
Games@Large Distributed Gaming System
Arto Laikari1, Philipp Fechteler2, Peter Eisert3, Audrius Jurgelionis4, Francesco Bellotti5,

Alessandro De Gloria6

1VTT Technical Research Centre of Finland, Espoo, Finland; 2,3Fraunhofer Institute for Telecommunications, Berlin, Germany;
4,5,6University of Genoa, Genoa, Italy;

E-mail: 1Arto.Laikari@vtt.fi, 2philipp.fechteler@hhi.fraunhofer.de, 3eisert@hhi.fraunhofer.de,
4jurge@elios.unige.it, 5franz@elios.unige.it, 6adg@elios.unige.it

Abstract: The requirements of computer games by means
of CPU and graphics performance are continuously
growing. At the same time many low cost and modest
performance CE devices are gaining popularity. People
are already used to mobile life style inside home and on
the go and want to enjoy entertainment everywhere. This
paper describes a novel gaming system, called
Games@Large, which enables heavy PC game play on low
cost consumer electronic devices (CE) without the need of
game software modification. The key innovations of the
Games@Large system are distribution of game execution,
streaming of graphics, video, audio, and game control as
well as network quality of service management.

Keywords: remote gaming, graphics streaming, video
streaming, networking, input device capturing, remote control

1 INTRODUCTION
Home computers have already brought Ethernet and WLAN as
standard equipment to homes. Wireless or wired home
networks are almost as familiar and common as electricity and
water pipes in many countries. Future home is considered to be
an always-on connected digital home with wide variety of
appliances. Although people are not yet willing to invest to a
“future home”, they are already eager to acquire a lot of
entertainment equipment. Computer gaming has been utilizing
this infrastructure already for a long time. Modern games have
become highly realistic and they are consumed by a wide
population, not only youngsters. Due to the increasing
demands on computer hardware for the realistic connected
virtual worlds, high CPU processing power and graphics
performance is required to play these games.

At the same time mobility and digital home entertainment
appliances have generated the desire to play not only in front
of a home PC, but everywhere inside the house and also on the
go. As the result of TV digitalization Set-Top Boxes (STBs)
have entered homes and as a new trend mini-laptops are
gaining popularity. Several low cost CE end devices are
already available at home and on the go. Although these
devices are capable to execute software, modern 3D computer
games are too heavy for them.

Additionally, several Games-on-Demand services are currently
entering the marked. OnLive, announced for late 2009, that
they will provide instant game play in resolutions up to 1080i
via browser plugins. This performance is achieved by running
a proprietary video codec on customized hardware [17].
Playcast and Gaikai have both announced similar Game-on-
Demand services also for late 2009.

The Games@Large project is developing a novel system for
gaming both for homes and for enterprise environments, like
hotels, internet cafés and elderly homes [1, 2]. In the
Games@Large system the key concepts are execution
distribution, audio, video and graphic streaming and
decoupling of input control commands. According to the Cloud
Computing concept, games are executed in one or more servers
and the game display and audio is captured and streamed to the
end device, where the stream is rendered and the game is
actually played. Game control is captured at the end device
streamed back to the server and injected to the game. It is
important to note that no special game adaptation is required,
but almost any commercial game can be played via the
Games@Large platform. In comparison to other currently
emerging systems, the Games@Large framework explicitly
addresses support of end devices with rigorously different
characteristics, ranging from PCs with different operating
systems over settop boxes to simple handheld devices with
small displays and low CPU power, with adaptive streaming
techniques.

This paper presents the novel Games@Large architecture and
its key functionalities, like the graphics and video streaming,
audio streaming and game control command transfer as well
as the quality of service approach. Finally we present the
testing arrangements of the Games@Large system and the
experimental results.

