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ABSTRACT 
Computer based modeling and simulation is 
becoming a regularly used tool for the design of 
hydraulic machinery. The same computer model can 
be used to design appropriate means for machine 
condition monitoring. The model can be also used to 
examine failure conditions. The acquired information 
is valuable for fault detection and diagnostics. 
Sometimes simulation can be the only feasible 
approach for fault threshold setting, since testing 
might be dangerous or expensive or machine has 
been updated and no previous fault measurements 
are available. In this paper simulation model was 
used to study efficiency of different classifiers in 
electrical signal failure, control valve sticking, as 
well as different leaking faults in position feedback 
valve-controlled hydraulic cylinder. 100 modified 
simulation runs were performed for each fault and 
different statistical windows were tested for feature 
extraction. The windowed data was used to test 
linear, quadratic, Parzen and neural network based 
classifiers.  

KEYWORDS 
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neural network, Parzen window 

1. INTRODUCTION 
In the design phase of machines operating with 
hydraulics, virtual testing is coming more common. 
The system is modeled with computer and design 
parameters can be defined without the use of real 
world prototypes. Especially elasticity related 
dynamical properties can be accessed. Modeling can 
also be used to design condition monitoring methods 
for machinery. Modeling can also be used to failure 
simulation. Measurement information can be 
accessed cost-efficiently using virtual measurement 
instead of real sensors in real machines. This 
information can be used to design automatic fault 

diagnostic algorithms or fault classifiers (Leonhardt 
S. and Ayobi, M., 1997). Sometimes this might be 
the only way to design fault classifiers, since faults 
have a low probability of occurrence. It may take 
several years for critical faults to emerge. A common 
problem in process industry (e.g. energy production, 
paper production and steel production) is that 
machinery has been updated or modified, which 
makes the measured history data at least partially 
outdated. A common reason is also that measurement 
of faults is too dangerous or expensive. Main users of 
design tools are original equipment manufacturers 
(OEMs) They are widely moving to service business 
as the cash flow is more stable than in selling and 
margins are better. This lays groundwork for 
simulation based design of condition monitoring 
methods    

Pattern recognition and hydraulic servo controls are 
widely researched fields. Applied mathematical 
methods are basically the same in both fields. The 
control theory tries to diminish step response 
oscillation while pattern recognition tries to find 
optimal method for extracting overlapping signal 
information. Not much has been done upon pattern 
recognition in fault diagnostics of hydraulics. 
Automotive industry is being active in analyzing 
electro-hydraulic steering and breaking components 
(Börner M. et al., 2002; Hahn, J-O. et al., 2002). 
Parameter variation has been examined in a case of 
simple hydraulic motor drive model (Yu, D., 1997). 
Models related to leaking have recently raised 
interest. The use of Kalman filtering in hydraulic 
leakage detection (An, L. and Sepehri, N., 2004) and 
QFT (Quantitative Feedback Theory) fault tolerant 
control under leakage (Karpenko, M. and Sepehri, 
N., 2004) has also been studied. The issues such as 
supply pressure and sensor faults as well as fluid 
contamination have been studied in relation to QFT-
fault tolerant control (Niksefat, N. and Sepehri, N., 
2002) and by using Volterra nonlinear models (Tan, 
H-Z. and Sepehri, N., 2002).   
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Measurement of pressure over filter is usually the 
only method for hydraulic system monitoring. Fluid 
condition is sometimes monitored. Usually 
laboratory analysis are used, since development of 
on-line oil quality measuring sensors is relatively 
slow and difficult (Parikka, R. et al., 2004; Parikka, 
R and Tervo, J., 2003). The major improvements 
have been made in the fields of moisture sensors and 
dielectric constant measuring sensors. Marine-, off-
shore- and paper-industries have an increasing 
interest towards low cost humidity (or water content) 
in oil measurement devices. The viewpoint of the 
present paper is that the available on-line 
measurement methods are not yet cost-efficient to 
monitor hydraulic fluid powered machinery. More 
information is needed for early fault detection and 
reliable fault diagnostics. Viewpoint includes also the 
use of fewer sensors with increased intelligence. The 
increase of intelligence can be achieved mainly by 
modeling and simulation.  

2. DESCRIPTION OF THE TARGET 
The analyses were carried with feedback servo-
proportional controlled cylinder drive model using 
semi-empirical parameters (Handroos, H., 1990). 
Model was developed from earlier work (Vidqvist V. 
and Tervo, J., 2005) by adding pressure relief valve 
and more advanced friction model. The model was 
created using Matlab R11 Simulink building blocks. 

