Design Process for Intelligent Algorithm Intensive Systems

Juhani HIRVONEN

Box 1000, FIN-02044 VTT, Finland

Olli VENTA

Box 1000, FIN-02044 VTT, Finland

ABSTRACT

A variety of algorithms and mostly software-based tech-
nologies have been developed in order solve complex
problems in technical systems. For example, machine
learning, artificial intelligence, pattern recognition, neural
networks, fuzzy logic, statisticd methods, operation
analysis, and most recently sensor networks have been
actively studied. It iswidely acknowledged that advanced
algorithms have large potentia, but due to their impracti-
cal applicability they are neglected in the engineering
processes. The paper outlines systematic engineering
design practices for algorithmic or knowledge-intensive
intelligent systems and services.

Keywords: semantics, modeling, design, intelligent sys-
tems

1. INTRODUCTION

A large number of advanced methods and agorithms for
solving complex problems in information processing
have been developed during the recent decades. On one
hand, these methods often show remarkable performance
but, on the other hand, they often fail to proceed to true
industrial use. Their performance may collapse easily
during practical usage, and solutions are seldom transpar-
ent or well understood in field use, which leads to a lack
of trust. It is also typical that an expert with these meth-
ods is congtantly needed once these methods have been
installed.
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Figure 1. Well-known popular intelligent algo-
rithms exercised and piloted extensively already
over decades

Advanced algorithms and mostly software-based tech-
nologies require considerable knowledge and experience
to be applied effectively, correctly, and transparently,
necessitating participation of skilled professionals. From
practical point of view, this makes applications expensive
to design and maintain. A further challenge is created by
the need for integration of agorithms and continuous
system modifications [1]. The extensive research in this
field has generated numerous demonstrations and pilots
but only few practical solutions or commercia products
[2], [3], [4], [23]. It must be admitted that these methods
arenot in the menu of industrial designers.

The purpose of this paper isto outline the devel opment of
a systematic engineering practice for agorithmic or
knowledge-intensive intelligent systems and services. We
believe that advanced technologies and agorithms can
not be economically feasible unless standardized or sys
tematic design practices, tools and system components
are available [1]. There exist many kinds of engineering
and project management frameworks to carry out effec-
tive software engineering, mechanical engineering, civil
engineering, and congtruction. These frameworks have
proven their merits in numerous activities. Constructing
algorithms intensive applications should benefit of the
same systems engineering principles, analogously.

There are many dlementsin adesign framework. At first,
it should have clear design life-cycle stages. Concept
creation, feasibility study, design, manufacture, use, up-
grades, and disposal represents atypical and even generic
stage sequence. Secondly, engineering processes are re-
quirements-driven rather than technology-driven. Engi-
neering means constructing viable solutions or meeting
the requirements but not piloting the possible merits of
interesting technologies. Designers also want to study
various design alternatives to a reasonable depth. Indus-
trial design means constructing solutions that are known
or ascertained to meet the requirements. Industrial design
does not mean piloting in a laboratory how good your
algorithms may be, or to prove that your special ago-
rithm is just better than those benchmarked in the ex-
periment.

The design tools should help the designers effectively in
constructing the representations peculiar a various



stages. Effective tools also provide features that automate
the generation of subsequent representations along the
design flows. Reuse is an important point-of-view. The
engineering environment should also guide designers in
arriving in good partial solutions, practices, and a the
same time allow the necessary creativity and flexihility.
In summary, a good design practice is foremost a knowl-
edge-management challenge: both in encoding the rele-
vant knowledge and then effectively and accurately bene-
fiting of it.

Figure 2 clarifies the focus of the paper. A product or
system life-cycle starts with user needs and requirements
(problem or opportunity space) and then goes deeper into
product design, redlization, verification, and validation
ending up with a ready-to-deliver product or system.
Typically, the so-called state-of-art engineering processes
are adequate to manage most of the needs or requirements
and the subsequent engineering task. However, some of
the challenges are so special or hard that they can not be
satisfied by using state-of-the-art methods. Instead algo-
rithmic or intelligent solutions are needed. Advanced
algorithms do have large potentia but, due to their im-
practica applicability, they are often neglected in the
engineering processes.
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Figure 2. How to use advanced techniques to
create systems that function in an intelligent
way

2. DESIGN OF ALGORITHMIC SYSTEMS

Algorithmic intdligence
Because the concept of intelligent system is vague we
will first state what we mean by intelligent system:

“A system is intelligent if it behaves appropriately with
respect to its purposes, not only in circumstances it was
explicitly designed for, but also in rare, unexpected and
even new kinds of situations.”