2 GAMES@LARGE ARCHITECTURE
The system depicted in Figure 1, consists of three major
element classes: servers, end devices and access points. A user
that interacts with the Games@Large system mainly uses
his/her end device to browse, select and play games.
Moreover, the system supports background activities such as:
device discovery in the network, authentication and
authorization of the device and user, log the activity in the
system for tracking and billing, configure and maintain the
system.

Figure 1: Games@Large architecture

mailto:Arto.Laikari@vtt.fi
mailto:philipp.fechteler@hhi.fraunhofer.de
mailto:eisert@hhi.fraunhofer.de
mailto:jurge@elios.unige.it
mailto:franz@elios.unige.it
mailto:adg@elios.unige.it

Games run on the Local Processing Server (LPS), which
utilize also the Local Storage Server (LSS). In the home
version of the Games@Large system, these logical entities
will be located in the same physical computer. End devices,
like STBs or Enhanced Multimedia Extenders (EME),
Enhanced Handheld Devices (EHD) and notebooks are
connected to the server either with wireless or wired
connection. The system exploits an adaptive streaming
architecture and uses Quality of Service (QoS) functionalities
to ensure good quality gaming to a variety of devices
connected the wireless network. The six stage general
Games@Large execution process is depicted in Figure 2.

Figure 2: General flow of information

3 REMOTE RENDERING OF GAMES
The objective of the streaming architecture is to support as
many kinds of end devices as possible with an efficient and
high quality game experience, independent of software or
hardware capabilities. Additionally, in order to keep the effort
for integrating new end devices at a minimum, the involved
protocols and algorithms have to be as much as possible
standard compliant resp. commonly used techniques. To meet
these demands a streaming architecture has been developed
that is able to support two streaming strategies to display the
game remotely: Graphics Streaming and Video Streaming
(shown in Figure 3).

Figure 3: Graphics/Video streaming architecture

Graphics Streaming is used for end devices with accelerated
graphics support, like computers or set-top-boxes, typically
having screens of higher resolution [3]. Here the graphics
commands from the game are captured, transmitted and
rendered locally on the end device. In this way, high image
quality is achieved, since the scenes are always directly
rendered for the desired screen. To achieve interactivity with a
minimum of delay, several optimizations have been developed:
caching of server memory on client side, simulation of

graphics state on server side and encoding/compression of
graphics stream [15]. For cross-platform purposes an
abstraction layer has been developed for the particular graphics
commands of OpenGL resp. DirectX. These abstract
commands are transmitted in order to be translated on the
client appropriately to be handled by the graphics system
present there. Figure 4 depicts the detailed block diagram of
the components involved in the 3D streaming. First, the 3D
commands issued by the game executable to the graphic layer
API used by the selected game (e.g., DirectX v9) need to be
captured. The same technique used for capturing the DirectX
v9 can also be used for capturing other versions of DirectX
(and also the 2D version of DirectX-DirectDraw). This is
implemented by providing to the game running on the LPS a
pseudo-rendering environment that intercepts the DirectX
calls. The proxy Dynamic Link Library (DLL) is loaded by the
game on its start-up and runs in the game context. This library
forms the server part of the pipeline which passes the 3D
commands from the game executable to the client’s rendering
module..

Figure 4: 3D streaming

Video Streaming, the alternative approach, is used mainly for
end devices without a GPU, like handheld devices, typically
having screens of lower resolution. Here the graphical output is
rendered on the game server and the frame-buffer is captured
and transmitted encoded as H.264 video stream [4]. In Video
Streaming the bit rates are in general much more predictable in
comparison to Graphics Streaming. However, H.264 encoding
on server side as well as decoding on end devices is
computational demanding. In order to support simultaneous
execution of several instances of games in parallel and to
achieve interactive frame rates with a minimum delay several
optimizations have been developed. Besides the reduction of
all buffering and caching on server and client to a minimum,
information available in the games rendering context is
exploited in several ways to reduce the computational
complexity of H.264 encoding itself. First of all, the rendering
commands are intercepted and modified before their execution
to meet exactly the client’s properties without any image
degradation or processing delay (e.g. resolution by adapting

the viewport etc.). Additionally the H.264 encoding is
accelerated in comparison to general purpose encoding by
utilizing information of the rendering context. One integrated
optimization exploits skyboxes, a commonly used game
rendering technique [16]. Further optimizations are focused on
direct calculation of motion vectors and macroblock partitions
based on graphics information. In this way computational
demanding trial and error search methods of generic H.264
encoding is significantly reduced.

