Title
Author(s)

Citation

Date

Rights

This document is downloaded from the
Digital Open Access Repository of VTT

Integrating model checking with
safety-critical I&C software design
Pakonen, Antti; Lahtinen, Jussi;
Kuutti, Veli-Pekka; Karhela, Tommi
7th International Topical Meeting on
Nuclear Plant Instrumentation,
Control and Human-Machine
Interface Technologies (NPIC&HMIT
2010). Las Vegas, Nevada, USA,

7 - 11 Nov. 2010

2010

Copyright © (2010) American
Nuclear Society.

Reprinted from 7th International
Topical Meeting on Nuclear Plant
Instrumentation, Control and Human-
Machine Interface Technologies
(NPIC&HMIT 2010).

ISBN 978-0-89448-084-3.

This article may be downloaded for
personal use only

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

bound by the following Terms & Conditions.

By using VTT Digital Open Access Repository you are

| have read and | understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

INTEGRATING MODEL CHECKING WITH SAFETY-CRITICAL 1&C
SOFTWARE DESIGN

Antti Pakonen, Jussi Lahtinen, Veli-Pekka Kuutti and Tommi Karhela
VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
antti.pakonen@vtt.fi; jussi.lahtinen@vtt.fi; veli-pekka.kuutti@vtt.fi; tommi.karhela@vtt.fi

ABSTRACT

Model checking is a formal method that can be used to verify hardware or software system
designs. A model of the system is constructed, and that model is then checked against the system
requirements. The difference to more conventional verification and validation (V&V) techniques
is that the analysis is exhaustive — it covers all possible behaviors of the system model.

We have been working on model checking in the context of safety-critical 1&C systems in
several research projects, resulting in successful pilot applications. As an example, we have been
consulting the Finnish Radiation and Nuclear Safety Authority (STUK) on verifying NPP 1&C
system designs. While the tools for performing the actual model checking are mature, there is still
a lot of manual work needed for constructing the model on the basis of the design information,
formalizing the system requirements, and interpreting the model checker results. The actual
processing of the analysis is swift, but most of the work is spent on repetitive, dull tasks that could
relatively easily be automated.

In order to ease the application of model checking already at the early phases of the system
design process, we have been developing a set of tools to automate some of the tasks in the model
checking process and guide the modeler in those tasks that still need human interpretation. Our
solutions are largely based on the Simantics platform — an open-source development project aimed
at the efficient integration of different modeling and simulation tools.

Key Words: model checking, instrumentation and control systems, software development

1 INTRODUCTION

The shift from analogue 1&C to digital systems has raised concerns regarding the
correctness of software design in safety-critical applications. Traditionally, verification and
validation (V&V) of programmable control systems has been based on methods such as testing,
simulation, and deductive verification. All of these methods have their shortcomings. Testing,
while being a crucial element, cannot conclusively prove the reliability of complex systems due
to the sheer number of required test cases. Similarly, all of the possible behaviors of a complex
system cannot be covered by running simulations. Deductive verification can be used to prove
aspects of the correctness of a system, but the techniques are time-consuming, require high
expertise, and are subject to interpretation errors. None of the traditional approaches can
exhaustively prove the absolute reliability of the examined system with any reasonable amount
of time and effort.

Model checking [1] is a computer-aided formal method for verifying the correct functioning
of a system design model against the specified requirements of the system. The analysis is
relatively fast to perform and exhaustive — covering all the possible behaviors of the system

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1729

model. The model is typically based on a state machine representation, while the specifications
are written in a language called temporal logic, the constructs of which allow the formal
specification of system behavior in time. If the model can exhibit a behavior that is contrary to
requirements, the model checker will output an execution path demonstrating this behavior as a
counter-example. By examining the counter-example, the origin of the system fault can be
located and corrected.

Various model checking tools have been developed. NuSMV [2], mainly used in our work,
is a state-of-the-art symbolic model checking tool.

Our experience has shown that model checking can effectively be applied to V&V of digital
I&C systems. It is however noteworthy that model checking does not apply to all kinds of
control systems — continuous, complex, algorithm-rich control systems can not be modeled to
reasonable detail with modeling languages used by tools such as NuSMV. However, the kind of
straightforward binary logic that is (or at least should be) used in safety-critical 1&C corresponds
to a state-based representation. A state explosion problem can occur if the system under
observation is e.g. very large or contains many feedback loops, but generally even quite complex
binary logic can be exhaustively analyzed within seconds or minutes.