2.1. Model description 

The parameters in Figure 1 are as follows: 

y = piston position [m] 
p1 = pressure prior to control valve [Pa] 
p2 = cylinder-side pressure [Pa] 
p3 = piston-side pressure [Pa] 
QS = flow from pump [m3/s] 
QSleak = leak flow from pump [m3/s] 
Qr = flow from relief valve to tank [m3/s] 
QAleak, QBleak = leak flow from valve to tank [m3/s] 
QA = cylinder-side flow [m3/s] 
QB = piston-side flow [m3/s] 

Simulation model uses cylinder friction model that 
was generated originally for sliding pair contact 
(Canudas de Wit, C. et al., 1995; Canudas de Wit, C., 
1998): 
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where, 
Fµ = friction force [N] 
σ0 = spring coefficient of piston seal [N/m] 
z = seal deflection [m] 
z&  = speed of deflection change [m/s] 
σ1 = damping coefficient of piston seal [Ns/m] 
b = coefficient of viscous friction [Ns/m] 
y&  = piston velocity [m/s] 

The supply force produced by cylinder: 

µFpApAF PCSu −−= 32      (2) 

where, 
Fsu = supply force [N] 

 
Figure 1 Main parameters of the model  

AC= cylinder-side area of piston [m2] 
AP= piston-side area of piston [m2] 

Cylinder is placed vertically towards ground, which 
leads to mechanism equation: 

mgFSu =        (3) 

where, 
m = combined mass of piston and load [kg] 
g = gravitational coefficient [m/s2] 

Pressures are following: 
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where 
321 ,, ppp &&&  = pressure differentials [Pa/s] 

V10, V20, V30 = constant volumes related to different 
pressure [m3] 
Be1, Be1, Be1 = Effective bulk modulus values related 
to different pressure [Pa] 
L = Stroke of piston [m] 

The bulk modulus of casing prior to control valve is 
assumed to be infinitely high (rigid), which leads to 
following effective bulk modulus: 

oe BB =1 ,       (5) 

where 
Bo = Bulk modulus of oil [Pa] 

Pipes are used after control valve. For the calculation 
of cylinder and piston side effective bulk modulus 
values, piston is positioned to L/2. Bulk modulus 
values are as follows: 
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where 
Bp = bulk modulus of pipe [Pa] 
Vt2, Vt3 = total volume for effective bulk modulus 
calculation (y =L/2) [m3]  

The dynamics of control valve is expressed as a 
second-order system between the spool displacement 
and the input voltage: 
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where 
x = spool position [m] 
x&  = spool velocity [m/s] 
x&&  = spool acceleration [m/s2] 
U(t)= voltage input to valve [V] 
ωv = nominal angular velocity (frequency) in valve 
dynamics [rad/s] 
δv = cancellation ratio of valve dynamics  

21%)5(45
,, ττ

ω °−
G   = Valve coefficients  

Cylinder side flow and leak flow are defined as 
follows: 
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where 
Cv = valve semi-empiric flow coefficient 
[m3/(sV(Pa)0.5)]  
pT = tank pressure [Pa] 
νalle= total leak flow relative to maximal flow [%]  
QN=nominal flow through valve [m3/s]  
pNs=nominal input pressure of valve [Pa] 
U=control voltage of valve [V]  

Piston side flow is defined correspondingly as 
follows: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤−=

>=

≤−⋅−⋅⋅=

>−⋅−⋅⋅=

0)(
2

00

0)(

0

3

1313

33

Upp
P
Qv

Q

UQ

UppppsignUCQ

Upp)psign(pUCQ

t
Ns

Nalle
Aleak

Aleak

vB

TTvB

(9) 

Flow from pump is as follows: 

SSrevSS nVQ ⋅⋅=η     (10) 

where 
ηS=  volumetric efficiency of pump   
VSrev= pump displacement [m3/rev]  
ns=pump speed [rev/s]  

Flow through pressure relief valve follows normal 
valve flow equation and is: 

TTrr ppppsignkQ −⋅−⋅= 11 )(   (11) 

where 
kr = amplification coefficient of relief valve  

Dynamics of relief valve is expressed through relief 
valve amplification coefficient as a first order system 
as follows (Handroos, H., 1990): 
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where 
pref = reference pressure of relief valve [Pa]  
C1,C2,Cdyna = semi-empirical coefficients of relief 
valve   

Earlier work (Vidqvist V. and Tervo, J., 2005) 
included digital control properties, which were 
discarded. Also the look-up table based controller 
was replaced with PI-controller.  