Besides the visual appearance computer games also produce
sounds and music. In order to deliver this audio data to the
client in an efficient manner, an audio streaming sub-system
has been developed. Since computer games typically produce
their audio samples in a block-oriented manner, the current
state-of-the-art audio encoder in this field has been integrated:
the High Efficiency Advanced Audio Coding version 2 (HE
AAC-v2) [5]. The AAC implementation is configurable to
meet the capabilities of the connected end device (AAC-LC,
HE-AAC or HE-AAC v2, mono or stereo, 8 or 16 bits per
sample and at several sample rates, e.g., 22.05, 44.1 or 48
kHz).

To provide a synchronized and real-time playback of visual
and audio data, the UDP based Real-time Transmission
Protocol (RTP) [6,7] and Real Time Control Protocol (RTCP)
have been implemented. The former protocol provides time
stamps to each packet and the latter provides the information
for synchronization of several RTP channels.

4 COMMUNICATION CHANNEL
ARCHITECTURE

Different end devices typically provide several different input
modalities. In the initial discovery phase performed by the
UPnP device discovery protocol, the end device sends its
properties and capabilities. During the gameplay, the input
from the controllers is captured either using interrupts
(keyboard, mouse) or through polling (joysticks, joy pads).
The captured commands are then transmitted via persistent
connection to the server. At the server side the input
commands are mapped to the appropriate game control and
injected in real-time to the game running at the server [8].
Figure 5 describes the functionality of the return channel. The
return channel is constructed by two communicating modules;
the server side module and the client side module. The return
channel on the server side is responsible for receiving the
commands from each connected client and injecting them to
the appropriate game the user is playing.
The server side module that implements the return channel is
part of the core of the system and more specifically the Local
Processing Server. The return channel on the server side is
responsible for receiving commands from each connected
client and transforming them in such a form that they will be
readable by the OS (Windows XP/Vista) and resp. by the
running instance of the game.
The server side of the return channel receives the keyboard
commands from the client. The communication between the
server and the client follows a specific protocol in order to a)

be successfully recognized by the server and b) preserve the
loss of keyboard input commands. An important aspect of the
return channel infrastructure is the encryption of keyboard
commands.
An encryption procedure is used to secure the keyboard
commands that the client transmits. This is done, because
sensitive user data, such as credit card numbers or passwords
might be inserted using the keyboard.
Each end device supports of many possible input devices for
interacting with the server. Capturing the input coming from
the controllers is achieved by recording the key codes from
the input devices. Input devices such as mice or keyboards are
interrupt-driven while with joysticks or joy pads the polling
method is used for reading. If the command that is to be
transferred is originating from a keyboard device, the client
uses the server’s public key to encrypt the data. The encrypted
message is transmitted to the server using the already existing
socket connection.
Similarly mouse commands that originate from the client are
sent to the server using the already open socket connection
without encryption.
An issue that arises for the mouse input device is the mapping
of different resolutions at the server and client, since absolute
mouse positions are sent. However we realized that the
rightmost bottom position of the mouse equals the resolution
of the game when running in 3D streaming, and it is equal to
the screen resolution when running in video streaming. On the
server side matching of the resolutions should be done on the
resolution of the game running on the server as every
command is injected into the game window. Therefore the
mouse positions are normalized on the client and the server
side.
Joypad/Other input from the client. This means that any
Joypad/Other input is first translated to suitable keyboard and
mouse commands on the client side (using XML mapping
files) and is then transmitted to the server for execution at the
game instance. The execution of these commands falls to the
previously described cases [10].

