

Title	Surface chemistry of atomic layer
	deposition: a case study for the
	trimethylaluminum/water process
Author(s)	Puurunen, Riikka
Citation	Journal of Applied Physics vol.
	97(2005):12, pp. 121301-121301-52
Date	2005
URL	http://dx.doi.org/10.1063/1.1940727
Rights	Copyright © 2005 American Institute
-	of Physics. This article may
	be downloaded for personal use only

VTT	By using VTT Digital Open Access Repository you are
http://www.vtt.fi	bound by the following Terms & Conditions.
P.O. box 1000 FI-02044 VTT	I have read and I understand the following statement:
Finland	This document is protected by copyright and other
	intellectual property rights, and duplication or sale of all or
	part of any of this document is not permitted, except
	electronic or print form. You must obtain permission for
	any other use. Electronic or print copies may not be
	offered for sale.

Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process

Riikka L. Puurunen*

Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven, Belgium

University of Leuven (K.U.Leuven), INSYS, Kasteelpark Arenberg, B-3001 Leuven, Belgium and

VTT Technical Research Centre of Finland, Information Technology, Tietotie 3, FI-02044 Espoo, Finland[†]

(Dated: 18th March 2005)

Atomic layer deposition (ALD), a chemical vapor deposition technique based on sequential self-terminating gas-solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. As no recent general review exists on the surface chemistry of ALD, this in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD-including the question who made the first ALD experiments-and giving an overview of the tworeactant ALD processes investigated to-date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions, reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth-per-cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process is reviewed, using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigations on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, non-standard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer to get acquainted with the exciting and challenging field of surface chemistry of ALD and that it can serve as a useful guide for the specialist towards the fifth decade of ALD research.

Contents

I. Introduction

II.	General background	3
	A. Basic characteristics of ALD	3
	B. Early experiments on ALD	4
	C. ALD processes	6
	1. Materials investigated	6
	2. Classes of metal reactants used	13
	3. AlMe ₃ /H ₂ O vs. other ALD processes	18

III. General characteristics of the surface chemistry of ALD A. Requirements for self-terminating reactions

11.	Requirements for sen terminating reactions
B.	Adsorption kinetics
C.	Chemisorption mechanisms
D.	Factors causing saturation
E.	Growth of less than a monolayer per cycle
F.	Effect of temperature on the GPC
G.	Effect of the number of cycles on the GPC
H.	Growth mode

	IV. Surface chemistry of the AlMe ₃ /H ₂ O process	24
	A. General characteristics	25
3	B. Verification of self-termination	25
-	C. Identified chemisorption mechanisms	26
3	D. Effect of temperature on the GPC	26
3	E. Factor causing saturation	27
4	F. Effect of the surface OH group concentration	27
6	G. Kinetics of the reactions	28
6	H. Effect of the number of cycles on the GPC	30
13	I. Growth mode	30
18	J. Summary	31
	V. Discussion	31
18	A. Problematic historical assumptions on the surface	
19	chemistry of ALD	31
19	1. GPC of a monolayer	31
21	2. Constant GPC over cycles	31
22	3. Constant GPC with temperature	31
22	4. Two-dimensional growth mode	32
23	B. Problematic terminology	32
23	1. Growth rate (amount/cycle)	32
24	2. Monolayer	32

3. "Atomic layer" deposition	33
C. Effect of experimental conditions on the surface	
chemistry	33
1. Reaction temperature	33
2. Partial pressure of the reactant	33
3. Substrate	33
4. Saturation/unsaturation of the reactions	34
5. Time	34
6. GPC on high-surface-area substrates	34
VI. Conclusion	35
Acknowledgments	35
References	35

Figure 1: Number of ALD publications per year between 1972 and 2004. Search made with ISI Web of Science.⁵

I. INTRODUCTION

Atomic layer deposition (ALD) is a chemical vapor deposition (CVD) technique suitable for manufacturing inorganic material layers, with thickness down to a fraction of a monolayer.^{1,2} ALD has the capability to coat extremely complex shapes with a conformal material layer of high quality, a capability unique amongst thin film deposition techniques.^{1–3} Consequently, ALD-grown materials have a wide range of applications, from catalysts to electroluminescent displays to microelectronics and beyond.^{1–3}

ALD can be defined as a film deposition technique that is based on the sequential use of self-terminating gas–solid reactions. It has its roots in experiments made in the 1960s and the 1970s.^{1,2} Interest in ALD has increased in steps in the beginning of the 1990s and 2000s, as indicated by the evolution of the yearly number of scientific publications on ALD, shown in Figure 1. A major driving force for the recent interest is the prospectives seen for ALD in scaling down microelectronic devices.⁴

Despite the numerous successful practical applications of ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. A better understanding of these physicochemical processes should lead to improved control of the properties of the ALD-grown materials, perhaps even enabling new applications. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. So far, the latter types of overviews have scarcely been made, although there are numerous more general reviews on ALD.^{3,6–66}

The goal of this work is to start the detailed reviews on the surface chemistry of specific ALD processes. Since, to my knowledge, comparable reviews do not yet exist, this work also aims to provide an overview of the current status of understanding the surface chemistry of ALD in general, with the hope that an in-depth review of one representative process has broader implications. The trimethylaluminum/water (AlMe₃/H₂O) process was chosen as an example because it can be considered a rather typical and "ideal" ALD process, because it has been studied at various experimental conditions, and also because I have experience with it. This review covers literature approximately until the end of 2004. The previous review on the surface chemistry of ALD was published in 1996 by George et al.⁴⁰ For other aspects of ALD than its surface chemistry, the reader is referred to the recent review by Ritala and Leskelä.³ Furthermore, for different views on the development of ALD over the years, I would recommend the reviews by Aleskovskii,⁶ Goodman and Pessa,⁸ Suntola,¹¹ George et al.,⁴⁰ Malygin et al.,⁴² Niinistö et al.,³⁹ Haukka et al.,⁵⁰ Leskelä and Ritala,⁵¹ and Ritala and Leskelä.³

This review is organized as follows. Section II introduces the basic characteristics of ALD processing, discusses the history of ALD and presents an overview of the tworeactant ALD processes investigated to-date. In Section III, basic concepts related to the surface chemistry of ALD are formulated and discussed from a theoretical viewpoint. The discussion is generic for compound-reactant-based ALD processes where the reactions are truly self-terminating and undesired side-reactions are absent. Phenomena specifically related to ALD processes based on element reactants are not discussed. In Section IV, the experimental results for the AlMe₃/H₂O process are reviewed, especially looking for conclusions reached and quantitative information obtained on the surface chemistry. Because of differences in the experimental conditions (e.g., type of substrate, pressure, time and temperature), interpreting the results of different kinds of investigations together may not always be straightforward, however.⁶⁷ The ALD literature contains also problematic historical assumptions and terminology, which may further cause confusion. The historical assumptions, terminology, and effect of experimental conditions on the surface chemistry of ALD are discussed in Section V.

II. GENERAL BACKGROUND

This section describes the basics of ALD processing, discusses the history of ALD, and overviews the investigated ALD processes based on two reactants.

A. Basic characteristics of ALD

ALD can be defined as a film deposition technique that is based on the sequential use of self-terminating gas–solid reactions.^{68–70} The growth of material layers by ALD consists of repeating the following characteristic four steps:

- Step #1: a self-terminating reaction of the first reactant (Reactant A),
- Step #2: a purge or evacuation—to remove the non-reacted reactants and the gaseous reaction by-products,
- Step #3: a self-terminating reaction of the second reactant (Reactant B)—or another treatment to activate the surface again for the reaction of the first reactant,⁷¹

Step #4: a purge or evacuation.

Figure 2: Schematic illustration of one ALD reaction cycle.

Steps #1 to #4 constitute a *reaction cycle*. Steps #1 and #3 are sometimes referred to as *half-reactions* of an ALD reaction cycle.^{40,72}

One ALD reaction cycle is illustrated schematically in Figure 2. Each reaction cycle adds a given amount of material to the surface, referred to as the *growth-per-cycle* (GPC); to grow a material layer, reaction cycles are repeated until the desired amount of material has been deposited.⁷³ Before starting the ALD process, the surface is stabilized to a known, controlled state, for example by a heat treatment. The use of selfterminating reactions leads to that ALD is a surface-controlled process, where process parameters other than the reactants, substrate and temperature have little or no influence. Because of the surface control, ALD-grown films are extremely conformal and uniform in thickness.

B. Early experiments on ALD

The starting point of ALD is somewhat controversial: depending on the source, the credit of first realizing the principles of ALD is given to different groups.

According to the more commonly acknowledged origin,

ALD was developed under the name "atomic layer epitaxy (ALE)" in Finland by Dr. Suntola and co-workers. The beginning of ALD is then traced back to a patent published in the 1970s,² for which the first experiments were made in 1974.74,75 In this patent,² ALD growth is demonstrated for processes based on element reactants: the Zn/S process to grow ZnS, the Sn/O₂ process to grow SnO₂, and the Ga/P process to grow GaP.² In later patents,^{76,77} Suntola and co-workers demonstrated ALD also for processes based on compound reactants: the TaCl₅/H₂O process to grow Ta_2O_5 , the Zn(Mn)Cl₂/H₂S process to grow Zn(Mn)S, and the AlCl₃/H₂O process to grow Al₂O₃. The research originated by Suntola and co-workers has led to commercial applications of ALD for making thin film electroluminescent displays already in the 1980s. An overview of the development of ALD was recently given by Suntola.74

The less commonly acknowledged origin of ALD dates back to work made in the Soviet Union in the 1960s, in the group of Prof. Aleskovskii. In the proceedings of a conference organized in 1965 and published in 1967, Shevyakov et al.¹ describe the TiCl₄/H₂O process to grow TiO₂ and the GeCl₄/H₂O process to grow GeO₂. The first experiments in the group of Aleskovskii were made on high-surface-area silica substrates, but soon dielectric layers were grown on single crystal substrates, too.⁷⁸ Already in the 1960s, a publication series on the "molecular layering reactions" was started by Kol'tsov and co-workers (e.g., Refs. 79–85).

Of the numerous review articles written on ALD over the years,^{3,7–65} only the ones authored by Russians^{6,20,42,43,48,56} describe the Soviet origin of ALD. In the beginning, the two groups have apparently not been aware of each other's work. Connection between the groups has been established already in the late 1980s,^{20,86} however, and scientists of the two groups have even met.⁷⁴ To help the interested reader to explore the Soviet–Russian branch of ALD, and as an attempt to correct the historical mistake of disregarding this work,⁸⁷ an overview of the Soviet–Russian ALD investigations is given in Table I. Most of the publications referred to in Table I have been published in Soviet–Russian journals, which have been translated into English. The overview of Table I is meant to be introductory, and it can by no means be expected to be complete. A more detailed description of the Soviet–Russian ALD work was recently provided by Malygin.⁵⁶

Table I: Some Soviet-Russian ALD investigations

Z^a	Material	Reactant A	Reactant B	Substrate b	Refs.
5 bo	oron				
	B_2O_3	BBr ₃	H ₂ O	SiO ₂ gel	85
	$B_x P_y O_z$	B(OMe) ₃	POCl ₃	SiO ₂ gel	88,89
13 a	aluminum				
	Al_2O_3	AlCl ₃	H ₂ O	SiO ₂ gel	83,90,91
		AlCl ₃	H_2O	Al_2O_3 gel	90
		AlCl ₃	H_2O	Si, Al	91
		AlBr ₃	H_2O	Si	92
		AlMe ₃	NO_2	Si	93
	$Al_x Si_v O_7$	AlCl ₃	Si(OEt) ₄	SiO ₂ gel	94
	$Al_x Cr_y O_z$	AlMe ₃	CrO_2Cl_2	Si	93

		~ ·		a i b	D ()
Z^{u}	Material	Reactant A	Reactant B	Substrate ^{<i>v</i>}	Refs.
14 \$	silicon				
	SiOa	SiCl	H2O	Si	78
	5102	SiCL	H_O	Ge	05
		51C14	1120		<i>))</i>
		SICI ₄	H_2O	$S1O_2$ gel	90
		SiCl ₄	H_2O	Al_2O_3 gel	90
		SiCl ₄	H_2O	SiC	96
		SiCl ₂ H	$H_{2}O$	SiO ₂ gel	97_99
	Si ALO	Si(OEt)		SiO ₂ gel	04
	$SI_x AI_y O_z$	SI(OEI)4	AIC13	310 ₂ get	24 00
	$S_{1_x}T_{1_y}O_z$	$Si(OEt)_4$	TiCl ₄	S_1O_2 gel	88
15	phosphorus				
	POr	PCl ₂	H ₂ O	SiO ₂ gel	82,100-102
	1 0,	PC1	c 20	polymer	103
		DOCI		porymer	103
		POCI ₃		$S1O_2$ gel	104,105
		POCl ₃	H_2O	SiC	96
	$P_x B_y O_7$	POCl ₃	B(OMe) ₃	SiO_2 gel	88,89
		5	. ,5	20	
22.1	titonium				
22	TT:O	T . CI	но	0.0 1	1 70 00 100
	110_2	TiCl ₄	H_2O	S_1O_2 gel	1,79,80,100,
					101,106–113
		TiCl₄	H ₂ O	Si	81,114,115
		TiCL	H-0	Ge	116 117
		TiCl4	1120	S:C	06 116
		TICI4	H ₂ O	SIC	90,110
		TiCl ₄	H_2O	glass	118-122
		TiCl ₄	H_2O	С	123-125
		TiCl₄	H ₂ O	GaAs	126
		TiCL	H ₀	A1	127
		TiCl ₄	1120		127
		TICI ₄	H ₂ O	AI_2O_3	128-132
		TiCl ₄	H_2O	MgO	133
		Ti(OBu) ₄	H_2O	glass	134
	Ti _x Si _y O _z	TiCl	H ₂ O	SiO ₂ gel	88
	-x - y - z	4	2 -	2002 800	
22					
23	vanadium				
	VO_x	VOCl ₃	H_2O	SiO_2 gel	135–137
		VOCl ₃	H_2O	Ge	117
		VOCl ₃	H ₂ O	glass	121
		VOCL	H ₂ O	SiC	96
		VOCI	1120 C	510	102
		VOCI3		polymer	103
24 0	chromium				
	CrO _v	CrO ₂ Cl ₂	c	SiO ₂ gel	105.138-140
	<i>x</i>	CrOoClo	c	Si	84
			C	51 C-	04 117
		CrO_2CI_2		Ge	84,117
		CrO_2Cl_2	<i>c</i>	Ni	141
		CrO_2Cl_2	<i>c</i>	Ti	141
		CrO ₂ Cl ₂	H ₂ O	glass	121
		CrOcCla	H ₂ O	SiC	96
			M-OU	SIC C:	02
		CrO_2CI_2	MeOH	51	95
		CrO_2Cl_2	<i>c</i>	polymer	103
		CrO_2Cl_2	H_2	SiO_2 gel	142
	Cr. Al. O.	CrO ₂ Cl ₂	AlMe ₂	Si	93
	${x}$ ${y}$				
25					
261	uon		c	a.o	
	FeO_x	FeCl ₃	<i>c</i>	SiO ₂ gel	143
30 -	zinc				
201	 7n∩	7nCl-	HaO	SiO _e gel	144
	2.10		1120		177
	ZnS	$znci_2$	п ₂ 5	SIO_2 gei	00
		ZnEt ₂	H_2S	SiO ₂	145
32	germanium	L			

Table II: Different names of ALD

Name	Abbreviation	Ref., e.g.
Atomic layer deposition	ALD	19
Atomic layer epitaxy	ALE	2
Atomic layer evaporation	ALE	154
Atomic layer growth	ALG	155
Chemical assembly		126
Molecular deposition		117
Molecular lamination		156
Molecular layer epitaxy	MLE	153
Molecular layering	ML	1
Molecular stratification		105

Table I: (Continued)

Z^{a}	Material	Reactant A	Reactant B	Substrate ^b	Refs.
	GeO ₂	GeCl ₄	H ₂ O	SiO ₂ gel	1,146
38 0	cadmium				
	CdS	Cd	S	GaAs	147
		CdMe ₂	H_2S	SiO ₂	145
	CdSe	Cd	Se	GaAs	147,148
		CdMe ₂	H ₂ Se	SiO ₂	145
		CdMe ₂	H ₂ Se	glass, GaAs	149
	CdTe	Cd	Te	GaAs	147
		Cd	Te	Si	148
50 1	in				
	SnO ₂	SnCl₄	H ₂ O	SiO ₂ gel	111.150
		SnMe ₄	N_2O_4	Si	151
		SnEt ₄	N_2O_4	Si	151
73 t	antalum				
	Ta ₂ O ₅	TaCl ₅	H ₂ O	Si, Al	91
a Z = atomic number.					

^b "Glass" substrate refers to various mixed oxides, "polymer" to various organic polymer substrates.

^c Only one half-reaction of an ALD reaction cycle was carried out.

Partly because of its history, the ALD technique is referred to with many names. The Soviet–Russian researchers call the technique "молекулярное наслаивание (MH),"¹⁵² which has been translated into English in many ways, "molecular layering (ML)" being perhaps the most common.³ In addition to the Finnish and Soviet researchers, Japanese researchers, lead by Nishizawa, have carried out ALD research systematically under a different name, "molecular layer epitaxy (MLE)."¹⁵³ The name "atomic layer deposition (ALD)," used in this work, dates back to the early 1990s.¹⁹ Some names commonly used to refer to the ALD technique are listed in Table II.