It is obvious that the capability to automatically discover hidden faults early in the design
process would be a huge benefit for any system designer. However, while the analysis done by
the model checker tool is quite quick, there is a troublesome amount of manual work needed for
constructing the model, formalizing the system requirements, and analyzing the results.
Accordingly, we have been working on developing software tools for automating the entire
process of a model checking task.

2 MODEL CHECKING OF I1&C SYSTEMS

2.1 Applicability of Model Checking for V&V of Digital 1&C Systems

Model checking has been used since the early 1980°’s in e.g. verifying microprocessor
design. Advances in computing power and the scalability [3] have enabled the use of model
checking in new application areas and in ever more complex applications. Other than
microprocessor verification, model checking techniques have been successfully used at least in
verification of data communications protocols, verification of real-time controllers, and
verification of source code in device drivers [4]. Examples of companies that have long utilized
model checking include NASA and Microsoft. Application of model checking in evaluating
digital 1&C design is a fairly new topic, but research under the Finnish Research Programme on
Nuclear Power Plant Safety (SAFIR) has quickly resulted in successful pilot cases
(I51161[7118]1[9]), and eventually in the employment of model checking in large commercial
projects. For example, we have been consulting the Finnish Radiation and Nuclear Safety
Authority (STUK) on verifying NPP 1&C system designs, with model checking used as a key
method. We have also carried out several successful pilots in industry areas other than nuclear.

Model checking is not intended to replace existing V&V methods, but to complement them.
Nevertheless, our work so far has shown that the method is a valuable addition to the set of
methods used in 1&C system evaluation. The tools are mature enough for real-world application,
and in several of the pilot cases we have been able to discover design faults in systems that had

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1730

already undergone conventional V&V processes. Model checking is not, however, applicable to
all kinds of systems, as the modeling language assumes certain simplifications. Nevertheless,
safety 1&C systems are (or at least, should be) based on rather straightforward binary logic, and
such applications are inherently suitable for model checking.

2.2 The Overall Model Checking Process

The model checking process is illustrated in Figure 1. Based on a system description
document, the relevant parts of the system to be modeled are selected, and the boundaries,
constraints, and the abstraction level of the model are defined. Once this foundational work is
done, the main phases follow. The different phases of the overall task of performing model
checking are:

1. Construction of the model based on the system design specification
2. Formalization of the system requirements

3. Running of the model checker

4. Interpretation of the results

5. Documentation of the overall results

Currently, at least for applications such as digital 1&C systems, the only phase that is
automated is the actual analysis performed by the model checking tools. Other phases are still
done manually, and are thus prone to human errors, and potentially either repetitive or confusing.

Y
S Model
Gesign construction
specification
‘ _ | Interpretation of o ¢
Model checking e » Documentation
System Requirement
requgremgnt formalization
specification
A

Figure 1. The Model checking process (Modified from [9])

First, using the system design specification as an input, a model has to be created. The
model is a formal representation of the system that should include all the relevant behaviors,
while leaving out insignificant details. The model has to be such that the requirements can be
formalized as statements on the interfaces of the model.

The second step is the formalization of the system requirements to a format understood by
the model checker. The specification language depends on the model checking tool, typically
temporal logic is used. As the requirements are often given as natural language statements,
converting them into a formal specification can be difficult, especially if the original
requirements are ambiguous, vague, or incomplete.

After modeling and requirement formalization the model checking tool can be executed. The
tool will automatically examine whether the model corresponds to the specified requirements. If
the specification is fulfilled, the correctness of the model is declared. If the model can behave in
a manner inconsistent with the requirements, an execution path demonstrating such behavior is

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1731

given as a counter-example. This counter-example allows the modeler to find faults in the
original system design. However, a counter-example can also be a symptom of an error in the
construction of the model or the specification of the requirements. Once the origin of the error is
found, the model or the requirements can be refined (possibly introducing further errors). Since
errors in modeling typically result in counter-examples, model checking can be seen as a self-
fixing, iterative process that guides the modeler.