Figure 5: Communication channel

5 NETWORKING AND QUALITY OF
SERVICE

To ensure smooth game play, decent Quality of Service (QoS)
is required from the wireless home network. To fulfil this goal,
we use both a MAC-layer mechanism to prioritize some
traffic classes and an application-layer mechanism to easily
map the application requirements to the MAC-layer QoS. In
order to meet the requirement of using low cost components,
the choice for the wireless home network has been to use
IEEE 802.11 based technologies, because of their dominant
position in the market [9].
Priority based QoS can be supported in IEEE WLANs with
the Wi-Fi Multimedia (WMM) extensions specified by Wi-Fi
Alliance. WMM is a subset of IEEE 802.11e standard and
divides the network traffic into four access categories which
receive different priorities for the channel access in
competition situations. In this way applications with high QoS
requirements can be supported with better service than others
with less strict requirements. In addition to MAC layer QoS
support, there is a need for QoS management solutions in a
complete QoS solution. Our platform relies on UPnP QoS
specification. The specification defines services for policy
management and network resource allocation. In practice, it
acts as a middleware between the applications and the
network devices performing the QoS provisioning.

Figure 6: QoS enabled home network for gaming

6 EXPERIMENTAL RESULTS
In [10] we have demonstrated and discussed multiple game
execution and Games@Large system performance with and
without the QoS. Based on the results in [10] we have
performed a more extensive study with 2 expert gamers and a
larger number of different games for two different test

scenarios of the Games@Large system operation. The two test
cases consider different conditions in the wireless network,
since this reflects the real potential of the Games@Large
system. The test scenarios presented in this paper show the
results of the initial tests for the Games@Large system. Later
in the project more thorough tests with various end devices
and multiple players for the system will be performed [10].

6.1 Testbed and test scenarios
We have redesigned the testbed from [10, 11] in which we can
monitor the performance of network, devices and
Games@Large system processes as well as introduce some
background traffic in the wireless local area network. Figure 7
depicts the testbed setup.

Figure 7: Games@Large testbed

The Games@Large server (Intel 2GHz 2 CPUs, 2048MB
RAM, 256MB dedicated video memory) running Windows
XP is connected to a 100 Mbps switch which is connected to
the WLAN Access Point (AP) via a wired Ethernet connection.
The client notebook (Intel 2GHz 2 CPUs, 1024MB RAM,
384MB shared video memory) is connected to the Wireless
AP via the IEEE 802.11g wireless connection. For system
performance monitoring we used an external Monitoring
notebook.
All the PCs and NBs were SNMP/WMI enabled for
performance monitoring purposes. For TCP traffic generation
we have used two additional notebooks running jperf [12]
server and client software, Figure 7.
We used a PRTG Network Monitor [13] on the Monitoring
notebook to monitor network, device and Games@Large
processes with minimal influence on system’s performance.
An internal performance logging system was implemented in
the Games@Large client and server software. The logging
system can record the client’s and server’s processing delay
and a game’s frame rate at which it is rendered on the client
notebook.
We have performed our experiments with four different video
games: Sprill (casual game), Mahjong World (board game),
Total Overdose Demo or TOD (first person shooter game),
Turtix (casual game).