It should be firstly noted that what we mean by intelli-
gence refers to the functionality of a system, not to its
static features. Secondly, the appropriateness of the be-
havior is evaluated in terms of system values and goals.
Thirdly, intelligence requires the system to adapt itsdlf to
changing and unfamiliar situations. To enable intelligent
behavior, systems must have concrete capahilities like
advanced computation and reasoning, plug & play, recon-
figuration, adaptation, learning, co-operation, associating
values with goals, data and aternative actions, rational
decision making, etc..

In order to redtrict the problem space and the design tar-
get we have selected a narrower scope by focusing on the
design of systems that exploit computational algorithms
for identifying system states and adapting to varying cir-
cumstances. Regarding design methods, we are focusing
on model-based approaches as they appear to give the
best tools to design complex entities.

Algorithmic intdligence design

Inspired by other domains Figure 3 depicts the structure
of the intended engineering process for agorithm-
intensive system design showing aso the respective
models, toals, platforms, and libraries.

With such an engineering system the designer will eg. be

ableto:

- write requirements specifications that 1) are capable of
describing the essentias of the tough items in their
contexts, and 2) instruct and support the subsequent
concept creation and early design choices

- deal with prospective alternative design options, judge
the merits of various choices

- objectively choose algorithms that are known or ex-
pected to fit to the needs; in contrast to ad hoc experi-
menting, or, sticking to own approaches

- benefit of and increase the necessary knowledge, ex-
pertise, and experience related to the technology and
application domains

- tailor, refing, tune, learn, assemble the algorithms ap-
propriately, in a manageable way

- ascertain, verify and validate the performances of the
design options, at various design stages

- work in atools-assisted manner, i.e., with the help of
appropriate design user interfaces, design editors, solu-
tion generators, various browsers, €tc.

- as a consequence of al the above, speed-up the uptake
of new methods in commercial actually used products
and services
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Figure 3. Schematic algorithmic engineering
process

3. SAMPLE APPLICATIONS
We have approached our framework development by

sample applications which are monitoring or control of
industrial processes, critical care unit.
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Figure 4. Plant IT infrastructure augmented with
an intelligent system

Critical careapplication

The measurement of (continuous) intravenous blood
pressure is essentia for critical care patient management,
but the measurement method is prone to occurrence of

artifacts that increase the risk of making wrong interpre-
tations of the blood pressure waveform, thus the valida-
tion of intravenously recorded blood pressure data dur-
ing on-line recording is considered a key service of the
system.

Complex plant monitoring

Figure 4 shows how an intdligent, Stuation aware sys-
tem (SESAM) relates to an existing plant IT infrastruc-
ture. The main purpose of the intelligent system is to
support control room operators and other plant personne
in maintaining their situational information and using it
in their actions.

4. IMPLEMENTATION OF DESIGN FRAME-
WORK

Our strategy is that the intended tool shall be primarily
based on knowledge-management. We intend to use
semantic modeling to describe the various aspects of the
algorithms, to represent suggested algorithms constructs,
to generate the design concepts and the actual design pro-
totypes, to manage with training and testing data, to en-
code the various experiences both on the methods and
application domains, etc. Another  knowledge
management technology to be utilized is design patterns
[14]. Eventudly the intended design tool shall employ
other technologies, too, but the core will be knowledge-
management.

For systematic usage of algorithms an effective analysis
or requirements specification will help the designers in
identifying the “tough items’ in their problem space, i.e,
issues which either call for exceptional solutions. Sec-
ondly, we must learn how to describe such tough items so
that it is both communicative to the stake-holders (end-
user, etc.) of the intended device or system, and aso in-
structive for the designers in their subsequent design ac-
tivities, decision-makings, methods assessment, etc. Intdl-
ligent algorithms represent often complex features, prop-
erties, and behaviors, which are hard to specify and de-
scribe.

Conceptual design

Conceptual design means developing aternative algo-
rithm or system architectures tentatively capable of ful-
filling the requirements. At this stage, the design tool
should be able to review and suggest algorithm constructs
that by experience are potentia or capable to meet the
respective items in the requirements specification. Ide-
ally, the tool should be able to map the formal require-
ments to the set of admissible alternative solutions.

In order to have such a tool the respective methods and
algorithms must be described in the tool in such a way
that the intended mappings or a least reviews against
requirements are practical. As described below, we sug-
gest the use of semantic modeling together with appro-



priate architectural design patterns to encode such knowl-
edge of the characteristics, capabilities, properties, per-
formances, experiences, restrictions of known algorithms.
Since assemblies of algorithms are often used such a
knowledge base must encode and store the various inter-
connection rules of the algorithms. Similarly, the knowl-
edge base should contain principles, guidance, and ex-
periences of the use of agorithms or agorithm con-
structs.