C. ALD processes

1. Materials investigated

ALD processes have been developed for manufacturing many types of solid inorganic materials. Figure 3 visualizes in the form of the Periodic Table for which elements some materials have been grown by ALD: oxides, nitrides, sulphides, selenides, tellurides, pure elements, and other. Table III provides references to the experimental investigations of ALD processes based on the use of two reactants, and Table IV lists the computational chemistry investigations of the surface chemistry of ALD processes. Tables III and IV provide only references that are easily accessible; most references to conference proceedings and patents have been left out intentionally. Inclusion in Table III does not mean that the processes would obey the requirements of ALD fully. Deviation from pure ALD may have occurred for example through partial decomposition of the reactants. These two tables are aimed to be comprehensive and contain all relevant references reporting on the particular ALD system, but some references have undoubtedly been accidentally overlooked, for which I already apologize. To help the reader, Figure 4 further summarizes the types of ligands that have been used in the metal reactants in ALD. Although for most groups of elements, some materials have been grown by ALD (Figure 3), for alkali metals (group 1) and actinoids there are no reports yet. Future will show if there will be interest and success in their deposition.

Table III: Overview of ALD processes based on two reactants (source: ISI Web of Science, status in February 2005). Description of the ligands in Figure 4.

Ζ	Material	Reactant A ^a	Reactant B	Refs.
5 b	oron	DD.	ЧО	95
	$\mathbf{D}_2\mathbf{O}_3$		<u>п</u> 20	8J 159
	BN	BCl ₃	NH ₃	158
		BBr ₃	NH ₃	159
	$B_x P_y O_z$	$B(OMe)_3$	POCl ₃	88,89
6 ca	arbon			
	C <i>b</i>	CF_x	H ^c	160
		CCl ₃	H ^c	161
12	magnesium			
	MgO	MgCp ₂	H ₂ O	162-166
	e	Mg(thd) ₂	H ₂ O ₂	167
		$Mg(thd)_2$	$\tilde{O_3}$	168
	MgTe	Mg	Te	169,170
13	aluminum			
15	Al ₂ O ₃	AlCl ₃	H ₂ O	76,77,83,90,
	2 0	5	-	91,91,171-
				184
		AlCl ₃	02	185.186
		AlCla	ROH d	173.181.187
		AlCla	Al(OEt) ₂	188
			$\Delta I(O^{i}Pr)_{2}$	188 189
		ΔlBr_{2}	H	97
			H ₂ O	72 166 170 100
		Anne ₃	п20	100,179,190-
		AlMea	HaOa	202 263_269

Table III: (Continued)

Ζ	Material	Reactant A ^a	Reactant B	Refs.
		AlMe ₃	O ₃	236,244,245,
		-	-	270-273
		AlMe ₃	O_2^{e}	274–276
		AlMe ₃	$\tilde{N_2O}$	266
		AlMe ₃	NO ₂	194
		AlMea	N ₂ O ₄	151
		AlMea	ⁱ PrOH	277
		AlMea	A1(O ⁱ Pr)	188
		AlMa Cl	H(011)3	100
		All $O^i D$	<u>п</u> ₂ О	270 280
		Alvie ₂ O'Pr	H ₂ O	279,280
		AlEt ₃	H ₂ O	163
		$AI(OEt)_3$	H ₂ O	173
		$AI(OEt)_3$	O_2	173
		$Al(O^n Pr)_3$	H ₂ O	173,181
		$Al(O^n Pr)_3$	02	173
		$Al(mmp)_3$	H_2O	281
	AlN	AlCl ₃	NH ₃	282,283
		AlCl ₃	$NH_3 + H_2^e$	284,285
		AlMe ₃	NH ₃	209,216,283,
				286–292
		AlEt ₃	NH ₃	293,294
		Me ₃ N:AlH ₃	NH ₃	295
		Me ₂ EtN:AlH ₃	NH ₃	296-298
	AlP	AlMe ₂ H	PH ₃	299-301
		Me ₂ EtN:AlH ₃	PH ₃	302
	AlAs	AlCl ₃	AsH ₃	303,304
		AlMe ₃	AsH ₃	305-315
		AlMe ₂ H	AsH ₃	316-320
		AlEt ₂	AsH ₂	309.311
h		Al ⁱ Bu ₂	AsHa	321
.0		MeaN: AlHa	ΔsH ₂	321
		MoaN: AlHa	As(NMaa)a	373 374
		Mos EtN: Alle	AsU.	320,325,320
	A 1	Me2EuN.AIII3		221,222
		Allvie3	n ₂ Si(OEt)	04
	$AI_x SI_y O_z$	AICI3	$(UEI)_4$	94 1 <i>57</i>
	$AI_2O_3/$	Allvie ₃	('BuO) ₃ SIOH	137
	S_1O_2	A 101	T'(OT)	100
	$AI_x II_y O_z$	AICI3	$\Pi(OEt)_4$	188
		AICl ₃	$I_1(O'Pr)_4$	188
		AlMe ₃	$Ti(O^{t}Pr)_{4}$	188
	$Al_x Cr_y O_z$	AlMe ₃	CrO_2Cl_2	93
	$Al_xZr_yO_z$	Al(OEt) ₃	ZrCl ₄	188
	$Al_xHf_yO_z$	Al(OEt) ₃	HfCl ₄	188
14 si	ilicon	S:C1	цо	78 00 05 06
	S10 ₂	SICI4	H_2O	/8,90,95,96,
				195,214,555-
		0.01	11.0	337
		SiCl ₄	$H_2O + cat. s$	335,338-341
		S1Cl ₃ H	H_2O	97-99
		S1Cl ₂ H ₂	03	342
		Si(OEt) ₄	$H_2O + cat.$	343
		HMDS ^{<i>n</i>}	O ₂	344
		Si(NCO) ₄	H ₂ O	345
		Si(NCO) ₄	NEt ₃	346
		MeOSi(NCO) ₃	H_2O_2	347,348
	Si ₃ N ₄	SiCl ₄	NH ₃	349-352
		SiCl ₂ H ₂	NH3	352
		SiCl ₂ H ₂	NH3 ^e	353
		SiCl ₂ H ₂	$NH_3 + cat.$	354,355
		Si ₂ Cl ₆	N_2H_4	356
		- 0	- 1	

the pure element has been grown																	
1	_	cor	mpounds	s with O			-										18
1																	2
H		COI	mpounds	s with N	≣	_ Z _		other c	ompoun	ds							He
	2											13	14	15	16	17	
3	4	CO	mpounds	s with S		1		compo	unds wit	h Te		5	6	7	8	9	10
Li	Be											B	С	N	O	F	Ne
						C	compoun	ds with \$	Se								
11	12		13 14 15 16 17 18								18						
Na	Mg									Ar							
		3	4	5	6	7	8	9	10	11	12						
19	20	21	////, 22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln 🔤	Sn	Sb	Te	I	Xe
55	56	57	72	//// 73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg		February 2005					
				W/// 50	VIII 00	01	V////	W/// 00		05	V///. 00	//// o7	W/// 00	V//// 00	70	////	1
			58	59	60	61	62	63	64	65	66	6/	68	69	70	/1	
La	anthan	olds*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	Actino	ids**	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr L	

Figure 3: Overview of the materials grown by ALD. Classification according to Reactant A, with details of the investigations in Table III. Growth of pure elements as well as compounds with oxygen, nitrogen, sulphur, selenium, tellurium, and other compounds grouped together are indicated through shadings of different types at different positions. The elements are named according to the recommendations of The International Union of Pure and Applied Chemistry (IUPAC, http://www.iupac.org/reports/periodic_table/, dated 1 November 2004).

Ζ	Material	Reactant A ^a	Reactant B	Refs.	Ζ	Material	Reactant A ^a	Reactant B	Refs.
	SiC	SiCl ₂ H ₂	C_2H_4	357,358			(^t BuO) ₃ SiOH	Hf(NMe ₂) ₄	407
		SiEt ₂ H ₂	i	359					
		Si ₂ H ₆	C_2H_4	360	15	phosphorus			
		Si ₂ H ₆	C_2H_2	361-364		PO_x	PCl ₃	H ₂ O	82,100–103
	Si	SiCl ₄	Si ₂ H ₆	365			POCl ₃	H ₂ O	96,104,105
		SiCl ₂ H ₂	H_2	366,367		$P_x B_y O_z$	POCl ₃	$B(OMe)_3$	88,89
		SiCl ₂ H ₂	H ^c	368-375	20	1 - :			
		SiCl ₂ H ₂	j	376-378	20		Ca(thd) ₂	H ₂ O	408
		SiEt ₂ H ₂	k	379		(CaCO ₃)		112.0	100
		SiH ₄	k	380-382		(=====;)	Ca(thd) ₂	03	409
		Si ₂ Cl ₆	Si ₂ H ₆	371,372,383,		CaS	$Ca(thd)_2$	H ₂ S	408,410-414
				384		CaF_2	Ca(thd) ₂	НF	415
		Si ₂ Cl ₆	H ^{<i>c</i>}	385		2	× 72		
		Si ₂ H ₆	k	386-394	21	scandium			11.4
		Si ₂ H ₆	j	395-399		Sc_2O_3	ScCp ₃	H ₂ O	416
		Si ₂ H ₆	k	394,400			$Sc(thd)_3$	O_3	416
		Si ₂ H ₆	<i>l</i>	401			$Sc(tnd)_3$	$O_3 + H_2O_2$	416
		Si ₃ H ₈	<i>k</i>	370,402	22	titanium			
	$Si_xAl_vO_z$	Si(OEt) ₄	AlCl ₃	94	22	TiO ₂	TiCl ₄	H_2O	1,79–81,96,
	SiO ₂ /	(^t BuO) ₃ SiOH	AlMe ₃	157					100,101,106-
	$Al_2O_3 f$								133,207,212,
	$Si_xTi_yO_z$	Si(OEt) ₄	TiCl ₄	88					237,260,336,
	$Si_x Zr_y O_z$	SiCl ₄	$Zr(O^tBu)_4$	403					417–453
		Si(OEt) ₄	ZrCl ₄	188			TiCl ₄	H_2O_2	267,269,454
		$Si(O^nBu)_4$	ZrCl ₄	188,404			TiI ₄	H_2O	455
		$Si(O^nBu)_4$	$Zr(NEt_2)_4$	405			TiI ₄	H_2O_2	456–458
	$Si_xHf_yO_z$	Si(OEt) ₄	HfCl ₄	406			TiI ₄	O ₂	459,460
		Si(OEt) ₄	HfI_4	406			Ti(OMe) ₄	H ₂ O	461

Table III: (Continued)

Z Material	Reactant A ^{<i>a</i>}	Reactant B	Refs.	Ζ	Material	Reactant A ^{<i>a</i>}	Reactant B	Refs.
	Ti(OEt) ₄	H ₂ O	206,212,462-			$Co(^{i}PrAMD)_{2}$	H ₂ O	546
			466		Co	$Co(^{i}PrAMD)_{2}$	H ₂	546
	Ti(O ⁱ Pr)₄	H ₂ O	212.467-474			72	2	
	$Ti(O^{i}Pr)_{4}$	Ω_2	434 475	28	nickel			
	$Ti(O^{i}Pr)_{4}$	O_2^e	476		NiO	NiCp ₂	H_2O	556
	Ti(OiPr)	02	470			Ni(acac) ₂	O_2	557–559
	$T(OF)_4$	U_3	4//			$Ni(acac)_2$	O ₃	560,561
	$\Pi(0^{\circ}Pr)_2(\text{dmae})_2$	H_2O	4/8			$Ni(thd)_2$	O ₃	562
	$Ti(OBu)_4$	H_2O	134			$Ni(apo)_2$	O_3	560
	$Ti(NMe_2)_4$	O_2^e	479			Ni(dmg) ₂	0 ₃	560
TiN	TiCl ₄	NH ₃	480–494		Ni	Ni(acac) ₂	H_2	561
	TiCl ₄	$NH_3 + cat.$	205,481–483			Ni(ⁱ PrAMD) ₂	H2	546
	TiCl ₄	N_2,H_2 ^e	274			100(10100)2		0.0
	TiCl ₄	Me_2NNH_2	495	29	copper			
	TiCl ₄	^t BuNH ₂	496		CuO	$Cu(acac)_2$	O_2	563
	TiCl ₄	AyNH ₂	496			Cu(thd) ₂	$\tilde{O_2}$	46,50,564
	TiI ₄	NH ₃	483,497			Cu(hfac) ₂	H ₂ O	565
	TiI ₄	^t BuNH ₂	496		CurS	$Cu(thd)_2$	H2S	566-569
	TiI ₄	AyNH ₂	496		Cu	CuCl	H_2	570.571
	Ti(NMe ₂) ₄	NH ₃	498-507		Cu	CuCl	$H_2 + H_2O$	571 572
	Ti(NMe ₂) ₄	NH3 ^e	508,509			CuCl	\overline{Zn}	573
	Ti(NMe ₂) ₄	N_2^{e}	509-512			Cu(acac)	Ha	561
	Ti(NMe ₂) ₄	H_2^{e}	509,511,512			$Cu(acac)_2$	$H_2 e$	574
	$Ti(NEt_2)_4$	NH ₃	506			$Cu(acac)_2$	П2 Ц.	575 576
	Ti(NEtMe)₄	NH ₃	513.514			$Cu(uuu)_2$	\mathbf{n}_2	575,570
Ti	TiCl	H ₂ ^e	515.516			$Cu(IIIaC)_2$		511
Tir Al _v O ₇	Ti(OEt)	AlCl ₂	188			$Cu(niac)_2$	HCHO	5//
11_{χ^2} 11_{χ^2} 0_{χ}	$Ti(O^{i}Pr)_{4}$	AlCla	188			Cu('PrAMD)	H_2	546
	$Ti(O^{i}Pr)_{4}$	AlMea	188	20				
Ti Si O	$T_{1}(O T_{1})_{4}$	Si(OEt)	88	30	Z_{n}^{2}	7n	02	578
$T_x S_y O_z$	$TiCl_4$ Ti(OiDr)	$3I(OEt)_4$	100 517 510		210	Zn	H ₂ O	579
$\Pi_{x}\Sigma I_{y}O_{z}$	$Ti(O FI)_4$ Ti(O Dr)		100,517,510			ZnCla		144
$\Pi_x \Pi_y O_z$	$\Pi(0^{\circ}Pr)_4$	HICI4	188			ZnCl ₂	Ω_2	580 582
22 your divers						ZnCl ₂ ZnMos		583 584
25 vanadium VO _x	VOC12	H ₂ O	96.103.117.					201 220 231
		2 -	121.135–137			ZiiEt ₂	1120	201,229,231, 584 607
	$VO(O^{i}Pr)_{2}$	H ₂ O	519 520			7nEt	$\mathbf{H} \mathbf{O}^n$	508
	$VO(O^{i}Pr)_{2}$	Ω_2	521_523			$ZnEt_2$	$\Pi_2 O$	598
	$VO(011)_3$ $VO(acac)_2$	O_2	521-525			$Z_{n}(OA_{n})$	U_2	608 610
	VO(dede)/2	02	524,525		7-6	$ZII(OAC)_2$	H ₂ O	008-010
24 chromium					ZnS	Zn	3	2,171,011,
CrO_x	CrO_2Cl_2	H_2O	84,96,103,			7	II C	612
		-	105,117,121,			Zn	H_2S	613
			138–142			$ZnCl_2$	H_2S	/6,//,86,1//,
	CrO ₂ Cl ₂	MeOH	93					614–626
	$Cr(acac)_2$	02	434.526-530			$ZnMe_2$	H_2S	583,627–635
Cr. Al. O.	CrO ₂ Cl ₂	AlMe ₂	93			ZnEt ₂	H_2S	145,596,636,
οr _λ r ny σ ₂		1111105						637
25 manganese						ZnEt ₂	Et_2S_2	638
MnO _x	Mn(thd) ₃	03	531-533			$Zn(OAc)_2$	H_2S	415,608,615,
MnS	MnCl	H ₂ S	76.77					616,618–
MnTe	Mn	Te	170.534-543					620,639
					ZnSe	Zn	Se	578,611,640-
26 iron								655
FeO_x	Fe(acac) ₃	O ₂	544			Zn	H ₂ Se	656
	Fe(thd) ₃	O ₃	545			Zn	Et ₂ Se	657
	Fe(^t BuAMD) ₂	H_2O	546			ZnCl ₂	H ₂ Se	658–660
Fe	Fe(^t BuAMD) ₂	H_2	546			ZnMe ₂	$\overline{H_2Se}$	633–
	. –					2	<u>~</u>	635.661-671
27 cobalt	\mathbf{C}	0	5 4 7 5 4 C			ZnEt ₂	H ₂ Se	672
CoO_x	$Co(acac)_2$	O_2	547,548			$ZnEt_2$	Et ₂ Se ₂	638
	$Co(acac)_3$	O_2	54/-554			Zn[N(SiMea)2]2	H ₂ Se	672
	$Co(thd)_2$	O ₃	555			[1.1(2.11103/2]2		<i></i>