6.2 Test scenarios description
The first scenario is designed to measure the system’s
performance in a wireless network in nearly ideal conditions
when there is no other traffic interfering with Games@Large
game session streams.
In the second test scenario the wireless local network is loaded
with a TCP traffic stream. In the case of TCP cross-traffic
generation the jperf client sends as much data as there is free
bandwidth.
The second test scenario considers the presence of cross-
traffic in the Games@Large wireless network without the QoS.
Such an approach is a good way to put the Games@Large
system under stress conditions and analyse the acceptance by
end users. The QoS is deactivated which implies that system
performance for the second test scenario would be
considerably improved in case the QoS is active [10].
The described test scenarios include a full system workflow
which consists of the following steps: Games@Large server
discovery from the client device, web user interface access
and game list browsing, selection of the game and starting to
play.
Prior to the tests both the test participants were given time to
familiarize themselves with the 4 video games used for tests.
They have been asked to play the games on the client
notebook for a few hours. The games were installed and run
natively on the client notebook.
In order to have reference data we have performed
measurements and asked test participants to rate the gaming
experience also when games were run natively on the client
notebook.
Thus, the evaluation is based on the comparison between the
game experience when a game is run on the client notebook
natively and on the Games@Large framework.
The gaming experience was rated in the Mean Opinion Score
(MOS) scale after each game session [14].
Each of the test sessions’ for performance measurement and
gaming experience rating was 5 minutes in length.

6.3 Results and discussion
Performance measurements and user ratings were averaged
for each test session and are shown in the figures below.
Figure 8 represents the MOS score of the two test participants
for each game for different test scenarios. In the presence of
TCP traffic the gaming experience degradation is noticeable
for all of the tested games; the Total Overdose Demo game
was rated by one of the test participants as practically not
playable in the presence of jperf’s generated TCP cross-traffic,
while the second one rated it much better, which suggests that
this first person shooter game is considered as playable by non
demanding gamers. A game is considered to be not playable
by most of the users when its gaming experience is rated
below 3 in MOS scale [14].

0

1

2

3

4

5

Sprill Mahjong TOD Turtix

M
O

S

Run natively
G@L run, w/o traffic
G@L run, w/ TCP traffic

Figure 8: MOS rating of gaming experience

According to [10], figure 9 and figure 10 the frame rate of a
game is proportional to the network throughput for the
Games@Large system which decreases with the increasing
round trip time (figure 10) and causes degradation in the game
experience. The performance of the system improves a lot
when the QoS is active [10]. Nevertheless, video games that
use high data rates per frame require very high bandwidth and
thus, problematic to be run with the Games@Large system via
currently used wireless networks.

0

15

30

45

60

75

90

105

120

135

150

165

180

195

210

225

240

255

270

285

Sprill Mahjong TOD Turtix

Fr
am

e
ra

te
Run natively
G@L run, w/o traffic
G@L run, w/ TCP traffic

Figure 9: Average frame rates on the client notebook

0

2

4

6

8

10
12

14

16

18

20

22

24

26

Sprill Mahjong TOD Turtix

R
TT

 [m
s]

G@L run, w/o traffic
G@L run, w/ TCP traffic

Figure 10: Average RTT between G@L server and client

Figure 11 and Figure 12 show the processing delay for client
and server of the Games@Large system. It can be seen that
for different network conditions (test scenarios) the variation
in client and server delays is very small. Processing delay
depends on the type of game and device specifications.

0

5

10

15

20

25

30

35

40

45

50

Sprill Mahjong TOD Turtix

Cl
ie

nt
 p

ro
ce

ss
in

g
de

la
y

[m
s]

G@L run, w/o traffic
G@L run, w/ TCP traffic

Figure 11: Average G@L client processing delay

0

10

20

30

40

50

60

70

80

90

100

110

120

Sprill Mahjong TOD Turtix

S
er

ve
r p

ro
ce

ss
in

g
de

la
y

[m
s]

G@L run, w/o traffic
G@L run, w/ TCP traffic

Figure 12: Average G@L server processing delay

The server must have enough CPU power and memory to run
the game natively. Additionally, the amount of video memory
that a game requires when running natively, must be available
in the system memory when running in the Games@Large
environment (that is because the graphic objects are emulated
by the streaming module in the system memory). As for the
CPU requirements, most games still do some graphics
processing in software, so decoupling of the rendering from
the game actually leads to a CPU gain on the server. As long
as the processing server has sufficient CPU and memory
resources to run multiple games at once it can run them.
The most important hardware requirement for the client
device is the video adapter (for 3D streaming). It should have
hardware acceleration capabilities to enable fast rendering of
3D scenes. As on the server, the graphic resources that the
game stores in the video memory should be available in the
system memory to enable manipulation prediction and
caching. So memory requirements for the client should be
200-300 MB available to the client application for fairly
heavy games.

