION

uns8 0xA1 Short id.
uns8 0x51 Message number.
uns8 0x24 Arg. type int32.
int32 −2147483648…2147483647 The amount of sound difference between
 the microphones.

The client does not respond.

 CAMERA SERVER (SN2) SENDS

 SEND CAMERA IMAGE

uns8 0xA1 Short id.
uns8 0x61 Message number.
uns8 0x42 Arg. type binary data 2.
uns16 0…65535 The image size in bytes.
uns8[] Image data JPEG image from camera (~ 30 KB max).

The client does not respond.

TUTKIMUSRAPORTTI VTT-R-08256-08

10 (22)

3.2 Demonstrator Implementation

3.2.1 FPGA implementation

In order to inform a NoTA service node about the direction of the sound, various
tasks need to be performed that are mainly related to digital signal processing in
the FPGA. Analog sound signal from the microphones is first pre-amplified with
an external preamp module before feeding the signal into the actual FPGA
processing board. Inside the board, the sound is first sampled by an A/D converter
and the 14-bit samples are then fed into the FPGA. A Xilinx XC2V2000-FG676
FPGA is used as the main data processing unit on a BenAdda module, included in
an Extreme Development Kit manufactured by Nallatech. The FPGA does low-
pass filtering in order to filter out high frequencies, which are considered noise.
The filters were first modeled in Matlab with a pass-band frequency of 20 kHz
(see Figure 3-3).

Figure 3-3 CIC-FIR filter chain spectrum

The filters were then described in VHDL, consisting of primary building blocks
such as adders, multipliers and shifters. Two types of filters were used (see Figure
3-4): At first, two decimating CIC filters are applied in series. CIC filters do not
require the use of multipliers and are simpler than a corresponding FIR
implementation, so with the high FPGA sampling frequencies this is a good
option. After decimation, the data is forwarded to a FIR filter with a steep cut-off.
The filter does use the multipliers but now that the sampling frequency is already
brought down from 65MHz to 1 MHz, a large amount of multiplier logic is saved
as new results are not expected at every 65MHz clock cycle. The number of filter
taps for the FIR filters is 13. The FIR filter coefficient width is set to 18 bits due
to the fact that the FPGA has 18-bit multiplier cores performing the multiply
operations of the FIR implementation. During the CIC filtering process, the 14-bit

TUTKIMUSRAPORTTI VTT-R-08256-08

11 (22)

wide input data is transformed to 45-bit values due to a huge pass-band gain of
CIC filtering. Those values are truncated into 18 bits by a ‘Gain’ block in order to
meet FIR input data width specifications.

Figure 3-4 Filter chain model

After filtering, absolute values are calculated of the data values by subtracting
every negative value from 0. Then, a 14-bit counter (running at 1MHz) is used to
accumulate the absolute values in order to gather a longer period of data stream
into a single register.

All the above is done in parallel for two sound channels, left and right. After
accumulation, a new data value is registered once in every 16ms for both
channels. If the accumulated value from channel 2 is now subtracted from the
accumulated value of channel 1, we get a value corresponding to the accumulated
difference in sound amplitude from the last 16ms period. A separate register
control interface was implemented on the FPGA to transfer the difference value
from the FPGA board to the desktop PC.

Initially we planned the FPGA board to transfer channel amplitude difference
value to a laptop PC via a USB connection. During the project, it turned out that
the USB interface of the FPGA board was not supported in a Linux PC. So, we
needed to change the laptop PC to a desktop PC and settle for a connection where
the FPGA board was plugged directly into a PCI slot of the computer. This
change of plans did not affect the actual NoTA implementation, so it was
acceptable.

The FPGA board is controlled by using a DimeSDL library. The library offers a
C/C++ API for accessing the FPGA board functionality. DimeSDL library and the
related files are only available in RPM-packages (for Red Hat Enterprise Linux),
so there was a little work getting them to work in Ubuntu Linux. The required
kernel-driver was available in source code form, so it was easy to get working
with a newer kernel version. The implementation then was straightforward and
consisted of three phases: initialization, register reading and cleanup.

3.2.2 Video camera control

The video camera used in the demo was an OptiCam IP Web camera. This camera
can be controlled using a web interface. There is a different URL for each control
operation (i.e. setting an image size/quality or turning a camera). The images are
transferred using HTTP server push protocol. The image stream contains a series
of small JPEG files.