Table III: (Continued)

Ζ	Material	Reactant A ^a	Reactant B	Refs.	Ζ	Material	Reactant A ^a	Reactant B	Refs.
	ZnTe	Zn	Те	154,536,			Sr(thd) ₂	H ₂ S	410,412,810-
				640,643-					812
				645,647,673-		SrF ₂	Sr(thd) ₂	HF	415
				679					
		ZnMe ₂	Et ₂ Te	680	39 y	ttrium			
		ZnMe ₂	MeAyTe	680		Y_2O_3	YCp ₃	H ₂ O	813
	ZnF	$Zn(OAc)_2$	HF	415			$Y(CpMe)_3$	H ₂ O	813
							$Y(thd)_3$	O_2	814
31 g	allium	a ()					$Y(thd)_3$	03	219,237,814,
	Ga_2O_3	$Ga(acac)_3$	O_3	681,682		N O G	X 7/1 1)	II G	815
	G N	Ga(acac) ₃	H_2O	681		Y_2O_2S	$Y(thd)_3$	H_2S	816
	GaN	Ga	N ₂	683,684	40 -				
		GaCl	NH ₃	685,686	40 Zi	ZrO_2	ZrCl ₄	H ₂ O	212,219,222
		GaCl ₃	NH ₃	687		2102	21014	112.0	230.246.434
		GaMe ₃	NH ₃	290,688–692					817-834
		GaEt ₃	NH ₃	294,693,694			ZrCl ₄	HaOa	825 826
	~ ~	GaEt ₃	NH ₃ ^o	695			ZrCl ₄	$\Omega_2 O_2$	835 836
	GaP	Ga	Р	2			ZrL	H_2O	837
		GaCl	PH ₃	696			ZrI ₄	H ₂ O ₂	838-841
		GaMe ₃	PH_3	299,313,697–			ZrCn ₂ Cl ₂	$\Omega_2 $	842 843
		a 7		701			ZrCp ₂ Ol ₂	H ₂ O	844
	~ .	GaEt ₃	PH ₃ ⁿ	702			ZrCp ₂ Me ₂	Ω_2	842 845
	GaAs	GaCl	AsH ₃	696,703–716			$Zr(O^{i}Pr)_{2}(dmae)_{2}$	H ₂ O	846
		GaCl ₃	AsH ₃	303,304,717-			$Zr(O^{t}Bu)_{4}$	H ₂ O	471 473 474
				721			$\Sigma I(O D u)_4$	1120	847_851
		GaCl ₃	As	720			$7r(\Omega^t Bu)$	02	851
		GaBr	AsH ₃	722			$Zr(O^{t}Bu)_{4}$	O_2^e	852_855
		GaI	AsH ₃	722			$Zr(O^{t}Bu)_{4}$	N ₂ O	851
		GaMe ₃	AsH ₃	153,305-			$Zr(O^{t}Bu)_{4}$	Ar ^e	855
				308,311,313,			$Zr(O^{t}Bu)_{2}(dmae)_{2}$	H ₂ O	846 856
				315,318,321,			Zr(dmae)		846
				698,701,723-			Zr(thd)	$\Omega_2 e$	842
				771			$Zr(MMe_2)_4$	U3 H2O	857 858
		GaMe ₃	EtAsH ₂	772			$Zr(NEt_2)_4$	H ₂ O	857
		GaMe ₃	¹ BuAsH ₂	773–780			$Zr(NEt_2)_4$	$\Omega_2 e$	853
		GaEt ₃	AsH ₃	26,309,311,			$Zr(NEtMe)_4$	U2 H2O	857
				698,729,738,			$Zr[N(SiMe_{2})_{2}]_{2}Cl_{2}$	H ₂ O	859
		~ -	t	743,781–788		ZraN4	$Zr(NMe_2)$	NH ₂	860
		GaEt ₃	^{<i>i</i>} BuAsH ₂	779,789		213114	Zr(NEtMe)	NH ₂	860
		GaEt ₃	$(Me_2N)_3As$	324,790,791			$Zr(NEt_{a})_{4}$	NH ₂	860
		GaEt ₂ Cl	As	792		7r. Al. O	$Zr(1(Lt_2)_4)$	Al(OFt) ₂	188
		GaEt ₂ Cl	AsH ₃	755,793		$Zr_X r_y O_z$	ZrCl ₄	Si(OEt)	188 861
		GaEt ₂ Me	AsH ₃	698		Σ_{x} S_{y} O_{z}	ZrCl ₄	$Si(O^nBu)_4$	188 404
		Ga ^{<i>i</i>} Bu ₃	AsH ₃	26			$Zr(\Omega^{t}Bu)_{4}$	SiCl ₄	403
		GaNp ₃	¹ BuAsH ₂	779,794			$Zr(NEt_2)_4$	$Si(O^n Bu)_4$	405
22						Zr Ti O	$2r(1(L_2)_4)$	$Ti(O^{i}Pr)_{4}$	188 517 518
32 g	ermanium	C-Cl	цо	1 146		$\Sigma I_X \Pi_y O_z$	ZICI4	11(011)4	100,517,510
	GeO ₂	GeCl ₄	H_2O	1,140	41 n	iobium			
	Ge	GeCl ₄	H ⁻	/95,/90 707, 700		Nb ₂ O ₅	Nb(OEt)5	H_2O	184,206,465,
		$Geme_2H_2$		/9/-/99					820,862,863
		GeEt ₂ H ₂	K	800,801		NbN	NbCl ₅	NH ₃	480,482,864
		GeH ₄	K	382,802			NbCl ₅	$NH_3 + cat.$	482,864
		Ge_2H_6	K	803,804			NbCl ₅	Me ₂ NNH ₂	495
20	•						-		
38 s	trontium	$Sr(Cn^{i}Pr_{c})$	Н.О	805 806	42 m	nolybdenum			
	(SrCO ₂)	SI(CP 113)2	1120	000,000		$Mo_x N$	MoCl ₅	NH ₃	480
	(51003)	Sr(thd)-	0.	807			MoCl ₅	Me_2NNH_2	495
		Sr(mathd)	O_3	007 176		Mo	MoCl ₅	Zn	865
	SrS	$Sr(CnMe_{-})$	U2 H-S	+/U 808					
	616	Sr(Cpi Dr)	1125 11.5	000	44 ri	ithenium	$\mathbf{Ru}(\mathbf{CnEt})$ -	0	866
-		SI(Cp P13)2	п25	000,009		KuO	Ru(CpEt)2	\mathbf{O}_2	000

Z	Material	Reactant A a	Reactant B	Refs	Z	Material	Reactant A ^{<i>a</i>}	Reactant B	Refs
<u> </u>	Ru	RuCna		867 869		material	SnMe	NoO4	151
	Ku	Ru(CpEt)		866			SnFt.	N ₂ O ₄	151
		$Ru(CpEt)_2$		000			SIIEI4	N ₂ O ₄	151
		$Ru(CpEt)_2$	NH ₃	870,871	51 0	ntimony			
		$Ru(od)_3$	O_2	872	51 a	ShaQr	ShCla	H ₂ O	952
		$Ru(thd)_3$	H ₂	8/3		30205	50015	1120)52
		$Ru(thd)_3$	O_2	869,874	56 h	orium			
					500	BaS	Ba(CpMe ₅) ₂	H ₂ S	808.809
46 p	alladium						Ba(thd) ₂	H2S	410.965
	Pd	$Pd(thd)_2$	H_2	873				1120	110,900
		$Pd(thd)_2$	O_2	564	57 1:	anthanum			
		Pd(hfac) ₂	H_2	875	071	La_2O_3	La(thd) ₃	O ₂	46,50
		$Pd(hfac)_2$	HCOCOOH	875			$La(thd)_3$	03	555,562,966,
								5	967
48 c	admium		q	147.076			La[N(SiMe ₃) ₂] ₃	H ₂ O	407.968.969
	CdS	Cd	S	147,876			$L_a(^i PrAMD)_2$	H ₂ O	546
		$CdCl_2$	H_2S	623		Lassa	La(thd)	H ₂ S	970
		$CdMe_2$	H_2S	145,877–881			$La(IIII)_3$ La[N(SiMea)a]a	$(^{t}\mathbf{BuO})_{a}\mathbf{Si}$	407
	CdSe	Cd	Se	147–		$La_x Si_y O_x$		(DuO)351	407
				149,611,882–	58 0	orium			
				886	380	CeO ₂	Ce(thd) ₄	02	46.50
		CdMe ₂	H_2Se	145,662		2	$Ce(thd)_4$	O_2	971
	CdTe	Cd	Te	147,148,			Ce(thd)2phen	0_{2}	971
				170,534-			ee(ulu)sphen	03	<i>)</i> /1
				539.541-	59 n	raseodymiu	m		
				543 655 675	57 P	PrO	Pr[N(SiMe2)2]2	H2O	972
				679 886_911		110,	11[1((611103)2]5	1120	<i>)</i> , <u></u>
		CdMa	Et. To	680	60 n	eodymium			
			Lt ₂ It	680 012 014	00 1	Nd ₂ O ₂	Nd(thd) ₂	O_2	973
		Culle ₂	in T	080,912-914		1,02,03	r (d(ind))	03	110
		$CdMe_2$	$^{1}Pr_{2}$ Te	915,916	62 s	amarium			
10 ·	1.				02 0	Sm_2O_3	Sm(thd) ₃	O ₃	973
49 11	Inclum	InCla	HaO	212 917_921					
	111203	InCla	H ₂ O	021	63 e	uropium			
		InC13	H2O2	022		Eu_2O_3	Eu(thd) ₃	O ₃	973
	In C	Information Information		922					
	m ₂ s ₃		н ₂ 5	923	64 g	adolinium			
		$In(acac)_3$	н25	596,597,924-		Gd_2O_3	$Gd(thd)_3$	O ₃	973
				927					
	InN	ln	N ₂	928	66 d	ysprosium			
		InEtMe ₂	NH_3	290,689,690		Dy_2O_3	$Dy(thd)_3$	O ₃	973
	InP	InCl	PH ₃	696					
		InCl	^t BuPH ₂	712	67 h	olmium	U _a (thd)	0	072
		InMe ₃	PH ₃	741,754,929–		H0 ₂ O ₃	Ho(ulu)3	03	975
				937	69 0	abirra			
		InMe ₃	^t BuPH ₂	938–940	08 e	Er ₂ O ₂	$Er(thd)_2$	O_2	973 974
		InEt ₃	PH_3	697,699		11203	El (uld)5	03	,,,,,
		InEt ₃	^t BuPH ₂	941	69 tl	hulium			
	InAs	InCl	AsH ₃	704.705.717	07 1	Tm_2O_3	Tm(thd)3	O ₃	973
		InMe ₂	AsH ₂	733,942,943					
		InMea		780 931 933	71 li	utetium			
		mine ₃	Durisii	944 945		Lu_2O_3	Lu[Cp(SiMe ₃)] ₂ Cl	H ₂ O	975
		InClMa	A eH.	046					
		Inclivic ₂		940 726 047 049	72 h	afnium	LIEC1	цо	210 229 244
	T., Ch		ASII3	720,947,940		HIO_2	пісі	П20	219,258,244,
	InSb	In	20	949,950					252,253,255-
50 /									257,259,439,
50 ti	SnO ₂	Sn	02	2					822,832,837,
	51102	SnCl ₄	H_{2}	- 111 150 212					969,976–
		511014	1120	111,130,212,					1008
				443,002,931-			HfCl ₄	O ₂	1009,1010
		S., Cl	ЦО	900 050 0c1 0c2			HfCl ₄	O ₃	990
		SnCl ₄	$H_2 U_2$	939,901,962			HfCl ₂ [N(SiMe ₃) ₂] ₂	H ₂ O	1011
		SnI ₄	H_2O_2	959			HfI ₄	H ₂ O	837,989,994.
		SnI ₄	O_2	959,961–964				-	1012