Interpretation of the results consists of examination of the counter-examples and deducing
of the incorrect system behavior based on them. The interpretation can be straight-forward if the
behavior of the system can be easily understood from the model behavior. Usually, however, the
counter-examples are presented in such a format that manual interpretation can be complicated
and time-consuming for larger models.

3 PRACTICAL CHALLENGES IN MODEL CHECKING

While tools for performing model checking are mature and available, there are still many
challenges in its adaptation. In terms of theoretical problems, the greatest challenge has been the
computational effort required due to the state explosion problem [10]. State explosion means that
the number of states grows exponentially with respect to the size of the model. Even though the
resulting state space is still finite, the model checking task might be too complex for existing
methods and computers. The state explosion problem is not fully solved. However, advances in
techniques such as symbolic methods [10], abstraction [10][11], partial order reduction
[10][211][12], and bounded model checking [13][14] have made the model checking of
increasingly complex systems possible.

Another problem is the reliability of model checking results. When a specification is
satisfied, the model checking tool does not provide any evidence of this claim. It is quite difficult
to confirm the correctness of a positive model checker result. Documented previous operational
usage, certification, and cross-checking with another model checker are ways to build confidence
in the tool. Combining model checking with theorem proving could alleviate the problem, but the
techniques [15][16] need further research. If model checking is used only to locate errors in the
system, and not to prove the correctness of the system, ensuring the reliability of the results is
not the biggest concern.

Still, the main obstacles for efficiently applying model checking are found from the more
practical challenges involved. Because of the amount of manual work needed, there are many
phases in the overall model checking process that are slow, tedious and prone to errors:

1. Construction of the model based on the system design specification
2. Formalization of the system requirements
3. Interpretation of the generated counter-examples

Construction of the model requires expertise in both the formalism in which the system
design is expressed, and the modeling language used by the model checker. If the formalisms are
by their nature different, a lot of deduction and interpretation is needed. For NuSMV, for
example, the model has to conform to a state machine representation. When possible, the
modeling task can be made more efficient by adopting a modular approach. As digital 1&C
software is usually represented by function block diagrams, we have found it a practical

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1732

approach to first model the collection of elementary function blocks, reducing the overall model
specification to assembling the overall application from reusable components. The latter task
requires less modeling expertise, but is still quite tedious and prone to errors.

As the system requirements are usually stated in natural language, formalization of the
system requirements to the safety properties processed by the model checker is a challenging
task. Statements that can at the worst be ambiguous and vague need to be converted to precise
statements in the formal specification language (such as temporal logic in the case of NuSMV).
For any given one requirement, an expert using a model checker will also often have to derive
several temporal logic clauses in order to cover all the aspects of the requirement. Furthermore,
complex temporal logic formulas can easily become convoluted. It may later be difficult for the
original modeler to later completely understand what the written formula originally was meant to
state.

When a model checker discovers an execution path of the system model that is contrary to
the system requirements, the execution path is presented as a counter-example. NuSMYV, for
example, outputs textual lists of data, showing how the signal variables of the model change
through time. The format is all but illustrative, and for large models, can consist of thousands of
lines of text. Interpretation of the generated counter-examples takes a large amount of effort
in the overall modeling task, as the counter-examples do not specifically highlight where the
problem is, but simply present all the data. Furthermore, a counter-example can be a symptom of
an error in the modeling task as well as an actual fault in the system design, and it is impossible
for a computer program to decide which one is to blame. Since errors in modeling usually result
in unnecessary counter-examples, the modeler will have to process through many model checker
outputs, even when the correctly constructed system model will eventually fulfill all the
requirements.

4 INTEGRATING V&V TOOLS WITH THE SIMANTICS PLATFORM

Simantics [17][18] is a platform for modeling and simulation originally developed at VTT
Technical Research Centre of Finland, but currently released and maintained as an open source
tool by THTH (Association of Decentralized Information Management for Industry,
www.ththry.org). Simantics has a client-server architecture with a semantic modeling kernel and
an Eclipse framework based client software with plug-in interfaces. The idea is that a semantic
approach to modeling and simulation (motivated by the ideas behind the Semantic Web) enables
users of the platform to connect and co-use a wide range of different simulation and engineering
tools. Several commercial and non-commercial simulation and engineering tools such as
OpenModelica, BALAS, Apros, OpenFoam, Comos and SmartPlant are integrated to the
environment. After the data model of the system is modeled as an ontology to Simantics and the
interfaces for transferring system data to the platform are implemented, ontology mappings can
be defined between different systems. These mapping rules will keep the different models
consistent and thus provide automated model integration.