TUTKIMUSRAPORTTI VTT-R-08256-08

12 (22)

Figure 3-5 Vilar IP camera Web browser login screen

The camera interface was implemented using a libcurl library. It is a free and
easy-to-use client-side URL transfer library, supporting HTTP. The video camera
module implementation has a separate thread for reading the image stream and
another thread for control functions.

TUTKIMUSRAPORTTI VTT-R-08256-08

13 (22)

3.3 Running the demonstration system

3.3.1 Physical setup

Figure 3-6 Demo hardware setup

3.3.2 About The Nota Stack

Get the NoTA stack from http://www.notaworld.org and compile and install it
according to the instructions. At least versions 3.0-307...3.0-434 should work.
Apply the Hselect patch from .../emsys/trunk/patches to the stack before
compiling and installing it, if you want to have a faster image and sound refresh
speed in the demo (recommended).

3.3.3 Building the Demo Applications

The demo application is meant for Ubuntu 6.06 LTS Linux or newer but should
work on most flavors of the operating system.

Required packages and libraries that need to be installed before making or running
the demo (older versions may work too):

- build-essential
- libgtk2.0-dev
- libcurl3-dev or newer
- Nota 3.0 stack version 307 or newer
- g++ (for sound_ui)
- gtkmm-2.4 (for sound_ui)

TUTKIMUSRAPORTTI VTT-R-08256-08

14 (22)

- Nallatech’s DimeSDL-library (see trunk/doc/FPGA.txt for more information)

Check the common/config.mk compile and linking flags. The top level Makefile
can invoke a compile in all sub-folders. The Makefiles in the sub-folders can be
used to compile each subsystem separately.

Compile whole project:
$ make depend
$ make

To clear all compiled and linked files, run the target clean:
$ make clean

The make command should create all the demo applications into their own
directories. By default, the applications use the single process (sp) version of the
NoTA stack. This means that each application has its own copy of the stack
embedded into its executable. An alternative way would be to share the stack
among applications by using a nota-ind process (with a resource manager) in
each computer.

3.3.4 Running the Demo

There are two ways to use the NoTA stack by an application: via a NoTA daemon
and via an embedded stack (single process nodes). This demo uses the latter way,
because it is more robust although not as efficient as the daemon method. There
needs to be one resource manager enabled node in the NoTA network to handle
node identities, to manage node discovery with the specified transport, and to
control routing and addressing of NoTA messages between nodes. That node is
chosen by specifying the environment variable RM=1 when launching the node
application.

The LD_LIBRARY_PATH environment variable tells the application where the
NoTA stack library is located. Make sure that LD_LIBRARY_PATH is set
correctly if libraries are installed in a non standard location.

The Vilar IPCamera Web camera needs to have its IP address correctly set for the
demo network. See camera documentation and test the settings by accessing the
camera with a Web browser.

3.3.5 Running the Demo When Using the Embedded NoTA Stack

Set up the network

NoTA messaging over TCP/IP uses multicast to locate nodes from each other.
This discovery works only within a subnet. The following (admin) commands
may be needed for each computer in the network:
$ sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

The above enables the multicast routing.

NoTA implementation (3.0-434) contains a bug that can affect for TCP/IP
transport if multiple network interfaces are available. Unnecessary interfaces can
be disabled using the following command for each interface.

TUTKIMUSRAPORTTI VTT-R-08256-08

15 (22)

$ sudo ifconfig eth1 down

Workstation

$ RM=1 ./sound_server/sound_server_sn

$./camera_server/camera_server_sn

$./camera_control/camera_control_sn

$./sound_ui/sound_meter

Laptop

$./laptop_client/laptop_client_ui_sp

$./sound_ui/sound_meter

Everything should work automatically. The laptop client launches a Gnome user
interface for viewing the camera images and for manually controlling the camera.

Exit the demo by issuing CTRL-C to the console applications. Press the close
button [x] in the client window.

Figure 3-7 Workstation console views for active SNs and ANs

TUTKIMUSRAPORTTI VTT-R-08256-08

16 (22)

Figure 3-8 Laptop console views and the graphical UI

3.4 NoTA – Development Tools Identification

Currently there is only one tool to help a developer to utilize the NoTA. This tool
is a stub generator that generates source code for helper functions to use the
NoTA communication platform. The stub generator is implemented as a perl-
script. As an input, the stub-generator takes a description of the service’s methods
defined in a WSDL (Web Services Description Language) file. The used data
types may be defined in a separate XSD (XML Schema Definition) -file.