Table III: (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Z Material	Reactant A ^a	Reactant B	Refs.	Ζ	Material	Reactant A ^a	Reactant B	Refs.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfI_4	H ₂ O ₂	1012			TaF ₅	Si ₂ H ₆ ^p	1063
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfI_4	O ₂	994,1013-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1016	74 t	ungsten			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(O^tBu)_4$	O ₃	1017,1018		WO_3	WF ₆	H_2O	1064
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(O^tBu)_4$	O_2^{e}	854			WF_xO_y	H_2O	1064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(O^tBu)_2(mmp)_2$	H_2O	1019			WOCl ₄	q	1065
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(mmp)_4$	H_2O	1020		$W_x N$	WF ₆	NH ₃	490,491,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(ONEt_2)_4$	H_2O	1021					1066,1067
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(NMe_2)_4$	H ₂ O	407,857,858,			WF ₆	NH ₃ ^e	1068-1070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		/.	-	1022,1023			$W(N^tBu)_2(NMe_2)_2$	NH ₃	1071-1073
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NMe ₂) ₄	03	1023		WS_2	WF ₆	H ₂ S	1074
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(NEt_2)_4$	H ₂ O	857,1024,		$W_x C$	$W(N^tBu)_2(NMe_2)_2$	H ₂ , N ₂ ^{<i>e</i>}	1075
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2/1	2	1025		W	WF ₆	Si ₂ H ₆	249,602,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(NEt_2)_4$	O ₂	1026					1066,1076-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Hf(NEt_2)_4$	$\tilde{O_2}^e$	1026					1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NEtMe) ₄	H_2O	244,857,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1005,1027-	77 i	ridium	Ir(acac).	0.	1081
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1029		11	II(acac)3	O_2	1001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NEtMe) ₄	O ₃	1018	78 r	alatinum			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Hf[N(SiMe ₃) ₂] ₂ Cl ₂	H ₂ O	1030	101	Pt	Pt(CpMe)Me ₂	02	867.869.1082
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NO ₃) ₄	H ₂ O	1031-1033			Pt(acac)	H_2	561
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf ₃ N ₄	Hf(NMe ₂) ₄	NH ₃	860			1 ((acuc)) <u>2</u>		001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 -	$Hf(NEt_2)_4$	NH ₃	860	80 r	nercury			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NEtMe)₄	NH ₃	860		HgTe	HgMe ₂	MeAyTe	912,914
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Hf_rAl_vO_7$	HfCl₄	Al(OEt) ₃	188		-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Hf_xSi_yO_7$	HfCl ₄	Si(OEt) ₄	406	821	ead	DI D	11.0	1002
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~ , ~	HfCl ₄	$Si(O^nBu)_4$	1034,1035		PbS	PbBr ₂	H_2S	1083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HfI_4	Si(OEt) ₄	406			DLI	11.0	1002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hf(NMe ₂) ₄	(^t BuO) ₃ SiOH	407			PbI_2	H_2S	1083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf _r Ti _v O ₇	HfCl ₄	$Ti(O^iPr)_4$	188			$Pb(OAc)_2$	H_2S	1083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x y - 2,	- +	(-)4				$Pb(O^{t}Bu)_{2}$	H_2S	1084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73 tantalum						$Pb_4O(O'Bu)_6$	H_2S	1084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ta_2O_5	TaCl ₅	H_2O	76,77,91,174,			$Pb(thd)_2$	H_2S	1083,1084
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				183,212,614,			$Pb(dedtc)_2$	H_2S	1083,1084
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				822,863,976,	021	aignouth			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1036–1040	051	BiOr	Bi[N(SiMe ₃) ₂] ₃	H ₂ O	1085
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		TaCl ₅	$Ta(OEt)_5$	188,1041	a T	ha matal the	d complexes may be	va haan aliahti	v olicomonized
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		TaI ₅	H_2O_2	1042	and	contain a ne	u complexes may nav	e been siighti	y ongomenzed
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Tal ₅	O ₂	1043	h D	contain a ne		σ.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ta(OEt) ₅	H_2O	178,184,206,	° D.	tamia hydro.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				207,212,465,				4	
$Ta(OEt)_{5} \qquad O_{2} \stackrel{e}{=} 1048 \qquad f^{-1} This process is atypical for ALD: it deposits nanolaminate Al_2O_3 and SiO_2, where the growth-per-cycle is many nanome Al_2O_3 and SiO_2, where the growth-per-cycle is many nanome through a catalytic mechanism.^{157} Ta(NEt_2)_{5} H_2O 466 through a catalytic mechanism.^{157} Ta(NEt_2)_{5} H_2O 1050 \stackrel{k}{=} Cat. = catalyst.Ta(NEt)(NEt_2)_3 H_2O 1050 \stackrel{k}{=} Cat. = catalyst.Ta(NEt)(NEt_2)_3 H_2O 1050 \stackrel{k}{=} HMDS = hexamethyldisilazane, (Me_3Si)_2NH.TaNx TaCl5 NH3 480,1051 \stackrel{i}{=} Controlled desorption.TaCl5 MH3 + cat. 1051 \stackrel{j}{=} Irradiation.TaCl5 Me_2NNH2 495 \stackrel{k}{=} Temperature treatment, such as flash heating or temperature n ulation. TaCl5 N2 \stackrel{e}{=} 1053-1055 \stackrel{m}{=} Reactant B was formaline, containing ~ 37\% of formaldel HCHO and some ethanol in water.Ta(NMe2)5 NH3 1056,1057 \stackrel{n}{=} Phasena detactor and a second detactor and a seco$				820,863,978,	" K	refers to alk	yl chains of various l	engtns.	
Ta(OEt)5 O_2^{e} 10487 This process is atypical for ALD: it deposits nanolaminate Ta(OEt)5Ta(OEt)5 O_2^{n} 1049Al ₂ O ₃ and SiO ₂ , where the growth-per-cycle is many nanome through a catalytic mechanism.Ta(NMe ₂)5H ₂ O466through a catalytic mechanism.Ta(NEt ₂)5H ₂ O1050 g Cat. = catalyst.Ta(NEt)(NEt ₂)3H ₂ O1050 h HMDS = hexamethyldisilazane, (Me ₃ Si) ₂ NH.TaNxTaCl5NH ₃ 480,1051 i Controlled desorption.TaCl5NH ₃ + cat.1051 j Irradiation.TaCl5Me ₂ NNH ₂ 495 k Temperature treatment, such as flash heating or temperature n ulation.TaCl5AyNH ₂ 1052 i He plasma treatment.TaCl5N ₂ e1053–1055 m Reactant B was formaline, containing ~ 37% of formaldel HCHO and some ethanol in water.Ta(NHe ₂) ₅ NH ₃ 1056,1057 n Photo-assisted.Ta(N'Bu)(NEt ₂) ₃ NH ₃ 1058 e Decomprosed				1044–1047	f m	asma.			
Ta(OEt)5 O_2 $I049$ AI_2O_3 and SiO2, where the growth-per-cycle is many nanome through a catalytic mechanism. $I57$ Ta(NMe2)5 H_2O 466through a catalytic mechanism. $I57$ Ta(NEt2)5 H_2O 1050 g Cat. = catalyst.Ta(NEt)(NEt2)3 H_2O 1050 h HMDS = hexamethyldisilazane, (Me3Si)2NH.TaNxTaCl5NH3480,1051 i Controlled desorption.TaCl5NH3 + cat.1051 j Irradiation.TaCl5Me2NNH2495 k Temperature treatment, such as flash heating or temperature n ulation.TaCl5NyH21052 l He plasma treatment.TaCl5N2 e^{2} 1053–1055 m Reactant B was formaline, containing ~ 37% of formaldel HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057 n Photo-assisted.Ta(N'Bu)(NEt2)3NH31058 e^{2} Decomposed		Ta(OEt) ₅	O_2^e	1048	JT	his process	is atypical for ALD:	it deposits na	inolaminates of
Ta(NMe2)5H2O466through a catalytic mechanism.Ta(NE2)5H2O1050 g Cat. = catalyst.Ta(NEt)(NEt2)3H2O1050 h HMDS = hexamethyldisilazane, (Me3Si)2NH.TaNxTaCl5NH3480,1051 i Controlled desorption.TaCl5NH3 + cat.1051 j Irradiation.TaCl5Me2NNH2495 k Temperature treatment, such as flash heating or temperature nTaCl5 r BuNH21052 l He plasma treatment.TaCl5N2 e 1053–1055 m Reactant B was formaline, containing ~ 37% of formaldelTa(NMe2)5NH31056,1057 n Photo-assisted.Ta(N'Bu)(NEt2)3NH31058 e Decomposed		Ta(OEt) ₅	O_2^n	1049	Al ₂	O_3 and SiO_2	$_2$, where the growth-p	ber-cycle is ma	ny nanometers,
Ta(NEt2)5 Ta(NEt)(NEt2)3 H_2O 1050 s Cat. = catalyst.Ta(NEt)(NEt2)3 H_2O 1050 h HMDS = hexamethyldisilazane, (Me ₃ Si) ₂ NH.TaNxTaCl5NH3480,1051 i Controlled desorption.TaCl5NH3 + cat.1051 j Irradiation.TaCl5Me ₂ NNH2495 k Temperature treatment, such as flash heating or temperature n ulation.TaCl5 i BuNH21052 i He plasma treatment.TaCl5N2 e1053–1055 m Reactant B was formaline, containing ~ 37% of formaldelTa(NMe ₂)5NH31056,1057 n Photo-assisted.Ta(N'Bu)(NEt2)3NH31058 e Decomposed		$Ta(NMe_2)_5$	H ₂ O	466	thro	ugn a cataly	tic mechanism. ¹³⁷		
Ta(NEt)(NEt2)3 H_2O 1050" HMDS = hexamethyldisilazane, (Me3S1)2NH.TaNxTaCl5NH3480,1051i Controlled desorption.TaCl5NH3 + cat.1051j Irradiation.TaCl5Me2NNH2495k Temperature treatment, such as flash heating or temperature nTaCl5'BuNH21052ulation.TaCl5AyNH21052' He plasma treatment.TaCl5N2052'' He plasma treatment.TaCl5N2052'' He plasma treatment.TaCl5N21052'' He plasma treatment.TaCl5N21052'' He plasma treatment.TaCl5N131056,1057'' Photo-assisted.Ta(N'Bu)(NEt2)3NH31058'' Decomposed		$Ta(NEt_2)_5$	H ₂ O	1050	* Ca	at. $=$ catalys	I		
TaN_x $TaCl_5$ NH_3 $480,1051$ i Controlled desorption. $TaCl_5$ $NH_3 + cat.$ 1051 j Irradiation. $TaCl_5$ Me_2NNH_2 495 k Temperature treatment, such as flash heating or temperature n $TaCl_5$ i^BuNH_2 1052 ulation. $TaCl_5$ $AyNH_2$ 1052 i^I He plasma treatment. $TaCl_5$ N_2 e^i $1053-1055$ m Reactant B was formaline, containing ~ 37% of formaldel $TaCl_5$ N_2 e^i 1052 HCHO and some ethanol in water. $Ta(NMe_2)_5$ NH_3 $1056,1057$ n Photo-assisted. $Ta(N^TBu)(NEt_2)_3$ NH_3 1058 e^i Decomposed	T) ($Ta(NEt)(NEt_2)_3$	H ₂ O	1050	" H.	MDS = hexa	amethyldisilazane, (M	$le_3S_1)_2NH.$	
TaCl5NH3 + cat.1051/ Irradiation.TaCl5Me2NNH2495k Temperature treatment, such as flash heating or temperature nTaCl5'BuNH21052ulation.TaCl5AyNH21052l He plasma treatment.TaCl5N2 e 1053–1055m Reactant B was formaline, containing ~ 37% of formaldelTaCl5N2 e 1052HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057n Photo-assisted.Ta(N'Bu)(NEt2)3NH31058P Decomposed	TaN_x	TaCl ₅	NH ₃	480,1051	¹ Co	ontrolled des	orption.		
TaCl5Me2NNH2495 k Temperature treatment, such as flash heating or temperature n ulation.TaCl5 $^{\prime}$ BuNH21052ulation.TaCl5AyNH21052 $^{\prime}$ He plasma treatment.TaCl5N2 e 1053–1055 m Reactant B was formaline, containing ~ 37% of formaldel HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057 n Photo-assisted.Ta(N'Bu)(NEt2)3NH31058 e Decomposed		TaCl ₅	$NH_3 + cat.$	1051	^J In	radiation.			
TaCl5'BuNH21052ulation.TaCl5AyNH21052' He plasma treatment.TaCl5N2 e 1053–1055'' Reactant B was formaline, containing ~ 37% of formaldelTaBr5'BuNH21052HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057'' Photo-assisted.Ta(N'Bu)(NEt2)3NH31058'' Decomposed		TaCl ₅	Me_2NNH_2	495	^{<i>k</i>} Te	emperature tr	reatment, such as flas	h heating or ter	mperature mod-
TaCl5AyNH21052 $'$ He plasma treatment.TaCl5N2 $'$ 1053–1055 $''$ Reactant B was formaline, containing ~ 37% of formaldelTaBr5 $''$ BuNH21052HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057 $''$ Photo-assisted.Ta(N'Bu)(NEt2)3NH31058 $''$ Decomposed		TaCl ₅	'BuNH ₂	1052	ulat	ion.			
$TaCl_5$ N_2 $1053-1055$ m Reactant B was formaline, containing ~ 37% of formaldel $TaBr_5$ tBuNH_2 1052 HCHO and some ethanol in water. $Ta(NMe_2)_5$ NH_3 $1056,1057$ n Photo-assisted. $Ta(N'Bu)(NEt_2)_3$ NH_3 1058 o Decomposed		TaCl ₅	AyNH ₂	1052	^l He	e plasma trea	atment.		
TaBr5'BuNH21052HCHO and some ethanol in water.Ta(NMe2)5NH31056,1057" Photo-assisted.Ta(N'Bu)(NEt2)3NH31058" Decomposed		TaCl ₅	N ₂ ^e	1053-1055	m R	Reactant B w	vas formaline, contain	ning $\sim 37\%$ of	f formaldehyde
$\begin{array}{cccc} \text{Ta}(\text{NMe}_2)_5 & \text{NH}_3 & 1056,1057 & n \text{ Photo-assisted.} \\ \text{Ta}(\text{N}^T\text{Bu})(\text{NEt}_2)_3 & \text{NH}_3 & 1058 & o \text{ Decomposed} \end{array}$		TaBr ₅	^{<i>i</i>} BuNH ₂	1052	HC	HO and som	e ethanol in water.		
$Ia(N'BU)(NEt_2)_3$ NH ₃ 1058 ρ Decomposed		$Ta(NMe_2)_5$	NH ₃	1056,1057	n Pł	noto-assisted	l.		
T (AUD) AUE (1) = 1050 1050		$Ta(N'Bu)(NEt_2)_3$	NH ₃	1058	o D	ecomposed.			
$10(N'Bu)(NEt_2)_3 H_2$ ^c 1059,1060 <i>p</i> Preliminary surface science investigation.		$Ta(N'Bu)(NEt_2)_3$	H ₂ ^c	1059,1060	^p Pı	reliminary su	urface science investig	gation.	
$1a(N'Bu)(NEtMe)_3$ NH ₃ 1061 ^q Only one half-reaction of an ALD reaction cycle was carried		$1a(N'Bu)(NEtMe)_3$	INH ₃	1061	q O	nly one half-	-reaction of an ALD r	eaction cycle v	was carried out.
$1a(N'Bu)(NEtMe)_3 NH_3$ 1061	T	$1a(N'Bu)(NEtMe)_3$	NH3 [°]	1061					
$-\frac{1a}{1aC_{15}}$ $-\frac{1a}{1aC_{15}}$ $-\frac{1a}{1aC_{15}}$ $-\frac{1a}{1aC_{15}}$ From the different types of inorganic materials grown	18	18015	п ₂ -	515,1062	F	rom the di	fferent types of ind	organic mater	rials grown by

11

Inorganic M F CI Br M <

Metalorganic

Figure 4: Typical ligands L of the reactants ML_n used in ALD. M represents the central atom, most often a metal. The ALD reactants can be divided into two main groups, inorganic and metalorganic; organometallic reactants with a direct metal–carbon bond¹⁰⁸⁶ form a subgroup of the latter. In this work, eight main ligand groups are further distinguished: elements [no ligands], halides [F, Cl, Br, and I], alkyls [Me, Et, ^{*i*}Pr, Ay, ^{*n*}Bu, ^{*i*}Bu, ^{*i*}Bu, and Np], cyclopentadienyls [Cp, CpMe, CpMe₅, CpEt, Cp^{*i*}Pr₃, and Cp(SiMe₃)], alkoxides [OMe, OEt, O^{*i*}Pr, O^{*i*}Bu, O^{*i*}Bu, mmp, and dmae], β -diketonates [acac, thd, hfac, od, and methd], alkylamides and silylamides [NMe₂, NEtMe, NEt₂, and N(SiMe₃)₂], and amidinates [^{*i*}PrAMD and ^{*i*}BuAMD].

Table IV: Computational chemistry investigations on ALD processes

Ζ	Material	Reactant A	Reactant B	Refs.
5 b	oron			
	BPO_4	B(OMe) ₃	POCl ₃	89
6 c	arbon			
	C ^a	CF ₃	—	1087
13	aluminum			
	Al_2O_3	AlCl ₃	H_2O	1088
		AlMe ₃	H ₂ O	1089–1098
14	silicon			
	SiO ₂	SiCl ₄	H ₂ O	1099
		SiCl ₄	$H_2O + cat. b$	1100
	Si ₃ N ₄	SiH ₄	NH ₃	1101
	Si	SiCl ₃ H	H_2	1102
20	calcium			
	CaS	$Ca(thd)_2$		1103
22				
22	titanium	T ' C 1	шо	1104 1105
	TiO ₂	TiCl ₄	H_2O	1104,1105
	TiN	TiCl ₄	NH ₃	1106
20				
20	Cu	CuCl	ш	1107 1100
	Cu	CuCi	n ₂	1107-1109
30	zinc			
50	ZnS	ZnCla	HaS	1110-1112
	ZnSe		H ₂ S H ₂ Se	1110 1112
	ZnTe		H ₂ Se	1112
	LINC	LICI	11210	1112
31	oallium			
51	GaAs	GaCl	AsH ₂	711.1113-1115
	Our 15	Guer	110115	, 11,1110 1110
40	zirconium			
	ZrO ₂	ZrCl ₄	H ₂ O	1092.1116-1122
	- 2		2 -	, -
72	hafnium			
	HfO ₂	HfCl ₄	H ₂ O	1092,1120,1123,1124
	-	HfCl ₄	Hf(OEt) ₄	1125
		Hf(OEt) ₄	H ₂ O	1125
		、 / T	-	
73	tantalum			
	Ta ₂ O ₅	TaCl ₅	H_2O	1126
		2	-	

^aDiamond.

 b Cat. = catalyst.

ALD, oxides have been the types most often investigated, as evident from Figure 3. Oxides have been grown for alkalineearth metals, transition metals including lanthanoids, and group 13–15 elements. As evident from Table III, the oxygen source in oxide deposition has most typically been water H₂O, or, somewhat less often, diatomic oxygen O₂, ozone O₃, alcohols ROH, or atomic oxygen created through oxygen plasma. Table III also reveals the use of some more uncommon oxygen sources (H_2O + catalyst, H_2O_2 , N_2O , NO_2 , N_2O_4 , and metal alkoxide reactants). Nitrides have analogously most often been manufactured from the metal compound and ammonia NH₃ or N₂/NH₃ plasma (or, less often, N₂, NH₃ + catalyst, RNH₂, N₂H₄, R₂NNH₂, or an alkylamide reactant); sulphides from hydrogen sulphide H₂S (or, less often, S, or Et_2S_2 ; selenides from hydrogen selenide H_2Se (or, less often, Se, Et₂Se, Et₂Se₂); and tellurides from Te or MeAyTe (or, less often, R2Te). Several other non-metal reactants have also occasionally been used (see Table III).

While ALD is most suited for growing compound materials, some successes have recently been booked in the deposition of pure elements also. Tungsten can be deposited by reacting the fluoride reactants with disilane, Si_2H_6 , $^{1066,1076-1078}$ and preliminary surface science experiments suggest that a similar process could work also for tantalum. 1063 For most other elements, in contrast, reduction by diatomic hydrogen, $^{483,546,561,570-572,575,873,875}$ hydrogen plasma, 331,332,515,516,1062 or in some cases alcohols 577 has been required to deposit the pure element. However, for some metals (e.g., Ru, Pd, Ir, Pt), the tendency of the metal to reduce dominates the deposition process, and the pure elements are obtained even when oxygen is used as the ligand removal agent. $^{564,866-869,872,874,1081,1082}$

2. Classes of metal reactants used

General requirements of reactants used in ALD are that they must be volatile (either at room temperature or at elevated temperatures), the reactants may not decompose thermally at the ALD processing temperatures, and the gas-solid reactions of the reactants have to fulfill the criterion of self-termination. Other properties of the different types of reactants may differ, however. The reactants used in ALD can be divided in two main groups: inorganic and metalorganic. Metalorganic reactants can further be classified in those containing a direct metal-carbon bond, that is, organometallic reactants, 1086 and those containing no direct metal-carbon bond. Typically, of inorganic reactants, elements and halides have been used; of organometallic reactants, alkyls and cyclopentadienyls have been used; and of other metalorganic reactants, alkoxides, β diketonates, amides, and amidinates have been used in ALD experiments. Figure 5 summarizes which types of reactants have been used for which elements, and the following paragraphs summarize the typical features of the different reactant groups.