Starting point for Simantics platform development has been the following needs:
e Advanced operating environment for existing modeling and simulation tools
e Simulation and design system integration

o Co-use of different modeling and simulation tools

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1733

e Simulation and control system co-use
e Team work and information management for modeling and simulation

There exist many simulation solvers both in academia and industry that have sophisticated
simulation algorithms but lack a good operating environment. The operating environment should
provide certain pre- and post-processing capabilities, as well as connections to external
applications like design tools or control systems. Pre-processing capabilities include features like
2D-flowsheeting support, discretization support (meshing), as well as support for model
validation, model structure browsing and editing, model component reuse, model documentation
and searches, experiment configuration, model version control and team features. Post-
processing capabilities include features like 2D chart and 3D visualization of the results,
animations of the results both in 2D and 3D, experiment control visualization etc. However, there
should be no need for all different parties to maintain their own operating environments. Instead,
one framework should be implemented which can then be further specialized to these different
purposes.

Traditionally design systems (CAD) and computational systems have been separate entities
in many areas of engineering. Naturally, there are exceptions, like electronic circuit design or
discrete manufacturing processes, where the design has been done in a simulation-aided manner
for a long time. Obviously, the more deterministic the target process or product is, the easier it
has been to utilize computational models. However, in many engineering sectors like process
industry, machine and vehicle industry, and in construction industry the tradition has been
different. In addition to 2D and 3D CAD there is a legion of separate computational tools that
can be utilized in different phases of the engineering process. V&YV tools especially benefit from
integration to automation design systems like e.g. Siemens Comos Logical.

When the products and the production processes that are modeled are complex, there is a
definite need for the co-use of different computational, multi-level models. As an example, the
Advanced Process Simulator — Apros [19] is used (among other things) for simulation-based
automation design, mainly in power, pulp and paper industries. The modeling approach is
dynamic and mechanistic. The control system components are modeled in the same simulation
environment. As many companies use Apros as their control system design tool, there would be
major benefits in being able to use different V&V tools (such as different model checkers)
together with their simulation solution. In our case, this would mean mapping of the Apros
control system ontology to the model checking ontology. This way the V&V model could be
automatically generated from the simulation model. Combining model checking with simulation
assisted testing would form a toolset for high quality automation in safety critical processes.

Modern engineering projects are networked. This also, in turn, sets increasing demands on
the design and computational environment. Until now, computational environments have almost
always been standalone applications. There has been very little team work support for sharing
experiment results with other users. Another problem is version control — both of the model
configuration and the computational results. There is a clear need for the future integration
platform to support team work and version control. Naturally, any V&V tool would also
significantly benefit from such features.

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1734

5 AUTOMATING THE MODEL CHECKING PROCESS

5.1 An Approach Based on Reusable Function Blocks

The overall model checking process described in Chapter 2 certainly does not represent how
the model checking task should be done. Rather, it is the way that model checking unfortunately
must be done because of the lack of suitable tools. However, for certain kind of 1&C systems —
namely, those that are designed using function block based programming languages — we have
been able to find ways of creating reusable components of (NuSMV modeling language) code.
Creating a software library of the elementary function blocks allows us to reduce the modelling
task of any system based on those blocks to simply copying the application structure from the
design diagrams. And, given that the system design is available in a suitable electronic form, the
Simantics platform enables us to automatically convert the design specification to code used by
the model checker.

Given the assumption that we are dealing with a standardized function block based
application, we can now re-imagine the overall model checking process (Figure 2). Almost the
entire process of creating the model and analyzing the results can now be automated, or at least
computer-supported to some degree. Some of the steps we have already been able to automate,
some of them we are currently working on.

LT Model
design conversion
model
. _ | Visualization of = Report
Model checldng results generation
oyt | Requirement
requ[remgnt "| formalization
specification
A

Figure 2. The Model checking process with increased automation and user support

Obviously, not all safety-critical 1&C application are designed using function block
diagrams. For such systems, we lose the capability of easily being able to convert the system
model to the Simantics platform, and the modelling task remains as work that must be done
manually. One should also note that even for function block based systems, there might still be a
need for the modeller to occasionally modify the model code, for example to investigate timing
issues or fault tolerance.