This document discusses some ideas, as a kind of “developer’s wish list”, of how
to make it easier for a software developer to create application and service nodes
in the NoTA framework.

3.4.1 Stub generator files

The service’s methods are defined in a WSDL file. The stub generator takes the
WSDL file as an input and generates header and implementation files for the
service implementation as well as for the client implementation. Generated stubs
require a NoTA stub adapter library to work. The stub adapter contains platform
specific parts, and it is included in the stub generator package.

3.4.1.1 Service stub

The service’s stub header defines the methods to be implemented in the service’s
actual implementation: a function to handle connection closing and errors as well

TUTKIMUSRAPORTTI VTT-R-08256-08

17 (22)

as the defined service’s methods (direction="in" in the WSDL). The stub
implements the methods for the sending of the service messages
(direction="out" in the WSDL).

The service implementation is responsible for creating and binding the service
socket and starting to listen and accept client connections. When a client
connection is accepted, the service creates a new context for the client using the
stub adapter’s methods. After the context is created, the service uses the stub’s
method to tell the platform the client’s context and the callback function for the
client’s signals when it calls the service’s methods and the callback functions for
the error and disconnect handlers.

When the client’s connection is closed, the service calls the remove connection
method of the stub, and if no error takes place, then the service calls the stub
adapter method to free the client’s context.

3.4.1.2 Client stub

The client’s stub header defines methods to be implemented in the client’s actual
implementation: a function to handle connection closing and errors as well as the
methods to receive the service’s messages (direction="out" in the WSDL).
The client stub implements methods for calling the methods of the service
(direction="in" in the WSDL).

The client implementation is responsible for creating and connecting the client
socket to the service. When the client socket is connected to the service and
context pointer initialized with the help of the stub adapter’s method, the client
calls the stub’s connection method to tell the platform the callback function for
the service’s signals when it is sending messages to the client and the callback
functions for the error and disconnect handlers.

When the client closes its connection to the service, it calls the stub’s remove
connection method, and thereafter it calls the service adapter’s method to free its
context.

3.4.2 Inadequate stubs

The generated stub files use the stub adapter’s methods to fulfill the client’s or
service’s requests. However, the service and client implementation must also use
the stub adapter’s methods and H_IF methods directly.

For example, when the service is removing a client connection, it calls the stub’s
remove connection method and the stub adapter’s method is called to remove the
client connection from the platform. After the connection is removed, the service
must call the stub adapter’s method to free the client’s context. The same
overlapping exists when a new client connection is accepted: first the service
creates the client context with the help of the stub adapter’s method and after the
context is created the service calls the stub’s new connection method where the
stub calls the stub adapter’s method to add the new connection to the platform.
Also the client implementation must use directly the methods in the stub adapter
and H_IF.

Stubs generated to be used by the node’s implementation are intended to make it
easier for developers to implement NoTA based applications and services.

TUTKIMUSRAPORTTI VTT-R-08256-08

18 (22)

Currently, the stub generator facilitates only a part of the functionalities provided
by the H_IF. A developer must learn also the stub adapter’s usage and the socket
handling in the H_IF (see below).

Picture 3-9 Using NoTA DIP requires calling methods
in different abstraction levels

3.4.3 Developer’s wish list

When designing a service, the details of how it communicates with other actors
should not be the main question. The main question relates to the content of the
service: what does it offer to help other services or users to accomplish their tasks.
So, the first thing to do when implementing a service could be to define the
descriptive methods and the data types taken as input and output parameters as
well as other required attributes, such as the service name and type. Defining
methods and data types should not require any additional knowledge of any
specific markup language. After the service’s methods are defined there should be
a tool that generates code to take care of the communication routines and skeleton
for the service methods, so that the developer needs only to implement the content
of the service’s methods.

3.4.3.1 Node definition tool

Currently, the service nodes and their methods are defined with WSDL. Also a
separate XSD file may be used to define data types used in the methods. Although
both WSDL and XSD are quite well known formats, it is quite tedious to write a
service definition from a scratch, because one must first find out the required and
optional attributes in order to get the definitions schematically correct.