Elements are the most simple type of reactants used in ALD and have been used in ALD investigations since the 1970s.^{2,154,171,534,887} Elements are versatile: they react both

Figure 5: Overview of the different types of metal reactants used in ALD (based on the list of Reactants A in Table III). Dark background indicates that metal reactants containing the particular type of ligand have been used for ALD: (a) elements [no ligands], (b) halides [F, Cl, Br, and I], (c) alkyls [Me, Et, ^{*i*}Pr, Ay, ^{*n*}Bu, ^{*i*}Bu, and Np], (d) cyclopentadienyls [Cp, CpMe, CpMe₅, CpEt, Cp^{*i*}Pr₃, and Cp(SiMe₃)], (e) alkoxides [OMe, OEt, O^{*i*}Pr, O^{*i*}Bu, O^{*i*}Bu, mmp, and dmae], (f) β -diketonates [acac, thd, hfac, od, and methd], (g) alkylamides and silylamides [NMe₂, NEtMe, NEt₂, and N(SiMe₃)₂], and (h) amidinates [^{*i*}PrAMD and ^{*i*}BuAMD].

with elemental non-metal reactants and with compounds of hydrogen, and they have been used to deposit many types of materials (oxides, nitrides, sulphides, etc), as summarized in Table V. A benefit of element reactants is also that since the elements do not carry extra ligands, the ligands cannot stay as impurities in the grown film. The lack of ligands means also lack of steric hindrance effects caused by the ligands.^{1127,1128} Nevertheless, less than monolayer growth may be observed because of surface reconstructions.³⁶ Although popular in the 1970s and 1980s, the interest in element reactants has de-

creased. This decrease is partly explained by the fact that few elements have sufficiently high vapor pressure to be evaporated as such [Figure 5(a)]. In addition, the adsorption of elements is likely to be a reversible process, and the limited self-terminating characteristics of the reactions potentially limits their usability.

Halides are the oldest class of ALD reactants, with the first experiments made already in the 1960s.^{1,77,78,83,97,100,106,135,138,150,614} Recently they have been extensively investigated for example for the deposition

Table V: Typical ALD processes of the type Reactant A + Reactant B \rightarrow Material, reported for element reactants (references in Table III).

Reactant B	Material	Reactant A (M)
O ₂	MO _x	Zn, Sn
H_2O	MO_x	Zn
N ₂	MN_x	Ga, In
S	MS_x	Zn, Cd
H_2S	MS_x	Zn
Р	MP_x	Ga
Se	MSe_x	Zn, Cd
H ₂ Se	MSe_x	Zn
Te	MTe_x	Mg, Mn, Zn, Cd
Sb	MSb_x	In

of high-dielectric-constant oxides.¹¹²⁹⁻¹¹³¹ A benefit of halide reactants is the availability of volatile halides for many metals, as shown in Figure 5(b). Halides are also generally regarded highly reactive and thermally stable. The high reactivity of halides is reflected in the variety of materials grown from them: oxides, nitrides, sulphides, etc. (Table VI). To give an example of the thermal stability, the HfCl₄/H₂O ALD process has been used even at and above $800 \,^{\circ}\text{C}$. ^{980,981,1013} In addition to the high reactivity, the small size of the halide ligands can be regarded advantageous, since the steric hindrance effects related to ligands^{1127,1128} are then minimized. Despite the small ligand size, the GPC obtained from halides is typically a small fraction of a monolayer of the material to be grown. For example, for the HfCl₄/H₂O process at 300 °C, the GPC is about 0.05 nm, corresponding to 15% of a monolayer.^{982,984,985,992,998,1127,1132–1134} The low GPC has lead to a suggestion that it may be the number of reactive surface groups and not steric hindrance that controls the amount deposited in halide-based processes.⁹⁹² Despite the many favorable sides of halide reactants for ALD, there are also several drawbacks. Many halides are solids, and vaporizing solid reactants is a challenge, since particles are easily transported into the films. The gaseous reaction by-products with hydrogen-containing non-metal reactants (H₂O, NH₃, H₂S, etc.) are HF, HCl, HBr, and HI. These gases are corrosive and can etch the film constituents or the reactor material.^{864,1036,1042} The gaseous reaction products may also re-adsorb on the surface after their formation, blocking reactive sites and causing undesired thickness gradients.432,433 Part of the halide ligands may remain as impurities in the films after the growth, which can be problematic for some applications. For example, HfO2 films grown from HfCl4 and H₂O at 300 °C have been reported to contain about 0.3 at-% chlorine and 1.6 at-% hydrogen (and, surprisingly, 0.2 at-% carbon).⁹⁹⁹ Some halides, at least TiCl₄, may also react in a manner unideal for ALD, depositing particles through a so-called "agglomeration" process above a certain threshold temperature.^{419,421,1135–1137} Details how the agglomeration occurs have not yet been clarified.1135

Alkyls were introduced as ALD reactants in the mid-

Table VI: Typical ALD processes of the type Reactant $A + Reactant B \rightarrow Material,$ reported for metal halides that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML_n : atom M–ligand L)
H ₂ O	MO _x	B–Br, Al–(Cl,Br), Si–Cl, P–Cl, Ti–(Cl,I), Zn– Cl, Ge–Cl, Zr–(Cl,I), In–Cl, Sb–Cl, Hf–(Cl,I), Ta–Cl, W–F
O ₂	MO_x	Ti–I, Zn–Cl, Sn–I, Hf–(Cl,I)
O ₃	MO_x	Hf–Cl
NH ₃	MN _x	B–(Cl,Br), Al–Cl, Si–Cl, Ti–(Cl,I), Ga–Cl, Nb– Cl, Mo–Cl, Ta–Cl, W–F
H_2S	MS_x	Mn–Cl, Zn–Cl, Cd–Cl, In–Cl, W–F, Pb–(Br,I)
PH ₃	MP_x	In–Cl
H_2Se	MSe _x	ZnCl
AsH ₃	MAs_x	Ga–(Cl,Br,I), In–Cl
H_2	Μ	Cu–Cl
N ^a	MN_x	Ta-Cl
H b	Μ	C–Cl, Ti–Cl, Ge–Cl, Ta–Cl
Si ₂ H ₆	М	Ta–F, W–F

^aAtomic nitrogen, for example in plasma.

^bAtomic hydrogen, for example in plasma.

1980s.^{153,190,305,627,723,724,726,729,733,781,929} Nowadays, alkyls are often used as reactants especially for aluminum and zinc. Alkyls are true organometallic compounds, which makes them very reactive. Consequently, a variety of materials have been grown from alkyls (Table VII): oxides, nitrides, sulphides, etc. The alkyl ligands are also rather small, minimizing the steric hindrance effects,^{1127,1128} and the GPC in alkyl-reactant-based processes is often rather high. For example, the GPC in the AlMe₃/H₂O process at 300 °C is about 0.09 nm,^{166,199,212,222,228,229,246} corresponding to about 30% of a monolayer of Al₂O₃. The gaseous reaction by-products with hydrogen-containing non-metal reactants (H₂O, H₂S, NH₃, etc.) are typically saturated hydrocarbons, which are generally inert and do not cause problems with re-adsorption or corrosion. Drawbacks of alkyls are that they have been used for a rather small selection of elements (groups 12-14) [Figure 5(c)], and that they decompose at moderate temperatures. For example, AlMe₃ decomposes above 300 °C.²¹⁶ There is also the possibility of carbon and hydrogen residues in the grown films, although the concentrations are often low. For example, Al₂O₃ films grown from AlMe₃ and H₂O at 300 °C were reported to contain about 0.2 at-% carbon and 0.7 at-% hydrogen.258

Cyclopentadienyls were introduced as ALD reactants in the early $1990s^{162-164}$ and have gained popularity in the 2000s. An advantage of the cyclopentadienyl reactants is the fact that they can be synthesized also for alkaline-earth metals, for which other compounds have been scarce [Figure 5(d)]. Similarly as alkyls, cyclopentadienyls are organometallic, containing a direct metal–carbon bond. This makes them reactive, and for example oxides can be grown through reaction with H₂O. However, the material selection grown from cyclopenta-

Table VII: Typical ALD processes of the type Reactant A + Reactant B \rightarrow Material, reported for metal alkyls that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML _n : atom M–ligand L)
H ₂ O	MO _x	Al-(Me,Et), Zn-(Me,Et), In-Me
O ₂	MO_x	Zn–Et
O ₃	MO_x	Al–Me
ROH ^a	MO_x	Al–Me
NH ₃	MN_x	Al-(Me,Et), Ga-(Me,Et)
H_2S	MS_x	Zn-(Me,Et), Cd-Me
PH ₃	MP_x	Ga–Me, In–(Me,Et)
H_2Se	MSe _x	Zn-(Me,Et), Cd-Me
AsH ₃	MAs_x	Al-(Me,Et, ⁱ Bu), Ga-(Me,Et, ⁱ Bu), In-(Me,Et)
0 ^{<i>b</i>}	MO_x	Al–Me
H ^c	М	Al–Me

^aAlcohols with various organic chains R.

^bAtomic oxygen, for example in plasma.

^cAtomic hydrogen, for example in plasma.

Table VIII: Typical ALD processes of the type Reactant A + Reactant $B \rightarrow$ Material, reported for metal cyclopentadienyls that contain one type of ligand (references in Table III).

Reactant B	Material	l Reactant A (ML _{n} : atom M–ligand L)								
H ₂ O	MO _x	Mg–Cp, Sc–Cp, Ni–Cp, Sr–Cp ⁱ Pr ₃ , Y–(Cp,CpMe)								
O ₂	М	Ru–(Cp,C	CpEt)							
H_2S	MS_x	Sr-(CpM	$e_5, Cp^i Pr_3$)						

dienyls is still small and comprises only oxides, sulphides, and elements, as shown in Table VIII. Future will show, whether the growth by ALD of other inorganic materials will also be successful from cyclopentadienyls. The cyclopentadienyl ligands are medium-sized, and the GPC from these reactants is often higher than for bulkier ligands such as the β -diketonates. For example, Y₂O₃ grows through the YCpMe₃/H₂O and Y(thd)₃/O₃ processes at 300 °C with GPC values of 0.13 nm (Ref. 813) and 0.023 nm (Ref. 815), respectively. The gaseous by-products from reactions with the typical non-metal reactants H₂O, NH₃, H₂S are presumably hydrocarbons, which do not re-adsorb on the surface, although studies of the gaseous reaction products have been rare. One study indicated the gaseous reaction product to be the hydrogenated ligands.⁸⁰⁶ Similarly as alkyls, the cyclopentadienyls decompose at moderate temperatures, and there may be carbon and hydrogen residues in the films. For example, ZrCp₂Me₂ decomposes at least at 500 °C,⁸⁴⁴ and perhaps even at lower temperatures. When grown at 350 °C, ZrO₂ films grown from ZrCp₂Me₂ and H₂O are rather pure and contain less than 0.1 at-% carbon and hydrogen, but the impurity concentrations increase if the deposition temperature is decreased or increased.⁸⁴⁴

Alkoxides were introduced as ALD reactants in the early 1990s.^{89,134,173,462,467,1044,1084} Alkoxides have been used for

Table IX: Typical ALD processes of the type Reactant A + Reactant $B \rightarrow$ Material, reported for metal alkoxides that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML _n : atom M	A-ligand L)
H ₂ O	MO _x	Al–(OEt,O ⁿ Pr), (OMe,OEt,O ⁱ Pr,OBu), Nb–OEt, Ta–OEt, Hf–mn	Si–OEt, Ti– Zr–(O ^t Bu,dmae), 1p
O ₂	MO_x	Al-(OEt,O ⁿ Pr), Ti-O ⁱ Pr,	Zr–O ^t Bu
O ₃	MO_x	Ti–O ^{<i>i</i>} Pr, Hf–O ^{<i>t</i>} Bu	
H ₂ S	MS_x	Pb–O ^t Bu	
O ^a	MO_x	Ti–O ^{<i>i</i>} Pr, Zr–O ^{<i>t</i>} Bu, Hf–O ^{<i>t</i>}	Bu, Ta–OEt

^aAtomic oxygen, for example in plasma.

rather few elements [groups 4, 5, 13, and 14, see Figure 5(e)], and they have been used to deposit almost only oxides (Table IX). Nitrides have not been grown from alkoxides, which may be related to the difficulty of cleaving the M-O bond present in the alkoxides. Decomposition at low temperatures is a typical drawback of alkoxide reactants. For example, Ti(OⁱPr)₄ decomposes already at 200 °C.475 Although the decomposition product is the desired oxide, the decomposition inevitably leads to decreased film conformality. A second drawback is the generation of alcohols as by-products in the gas-solid reactions. Alcohols are reactive and may re-adsorb on the surface and interfere with the growth.^{465,470} A third drawback is the high concentrations of carbon and hydrogen impurities in the films. For example, ZrO₂ films grown at 250 °C through the $Zr(O^tBu)_4/H_2O$ process have been reported to contain 8 at-% hydrogen and 2 at-% carbon.⁸⁴⁷ The popularity of alkoxides for growing binary oxides seems to have been decreasing in the recent years, although some new studies keep appearing. Nowadays, alkoxides have been most often used for growing ternary oxides in combination with metal halide reactants. This reaction concept was demonstrated by Brei et al.,^{88,94} and it was made more widely known by Ritala et al.^{188,1138}

 β -Diketonates are in use as ALD reactants since the late 1980s.^{408,410-412,415,814,1083,1084} As evident from Figure 5(f), there are β -diketonate reactants available for group 2–14 elements (except group 12 has not been demonstrated), which makes them the most broadly used class of ALD reactants. Before the recent introduction of cyclopentadienyls, β diketonates were the only reactant types available for alkalineearth metals. Although available for a broad variety of metals, only a few types of materials have been made from β diketonates (Table X): mostly oxides, and some sulphides, fluorides, and metals. Similarly as for alkoxides, nitrides are missing from the types of materials made, which may be related to the difficulty of replacing the metal-oxygen bond in the β -diketonate with a metal-nitrogen bond. The lower reactivity of the β -diketonates is also reflected in the observation that the oxygen source in the growth of oxide materials is most often not H₂O but O₃ (or O₂ may be used at higher temperatures). β -Diketonates decompose at moderate temperatures. For example, La(thd)₃ decomposes at 300 °C.⁹⁶⁶ A drawback

Table X: Typical ALD processes of the type Reactant A + Reactant B \rightarrow Material, reported for metal β -diketonates that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML_n : atom M–ligand L)
H ₂ O	MO _x	Ca-thd, ^a Cu-Hfac, Ga-acac
O ₂	MO _x	Cr-acac, Fe-acac, Co-acac, Ni-acac, Cu-(acac,thd), Y-thd, La-thd, Ce-thd
O ₂	М	Ru-od, Ru-thd, Pd-thd, Ir-acac
O ₃	MO _x	Mg-thd, Ca-thd, ^a Sc-thd, Mn-thd, Fe-thd, Co-thd, Ni-(acac,thd), Ga-acac, Sr-thd, ^a Y- thd, La-thd, Ce-thd, Nd-thd, Sm-thd, Eu-thd, Gd-thd, Dy-thd, Ho-thd, Er-thd, Tm-thd
ROH ^b	М	Cu–hfac
H_2S	MS_x	Ca-thd, Cu-thd, Sr-thd, Y-thd, In-acac, Ba-thd, La-thd, Pb-thd
HF	MF_x	Ca–thd, Sr–thd
H ₂	М	Ni-acac, Cu-(acac,thd), Ru-thd, Pd-thd, Pd- hfac, Pt-acac

 $^{a}M(CO_{3})_{x}$

^bR refers to alkyl chains of various lengths

 $^{c}MO_{x}S_{y}$

in using β -diketonate reactants is their size. The bulky ligands cause marked steric hindrance, ^{1127,1128} and the GPC obtained from these reactants is typically low, some percents of a monolayer.^{237,815} The reaction mechanisms related to removing the β -diketonate differ from most ALD processes, since the ligands are most often oxidized with O₃. Whether the oxidation is complete and H₂O and CO₂ form as by-products, has apparently not yet been verified. The films grown from β -diketonate reactants contain often considerable amounts of carbon and hydrogen impurities. For example, Y₂O₃ deposited through the Y(thd)₃/O₃ process at 300 °C was reported to contain about 2 at-% of both carbon and hydrogen.⁸¹⁵ Because of the generation of CO₂ during oxidation of the ligands, carbonate films may form in place of the more-oftendesired oxides.^{409,807}

An interesting observation was recently made regarding the reactivity of lanthanoid (Ln) β -diketonates. Päiväsaari et al.⁹⁷³ studied the ALD growth of several lanthanoid oxides from $Ln(thd)_3$ and ozone at a constant temperature (300°C). Päiväsaari et al.⁹⁷³ noticed the thickness increment per ALD reaction cycle to increase systematically with increasing ionic radius of the lanthanides (the ionic radius of the lanthanoid cations decreases with increasing atomic number, known as the "lanthanoid contraction"^{973,1139}). A similar qualitative trend of the GPC (in thickness units) as reported by Päiväsaari et al.⁹⁷³ would be created simply if the same number of lanthanoid atoms was in all cases deposited per unit surface area per cycle. Namely, the larger the ionic radius of the lanthanoid (Ln), the larger the volume v occupied by a $LnO_{3/2}$ unit, and the larger the average thickness $\bar{h}^{\rm ml}$ corresponding to one monolayer of $\text{LnO}_{3/2}$ ($\bar{h}^{\rm ml} = v^{1/3}$).^{1128,1140} The GPC could be expected to be constant in units of atoms per unit surface area, if the steric hindrance by the bulky thd ligands com-

Table XI: Typical ALD processes of the type Reactant A + Reactant $B \rightarrow$ Material, reported for metal amides that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML _n : atom M–ligand L)	
H ₂ O	MO _x	$\begin{array}{ll} \mbox{Zr-(NMe}_2,\mbox{NEt}_2), & \mbox{La-N(SiMe}_3)_2, \\ \mbox{N(SiMe}_3)_2, & \mbox{Hf-(NMe}_2,\mbox{NEt}_2), \\ \mbox{(NMe}_2,\mbox{NEt}_2), & \mbox{Bi-N(SiMe}_3)_2 \end{array}$	Pr- Ta-
O ₂	MO_x	Hf–NEt ₂	
O ₃	MO_x	Hf–NMe ₂	
NH ₃	MN_x	$\begin{array}{ll} Ti-(NMe_2,NEt_2), & Zr-(NMe_2,NEt_2), \\ (NMe_2,NEt_2), Ta-NMe_2 \end{array}$	Hf-
H ₂ Se	MSe _x	Zn–N(SiMe ₃) ₂	
O <i>a</i>	MO_x	Ti-NMe ₂ , Zr-NEt ₂ , Hf-NEt ₂	
N ^b	MN_x	Ti–NMe ₂	
H ^c	MN _x	Ti–NMe ₂	

^aAtomic oxygen, for example in plasma.