2.2. Fault Modeling 
Following faults were included in the model: 
• Electrical signal failure 
• Valve spool sticking (jamming) 
• Leak from cylinder side to outside system 
• Leak  from piston side to outside system 
• Cylinder inside leak 

Electrical signal was modeled by setting input 
voltage to zero for predefined time: 

VendVstart ttttU 00,0)( ≤≤=     (13) 

where 
t0Vstart = start time of electrical signal failure [s] 
t0Vend = end time of electrical signal failure [s] 

Valve spool sticking was modeled through voltage. 
The voltage value was kept constant for predefined 
time: 

jamendjamstartjamstart ttttUtU ≤≤= ),()(  (14) 

where 
tjamstart = start time of spool sticking [s] 
tjamend = end time of spool sticking [s] 

Cylinder side leak was modeled using a  round hole 
as flow orifice to outside the system: 

),( 2 airyxholeAAof ppppQQQ ==−=  (15) 

where 
QAof = Valve flow under cylinder side leak [m3/s] 
Qhole = Leak flow through hole [m3/s]  
pair = atmospheric pressure [Pa] 

Piston side leak was modeled correspondingly: 

),( 3 airyxholeBBof ppppQQQ ==−=  (16) 

where 
QBof = Valve flow under piston side leak [m3/s] 

A leak inside affects both flows as follows: 
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where 
QAif, QBif = Valve flow under inside leak [m3/s] 

The flow through the hole during leaking is 
calculated in the following way (both laminar and 
turbulent flows included) (Backé, W. 1986; Merrit, 
H. 1967; Rowe, W. 1984): 
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where 
ρ = density of oil [kg/m3] 
ν = kinematic viscosity of oil [m2/s] 
lhole = length of the hole [m] 
dhole = diameter of the hole [m]  
ξhole = flow resistance coefficient of the hole  

3. METHODS  
Signals generated with Simulink were analyzed using 
Matlab and its toolboxes. Pattern recognition toolbox 
(Prtools 3.16) was used to generate and test 
classifiers (Duin, R.P.W., 2000). Feature extraction 
was performed using statistical windows calculated 
data. Four classifiers were chosen to analyze data 
with different window sizes. 

3.1. Generation of Simulated Signals 
Simulink used variable step size for simulation runs. 
Duration of the Model was 3.5 s. Piston was driven 
to 0.4 m from 0 m position and back using ramp as 
control signal. Model signals were linearized to 
20000 points. Noise signal was added to position 
feedback signal. Model used a random number 
generator with 0.15 s sample time. Noise signal was 
set to about +/- 1 mm. Gaussian distribution was used 
to generate the signal through random generator. 100 
simulation runs were performed for each five fault in 
addition to 'no fault'-case. Faults were modified using 
random number generator with different feed. Fault 
variation is presented in Table 1. 
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3.2. Feature Extraction 
Statistical windowing was chosen for feature 
extraction method. The statistical parameters used for 
windows are explained in Table 2. 

 

Feature vectors (feature vector = total amount of 
points in linearized simulation vector divided with 
window size) were calculated for cylinder side 
pressure (p2) and valve control voltage (U). Feature 
vector sizes of 20, 15, 10 and 5 were calculated in 
chronological  order for both selected signals  (in 5 
point feature vector the window size is 
20000/5=4000 and the first feature e.g. RMS value 
represent linearized signal between 0 and 
3.5/20000*4000=0.7 s, second 0.7-1.4 s and so on). 
Also 100, 75, 50, 25 were defined for the U signal. 
Feature extraction algorithm calculated not even 
windows by leaving the last points out (e.g. 
1333*15=19995).  

Table 1 Table 1. Fault variation in simulation runs 
 Model (0-3.5 s) 

leaks 
tstart: whole simulation [s] 
tstop: whole simulation [s] 
dhole: 5e-5+0...1*5e-4 [m] 

sticking 
faults 

tstart: round(0...1)*2+0.4+0...1*0.85 [s] 
tstop: tstart+0.1+0...1*0.1 [s] 

zero volt 
faults 

tstart: round(0...1*3)+0.3+0..1*0.15 [s] 
tstop: tstart+0.1+0...1*0.1 [s] 

3.3. Classification 
Bayesian classifiers were tested in classification of 
feature vectors x generated with statistical windows. 
The likelihood functions of classes' ωi (here 6) with 
respect to x in the l-dimensional feature space (here 
5...100) follow the general multivariate normal 
density (Theodoris, S. and Koutrombas, K., 1999) 

Table 2 Table 3. Explanation of statistical parameters for 
windows. 