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1735

5.2 Model Conversion

In Chapter 2, one step of the overall process was called “model construction”. But now, our
objective is automatic model conversion. A function block diagram consists of reusable
elementary function blocks that can be wired together to form composite function blocks, which
can then again be used to form larger compositions. This modular structure corresponds to the
modular structure of the modelling language of the NuSMV model checker. Accordingly, once
we have constructed a “component library” of the elementary function blocks, we can take any
design based on those blocks and create the NuSMV model by figuratively wiring the blocks
together. This phase used to involve writing the wirings in terms of simple code, but using
Simantics, we can either 1) allow the user to concretely wire the blocks together using a 2D
graphical editor, or 2) automatically convert the model if the function block diagrams are
available in electronic form. As a result, the task is much quicker, and syntactic errors in code are
diminished.

Figure 3 is a screenshot from the Simantics application. In this case, the model is being
specified by wiring together elementary function blocks from the block library. We are currently
able to generate the NuSMV code and perform model checking for an application composed of
the elementary blocks, so that only the code for the block library and the requirement
formalization are done manually.

modcheck perspective - BLOCK (Model001.Configuration) - Simantics Workbench - Connectad to localhost:4037 - Default User
File Edit Mavigate Window Help

2 =] L=l ‘_1..‘: =

cwm Model Browser £ = 0| 1 BLOCK {Model00 1. Configuration) &2 o E @S\mho\s bt

partors — ()| Sterderd v] 5 100 150 200 =0 300
) I\ P Brlia B i B e R G e e N BT, L . S e N e) B

Modsino1

o = E 1 -|SPEG|E 1 -l an .
= Aﬂ Canfiguration i I I = |
] = % mock a PLLSym... Maingp... LCTSym... MainOu...
%[Experiments -
7 tmages i p— -
~ Indexes - = | ME L= our

) sheets
| States =
Subscriptions

TOFSy... MainInp... LCLSym... Consta...
EwEN-EelE
E=EN JjiE=lE |

W235ym... SRSymbol ANDSy... HCTSy...

I : SRSymbol 51 B =08

Property Value

o = :

Component Propertes | Element Properties

o* 0w | MoflioM [¢

Figure 3. The Simantics platform workspace — the modeler is specifying the system model for model checking
by wiring together elementary function blocks selected from the block library on the right.

It is now apparent that the actual modeling effort can be reduced to the maintenance of the
library of elementary function blocks, the implementation of which is often specific to the
application. Although there is a standard for PLC programming languages (the IEC 61131-3) that

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1736

describes a function block diagram language, many vendors prefer their own languages. For our
way of performing model checking, the validity of the system model hinges on the correctness of
the elementary function block library, although generally, the model checking process itself will
reveal incorrectly specified modules, as the problems caused will pop up in the counter-
examples. It is also noteworthy, that with vendor systems, one must often deal with black-box
elements — the designer of the application has no knowledge of the implementation of the
elementary function blocks, only their functional specification. Through e.g. type testing,
vendors have shown the validity of the blocks, and model checking can only reveal errors in the
ways of how those blocks are used.

The integration of NuSMV to Simantics is currently in “first draft” phase. Applications
consisting of composite function blocks can already be converted and run through NuSMV, but
further work on the tool is still needed.

5.3 Requirement Formalization

Converting the system requirements to the format needed by the model checker — formulas
in temporal logic — is a task that cannot be completely automated. System requirements are rarely
expressed in a strictly formal way, and even if they were, generation of temporal logic formulas
is not a straight-forward task. Also, the so called “negative requirements” that describe how the
system should never behave are typically not explicitly mentioned, partially because their
evaluation using traditional V&V methods is quite difficult. As a result, in order to find hidden
faults, an expert using a model checker may often derive several temporal logic clauses based on
any one given requirement. If, for example, some safety 1&C system is required to start a safety
function when a tank level measurement is too low, it may not be explicitly stated that the safety
function must not be invoked without proper cause. However, such a negative requirement is
easy to verify with a model checker, and it is requirements such as these that often reveal hidden
faults.