Virtual prototype generation

The design concepts or system architectures of the previ-
ous stage should directly indicate how to implement the
detailed dgorithm components, or how to choose algo-
rithms from the tool library, or from a commercia or
open domain package of algorithms. Current state-of-art
of the availahility of software offers aready plenty of
opportunities for efficient design automation.

Theresult of this stage, on the other hand, are expected to
be executable virtual prototypes directly ready for learn-
ing, tuning, adaptation, calibration, verification, valida
tion, and testing, i.e., activities leveling up the prototype
constructs into intended and expected behaviors and giv-
ing grounds to choose the maost appropriate construct for
final solution.

Verification, validation, and testing

Verification, validation, and testing formally means as-
certaining the performance made explicit in the require-
ments specification. In practice, these activities mean
many kinds of data-management challenges. Data-
management and agorithm-selection are highly mutually
dependent issues. The kind of learning and testing data
which is available very much dictates what algorithms
may be used. Or vice versa, the required performance
criteria typically restrict what agorithms or agorithm
constructs must be used and, consequently, indicate what
kind of data is necessary to obtain. Knowledge about
various data management aspects are vital elements of the
knowledge base discussed earlier

5.MODELING ASPECTS

The proposed design flow and tool will be based on mod-
els and application concepts so the following require-
ments have to be taken into account.

- The modds created during design process must cover
both the intelligent technical system itself and its envi-
ronment or context (e.g. process to monitored). In addi-
tion, they will describe the current situation and other
input information to design.

- Modds should aso include various types of informa-
tion at different abstraction levels, including, require-
ments engineering data (problems, goals, design con-
straints, etc.), system functions and implementation.

- Modds must be well structured (formal) and computer-
processible allowing eectronic information manage-
ment and exchange at the minimum. Asfar as possible,
however, the modes, should be “computer-
understandable” so that they support advanced analy-
sis, inference and integration of partial models

- Complex applications are hard to understand, learn and
test. Therefore the modds should be executable. This
would allow system animation and smulation early
during the design stage.

- Process must rely heavily on the reuse of design
knowledge. For the early design stagesit needs, for ex-
ample, patterns and measurable features for application
domains, requirements and available solutions.

- Powerful libraries and methods like similarity meas-
ures or case-based reasoning must be used to match
application requirements with suitable solutions, such
as architectura patternsand advanced a gorithms.

Semantic modeling

Our approach isto use semantic modeling on all levels of
the design. We are in the process of developing ontolo-
gies for eg. Functions, Information (Data), and Tech-
niques (Algorithms) for the purposes of matching prob-
lems and solutions, see Figure 5.
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Figure 5. Matching problems and solutions

For the time being there exists a plethora of ontologies
for different purposes. For example, in mechanical engi-
neering, artifact functions have for a long time been the
starting point of product design [6]. In the beginning this
century the US National Ingtitute of Standards and Tech-
nology (NIST) collected heterogeneous knowledge and
data in to a design repository. On the basis of severa
previous efforts [7] suggested a combined taxonomy of
functions and flows in the dectro-mechanical design
space. These taxonomies result from analysis of a large
number of existing artefacts and are based on traditional
concepts of functions and flows of material, energy and



signals (information). In amore recent study [8] has criti-
cized these taxonomies as internally inconsistent and un-
satisfactory from the viewpoint of formal ontologies.

Taxonomy for functionsof algorithmic systems

There are aso taxonomies and ontologies dealing with
algorithms and data see e.g. [9]. Anyhow, taxonomies for
functions of intelligent algorithmic systems seem to be
missing. Hence, we will adapt to the following top leve
classification of these functions, depicted in Figure 6.
Basically we will adopt the classical input/process/output
paradigm with an addition of Tasks.

IEF Functions

Process
Observe Information Act

Figure 6. Top level classes

Tasks

Furthermore we have defined the necessary subclasses
(SOA stands for state of the affairs, double colon denotes
superclass):

Table 1. Examples of functions of algorithmic
systems

Term Definition

Produce::Act Producing a desired SOA

Maintain::Act Keeping a desired SOA

Observe Inputting information from external and inter-
nal SOA

Act Causing changes in external and internal
SOA

Detect::Process

Becoming aware of a certain (predefined) kind

information of SOA
Validate::Process | Ensuring that information or a statement
information about SOA is correct or true

Estimate::Process
information

Calculating approximation of (a part of) SOA
which is usable even if input data may be
incomplete, uncertain, or noisy.

Predict::Estimate

A rigorous statement forecasting what will
happen under specific conditions

Classify::Process

Determining the category that an entity being

Information classified belongs to
Filter::Process Changing, removing, or reducing entities by
Information amplifying relevant aspects or attenuat-

ing/removing irrelevant aspects

Match::Process
Information

Testing entity for being similar to a template
entity

6. FURTHER ISSUESOF INTELLIGENT SYS
TEMSAND THEIR DESIGN

The purpose of this chapter isto draw a “big picture’ of
the problem domain. The topics to be discussed are: 1)

characteristics of intelligent systems and 2) their implica-
tionsfor the design principles.