^bAtomic nitrogen, for example in plasma.

^cAtomic hydrogen, for example in plasma.

pletely dominated the chemisorption process.^{1127,1128} However, the mechanical contribution of the ionic radius appears too small to explain the full quantitative trend reported by Päiväsaari et al.,⁹⁷³ and the amount of lanthanoid atoms deposited per unit surface area per cycle also must increase with increasing ionic radius. The types of chemical changes occurring in the Ln(thd)₃ molecules with increasing ionic radius are yet to be clarified.

Alkylamides and silylamides have been investigated as ALD reactants since the late 1990s.^{407,498,499,513,857,1059} Alkylamides and silylamides appear a versatile group of reactants, both in terms of the elements for which they are available [Figure 5(g)] and the types of materials made from them (Table XI): oxides, nitrides, and selenides. Decomposition at low temperatures is a problem for these amides, however. For example, the Ti(NMe2)4 reactant decomposes already at $150 \,^{\circ}\text{C}^{.505}$ Rather typical is also that the GPC from amides, at least for alkylamides of tita-nium, exceeds a monolayer.^{499–501,513} Although a theory has been built to explain the beyond-monolayer-growth through "readsorption,"^{499–501,509} I suspect that decomposition remains a candidate to explain the high GPC values. Little investigations seem to have been carried out to identify the gaseous reaction by-products in alkylamide and silylamidebased ALD processes. Impurities are often found in the films, which for alkylamide reactants may be nitrogen, carbon, and hydrogen, and for silylamide reactants additionally silicon. As an example of films grown from alkylamides, TiN films grown through the Ti(NEt₂)₄/NH₃ process at 200 °C contained about 4 at-% carbon and 6 at-% hydrogen.⁵¹³ As an example of films grown from silvlamides, PrO_x films grown through the Pr[N(SiMe₃)₂]₃/H₂O process at 250 °C contained about 3 at-% carbon, 20 at-% hydrogen, and 6 at-% silicon.⁹⁷²

Amidinates are the most recent class of ALD reactants, introduced only in 2003.^{546,1141} Because of their novelty, their use in ALD has so far been investigated only for a few el-

Table XII: Typical ALD processes of the type Reactant A + Reactant $B \rightarrow$ Material, reported for metal amidinates that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant A (ML $_n$: atom M–ligand L)
H ₂ O	MO _x	Fe ^{-t} BuAMD, Co ⁻ⁱ PrAMD, La ⁻ⁱ PrAMD
H ₂	М	Fe– ^{<i>i</i>} BuAMD, Co– ^{<i>i</i>} PrAMD, Ni– ^{<i>i</i>} PrAMD, Cu– ^{<i>i</i>} PrAMD

ements, as summarized in Figure 5(h). The material selection (Table XII) may broaden in the future, however, because amidinates should be available for most metals.¹¹⁴² The reactions seem self-terminating.^{546,1143} Decomposition temperatures are typically around $300 \,^{\circ}C.^{1141,1143}$ Potentially, the films may contain residues of carbon, hydrogen, and nitrogen. The gaseous reaction by-products remain to be identified.

In addition to the eight reactant classes described above, many miscellaneous types of reactants have been tried out for ALD. For example, hydrides have been used for depositing especially silicon and germanium (refs. in Table III); acetates for zinc and lead-containing films;^{415,608,609,615,616,618–620,639,1083} nitrate and hydroxylamide for hafnium oxide;^{1021,1031–1033} and a carbonyl compound for cobalt.¹¹⁴⁴ The specific characteristics of these processes are not discussed further in this review.

3. AlMe₃/H₂O vs. other ALD processes

In this work, the current status of understanding the surface chemistry of ALD is reviewed using the $AlMe_3/H_2O$ ALD process as a vehicle. All ALD processes have their individual characteristics, and no ALD process can be expected to fully represent the others. The $AlMe_3/H_2O$ process still seems a good choice as one of the most representative processes, for at least four reasons.

First, the AlMe₃/H₂O process represents "thermal ALD." Advantage of "thermal ALD" over various "energyenhanced" ALD processes is that thermal ALD processes fulfill the best the requirement of self-terminating reactions on complex three-dimensional (3D) substrates. In energyenhanced processes, typically utilizing energetic but unstable reactants such as ozone or plasma, problems with conformality may arise through reactant decomposition at least on 3D substrates.

Second, the AlMe₃/H₂O process deposits an oxide material and uses water to deposit it. Oxides are the inorganic materials most frequently grown by ALD, and water is the most frequently used oxygen source.

Third, the AlMe₃/H₂O process uses trimethylaluminum as the aluminum source. If a choice is made to review the growth characteristics of aluminum oxide (the growth of another metal oxide could as well have been chosen), AlMe₃ is a justified choice as the aluminum source, as it is perhaps the most commonly used aluminum source in ALD. Further advantages of using AlMe₃ as a general example is that the reac18

tions are rather ideal: the reactions are truly self-terminating, the AlMe3 reactant is highly reactive and many types of compounds have been grown from it (oxides, nitrides, arsenides, and pure Al; see Tables III and VII), and the gaseous reaction products (methane) are rather inert. Many other reactant classes, such as elements, halides, alkoxides, β -diketonates, and alkyl/silylamides would have difficulties fulfilling at least some of these criteria, whereas alkyls, cyclopentadienyls, and perhaps amidinates fulfill them better. A disadvantage in using an alkyl reactant as a general example is the fact that alkyls are available for a limited selection of elements only [Figure 5(c)]. Some reaction mechanisms are likely to be specific for the particular reactant or for the reactant group. A similar disadvantage of having reactant-specific or reactantgroup-specific reactions would be encountered, however, for reactants from other groups as well.

Fourth, the $AlMe_3/H_2O$ process is one of the most studied ALD processes (Table III). There is therefore material to be reviewed.

Although it will not be possible to transfer the specific conclusions regarding the AlMe₃/H₂O process directly to other ALD processes, it is likely that if a specific physicochemical phenomenon is an issue for the AlMe₃/H₂O process, it will be so also for other ALD processes. Additional physicochemical phenomena may play a role in the surface chemistry of other ALD processes, caused for example by the occurrence of reactant decomposition (either purely thermally or through the use of "energy-enhanced" processes), or the formation of non-inert gaseous reaction products. Understanding these unideal phenomena should be possible through building additional models on top of the models describing ideal ALD systems.

III. GENERAL CHARACTERISTICS OF THE SURFACE CHEMISTRY OF ALD

To provide a framework for discussing the surface chemistry of the AlMe₃/H₂O and other ALD processes, the general concepts and characteristics of the surface chemistry of ALD are summarized here. Section III A discusses the chemical requirements for self-terminating reactions and Section III B the kinetic characteristics of such reactions. Section IIIC describes the three classes of chemisorption reactions typically involved in ALD, and Section III D identifies the possible factors causing termination of the reactions. Section IIIE illustrates, with the aid of published models, how steric hindrance typically limits the GPC to less than a monolayer. Sections III F and III G, respectively, discuss why the GPC varies with temperature and with the number of reaction cycles. Finally, Section III H introduces the possible growth modes that define how the material gets arranged on the surface during the growth.

Figure 6: Adsorption classes.

A. Requirements for self-terminating reactions

ALD can be defined to be based on the sequential use of *self-terminating gas-solid reactions*. In the reaction of a gaseous compound reactant with the solid surface, elements which are to be included in the ALD-grown film are adsorbed on the surface. Simultaneously, atoms which are not to be included in the film may be removed as gaseous reaction byproducts.

Adsorption can be divided in two general classes on the basis of the strength of interaction between the adsorbing molecule ("adsorptive") and the solid surface ("adsorbent"): physisorption (i.e., physical adsorption) and chemisorption (i.e., chemical adsorption),¹¹⁴⁵ as shown in Figure 6. Phvsisorption originates from weak interactions, where minimal changes typically occur in the structure of the adsorbing molecule. The interactions are not specific to the moleculesurface pair, and consequently, adsorption may occur in multilayers. Chemisorption, in turn, involves the making and optionally breaking of chemical bonds. Because in chemisorption, chemical bonds are formed between the adsorbing molecule and the surface, the surface "accepts" only one layer, a monolayer, of the adsorbed species ("adsorbate").1145 In relation with ALD, one must realise that a monolayer of the adsorbed species, such as ||Al(Me)₂, differs both from a monolayer of the reactant molecule, AlMe₃, and from a monolayer of the ALD-grown material, Al₂O₃ (Figure 7):

- *Monolayer (capacity)* for chemisorption is defined¹¹⁴⁵ as "the amount of adsorbate <adsorbed species> which is needed to occupy all adsorption sites as determined by the structure of the adsorbent <surface> and by the chemical nature of the adsorptive <the reactant>."
- *Monolayer (capacity)* for physisorption is defined¹¹⁴⁵ as "the amount needed to cover the surface with a complete monolayer of molecules in a close-packed array."
- *Monolayer* for the ALD-grown material MZ_x can be defined as one plane of MZ_x units in a crystalline face of the bulk MZ_x material in the preferred orientation of growth.¹¹⁴⁶

The amount of material adsorbed in gas–solid reactions can depend on time in various ways, as schematically illustrated in Figure 8. Both *irreversible* and *reversible* adsorption can be saturating in nature (panels a and b, respectively). For the adsorption to be self-terminating, however, the adsorbed material may not desorb from the surface during the purge or evacuation. Consequently, in ALD, the type of adsorption is limited to irreversible adsorption (irreversible in the time scale of

Figure 7: Three different types of monolayers relevant to ALD: (a) a chemisorbed monolayer (the substrate before chemisorption indicated above, with reactive sites shown), (b) a physisorbed monolayer, and (c) a monolayer of the ALD-grown material.

the experiment). Because physisorption is always reversible, whereas chemisorption can be reversible or irreversible, the requirement of irreversibility restricts the type of adsorption to chemisorption. In addition to irreversible adsorption, reversible adsorption may occur, but it does not contribute to ALD growth (panel c). Irreversible adsorption as such is not a sufficient requirement to achieve ALD growth, however, as irreversible adsorption can also be continuous, non-saturating (panel d). Moreover, to take advantage of the self-terminating features, the irreversible, saturating reactions must be allowed to terminate, to go to completion (panel e).¹¹⁴⁷

B. Adsorption kinetics

Chemical kinetics describes the effect of process parameters such as temperature and reactant concentrations on reaction (adsorption) rates.¹¹⁴⁸ A simple example of molecular adsorption of a gaseous compound A on a surface site ||* illustrates the characteristics of adsorption kinetics in ALD. In the general case, the adsorption can be considered reversible, as illustrated in reactions 1 and 2.

$$||* + A(g) \xrightarrow{r_a} ||*A \tag{1}$$

$$||*A \xrightarrow{\prime_{d}} ||*+A(g)$$
(2)

Adsorption rate r_a refers to the amount of molecules A attached to the surface per unit time and desorption rate r_d to the amount of molecules A detached from the surface per unit time.

The partial pressure of the reactant is a central parameter describing the adsorption process. For illustrating the effect of pressure, three assumptions are made, that are often used in the ALD literature: $^{192,196,1149-1154}$ the maximum amount of adsorbed species is assumed to be a monolayer (as in chemisorption), all adsorption sites on the surface are assumed equal, and neighboring adsorbed species are assumed not to interact with each other. The coverage of adsorbed species is referred here to as *chemisorption coverage* and denoted Q.¹¹⁵⁵ The adsorption rate r_a equals the adsorption rate constant k_a times the partial pressure p of the molecule A times the fraction (1 - Q) of unoccupied surface sites, and the desorption rate r_d equals the desorption rate constant k_d times the fraction Q of occupied surface sites. The rate of change of

Figure 8: Examples of how the amount of material adsorbed can vary with time: (a) irreversible saturating adsorption (i.e., self-terminating reaction), (b) reversible saturating adsorption, (c) combined irreversible and reversible saturating adsorption, (d) irreversible non-saturating adsorption (deposition), and (e) irreversible saturating adsorption not allowed to saturate. The vertical dashed line marks the end of the reactant supply and the beginning of a purge or evacuation.

Figure 9: Effect of the reactant partial pressure p on the amount of material chemisorbed in a gas–solid reaction: (a) the equilibrium chemisorption coverage Q^{eq} in reversible adsorption (equilibrium constants $1 \le K \le 10^4$) and (b) the chemisorption coverage Q after saturation in irreversible adsorption.

the chemisorption coverage, dQ/dt, is obtained by subtracting the desorption rate from the adsorption rate:

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = r_{\mathrm{a}} - r_{\mathrm{d}} = k_{\mathrm{a}} p (1 - Q) - k_{\mathrm{d}} Q. \tag{3}$$

After saturation, the chemisorption coverage is constant (dQ/dt = 0), and we get from Equation 3 to the *Langmuir isotherm*, giving the equilibrium chemisorption coverage Q^{eq} as a function of reactant partial pressure:

$$Q^{\rm eq} = \frac{k_{\rm a} p}{k_{\rm a} p + k_{\rm d}} = \frac{1}{1 + (Kp)^{-1}}.$$
 (4)

The right side of Equation 4 has been obtained by recognizing that $K = k_a/k_d$ is the *equilibrium constant* of the adsorption. In the general case of reversible adsorption $(k_a \neq 0 \neq k_d)$, Q^{eq} increases with *p*, as illustrated in Figure 9(a). To achieve ALD conditions with self-terminating reactions, however, the adsorption must be irreversible (Section III A). Equations 3 and 4 describe practically irreversible reactions, if the equilibrium constant *K* is allowed to approach infinity (or k_d to approach zero). Solving Equation 4 with this assumption, we get

$$\lim_{K \to \infty} Q^{\text{eq}} = 1. \tag{5}$$

In irreversible chemisorption, the chemisorption coverage Q does not increase with p, but settles to unity even at negligibly low reactant partial pressures p [Figure 9(b)].

Time is also a central parameter in the adsorption process. Solving by integrating from Equation 3, assuming constant pressure and temperature, the chemisorption coverage Q is obtained as a function of time:

$$Q = Q^{\text{eq}} \left(1 - e^{-(k_{\text{a}}p + k_{\text{d}})t} \right).$$
(6)

For irreversible chemisorption, Equation 6 reduces to Q = $1 - e^{-k_a pt}$. Figure 10(a) illustrates the chemisorption coverage Q as a function of time for irreversible chemisorption. During the reaction of Reactant A (Step #1), typically a compound reactant ML_n , the chemisorption coverage increases, until it settles to one when the reaction has terminated. (The higher the p and k_a , the faster the reaction is completed.) During the following purge/evacuation (Step #2), the chemisorption coverage remains constant. The reaction of Reactant B (Step #3) causes the chemisorption coverage of the species adsorbed from Reactant A to decrease, ideally down to zero. Reactant B brings other types of adsorbed species on the surface, whose coverage increases from zero to one during the reaction. During the following purge/evacuation (Step #4), the chemisorption coverages remain constant. During repeating reaction cycles of Steps #1-4, the chemisorption coverages therefore switch between zero and one [Figure 10(a)].

Time affects the chemisorption coverage Q in a different way than it affects the total amount of material deposited $c_{\rm M}$. As illustrated in Figure 10(b), the amount of atoms M deposited $c_{\rm M}$ increases during Steps #1 of the reaction cycles. The deposition rate $dc_{\rm M}/dt$ varies with time [Figure 10(c)], implying that the process is in a transient state.¹¹⁵⁶ For comparison, in this example, the amount of material deposited $c_{\rm M}$ increases linearly with the number of reaction cycles [Figure 10(d)] and the GPC $\Delta c_{\rm M}$ is constant [Figure 10(e)]. The number of reaction cycles n is clearly a discrete variable,^{992,1140} whereas time t is continuous.

The temperature dependency of adsorption and desorption rate constants k_i is typically described by the *Arrhenius equation*:

$$k_i = A e^{-E_i/RT}.$$
 (7)

In this equation, A is the pre-exponential factor, E_i is the activation energy, R is the gas constant and T is the absolute temperature. The higher the temperature, the faster the reactions go to completion. Although reactions are faster at higher temperatures, the amount of material adsorbed at saturation is dictated by other factors than the reaction rate, as will be discussed in Section III F.

