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Experimental concept
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oLOT A2-parcel test at Aspo HRL (6 years) usedas: 1 \
reference |
*Adverse conditions (120-150 °C) S e HE
*Dimensions: M
ROCK i
hole height 8m PR mE
depth 450 m - HIH
water pressure 1.2 MPa o e
hole diameter 300 mm Lb T HE
copper tube length 4,7 m e HIE
copper inner diameter 100 mm and wall thickness 4 mm | g sils
bentonite cylinder diameter 280 mm. SllE
4 = Sand

Total 8 m




Model and the phenomena

» PetraSim interface and TOUGHREACT EOS3 was used to model
the reactive unsaturated transport processes in 1-D and the grid
was pitched at uniform intervals.

 Model includes:

Solid, liquid (water) and gaseous phases (water/air) Chemical
equilibrium of aqueous phase

Mineral dissolution/precipitation (kinetics)

Cation exchange

Transport processes (advection, diffusion, thermal gradient)
Unsaturated flow by Darcy’s Law

* Van Genuchten capillary pressure and relative permeability
parameters.

Constant diffusion coefficient
Porosity changes are included but do not affect the flow of water
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Excluded phenomena and chosen limitations

« Swelling and mechanical phenomena (constant material
parameters) not included

* Time is limited to 10 years
« Montmorillonite is solid base and not dissolving

» Surface complexation (protonation/deprotonation) is not
included

« Different kind of (pore)waters are not applied




Used Flow and Transport equations

General continuity equation: % =—divf'+q'

—_— R

Water: Gw = ¢(S|,O|XW| + SgngWg) fw = XWIPIE +Xwgpg ug Qw = qw, + qwg
Air ; Ga = ¢(S|,O|Xa| + Sg,OgXag) Ta: = Xa|,0|U7 +Xagpgu_g> 0, =0, + qag + Qar

Heat: e=(1-#)p:CaT+4 D S,o,u, q=—KkVT+ > CTp,u g,
p=l.9 B=1.g
Chemical Components in liquid phase:

C'= ¢ SICiI 6; =-D,V¢, +Eci| 0 =0y +0;s + g

— K —
U= KVh=—"(VP=pg) K=Kk, P=P +P

K., and P, are VVan genuchten functions




Anhydrite volume fraction [%)]

o Gypsum/Anhydrite minerals are redistributed (Gypsum
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Results 1

dissolves and anhydrite precipitates (left figure) near the
heater and the bentonite-fracture interface)

« Saturation in this model happens almost fully by liquid water

(right figure)
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Results 2

» Chloride concentrations match with this saturation

« Experimental results are not necessarily from the fracture
point and for example cation exchanger composition differs
from calculated

* There are still some problems with the newer version of
TOUGHREACT which have to be consulted with Tianfu Xu

« Since the thermal gradient in the model exceeded that in real
repository, processes are expected to be much slower Iin
standard condition holes.
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Results 3

« Calcium diffuses from groundwater to bentonite which causes
the change from Na-Montmorillonite to Ca-Montmorillonite.

 All other ion concentrations in cation exchanger gets smaller
except calcium.

« Calcium and sodium content in the cation exchanger is
shown below.
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Conclusions

» Majority of the results appear to be gualitatively correct

* Results from the model are from the fracture position, thus
the changes are at maximum at this point. (Experimental
results are not necessarily from fracture point)

« Cation exchanger coefficients are from laboratory tests and
not thoroughly studied for compacted bentonite, thus more
experimental data is needed.

* |t should be studied more how exactly does the water intrude
the bentonite during saturation




Future Aspects

» Further study is needed to confirm the validity of the results.
» Results should be compared to other modeling programs
* More experimental data is needed

 Including mechanical phenomena and surface complexation
to models will increase the reliability of the results

« Comparing initially saturated and unsaturated states and
results to each other

e Moving from 1-D to 2-D and 3-D problems.
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