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Experimental concept

•LOT A2-parcel test at Äspö HRL (6  years) used as a 
reference
•Adverse conditions (120-150 oC)
•Dimensions:

hole height 8m
depth 450 m
water pressure 1.2 MPa
hole diameter 300 mm 
copper tube length 4,7 m
copper inner diameter 100 mm and wall thickness 4 mm
bentonite cylinder diameter 280 mm.



Model and the phenomena

• PetraSim interface and TOUGHREACT EOS3 was used to model 
the reactive unsaturated transport processes in 1-D and the grid 
was pitched at uniform intervals.

• Model includes:
• Solid, liquid (water) and gaseous phases (water/air) Chemical 

equilibrium of aqueous phase
• Mineral dissolution/precipitation (kinetics)
• Cation exchange
• Transport processes (advection, diffusion, thermal gradient)
• Unsaturated flow by Darcy’s Law

• Van Genuchten capillary pressure and relative permeability 
parameters.

• Constant diffusion coefficient
• Porosity changes are included but do not affect the flow of water



Excluded phenomena and chosen limitations

• Swelling and mechanical phenomena (constant material 
parameters) not included

• Time is limited to 10 years
• Montmorillonite is solid base and not dissolving
• Surface complexation (protonation/deprotonation) is not 

included
• Different kind of (pore)waters are not applied



Used Flow and Transport equations
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Results 1

• Gypsum/Anhydrite minerals are redistributed (Gypsum 
dissolves and anhydrite precipitates (left figure) near the 
heater and the bentonite-fracture interface)

• Saturation in this model happens almost fully by liquid water 
(right figure)
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Results 2
• Chloride concentrations match with this saturation
• Experimental results are not necessarily from the fracture 

point and for example cation exchanger composition differs 
from calculated

• There are still some problems with the newer version of 
TOUGHREACT which have to be consulted with Tianfu Xu

• Since the thermal gradient in the model exceeded that in real 
repository, processes are expected to be much slower in 
standard condition holes.
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Results 3

• Calcium diffuses from groundwater to bentonite which causes 
the change from Na-Montmorillonite to Ca-Montmorillonite. 

• All other ion concentrations in cation exchanger gets smaller 
except calcium.

• Calcium and sodium content in the cation exchanger is 
shown below.
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Conclusions

• Majority of the results appear to be qualitatively correct
• Results from the model are from the fracture position, thus 

the changes are at maximum at this point. (Experimental 
results are not necessarily from fracture point)

• Cation exchanger coefficients are from laboratory tests and 
not thoroughly studied for compacted bentonite, thus more 
experimental data is needed.

• It should be studied more how exactly does the water intrude 
the bentonite during saturation



Future Aspects

• Further study is needed to confirm the validity of the results. 
• Results should be compared to other modeling programs
• More experimental data is needed
• Including mechanical phenomena and surface complexation 

to models will increase the reliability of the results
• Comparing initially saturated and unsaturated states and 

results to each other
• Moving from 1-D to 2-D and 3-D problems.
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