Parameter Calculation Explanation 

iqr 
median(xi75%) 

-
median(xi25%) 

Iqr computes the difference between 
the 75th and the 25th percentiles of 

the sample.  The iqr is a robust 
estimate of the spread of the data, 

since changes in the upper and lower 
25% of the data do not affect it.  

kurtosis 
 

4

4)(
σ

µ−
=

xEk  

Kurtosis is a measure of how outlier-
prone a distribution is. The kurtosis 

of the normal distribution is 3. 
Distributions that are more outlier-
prone than the normal distribution 

have kurtosis greater than 3; 
distributions that are less outlier-
prone have kurtosis less than 3. 

skewness 3

3)(
σ

µ−
=

xEk  

Skewness is a measure of the 
asymmetry of the data around the 

sample mean. If skewness is 
negative, the data are spread out 

more to the left of the mean than to 
the right. If skewness is positive, the 
data are spread out more to the right. 

The skewness of the normal 
distribution (or any perfectly 

symmetric distribution) is zero. 
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 The RMS of a sample is a scalar that 
gives some measure of its magnitude 

max max(xi) 
Returns the largest elements along  

of an array 

slope 
i

i

x
bxf

k
−

=
)(  Slope defines if the values of sample 

are increasing or decreasing 

Mip ii
T

i

i
li ,...,1,)()(

2
1exp

)2(
1)( 1

2/12/
=⎟

⎠
⎞

⎜
⎝
⎛ Σ−

Σ
= − µ-xµ-xx

π
ω

(19) 

where µi = E [x] is the mean value of the ωi class and 
Σi the l ×  l  covariance matrix defined as 

[ ]T
iii E ))(( µ-xµ-x=Σ    (20) 

iΣ  denotes the determinant of Σi and E[• ] is the 
mean (or average or expected) value of a random 
variable. Equation 19 is preferable to work with 
logarithmic functions due to its exponential form. 
This result 
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where ci is a constant equal to -(l/2)ln2π -(1/2)ln iΣ . 
Eq. 22 can be expanded to  
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term  indicates that decision curves are 
quadratic (e.g., ellipsoids, parabolas, hyperbolas, 
pairs of lines). For l>2 the decision surfaces become 
hyperquadratic. This classification is referred here as 
quadratic classifier (qdc is the used Prtools function) 
If the covariance matrix is the same in all classes, 
that is, Σ

xx 1−Σ i
T

i = Σ, the quadratic term and ci will be same 
in all discriminant functions. g(x) can be redefined to 
form 

)(ln
2
1)( 1

ii
T
i

T
ii Pg ω+Σ−Σ= − µµxµx  (24) 

Hence gi(x) is a linear function of x, the decision 
surfaces become hyperplanes. This type of 
classification is referred here as linear classifier (ldc 
in prtools).An example of linear and quadratic 
classification is presented in Figure 2. 

In addition to Bayesian based classifiers, Parzen 
classifier was tested for all feature vectors (parzenc). 
Density estimate is modified from Eq. 19 (Jain, A.K. 
and Ramaswami, M.D., 1988; Hamamoto, Y. et al., 
1996) 
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hk is the parzen window size of class ωk. Prtools use 
Lissack and Fu error estimate for the calculation of 
optimal window size (Lissack, T. and Fu, K.S, 1976).  

Last classifier tested was neural net classifier (bpxnc 
in Prtools). Classifier is a feedforward two hidden 
layer network with batch mode updating using 
traditional sigmoid transfer function. Initialization is 
performed using Nguyen-Widrow method (Demuth, 
H. and Beale M., 1998; Nguyen, D. and Widrow, B., 
1990). Calculations are based on backpropagation 
algorithm. 

Forward computations are calculated after 
initialization for each training vector x(i), i=1,2...,N 
(Theodoris, S and Koutrombas, K., 1999)   
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Cost function J is then updated 
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Figure 2 Linear and quadratic classification in the case 
 of two class two feature space (Duin, R.P.W., 
 2000) 

after this backward computations are calculated 
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and in the sequel  
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finally weights are updated  
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where [ ]r
jk

r
j

r
j r 1

,...,, 10 −
= ωωωr

jw . Training is stopped 
by Prtools when iteration epochs are twice that of the 
best classification result. Number of output neurons 
equals the number of classes. Figure 3 illustrates the 
calculation procedure. 
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Figure 3 Definition of variables involved in the 
 backpropagation algorithm  