So, while complete automation may be out of reach, tools that would support the modeler in
formalizing the requirements can still be outlined. The modeler needs assistance in
understanding complex temporal logic formulas that can easily become convoluted. Concepts for
supportive tools we have been working on include:

e Visualizing the temporal logic formulas as graphs (state machine diagrams) for easier
interpretation.

e Visualizing exemplar execution paths that either conform to or are contrary to a
temporal logic formula e.g. as graphs. See also [20].

e Translating the temporal logic formulas to natural language (e.g. “Starting from
system state A, the system should never set the output B, until we get an input C.”) to
expose e.g. syntactic incorrectness. The modeler could also be using such a tool to
describe the formulas, rather than writing temporal logic. See also [21].

e A set of templates for oft-used temporal logic constructs, i.e. “design patterns” for
formulas.

e A “requirement management” tool for mapping each temporal logic clause to its
origin in the system requirements, supporting the back-tracking of fault sources.

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1737

5.4 Visualization of Results

When the model checker discovers a fault, i.e. an execution path of the system model that
goes against the system requirements, that execution path is given as a counter-example scenario.
NuSMV, for example, typically outputs hundreds of lines of text.

For the system designer, it would naturally be easiest to see the counter-example presented
in the familiar, original formalism used in the designer’s tool. For function block diagrams, that
would mean visualizing through 2D animation how the signal values change through time, either
by coloring the wires for binary signals, or displaying the values of analog signals, timers etc.
next to the wires or block ports. The designer could then play the execution back and forth to
trace the source of the fault. Furthermore, the counter-examples could also be exported as
scenarios for a process simulator. In this manner, the effects of faults in the I&C system under
inspection could be e.g. examined concurrently with a simulation model of the controlled plant.

The visualization of the counter-examples in 2D graphics in the Simantics platform is a
feature we will be working on in the future. For other approaches for helping the user understand
counter-examples, see e.g. [22], [23].

6 CONCLUSIONS

Model checking has proved to be such an efficient tool for verifying and validating safety-
critical 1&C system software that it could soon be extensively used in both design and evaluation
of nuclear power plant control systems. We have not only focused on gaining the necessary
modeling experience, but also on developing tools for efficient application of model checking
already in the system design phase. Discovering faults in control system design as early as
possible is a key factor in reducing costs, as all changes in safety-critical software design
propagate through numerous steps in the overall system development life-cycle.

While some model checkers already contain graphical tools for specifying at least some
aspects of the system under inspection, the fact is that few (if any) model checkers are designed
with any specific application area in mind. The NuSMYV tool alone can be used for a wide range
of application types, and taking the modular approach and reusing the elementary modules is
surely not the only way to do the modeling, let alone a specifically supported one. However,
taking the modular approach as a starting point, and employing the interoperability provided by
the Simantics platform, we have been able to partially automate the model construction task.
Further development is underway for automating more of the tasks involved in the overall
process of performing model checking of 1&C system design.

Our starting point has been that the system under inspection is expressed with function block
diagrams. Naturally, this is not the case for many safety-critical 1&C applications. Neither is it
necessitated by any model checking tool. If the design specification does not use function blocks,
model checking can still be — and certainly has been — utilized. However, the developments
presented in this paper depend on the modular structure of function block diagrams, at least for
now. For other kind of applications there still is a need for more manual work and interpretation
for the modeler.

The Finnish nuclear sector has shown interest in model checking, as well as the
interoperability provided by the Simantics platform — the ability to e.g. convert control system

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada 1738

software models from tools used by designers to the format needed by process simulators such as
Apros. The ability to include model checking in the mix is a natural next step, and the expected
benefits are mutual: easier implementation, more powerful tools.

7 REFERENCES

=

E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model Checking, The MIT Press (1999).

R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, M. Roveri, A.
Tchaltsev, “NuSMV 2.5 User Manual”, ITC-IRST, http://nusmv.irst.itc.it/.

3. J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang, “Symbolic Model Checking: 10720
States and Beyond”, Information and Computation, Volume 98, pp. 142-170 (1992).