7 CONCLUSIONS
Games@Large is implementing an innovative architecture,
transparent to legacy game code, that allows distribution of a
cross-platform gaming and entertainment on a variety of low-
cost networked devices. Virtually extending the capabilities of
such devices the Games@Large system is opening important
opportunities for new services and experiences in a variety of
fields and in particular for the entertainment in the home and
other popular environments.
We have shown that the Games@Large system is capable of
running and delivering a good gaming experience for video

games of different genres including first person shooter games
that are usually highly interactive and demanding for high end
device performance.

Acknowledgment
This work has been carried out in the IST Games@Large
project [1,2], which is an Integrated Project under contract no
IST038453 and is partially funded by the European
Commission.

References

[1] Games@Large project website, http://www.gamesatlarge.eu
[2] Y. Tzruya, A. Shani, F. Bellotti, A. Jurgelionis. Games@Large – a new
platform for ubiquitos gaming, Proc. BBEurope, Geneva, Switzerland, 11-14
December 2006
[3] P. Eisert, P. Fechteler, Remote rendering of computer games, SIGMAP
2007, Barcelona, Spain, 28-31 July 2007.
[4] Advanced video coding for generic audiovisual services, ITU-T Rec.
H.264 and ISO/IEC 14496-10 AVC, 2003.
[5] MPEG-4 HE-AAC v2, ISO/IEC 14496-3:2005/Amd.2
[6] RFC 3550, “RTP: A Transport Protocol for Real-Time Applications”
[7] RFC 3640, “RTP Payload Format for Transport of MPEG-4
Elementary”
[8] Bouras, Poulopoulos, Sengounis, Tsogkas, Networking Aspects for
Gaming Systems, ICIW 2008, Athens, Greece, 8-13 June 2008.
[9] J-P. Laulajainen, Implementing QoS Support in a Wireless Home
Network, WCNC 2008, Las Vegas, USA, 31 March-3 April 2008.
[10] A. Jurgelionis et al, Platform for Distributed 3D Gaming, in Cyber
Games and Interactive Entertainment, International Journal of Computer
Games Technology, Article ID 231863, vol. 2009
[11] A. Jurgelionis, F. Bellotti, A. Possani, A. De Gloria, “Designing
enjoyable entertainment products”, workshop on "Now Let's Do It in Practice:
User Experience Evaluation Methods in Product Development" in CHI 2008,
Florence, Italy, April 6th, 2008
[12] http://sourceforge.net/projects/iperf
[13] PRTG Network Monitor, http://www.paessler.com/
[14] Ch. Schaefer, Th. Enderes, H. Ritter, M. Zitterbart, “Subjective Quality
Assessment for Multiplayer Real-Time Games”, in Proceedings of the 1st
workshop on Network and system support for games, pp. 74 – 78,
Braunschweig, Germany, 2002
[15] P. Eisert and P. Fechteler,"Low Delay Streaming of Computer
Graphics," Proc. Intern. Conf. on Image Processing (ICIP), Oct 2008
[16] P. Fechteler and P. Eisert,"Depth Map Enhanced Macroblock
Partitioning for H.264 Video Coding of Computer Graphics Content“ Proc.
Intern. Conf. on Image Processing (ICIP), Nov. 2009
[17] BBC NEWS: “OnLive games service 'will work'”, 1st April 2009,
http://news.bbc.co.uk/2/hi/technology/7976206.stm

http://www.gamesatlarge.eu
http://www.paessler.com/
http://news.bbc.co.uk/2/hi/technology/7976206.stm