4. RESTRICTIONS OF STUDY 
The assumptions made in this work are as follows 
(Handroos, H., 1990): 
• The viscosity of oil, the bulk modulus of oil, the 

discharge coefficients and flow angles of valve 
orifices are constants 

• Pressure is distributed evenly 
• Pressure does not saturate or cavitate 
• The inlet pressure of each valve is greater than or 

equal to outlet pressure and the tank pressure is 
zero 

• the compressibility of oil in the damping 
chambers as well as the Coulomb and the viscous 
friction force between the valve spool or poppet 
and the valve housing can be neglected 

The simulated parameters have not been verified by 
measurements. Although the values of the parameters 
do lack realism, it is expected that the estimated 
values are “close enough”. (Virvalo, T., 1997; 
Virvalo, T., 1999; Handroos, H., 1990) As the 
classifiers function correctly with relatively noised 
data, the exact values are not necessarily needed. 
Similar hydraulic system models without faults have 
been verified previously (Virvalo, T., 1997; Virvalo, 
T., 1999; Handroos, H., 1990). Bulk modulus values 
of the model are not compensated by piston 
movement. The modulus values are calculated when 
the piston is in the middle position of the stroke. This 
is due to technical problems in calculation. Also the 
pressure relief valve model was reduced to first order 
model. 

5. RESULTS 
From 100 simulations (5+1 cases in each simulation) 
80 random simulation runs were used for training 
(6*80=480) and the rest 20 simulations were used for 
classifier testing.  Total amount of classifiers is 336 
(voltage measurement quantity * 8 different feature 
vector sizes * 4 different classifiers * 7 different 
parameters for feature vectors + pressure quantity * 4 
different feature vector sizes * 4 different classifiers 
* 7 different parameters for feature vectors). Results 
are presented in Appendices. Tables 3, 4 and 5 shows 
the fraction of incorrectly classified test for each 
method applied (higher than 0.5 value means that 
classifier performs worse than if the decision is made 
by tossing a coin). 

6. DISCUSSION 
A large amount of oil leaking out of the system is 
usually easily visible as fluid puddles under the 
machinery. This is especially the case when the hose 
is leaking. The situation is different in the case of 
pipe breakage or seal damage. The leak may be small 
enough to remain unnoticed. The oil consumption 
increases slightly, but not necessarily enough to arise 
any concerns. Even if the correct conclusions are 
made, finding the leak may be a tedious task.  

Canudas De Wit model was used to model friction 
(eq. 1). A common model invented by Karnopp was 
used in work by Tan and Sepehri (2004): 

ydyeFFFyF Sv
y

CSC &&&

&

+⋅⋅−+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
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2
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where 
FC = Coulomb friction [N] 
FS = static friction [N] 
d = effective damping ratio [Ns/m] 
vS = the threshold for break away velocity for 
switching between static friction and slip friction 
[m/s2] 

[ ] 0,1,1)sgn(;0,/)sgn( =−∈≠= xxxxxx &&&&&&  

 

There are several reasons for using of the Karnopp 
model. It is quite simple, easy to understand and it is 
numerically efficient. Disadvantages include that 
actuator is drifting when outside load and friction 
load are in balance. In reality as well as in Canudas 
De Wit model, position is not affected. Complexity 
and definition of the parameter σ1 are the 
disadvantages of the Canudas De Witt model. 
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Position (Fig. 4), valve control voltage (Fig. 5) and 
cylinder side pressure (Fig. 6) example for different 
faults are presented in Appendices. The pressure 
signals become negative in the case of inside leak. 
This is due to the limitations of the model, which 
does not compensate the rapid pressure fluctuations 
fast enough. Also the pressure relief valve flow was 
set so that negative flow is not possible (i.e. flow 
from tank to system). The sudden pressure increase 
in cylinder side leak fault at 1.5 s is due to 
elimination of negative flow. 

The model was used to simulate faults in places 
where substantial effect can be seen. There is only a 
negligible visible effect on pressure if sticking takes 
place while the spool is not moving. Also in the case 
of zero volt-fault, the effect is minimal if the control 
voltage (flow) is already zero (see Table 1). 