Characteristics of intelligent system

Integration of heterogeneous components:
There are stand-alone intdligent systems, but often there
is a need to combine knowledge and services provided by
several more or less intelligent systems. Such combina
tions can bereferred to as “systems of systems’. They are
characterized by large-scale networked integration of
heterogeneous (technical and human) components [1],
[13]. Consequently, intelligent systems combine services
provided by different nodes and subsystems devel oped,
owned and maintained by separate companies. As a ser-
vice can be used in more than one digtributed application,
various intelligent systems can overlap, i.e. system
boundaries depend on the viewpoaint.

Rationality: Intelligent behavior should be
guided by stated or implied goals. These goals may be in
conflict with each other. In addition, the actors within an
intelligent system must base their actions on lacking and
uncertain information. Therefore, rational decision mak-
ing and management of uncertainty are features required
for real intelligence.

Adaptation: Intelligence requires a system to
change its behavior according to the current situation. In
other words, adaptation is a key characteristic of intelli-
gence. Adaptation can be achieved eg. by modifying
system composition (reconfiguration) or by fine-tuning
the functionality of existing parts. Adaptation can also be
achieved by making use of the human actor’s capabilities
to interpret situational requirements and change behavior
to maintain aimed results.

Encapsulated and emergent intelligence: The
intelligence can be encapsulated within individual com-
ponents or emerge from the co-operation and dynamic
reconfiguration of less intelligent eements. In both cases
the mechanisms required for intelligent behavior call for
flexible system architectures, powerful data modds and
computationally advanced algorithms. In case of “encap-
sulated intelligence”, the emphasis is often on the use of
known algorithmic solutions, whereas “emergent intelli-
gence’ isbased on complex interaction patterns.

Implicationsfor design practice

The functional and technical features of intelligent sys-
tems give rise to the mgjor design challenges that need to
be solved. These implications are shortly discussed be-
low.

Enabling system transformations and recon-
figuration during the lifecycle: Intdligent systems tend
to be complex and often can not be fully completed dur-
ing design time. As applications and technologies change,
intelligent systems are modified more or less continu-
ousdly. The system should provide mechanisms that make



these changes flexible, efficient and safe. There is a need
for generic solutions and platforms that would enable
future changes in the systems. Experimenta data should
be used in guiding further development of the systems.

Efficient and appropriate use of intelligent so-
lutions. For design flow to be efficient practica solutions
and advanced methods must be encapsulated into reus-
able knowledge and components that can be easily ap-
plied in integrated engineering tools, in runtime environ-
ments, or both. This may happen within a company or a
group of firms operating in the same application area.
However, only global commercia markets of “intelligent
engineering components’ provide true benefits for com-
ponent developers and system integrators. This means
that standardized and open (but obviously domain-
specific) application frameworks are needed for both de-
sign tools and actual execution platforms.

Selection and appropriate use of technical solutions like
algorithms in specific design problems requires thorough
understanding and explication of both the problem area
and the specific features of the technical solutions them-
selves. If the method is not appropriate for the application
at hand an otherwise reliable solution may fail. In other
words, intelligent solutions can not be seen as a separate
issue but as part of the overall design process.

Diversity of elements of the system: Intdligent
systems are often composed of heterogeneous compo-
nents that must be able to act together. Therefore the
ways of functioning of the system, i.e. the coordination
and the communication mechanisms, must be defined.
Furthermore, communication protocols and other techni-
cal solutions that enable adaptive patterns of the joint
system need to be created. Ontology is one way of creat-
ing common language that the diverse elements of the
intelligent system can understand. Implementing adaptive
patterns in intelligent systems requires close cooperation
of various engineering disciplines and human factors ex-
perts.

Maintaining reliability, safety and security:
The application areas selected as examples for design
flow development have high quality standards. This may
be in contradiction with the rapid system evolution and
use of advanced techniques that are hard to verify. There-
fore, thereis the need for structured and formalized mod-
els that support systematic, computer-assisted anaysis,
testing and simulation of design artifacts. In addition, the
design process and working practices must be organized
in away that makes effectively use of these facilities.

7. FUTURE WORK

For the time being we are in the process of devel oping the
required ontologies. Furthermore the design tool will re-
quire extensive libraries of patterns, templates, and algo-
rithms. We will start to explore similarity measures be-

tween problems and solutions to be able to guide the de-
signer in the process. One possible solution to these
measures can be obtained through fuzzy ontologies [11],
[12]. Finaly we need ways to express statements like
“solution X issuitable for problem Y in the given context
Z and overall goa G'.
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