Figure 10: Schematic representation of five reaction cycles, assuming irreversible adsorption: (a) chemisorption coverage Q as a function of time t (solid line: ML_z species adsorbed in the reaction of the Reactant A assumed to be of type ML_n , dashed line: species adsorbed in the reaction of Reactant B; the beginning and end of a reaction cycle and Steps #1 to #4 are indicated), (b) the amount of atoms M adsorbed c_M as a function of time t, (c) the deposition rate of M atoms dc_M/dt as a function of time t (obtained as the time derivative of the curve in panel b), (d) amount of material deposited c_M as a function of the number of reaction cycles n.

In addition to adsorption kinetics, mass transport kinetics affect the amount of material adsorbed at a given time. Mass transport kinetics are reactor-specific and depend also on the shape of the substrate, and are not discussed further here. Mass transport in ALD has been discussed at least in Refs. 432,1038,1152–1154,1157–1160.

C. Chemisorption mechanisms

Three main classes of chemisorption mechanisms have been identified for the self-terminating reactions of compound reactants in ALD.¹¹⁶¹ In *ligand exchange*, the reactant molecule (ML_n) is split on the surface.¹¹⁶² Ligand (L) combines with a surface group ||–a to form a volatile compound that is released as a gaseous reaction by-product, aL, and the remaining part of the molecule chemisorbs to the surface as a ML_{n-1}

Figure 11: Chemisorption mechanisms identified for ALD: (a) ligand exchange reaction of the ML_n reactant with surface "–a" groups, releasing gaseous aL, (b) dissociation of the ML_n in surface M–Z sites, and (c) association of the ML_n species onto the surface. In this scheme, n = 3.

species (Equation 8).98,197,209,216,419,526,818,1163-1165

$$||-\mathbf{a} + \mathbf{ML}_{n}(\mathbf{g}) \rightarrow ||-\mathbf{ML}_{n-1} + \mathbf{aL}(\mathbf{g})$$
(8)

Ligand exchange reaction can also occur for more than one ligand of the ML_n reactant, or between an adsorbed ML_z species $(1 \le z \le n)$ and a surface ||-a group. These reactions release ligands as aL and consume additional ||-a groups but do not result in bonding more metal M on the surface (Equation 9, reaction of an adsorbed ML_z species).

$$||-ML_{z} + ||-a \rightarrow ||-ML_{z-1} - || + aL(g)$$
 (9)

In *dissociation*, the reactant molecule is split onto reactive M'-Z sites on the surface (Equation 10).^{197,209,216,1163,1164}

$$||\mathbf{M}' - \mathbf{Z}|| + \mathbf{ML}_{n}(\mathbf{g}) \rightarrow ||\mathbf{M}' - \mathbf{L} + ||\mathbf{Z} - \mathbf{ML}_{n-1}|$$
 (10)

Similarly as ligand exchange reaction, dissociation may proceed further on the surface, but this reaction affects neither the number of bonded M atoms nor the number of bonded ligands. In *association*, the reactant molecule forms a coordinative bond with a reactive site on the surface and is chemisorbed without a release of ligands (Equation 11).^{101,144,1111,1165–1167}

$$\| + \mathrm{ML}_{n}(\mathbf{g}) \rightarrow \| \cdots \mathrm{ML}_{n}$$
 (11)

The three classes of chemisorption mechanisms are schematically illustrated in Figure 11.

When reactions 8–11 occur, a simple mass balance¹¹²⁸ governs the chemisorption. The amount of ligands L chemisorbed $\Delta c_{\rm L}$ equals *n* times the amount of metal M chemisorbed $\Delta c_{\rm M}$,

Figure 12: Factors identified to cause saturation of irreversible chemisorption: (a) steric hindrance of the ligands and (b) number of reactive surface sites.

subtracted by the number of ligands L released in ligand exchange reaction with surface ||-a groups, that is, the amount of surface ||-a groups reacted Δc_a . The mass balance is summarized in Equation 12:

$$\Delta c_{\rm L} = n \Delta c_{\rm M} - \Delta c_{\rm a}. \tag{12}$$

Sometimes, reactions other than those presented in Equations 8–11 occur. For example, the oxidation state of the elements may change during the ALD processing. 63,102,1066,1168 The mass balance of Equation 12 may then not be valid. A special class of self-terminating reactions has been observed for metal chlorides reactants, where metal oxide particles can form in a single reaction. 419,421,818,1135,1169 So-called non-growth ligand exchange reactions 1088,1135,1170 may be involved in the metal oxide particle formation, which is unideal in ALD since multilayers form in a single reaction. The details of the metal oxide particle formation process are not yet sufficiently understood, as reviewed elsewhere. 1135 Unexplained formation of particles, or "nanorods," has been reported also for the ZnEt₂/H₂O ALD process. 600

D. Factors causing saturation

Two factors have been identified to cause the saturation of the surface with adsorbed species in a self-terminating gas– solid reaction, as illustrated in Figure 12: *steric hindrance of the ligands*^{209,216,237,291,292,530,548,554} and *the number of reactive surface sites*.^{419,819} Steric hindrance of the ligands can cause the ligands of the chemisorbed ML_z species to shield part of the surface from being accessible to the ML_n reactant. The surface can be considered "full." The number of bonding sites on the surface may also be less than required for achieving the maximum ligand coverage. In that case, although space remains available on the surface, no bonding sites are accessible. Irrespective of the factor causing saturation, the chemisorption coverage Q equals one after the selftermination of the reactions.

Figure 13: Schematic illustration for analyzing sterically hindered chemisorption on the basis of the size of the ML_n reactant (Model I by Ritala et al.^{462,468} and Morozov et al.¹³³), the size and geometry of the chemisorbed ML_z species (Model II by Ylilammi¹¹²⁷), and the size and number of ligands L (Model III by Siimon and Aarik⁴³² and Puurunen¹¹²⁸). Left: side view, right: top view.

E. Growth of less than a monolayer per cycle

How much material is adsorbed in irreversible, saturating chemisorption is defined by the reaction mechanisms and the factor causing saturation. The highest obtainable GPC values correspond to a chemistry where the maximum number of surface sites reacts through ligand exchange, releasing thereby the maximum number of ligands into the gas phase, and reaction continues until steric hindrance terminates it.¹¹²⁸

Irrespective of the factor causing saturation and the absolute amount of material adsorbed, a monolayer of the chemisorbed ML_z species has formed by definition when the chemisorption has saturated (Section IV B). It is of interest to analyze to which GPC, in monolayers of the ALD-grown MZ_x material, the monolayer of adsorbed ML_z species converts. Often, it has been assumed that a monolayer of the ALD-grown material should form per cycle, but this assumption is obviously incorrect.¹¹⁷¹ Three models have been developed for analyzing the GPC when steric hindrance causes saturation, as summarized in Figure 13.

Ritala et al.^{462,468} and Morozov et al.¹³³ developed a model, referred to as *Model I*, to estimate the maximum GPC from the size of the ML_n reactant [Figure 13(a)]. The size of the ML_n reactant is calculated from the density of the liquid reactant and the area covered by the reactant assuming a close packed monolayer of ML_n. Model I, in fact, corresponds to a

physisorbed monolayer of the ML_n molecules (Section III A). Because the chemisorbed ML_z species differs from the ML_n reactant, Model I gives at best a rough estimate of the achievable GPC.

Ylilammi¹¹²⁷ developed a model, *Model II*, for calculating the maximum GPC from the size and geometry of the adsorbed ML_z species [Figure 13(b)]. The sizes of the ligand L and the metal M must be known. Also the bond lengths and angles must be known or assumed for the adsorbed species. In Model II, the GPC increases in steps with decreasing size of the adsorbate ML_z .¹¹²⁷ Siimon and Aarik⁴³² and Puurunen^{237,1128} developed inde-

Siimon and Aarik⁴³² and Puurunen^{237,1128} developed independently of each other basically the same model, *Model III*, for calculating the maximum GPC from the size and number of the adsorbed ligands L [Figure 13(c)]. A theoretical maximum amount of ligands adsorbed is calculated assuming a close packed monolayer of the ligands. This theoretical arrangement corresponds to a "physisorbed monolayer" of the ligands.¹¹⁷² A theoretical maximum is calculated for the amount of metal M adsorbed by dividing the amount of ligands adsorbed by the L/M ratio in the ML_z adsorbate. As should be expected, the GPC increases with decreasing size of the adsorbate.¹¹²⁸

Because of steric hindrance, the GPC in ALD from compound reactants should be considerably less than a monolayer of the ALD-grown material, as indicated by all three models. For example, for the TiCl₄ reaction with one surface ||– OH group to give a surface ||–TiCl₃ species, the maximum GPC predicted with the models, in monolayers of TiO₂, is about 28% (Model I,^{133,468} calculated for the TiCl₄ molecule), 19% (Model II¹¹²⁷) and 33% (Model III²³⁷).¹¹⁷³ Experimental GPC values vary within about 15–30% of a monolayer, depending on the growth temperature.²³⁷

F. Effect of temperature on the GPC

The GPC in ALD typically varies with temperature. The temperature dependency of the GPC can come at least from the effect of temperature on the number and type of reactive sites present on the surface before and after the chemisorption, and from the effect of temperature on the preferred reaction mechanisms.¹¹⁷⁴

Four characteristic ways the GPC may depend on temperature in the *ALD window*—the temperature range where an ALD process fulfills the requirement of self-terminating reactions¹¹⁷⁵—are illustrated in Figure 14. (i) The GPC may decrease with temperature (panel a). This occurs typically if the number of reactive surface sites affects the amount and/or the type of chemisorbed species and increasing temperature decreases the number of reactive surface sites.^{130,216,548,554} Increasing the reaction temperature may also change the inherent reaction mechanisms, for example, so that the L/M ratio z in the chemisorbed ML_z species changes.^{418,419,421,818} (ii) The GPC may stay constant with temperature (panel b). This can occur, for example, if steric hindrance causes saturation and the number of reactive sites does not affect the amount of adsorbed species.^{237,530,815} Sometimes, the GPC settles to

Figure 14: Variation of the GPC with the ALD processing temperature in the *ALD window*: (a) the GPC decreases with temperature, (b) the GPC is constant with temperature (possible with different values at different temperature ranges, as shown by the dashed line), (c) the GPC increases with temperature, and (d) the GPC first increases and then decreases with temperature.

different constant values at different temperatures.⁸⁹⁸ (iii) The GPC can also increase with increasing temperature (panel c). At higher temperatures, some energy barriers may be overcome, and reactions occur which do not occur at lower temperatures.^{481,1071} (iv) The GPC can also first increase and then decrease with temperature (panel d). This can occur through that, first, some reactions are activated with increasing temperature, after which the decreasing number of reactive sites starts decreasing the GPC.^{199,243} However, this can also be an artefact caused by incomplete reactions: the GPC has been measured for a constant reactant exposure as a function of temperature, and at lower temperatures with lower reaction rates (Equation 7) and slower mass transport, the reactions have not been completed [see, e.g., Fig. 8(e)].⁴²²

G. Effect of the number of cycles on the GPC

The ALD process modifies the chemical composition of the surface through depositing material. The first ALD reaction cycle occurs on the surface of the original substrate material, the following cycles usually on a surface with both the original substrate and the ALD-grown material exposed, and, after several ALD reaction cycles—the exact number depending on the GPC and the growth mode^{246,247,1140}—finally on a surface with only the ALD-grown material exposed. If the chemical composition of the surface changes, the GPC should be expected to vary with the number of cycles.

ALD processes can be classified in four groups on the basis how the GPC varies with the number of ALD reaction cycles,²⁴⁷ as shown in Figure 15. In all four cases, the GPC is expected to settle to a constant value after a sufficient number of ALD reaction cycles. In *linear growth*, the GPC is constant over cycles from the first cycle on. The growth is always in the *steady regime*. Linear growth^{527,528,530} can occur, for example, if the number of reactive sites on the sur-

Figure 15: Dependency of the GPC on the number of reaction cycles in different types of ALD processes:²⁴⁷ (a) linear growth, (b) substrate-enhanced growth, (c) substrate-inhibited growth of Type 1, and (d) substrate-inhibited growth of Type 2.

face does not change with the cycle number, or if the L/M ratio in the adsorbed ML₇ species is constant and steric hindrance of the ligands of the adsorbed species causes saturation. In substrate-enhanced growth, the GPC is higher in the beginning of the growth than at the steady regime. The initial, non-constant growth is referred to as being in a transient regime. Substrate-enhanced growth^{110,118,132,516,548,1008} can occur, for example, if the number of reactive sites on the substrate is higher than on the ALD-grown material. In substrate-inhibited growth of Type 1 and Type 2,²⁴⁷ the GPC is lower in the beginning of the growth than at the steady regime. In Type 2 substrate-inhibited growth, the GPC additionally goes through a maximum before settling to the constant value. Substrate-inhibited growth is caused by a lower number of reactive sites on the substrate than on the ALD-grown material.^{123,223,224,231,292,488,984,992,1176,1177} In substrate-inhibited growth of Type 2,488,499-501,984,992,1151,1178 island growth further seems to occur.488,992,1179

H. Growth mode

The way the material gets arranged on the surface during ALD growth is defined by the *growth mode*. For growth of a full monolayer per cycle, two-dimensional growth may be expected because multilayer adsorption should be excluded by definition in ALD. For growth of less than a monolayer per cycle, in turn, other growth modes can prevail.

Several growth modes are possible in ALD. In *twodimensional growth* (layer-by-layer growth, Frank–van der Merwe growth), the deposited material settles always in the lowest unfilled material layer and one monolayer of the ALDgrown material covers the substrate completely.^{246,1180} While sometimes achieved,^{1077,1181} this growth mode is not universally valid. In *island growth* (Volmer–Weber growth), the new material units are preferentially deposited on the ALDgrown material.^{246,247,1180} Island growth has been concluded

Figure 16: Schematic illustration with increasing number of reaction cycles n of selected growth modes possible in ALD: (a) twodimensional growth, (b) island growth and, (c) random deposition.

for several ALD processes.^{132,134,154,214,246,247,488,771,1182} A model has recently been derived to describe island growth in ALD.²⁴⁷ *Random deposition* is a statistical growth mode, where the new material units are deposited with an equal probability on all surface sites.¹¹⁴⁰ Because of the self-terminating reactions, random deposition results in smoother layers in ALD than in continuous deposition processes ("shower model" vs. "rain model" of random deposition).^{992,1140} Random deposition has been concluded at least for two ALD processes.^{292,544} Figure 16 compares schematically two-dimensional growth, island growth and random deposition.

The growth mode may also change during growth. For example, the growth mode may be two-dimensional for the deposition of the first monolayer, and island growth or random deposition thereafter (Stranski–Krastanov growth).¹¹⁸⁰ Vice versa, the growth mode may be first island growth, and when the islands have coalesced to form a continuous layer, two-dimensional growth may occur.¹⁰⁷⁷

Assigning a relation between the way the GPC varies with the number of cycles and the growth mode would be attractive. The experimental investigations published so far do not support the existence of such a relation, however, except for substrate-inhibited growth of Type 2 which seems to correspond to an island growth mode.^{246,247,488,1177} Linear growth has corresponded to two-dimensional growth mode⁵²⁷ as well as random deposition.⁵⁴⁴ Substrate-enhanced growth of Type 1 has corresponded to island growth mode⁵⁵⁸ and random deposition.²⁹²

IV. SURFACE CHEMISTRY OF THE ALME₃/H₂O PROCESS

This section reviews the current status of understanding the surface chemistry of the AlMe₃/H₂O process. This process is considered ideal for ALD: the reactants are highly reactive, but at the same time thermally stable, and the gaseous reaction product, methane, does not interfere with the growth. The process gives smooth, conformal films on highly complex structures. Section IV A introduces the general characteristics of the process. Self-termination of the reactions is verified in Section IV B. The chemisorption mechanisms identified to occur during the AlMe₃ and H₂O reactions are summarized in Section IV C. Section IV D discusses the decreasing effect of

increasing growth temperature on the GPC and Section IV E steric hindrance as the factor causing saturation. The effect of the surface OH group concentration on the GPC is explored in Section IV F. Section IV G summarizes the (little) experimental information available on the kinetics of the reactions, and Sections IV H and IV I the way the GPC varies with the number of reaction cycles and the growth mode, respectively. Finally, Section IV J summarizes the findings.

A. General characteristics

The AlMe₃/H₂O process follows the overall stoichiometry presented in Equation 13 (Me = CH_3 = methyl).

$$Al(CH_3)_3(g) + \frac{3}{2}H_2O(g) \rightarrow \frac{1}{2}Al_2O_3(s) + 3CH_4(g)$$
(13)

The aluminum and oxygen retain their oxidation states, and the mass balance of Equation 12 is valid. For the AlMe₃ reaction, the mass balance converts to Equation 14.

$$\Delta c_{\rm Me} = 3\Delta c_{\rm Al} - \Delta c_{\rm (O)H} \tag{14}$$

The chemistry of the AlMe₃/H₂O process is often described by the two successive "half-reactions," presented in the Equations 15 and 16.^{192,196}

$$||\mathrm{Al}-\mathrm{OH} + \mathrm{Al}(\mathrm{CH}_3)_3(\mathrm{g}) \rightarrow ||\mathrm{Al}-\mathrm{O}-\mathrm{Al}(\mathrm{CH}_3)_2 + \mathrm{CH}_4(\mathrm{g})|$$
$$||\mathrm{Al}-\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \rightarrow ||\mathrm{Al}-\mathrm{OH} + \mathrm{CH}_4(\mathrm{g})|$$
(10)

That the surface switches from methyl-terminated to hydroxyl-terminated and vice versa is well known and illustrated, for example, by infrared measurements.¹⁹⁶ The AlMe₃/H₂O process is more complex than revealed by Equations 15 and 16, however, as discussed in the following sections.