The zero-volt fault changes spool position very 
rapidly. This can be seen directly from the pressure 
change. Piston position is also heavily affected and 
the work cycle is delayed. Fluid leak to air 
(atmospheric pressure) produces some visible 
changes to the position signal. Reason for short time 
excessive over steering at 2 s is the negative flow 
aspect of the pressure relief valve mentioned before. 
Position is slightly over steered during cylinder side 
leak and under steered during piston side leak. 
Pressure increases as the closed loop system seeks 
balance between pressure and flow at near piston 
stroke position by adjusting the valve opening. 
Larger holes should produce pressure drop. 
Oscillation amplitudes are smaller during outside 
leaking near piston stroke position than in no fault 
case. Leaking inside the cylinder produces serious 
pressure oscillation. Pressure oscillation was so 
extensive that it induced oscillation to position 
signal. The kind of a variation in hydraulic system 
pressure is undesirable since it produces wear. Spool 
sticking produces moderate pressure oscillation after 
spool is released.  

General requirement to keep measurement cost low 
was the reason for quantity selection for windows 
and classifiers. Flow sensors are expensive and flow 
information can be accessed more easily by 
measuring control voltage. Pressure measurement is 
moderately expensive, but it is less costly than flow 
measurement. As sensors are not needed in voltage 
measurement, it is the most preferable choice for 
monitoring purposes. Sensor price may be irrelevant 
as signal processing unit represent the highest cost of 
system.  

Usually 20 % is defined as a minimum acceptable 
error probability of classifier (50 % is the probability 
for coin tossing). Using this definition the 
classification error probability of Tables 3, 4, 5 in 
almost all cases are acceptable. . Even zero error can 
be seen using voltage, 2000 point window (10 point 
feature vector) and maximum value of feature vector. 
Small windows (or large feature vector) were not 
tested for pressure signals. Feature matrices were 
singular, which stopped the classifier teaching 
algorithm. This is a common problem for classifiers 
(Hamamoto, Y. et al, 1996). Comparison of voltage 
and pressure signals does not show much difference 
in classification. Best window sizes seem to be 2000 
points (10 point feature vector) or 1333 points (15 
point feature vector) wide. Best results can be 
achieved using parameters like root mean square 
(RMS) or maximum value of the feature vector 
(max). These parameters are the most used also for 
elements of rotating machines in vibration condition 
monitoring (e.g. rolling bearings, gears). The Parzen 
classifier produced the smallest error in classifying 
voltage and cylinder side pressure data. Quadratic 
classifier was the best in classifying the data of 
piston side pressure signal. The results usually 
depend more on the feature extraction method than 
on the classifier type. In this work the linear and 
neural net classifiers performed worse than quadratic 
or Parzen classifiers. Faster linear classification 
might be wanted, despite worse performance. The 
neural network had two hidden layers. The amount of 
training vectors was 80. The network can have 75 or 
100 input neurons (size of feature vector). Amount of 
training vectors should be ten times more with these 
sizes of networks. The idea was to test classifier with 
small amount of training vectors. Also the neural 
networks have drawbacks in convergence and local 
optimum (An, L. and Sepehri, N., 2004). 

Some feature vectors are plotted in Appendices (Fig 
7-13). X-value represent the feature vector (1,2,3,4...) 
and y-value represent the calculated feature value 
(e.g. RMS) of signal window in that feature vector 
value. Feature vector is plotted as constructed in 
chronological order of its signal. All constructed 100 
vectors are plotted overlapping each other. This 
highlights the differences generated with fault 
variation (Table 1) and noise. Figures 7 and 8 
visualize the effect of window size reduction to 
signal. RMS-feature vectors are plotted for sticking 
fault. Work cycle of valve voltage is not recognizable 
in 5 point vector, since too much signal information 
is lost (the original sticking fault voltage signal is 
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plotted in Fig. 5, RMS can not be negative). The 
effect is visible also in classifier results as 5 point 
vector performs worse (higher classification error 
value) than 10 or 15 point vectors (Tables 4, 5 last 
three columns). Excessive information like 100 or 75 
point vectors also reduces classifier efficiency (Table 
3 first two columns). 

Figures 9 and 10 visualize the effect of windows 
parameter change to signal. The high sensitivity of 
kurtosis (as well as skewness) can be noticed as large 
variation in same feature point between feature 
vectors (Fig 10). Mean value is more stable (Fig. 9) 
Sensitivity of parameter decreases classifier 
efficiency (Hyötyniemi, H., 2001). In general, 
average efficiency of kurtosis and skewness (Tables 
3, 4, 5, respective row) was worse than that of robust 
parameters like mean or RMS. The efficiency 
differences were over ten percentages.  

Figures 11, 12 and 13 visualize effects of different 
faults to 20 points max feature vector. The clear 
visible difference between feature vector shapes in 
different figures show why the max parameter 
performed best in classification. 