A node definition tool with a sophisticated graphical user interface could be of
great help when defining a service node. With such a tool, the needed data types
would be defined first. A name would be given for the data type, and its base type
could be selected from a list of primitive types and from data types that the user
has already defined. When defining a structural data type, its members’ types
could be selected the same way. A description for the defined data type could be
given in the associated documentation.

Service Interface Definitions i.e. service’s methods and their signal IDs would be
defined next. A descriptive name and the direction would be defined. The
direction would tell if the method is callable in the service or if it is a callback
method that the client must implement in order to receive messages from the
service. The method’s input and output parameters’ names and types would be

TUTKIMUSRAPORTTI VTT-R-08256-08

19 (22)

defined here. The types could be selected from the previously defined data types
list, including the primitive base data types. Also, other required attributes could
be set, e.g. Service ID (SID), whether the service uses blocking calls or it uses
asynchronous IO multiplexing, whether it uses Interconnect Daemon or it runs in
a single process mode. A description for the method and its parameters might be
given in the documentation.

If the defined node needs other services, their WSDL definitions could be
imported. When the node’s code is generated, the helper functions to call the
selected services’ methods would be created as well as the callback methods to
receive messages from the other services.

When the node definition is ready, it could be saved as a WSDL file and the
defined data types as a XSD file. The saved node definition could also be loaded
into the definition tool for changing the definition or for using a previously saved
definition as a base for a new node definition.

3.4.3.2 From stub generator to node generator

The node definition tool would have the functionality to start the code generation
process. Also the status of the generation process and possible warnings and
errors would be shown in the definition tool, so that the developer can make the
corrections right away.

As mentioned earlier (see chapter 3.4.3 Developer’s wish list), the generator
should do much more than the current stub generator does. First of all, the
developer needs not to know how the message communication is implemented
when calling the service’s method or when some client calls the service’s method.
There might be some attributes in the node definition to make some restriction or
preference among available communication channels, and these attributes would
be taken into consideration when the helper code is generated.

From the service node’s point of view, the generated code would include the
functionalities currently implemented in the main method of a node. These
functionalities include the socket creation, service registration and listening client
connections. The component to take care of these routines would be called a
provider (see picture below). In other words, the provider would implement the
functionalities that currently exist in the main method of the service. The provider
would also parse the input parameters from a client message call and would call
the skeleton of the actual service methods with these parsed parameters and with
the output parameters that are instantiated in the actual service method. The
service method would return its output to the provider with the given output
parameters, and the provider would take care of sending the result back to the
client. This arrangement would make it possible to separate all the communication
routines from the actual service implementation, and the developer would only
need to write the service methods’ implementation in the ready made skeletons of
the methods with input and output parameters.

TUTKIMUSRAPORTTI VTT-R-08256-08

20 (22)

Picture 3-10 Provider and Consumer codes generated to
hide the complexity of the NoTA.

Also for the application node’s implementation, the generated codes would
include the socket creation and service connection functionalities as well as
listening to messages sent from the service. The component to take care of these
functionalities would be called a consumer. The consumer would wrap the
communication routines, so that in the client’s implementation the only thing
needed to complete would be the message receiving methods’ skeletons. To use a
method of the selected service, the client would only need to call the service’s
method offered by the consumer with the input and output parameters, and the
service’s method implementation in the consumer would take care of the context
pointer handling and making the actual call to the service.

The service node might also use other services, so the consumers’ code to use the
other selected services could also be created with the node generator tool. If the
application node used methods of more than one service, then all the selected
services would be callable through the created consumer.

The provider/consumer approach would also make it possible to change the
communication platform beneath them without any change to the service/client
implementation above them. That is, only the generated part of the node’s
implementation would change if the communication platform changed.

4 Limitations

In this report, it has been shown that even though the microphone sensitivity is
relatively high, the sound signal amplitude levels vary significantly depending on
the direction of voice, and also on the position of different surfaces in the room.
Sound waves propagate both directly and via reflections, thus making it difficult
to build a real-time system that is able to accurately measure the direction of the
original sound source by using only two microphones. Due to this fact, the
microphones need to be set close to the persons who are talking in order for the
system to recognize which microphone is currently sensing a stronger sound level.
This is clearly a limitation in the demo but as the main target of this project was to

TUTKIMUSRAPORTTI VTT-R-08256-08

21 (22)

improve our knowledge on embedded processing and NoTA, we did not want to
spend more effort in the sound system design.