4. T. Ball, B. Cook, V. Levin, S. Rajamani, “SLAM and static driver verifier: Technology
transfer of formal methods inside Microsoft”, Proceedings of the 4th International
Conference on Integrated Formal Methods (IFM 2004), Lecture Notes in Computer Science,
Volume 2999, pp. 1-20 (2004).

5. K. Bjorkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemel4, J.J. Hdmélainen,
“Verification of Safety Logic Designs by Model Checking”, Sixth American Nuclear Society
International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC&HMIT 2009), Knoxville, Tennessee, April 5-9
(2009).

6. J. Valkonen, M. Koskimies, V. Pettersson, K. Heljanko, J.-E. Holmberg, I. Niemel&, J. J.
Hamaldinen, “Formal verification of safety 1&C system designs: Two nuclear power plant
related applications”, Enlarged Halden Programme Group Meeting - Proceedings of the
Man-Technology-Organisation Sessions, C4.2., Institutt for Energiteknikk, Halden, Norway
(2008).

7. J. Lahtinen, “Model checking timed safety instrumented systems”, Research Report TKK-
ICS-R3, Helsinki University of Technology, Department of Information and Computer
Science, Espoo, Finland (2008).

8. J. Valkonen, V. Pettersson, K. Bjorkman, J. Holmberg, M. Koskimies, K. Heljanko, 1.
Niemeld, “Model-based analysis of an arc protection and an emergency cooling system”,
VTT Working Papers 93, VTT Technical Research Centre of Finland (2008).

9. J. Lahtinen, J. Valkonen, K. Bjorkman, J. Frits, I. Niemeld, "Model checking methodology
for supporting safety critical software development and verification”, ESREL 2010 Annual
Conference, Rhodes, Greece, September 5-9 (2010)

10. E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. \eith, “Progress on the state explosion problem in
model checking”, Lecture Notes in Computer Science, Volume 2000, pp.176-194 (2001).

n

11. A. Valmari, “The state explosion problem”, Lecture Notes in Computer Science, Volume
1291, pp. 429-528 (1996).

12. P. Godefroid, “Partial-Order Methods for the \erification of Concurrent Systems - An
Approach to the State-Explosion Problem”, Lecture Notes in Computer Science, Volume
1032 (1996).

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada

1739

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, “Symbolic model checking without BDDs”,
Lecture Notes in Computer Science, Volume 1579, pp. 193-207 (1999).

A. Biere, K. Heljanko, T. Junttila, T. Latvala, V. Schuppan, “Linear encodings of bounded
LTL model checking”, Logical Methods in Computer Science, 2(5:5) (2006).

D. Peled, L. Zuck, “From model checking to a Temporal Proof’, Proceedings of the 8th
international SPIN workshop on Model checking of software (SPIN '01), Springer-Verlag,
London (2001).

K. S. Namjoshi, “Certifying model checkers”, Lecture Notes in Computer Science, Volume
2102 (2001).

Simantics — a software platform for modeling and simulation, https://www.simantics.org/.

A. Villberg, T. Lehtonen, T. Karhela, K. Kondelin, ”Applying Semantic Modelling
Techniques in Large Scale Process Simulation”, Proceedings of the 1st IFAC Workshop on
Applications of Large Scale Industrial Systems (ALSIS *06), Suomen Automaatioseura (2006)

Apros Process Simulator Software, http://www.apros.fi/en/.

E. Clarke, H. \eith, “Counterexamples Revisited: Principles, Algorithms, Applications”,
Lecture Notes in Computer Science, Volume 2772, pp. 41-43 (2004).

K. Loer, M. Harrison, “Integrating Model Checking with the Industrial Design of Interactive
Systems”, 26th International Conference of Software Engineering (2004).

SY Shen, Y. Qin, SK Li, “A Faster Counterexample Minimization Algorithm Based on
Refutation Analysis”, Proceedings of the conference on Design, Automation and Test in
Europe (DATE '05), pp. 672—677. IEEE Computer Society. Washington, DC, USA (2005)

S. Chaki, A. Groce, O. Strichman, “Explaining abstract counterexamples”, ACM SIGSOFT
Software Engineering Notes, Volume 29, pp. 73—382, (2004)

NPIC&HMIT 2010, November 7-11, 2010, Las Vegas, Nevada

1740

	OA-kansipohja1
	NPICHMIT_2010_Pakonen_et_al