7. CONCLUSIONS 
It has been demonstrated that statistical windows 
based data classification can be used for analyzing a 
hydraulic cylinder drive, which is essentially a 
nonlinear system. The modeled fault phenomena 
were not verified experimentally. Tested 
classification methods worked well on simulated 
faults like electrical signal failure, control valve 
sticking and leaking in feedback valve-controlled 
hydraulic cylinder. The used hydraulic component 
models have been verified in various previous 
research (Virvalo, T., 1997; Virvalo, T., 1999; 
Handroos, H., 1990). The smallest classification error 
was reached with the Parzen classifier. The analyzed 
parameter was the maximum value of control valve 
voltage signal, with window size of 2000 points 
(from 20000 points). In general root mean square 
(RMS) and maximum value of window (max) 
parameters functioned best with window sizes of 
1333 points (15 points size feature vector) and 2000 
points (10 points size feature vector). Parzen and 
quadratic classifiers performed better than linear and 
neural network based classifiers. There was not any 
significant difference in results, if the used quantity 
was control valve voltage or pressure. 

 

APPENDICES 

 
Figure 4  Position signal (y) example with different faults 

Figure 5 Valve control voltage (U) example with 
 different faults 

 
Figure 6  Cylinder side pressure (p2) example with  
 different faults 
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Figure 7  50 point (xvalue) valve control voltage (U) 
RMS (yvalue) feature vectors (100 plotted) for sticking 
fault-case 

 
Figure 8 5 point (xvalue) valve control voltage (U) RMS 
(yvalue) feature vectors (100 plotted) for sticking fault-
case 

 
Figure 9 15 point (xvalue) valve control voltage (U) 
mean (y-value) feature vectors (100 plotted) for cylinder 
side leak case 

 
Figure 10 15 point (xvalue) valve control voltage (U) 
kurtosis (yvalue) feature vectors (100 plotted) for cylinder 
side leak case 

 
Figure 11 20 point (xvalue) cylinder side pressure (p2) 
max (yvalue) feature vectors (100 plotted) for no fault-
case 

 
Figure 12 20 point (xvalue) cylinder side pressure (p2) 
max (yvalue) feature vectors (100 plotted) for inside leak-
case 
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Figure 13 20 point (xvalue) cylinder side pressure (p2) 
max (yvalue) feature vectors (100 plotted) for zero volt 
fault-case 

 

Table 3 Control voltage (U) classifier error probability 
 with 25-100 feature vector size (less is better) 
Error probability, 5+1 faults, 100 vectors per fault,  480 learn and 120 test vectors

wsize from 20000 100 points 75 points 50 points 25 points
points

linear U-10-200.mat U-10-266.mat U-10-400.mat U-10-800.mat
iqr 0.1083 0.175 0.1167 0.325
kurtosis 0.0917 0.2 0.3333 0.3417
max 0.05 0.0833 0.125 0.1333
mean 0.1917 0.1 0.1083 0.2083
rms 0.15 0.1333 0.175 0.1333
skewness 0.1333 0.225 0.1917 0.1583
slope 0.15 0.1917 0.1583 0.2667

quadratic U-10-200.mat U-10-266.mat U-10-400.mat U-10-800.mat
iqr 0.2083 0.0583 0.0417 0.15
kurtosis 0.1167 0.1833 0.0917 0.2083
max 0.0333 0.0667 0.0833 0.2
mean 0.0917 0.0417 0.05 0.1167
rms 0.05 0.0917 0.0333 0.175
skewness 0.0667 0.0917 0.1583 0.075
slope 0.05 0.0583 0.05 0.1417

parzen U-10-200.mat U-10-266.mat U-10-400.mat U-10-800.mat
iqr 0.0583 0.0417 0.05 0.1167
kurtosis 0.0917 0.0917 0.1833 0.0833
max 0.0333 0.0417 0.0333 0.0
mean 0.1583 0.0917 0.075 0.05
rms 0.0833 0.075 0.0667 0.1083
skewness 0.0667 0.075 0.075 0.0583
slope 0.0833 0.0583 0.075 0.125

NN2hidden U-10-200.mat U-10-266.mat U-10-400.mat U-10-800.mat
iqr 0.0333 0.0583 0.1833 0.3
kurtosis 0.2333 0.175 0.2917 0.3
max 0.0583 0.0583 0.0917 0.225
mean 0.3 0.175 0.15 0.25
rms 0.075 0.15 0.1167 0.1417
skewness 0.2833 0.1917 0.1667 0.3333
slope 0.1417 0.1167 0.1167 0.2417

667

583

833

417

833

333

333

583

667

 
 

 

 