The published NoTA stack was found to be still suffering from some limitations
and errors. We tried to use SOCK_SEQPACKET type of NoTA sockets that
should preserve message boundaries, but they weren't working. The server socket
threw the following error:
l_if.c:682: Lreceive: Assertion `buf' failed.
So, we had to use the normal SOCK_STREAM socket type instead.

Another limitation that was discovered occurs when using Hselect() function to
switch between connected sockets. The shortest time for the function to return is
one second (when specifying a time-out value 0). This was too slow when trying
to send and receive camera images ten times per second. As a work-around, the
NoTA stack needs to be modified, compiled and reinstalled (see section 3.3.2
About The Nota Stack for the details). Once that was done, there were no serious
limitations on the data transmission speed with multiple connections.

Due to resource and time limitations of the project, only the TCP/IP transport was
used for the NoTA protocol. Testing Bluetooth or USB connections could have
revealed more about the performance and multitasking capabilities of the NoTA
protocol.

The Stubgen tool was found to be difficult and complex to use, and was not
adhering to clean library interface design principles.

5 Results

A demo application consisting of several independent software modules was
created. The demonstration shows that we can access microphone sound volume
difference calculated by an FPGA card over a NoTA network, and use the value
to control a Web camera over normal HTTP protocol. We also managed to
transmit JPEG images, read by the Web camera accessing module, over the NoTA
network and show them in another module to the user. There was also a
possibility to manually turn the camera from the client UI by the user.

All the created software modules in the demo communicated with each other by
using the NoTA protocol on top of a TCP/IP transport. The communication
between modules (or nodes) consisted of both control and data specific messages.
We found out that it is possible to transmit ten 30 KB sized images per second
between modules inside the same intranet, as well as sound volume difference
messages to two client modules at the same rate. It was also discovered possible
to use a NoTA socket simultaneously in reading and writing mode by utilizing
two threads. The modules also worked without interfering with the graphical user
interfaces of some client modules.

Due to the small size of the Web camera images, we did not encounter problems
with having too large messages. The largest binary data fields, defined by the
NoTA service message protocol, are of 64 KB in size.

The use of NoTA sockets appeared quite similar to the traditional Unix/Linux
BSD sockets. One difference is the return value, when reading from a closed
socket. In BSD sockets, the return value 0 indicates that the peer has closed the

TUTKIMUSRAPORTTI VTT-R-08256-08

22 (22)

connection, and the NoTA sockets use the return value -1 indicating the same
condition.

6 Conclusions

The interdevice Network on Terminal Architecture (NoTA) protocol is a
technology to connect software modules, or nodes, utilizing the NoTA stack to
each other. The modules may reside either in the same device, e.g. computer, or in
several different devices. The NoTA communications may utilize several
alternative communication transports, Bluetooth, USB or TCP/IP, but only
TCP/IP was used in this project.

The NoTA network uses its own addressing scheme, where accessible service
modules/nodes are given pre-defined NoTA network wide 16-bit service identifier
SID values and 16-bit port numbers. The NoTA stack handles the actual device
and service addresses, and peer discovery needed by the transport automatically.
Thus the transport addresses will be invisible to the applications and to the
developer. The discovery process may be quite slow, however, with possibly up to
15 seconds with Bluetooth connections due to the slow device and service inquiry
processes of that technology. The multicast service discovery used with the
TCP/IP transport is much faster, in comparison, and was not observed exceeding a
few seconds.

The Stubgen tool can be used to create a higher level skeleton code for NoTA
client-server service messaging. However, its current shortcomings result in
getting little benefit in the application development. A better, easier to use and
more abstract tool utilizing a provider-consumer pattern was proposed and
sketched.

Overall, despite the immatureness of the technology, the NoTA technology is a
viable solution to loosely coupling software modules and hardware located in
different physical devices.

7 Summary

A demo setup consisting of two computers, an FPGA board, two microphones and
a Web camera was created on a Linux platform. The demo used NoTA protocol
over TCP/IP transport to transmit sound or image data, and command messages
between several service and application nodes. A graphical user interface was
used to monitor and control the demo.

The NoTA protocol and its Stubgen tool were analyzed from the application
developer's point of view. An improved toolset was proposed to further ease and
abstract the software design and development process.

References

[1] http://www.notaworld.org/documentation/