 

 

 

Table 4 Control voltage (U) classifier error probability 
 with 5-20 feature vector (less is better) 
Error probability, 5+1 faults, 100 vectors per fault,  480 learn and 120 test vectors

wsize from 20000 20 points 15 points 10 points 5 points
points

linear U-10-1000.mat U-10-1333.mat U-10-2000.mat U-10-4000.mat
iqr 0.1417 0.1417 0.1333 0.2
kurtosis 0.1583 0.1833 0.3167 0.35
max 0.0583 0.0917 0.0667 0.125
mean 0.1 0.1167 0.0667 0.2
rms 0.1667 0.125 0.0833 0.1167
skewness 0.175 0.225 0.1667 0.125
slope 0.2083 0.1583 0.1667 0.2667

quadratic U-10-1000.mat U-10-1333.mat U-10-2000.mat U-10-4000.mat
iqr 0.225 0.0417 0.0667 0.0833
kurtosis 0.2 0.15 0.0833 0.225
max 0.05 0.025 0.4083 0.2833
mean 0.075 0.0583 0.0417 0.1083
rms 0.05 0.025 0.05 0.1083
skewness 0.0917 0.125 0.1167 0.1167
slope 0.0417 0.025 0.0833 0.1333

parzen U-10-1000.mat U-10-1333.mat U-10-2000.mat U-10-4000.mat
iqr 0.1083 0.0833 0.075 0.0417
kurtosis 0.15 0.1333 0.1583 0.1
max 0.025 0.0167 0 0.0417
mean 0.0583 0.0833 0.05 0.1083
rms 0.0667 0.0667 0.0667 0.0
skewness 0.0833 0.1167 0.0833 0.0417
slope 0.1 0.075 0.0583 0.15

NN2hidden U-10-1000.mat U-10-1333.mat U-10-2000.mat U-10-4000.mat
iqr 0.1583 0.125 0.1833 0.3667
kurtosis 0.2333 0.2167 0.25 0.3333
max 0.05 0.0917 0.0833 0.1
mean 0.125 0.2833 0.075 0.1917
rms 0.1667 0.275 0.175 0.15
skewness 0.15 0.2 0.2833 0.3
slope 0.1583 0.1833 0.1917 0.3083  
Table 5 Cylinder side pressure (p2) classifier error 
 probability with 5-20 feature vector size (less is 
 better) 
Error probability, 5+1 faults, 100 vectors per fault,  480 learn and 120 test vectors

wsize from 20000 20 points 15 points 10 points 5 points
points

linear p2-10-1000.mat p2-10-1333.mat p2-10-2000.mat p2-10-4000.mat
iqr 0.0833 0.1167 0.0833 0.2
kurtosis 0.1333 0.2667 0.25 0.4
max 0.05 0.0583 0.0833 0.1
mean 0.125 0.1833 0.1333 0.1667
rms 0.075 0.15 0.0583 0.15
skewness 0.1417 0.1583 0.1917 0.1583
slope 0.1917 0.175 0.1333 0.2417

quadratic p2-10-1000.mat p2-10-1333.mat p2-10-2000.mat p2-10-4000.mat
iqr 0.1167 0.0583 0.0583 0.175
kurtosis 0.1333 0.1333 0.0917 0.175
max 0.0167 0.05 0.4083 0.275
mean 0.0583 0.0667 0.0417 0.1
rms 0.05 0.0333 0.025 0.15
skewness 0.0833 0.1 0.0833 0.0667
slope 0.0583 0.0833 0.05 0.1167

parzen p2-10-1000.mat p2-10-1333.mat p2-10-2000.mat p2-10-4000.mat
iqr 0.0583 0.0583 0.05 0.1083
kurtosis 0.1333 0.0833 0.1333 0.05
max 0.0583 0.0333 0.025 0.0333
mean 0.0833 0.1083 0.0667 0.0667
rms 0.0583 0.075 0.0417 0.1417
skewness 0.1 0.1 0.0917 0.0583
slope 0.0667 0.1167 0.0583 0.1083

NN2hidden p2-10-1000.mat p2-10-1333.mat p2-10-2000.mat p2-10-4000.mat
iqr 0.0917 0.0667 0.1583 0.2
kurtosis 0.2 0.15 0.2917 0.3
max 0.25 0.05 0.1583 0.3917
mean 0.125 0.3 0.175 0.2083
rms 0.0417 0.1083 0.2583 0.1
skewness 0.2417 0.1917 0.125 0.2917
slope 0.125 0.2917 0.1833 0.1583  
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