B. Verification of self-termination

The AlMe₃/H₂O process is self-terminating with respect to time. For sufficiently long reactant pulses and purges, lengthening the AlMe₃ and H₂O pulses and the purges in between (Steps #1–4) does not affect the amount of species adsorbed,^{222,227} as illustrated in Figure 17. When the AlMe₃ and H₂O exposures (Steps #1 and #3) are sufficiently long, the reactions go to completion, and the GPC does not increase with increasing exposure time. The purges between the AlMe₃ and H₂O reactions (Steps #2 and #4) must also be sufficiently long. If the purges are too short, the GPC increases because of AlMe₃ and H₂O are simultaneously present in the gas phase, enabling continuous CVD-type deposition.^{222,227}

The AlMe₃/H₂O process seems self-terminating also with respect to the AlMe₃ pressure. In the experiments of Kumagai et al.²⁶⁷ for the AlMe₃/H₂O₂ ALD process (oxygen source H₂O₂ instead of H₂O), the GPC was independent of the reactant pressures, as shown in Figure 18. The independence of the GPC from the AlMe₃ pressure is consistent with irreversible, saturating reaction of AlMe₃ on aluminum oxide.

(5) Figure 17: Self-termination in the AlMe₃/H₂O process (TMA = AlMe₃) at 300 °C in the steady growth regime: effect on the mea-6) sured GPC (labeled "deposition per cycle") of (a) the AlMe₃ pulse and the following purge times (Steps #1 and #2) and (b) the H₂O pulse and the following purge times (Steps #1 and #2). (Reprinted from Sneh et al.²²² with permission. Copyright 2002, Elsevier.)

Figure 18: Self-terminating reactions in the AlMe₃/H₂O₂ ALD process (TMA = AlMe₃) in the steady growth regime: effect of reactant pressures to the GPC (labelled "growth rate") at $340 \,^{\circ}\text{C}.^{267}$ (Reprinted from Kumagai et al.²⁶⁷ with permission. Copyright 1994, Institute of Pure and Applied Physics.)

Whether the H₂O pressure affects the amount of H₂O chemisorbed on aluminum oxide, is not entirely clear. In some investigations, 211,212,234 effect of reactant dose (exposure time multiplied with reactant partial pressure) on the AlMe₃/H₂O process has been suggested. A systematic study of the effect of H₂O exposure time and pressure is missing, however.

C. Identified chemisorption mechanisms

Several reactions have both experimentally and theoretically been identified to occur when gaseous AlMe₃ interacts with oxide supports. AlMe₃ reacts through ligand exchange with the hydrogen atoms in surface OH groups, producing O–Al bonds and releasing methane (Equation 15).^{190,192,193,196,1089,1163,1164,1183–1186} Other gaseous reaction products in addition to methane have not been found.^{211,217,227,243,443} The AlMe₃ molecule can also react through ligand exchange simultaneously with two OH groups, in reaction described in Equation 17.^{196,209,216,217}

$$2 ||O-H + Al(CH_3)_3(g) \rightarrow (||O-)_2 AlCH_3 + 2 CH_4(g)$$
(17)

Practically all OH groups on silica and alumina react with AlMe₃ through ligand exchange, at least at temperatures between 80 and $300 \,^{\circ}\text{C}^{209,216}$ In addition to the ligand exchange reaction (Equations 15 and 17), AlMe₃ reacts dissociatively with oxygen bridges of silica (Equation 18).^{197,209,1163,1164,1183,1187,1188}

$$||Si - O|| + Al(CH_3)_3(g) \rightarrow ||Si - CH_3 + ||O - Al(CH_3)_2$$
(18)

Dissociation to several oxygen bridges bonded to the same silicon atom leads also to surface species of type $||Si(Me)_2$ and $||Si(Me)_3$.^{197,209} AlMe₃ seems also to react dissociatively with coordinatively unsaturated (c.u.s.) Al–O pairs of alumina (Equation 19).^{196,216,1097}

$$||\mathrm{Al}-\mathrm{O}|| + \mathrm{Al}(\mathrm{CH}_3)_3(\mathrm{g}) \rightarrow ||\mathrm{Al}-\mathrm{CH}_3 + ||\mathrm{O}-\mathrm{Al}(\mathrm{CH}_3)_2$$
(19)

Similarly as for AlMe₃ reaction on aluminum oxide, ligand exchange reaction and dissociation has been concluded to occur in the H₂O reaction with AlMe₃-modified aluminum oxide (Equations 20 and 21).^{192,211,215,217,220}

$$||-CH_3 + H_2O(g) \rightarrow ||-OH + CH_4(g)$$
 (20)

$$||-O-|| + H_2O(g) \rightarrow 2||-OH$$
 (21)

The reversed reaction of dissociation, dehydroxylation, also occurs, through which the surface OH concentration decreases with increasing temperatures (Equation 22).^{211,215,217,220}

$$2||-OH \to ||-O-|| + H_2O(g)$$
(22)

D. Effect of temperature on the GPC

The GPC in the steady regime of the AlMe₃/H₂O process decreases with increasing processing temperature, as shown in Figure 19 that summarizes the results by several groups.^{179,199,212,216,222,228,229,234} This figure does not include results beyond 300 °C, the temperature at which AlMe₃ starts to decompose thermally.^{216,1189} The different investigations share the decreasing trend and agree quantitatively within an experimental error of about 10%. One investigation,²³⁴ however, shows a significantly lower GPC. It did not confirm the saturation of the surface reactions through sufficiently long

Figure 19: GPC in the AlMe₃/H₂O process to grow amorphous aluminum oxide on flat substrates in the steady growth regime (Groner et al.,²²⁸ Ott et al.,¹⁹⁹ Matero et al.,²¹² Sneh et al.,²²² Jensen et al.,²²⁹ Yun et al.,¹⁷⁹ Kuse et al.,²³⁴ Puurunen et al.²⁴⁶). The GPC is expressed as the amount of aluminum atoms attached per cycle per square nanometer of surface Δc_{A1} (nm⁻²), which converts to the thickness increment per cycle Δh (nm) through $\Delta c_{A1} = \rho N_A M^{-1} \Delta h$ ($\rho = 3.5 \text{ g cm}^{-3}$).^{237,1128} A line was fitted to the data on flat substrates, except the points of Kuse et al., which probably represent unsaturated conditions. Confidence limit of one standard deviation is shown. Data points obtained on high-surface-area alumina substrates are shown for reference (Puurunen et al.²¹⁶). The results²¹⁶ were calculated through the mass balance (Equation 23) for AlMe₃ reaction at 150 °C with alumina heat-treated at the temperature indicated in the *x*-axis. The results for AlMe₃ reaction at 150 °C can be used for the comparison, because increasing the temperature to 300 °C does not affect the amount of adsorbed species (Figure 20).

pulse and purge times, however, and the process probably operated at unsaturated conditions.

Change in the inherent reaction mechanisms (Equations 15, 17–19) with temperature might account for the decreasing GPC. To investigate this possibility, one needs to separate the effect of temperature on the reaction mechanisms from its effect on the number of reactive sites. Figure 20 shows results obtained for the AlMe₃ reaction on high-surface-area alumina, which had been stabilized by a preceding heat treatment at 560 °C to have a surface OH group concentration $c_{(O)H}$ of 2.0 nm⁻².^{216,262} The amount of aluminum atoms adsorbed Δc_{Al} (nm⁻²) could be calculated through the mass balance, Equation 23 (rearranged from Equation 14),^{216,262} because the amount of methyl groups adsorbed Δc_{Me} (nm⁻²) was measured and the amount of OH groups reacted $\Delta c_{(O)H}$ (nm⁻²) could be approximated with the surface OH group concentration the reaction before the reaction $c_{(O)H}$ (nm⁻²).^{209,216}

$$\Delta c_{\rm Al} = \frac{1}{3} \left(\Delta c_{\rm Me} + c_{\rm (O)H} \right) \tag{23}$$

As seen from Figure 20, the reaction temperature has no effect on the amount of aluminum atoms adsorbed in the AlMe₃ reaction with alumina. An effect of the reaction temperature on the preferred reaction mechanisms therefore cannot explain the decreasing GPC.

Change in the number of reactive surface groups with temperature is another option to account for the decreasing GPC. Increasing substrate heat-treatment temperature in-

Figure 20: Effect of the AlMe₃ reaction temperature on the amount of aluminum adsorbed in the AlMe₃ reaction Δc_{Al} (nm⁻²) on alumina heat-treated at 560 °C, according to Puurunen et al.²¹⁶ The confidence limits represent one standard deviation.

Figure 21: Effect of the substrate heat-treatment temperature on the amount of aluminum adsorbed Δc_{A1} (nm⁻²) in the AlMe₃ reaction (a) on alumina at 150 °C (\circ Puurunen et al.²¹⁶) and (b) on silica at 150 °C (\Box Puurunen et al.²⁰⁹) or 250 °C (\diamond Uusitalo et al.²¹⁰). The OH surface concentrations (nm⁻²) are shown as crosses for reference (alumina: \times Puurunen et al.;²¹⁶ silica: \times Puurunen et al.²⁰⁹ and + Haukka et al.¹¹⁹⁰). The confidence limits represent one standard deviation.

deed decreases the amount of aluminum Δc_{Al} chemisorbed in the AlMe₃ reaction on alumina^{216,262} and silica,^{209,210,262} as shown in Figure 21. Increasing the heat-treatment temperature concurrently decreases the surface OH group concentration,^{209,216,1190} as also indicated on the figure. Moreover, the quantitative values and temperature dependency of the amount of aluminum Δc_{Al} chemisorbed on alumina (Figure 21a) and the GPC Δc_{A1} in the AlMe₃/H₂O process (Figure 19) agree.¹¹⁹¹ The AlMe₃ reaction on alumina subjected to a controlled heat-treatment therefore seems to represent the AlMe₃ reaction in the steady regime of the AlMe₃/H₂O process. This representativeness is as expected, because in both cases AlMe₃ reacts with an Al₂O₃ surface. Consequently, a decrease in the surface OH group concentration with increasing temperature seems to explain the decreasing GPC.

E. Factor causing saturation

Steric hindrance by methyl groups appears to cause the termination of the $AlMe_3$ reaction by the saturation of the surface with adsorbed species.^{209,216,221,237,291,292,1097} This conclusion originates from the fact that the methyl group content settles to approximately a constant value after saturation has been attained,^{209,210,216,291,292,1192} as illustrated in Figure 22(b), where the methyl group content after the AlMe₃ reaction with high-surface-area alumina and silica is plotted as a function of the surface OH group concentration. Although the surface OH group concentration varies markedly (1–9 nm⁻²), the amount of methyl groups adsorbed is approximately constant (5–6 nm⁻²).

Of the three models developed for analyzing steric hindrance in self-terminating reactions in ALD (Section III E), only Model III has been applied for the AlMe₃ reaction.²³⁷ Model I has never been applied and Model II seems not to be applicable.¹¹⁹³ The maximum theoretical amount of methyl groups adsorbed according to Model III is 7.2 nm⁻²,^{209,237,1128} calculated from the van der Waals radius of methyl groups of 0.20 nm.¹¹⁹⁴ The observed amount of methyl groups adsorbed is about 70–80% of this theoretical maximum, corresponding to a ligand coverage θ of 0.7–0.8. This ligand coverage is consistent with the conclusion that saturation of the AlMe₃ reaction is caused by steric hindrance of methyl groups: the chemisorption of AlMe₃ proceeds as long as sufficiently large areas not shielded by the methyl ligands remain on the surface.^{209,237,1128}

F. Effect of the surface OH group concentration

The surface concentration of OH groups affects the number and type of species adsorbed in the AlMe₃ reaction. The amount of aluminum atoms Δc_{Al} adsorbed in the AlMe₃ reaction increases, the amount of methyl groups adsorbed Δc_{Me} stays about constant and the average Me/Al ratio ($\Delta c_{Me}/\Delta c_{Al}$) in the adsorbed surface species decreases with increasing surface OH group concentration $c_{(O)H}$, as shown in Figure 22.²⁶² The amount of aluminum adsorbed Δc_{Al} (nm⁻²) on oxide substrates (alumina, silica) increases linearly with the OH surface concentration $c_{(O)H}$ (nm⁻²):

$$\Delta c_{\rm Al} = a + b \, c_{\rm (O)H} \approx 1.68 + 0.37 \, c_{\rm (O)H}. \tag{24}$$

Even in the absence of OH groups, aluminum is deposited (a > 0), a fact consistent with dissociative (or associative) reactions of AlMe₃ (Section IVC). In dissociation or association, the Me/Al ratio is three, and the a (nm⁻²) in Equation 24 expectedly corresponds to one third of the number of methyl groups adsorbed at low surface OH group concentrations (Figure 22b). In contrast to what would be expected on the basis of Equation 15, there is no one-to-one correspondence between Δc_{Al} and $c_{(O)H}$ ($b \neq 1$). Instead, almost three (b^{-1}) OH groups are needed for attaching one additional aluminum atom. This number is consistent with the fact that steric hindrance causes the amount of adsorbed methyl groups Δc_{Me} to be about constant (Section IVE): three OH groups are needed to release the three methyl groups of one AlMe₃ molecule as methane, and thereby to attach one additional aluminum atom to the surface.

Figure 22: Effect of the surface OH group concentration $c_{(O)H}$ on the amount of material chemisorbed in the AlMe₃ reaction on alumina and silica substrates:²⁶² (a) amount of aluminum atoms adsorbed in the reaction Δc_{A1} (nm⁻²), (b) methyl group concentration after the reaction Δc_{Me} (nm⁻²), and (c) the average methyl/aluminum (Me/Al) ratio in the adsorbed species ($\Delta c_{Me}/\Delta c_{A1}$). Data from Puurunen et al.²¹⁶ for alumina and Puurunen et al.²⁰⁹ and Uusitalo et al.²¹⁰ for silica, for AlMe₃ reaction at the indicated temperatures. The OH surface concentrations are from Puurunen et al.²¹⁶ for alumina and Puurunen et al.²¹⁶ for alumina the data. The confidence limits represent one standard deviation. In panel b, the dashed line indicates the maximum theoretical methyl group concentration of 7.2 nm⁻² according to Model III.^{237,1128}

The values of the parameters a and b in Equation 24 are consistent the reaction scheme^{192,195,196,209,216,237,1089,1164} that AlMe₃ reacts through ligand exchange with practically all OH groups, releasing methane, and additionally through dissociation or association, until steric hindrance by adsorbed methyl groups causes the reaction to terminate. The physical significance of Equation 24 is further illustrated in Figure 23, for the situations after the completion of the self-terminating AlMe₃ reaction with oxide substrates with different surface

Figure 23: Illustration of the physical situation corresponding to Equation 24: number of aluminum atoms Δc_{Al} and methyl groups Δc_{Me} adsorbed in the self-terminating AlMe₃ reaction on surfaces with different OH group concentrations $c_{(O)H}$, resulting in average Me/Al ratios of (a) 3, (b) 2, and (c) 1.5. The squares represent an area of 3 nm²; the methyl groups are drawn in scale ($r_{Me} = 0.2 \text{ nm}^{-2}$). The small dependency the number of adsorbed methyl groups has on the surface OH group concentration [Figure 22(b)] has been neglected for simplicity.

Figure 24: The correlation of Equation 24, marked as a solid line, is in line with the GPC in the AlMe₃/H₂O process (data points as in Figure 19). The GPC values for the correlation were calculated assuming that $c_{\rm (O)H}$ decreases linearly with temperature from 9 nm⁻² at 200 °C to 7 nm⁻² at 300 °C.¹¹⁹⁵

OH group concentrations. The more OH groups there are on the substrate, the more aluminum atoms adsorb, whereas the number of adsorbed methyl groups stays about constant. As shown in Figure 24, the GPC calculated with Equation 24 [assuming that $c_{(O)H}$ decreases linearly with temperature from 9 nm⁻² at 200 °C to 7 nm⁻² at 300 °C (Ref. 1195)] agrees with the experimental values.

G. Kinetics of the reactions

The kinetics of the AlMe₃ and H_2O reactions during the AlMe₃/ H_2O process have not been thoroughly investigated. Some qualitative and quantitative information on the kinetics exists or can be obtained by critically investigating published results.

Recent in situ mass spectrometry (MS) and quartz crystal microbalance (QCM) investigations^{211,217} contain qualitative kinetic information of the AlMe₃/H₂O process. These investigations were carried out (mostly) under conditions where the methane-producing ligand exchange reactions of AlMe₃ and H₂O reactions had been completed.^{211,215,217,220} However, as described below, the reactions had not yet completely self-terminated. The main results obtained in these investigations by the MS technique have been collected in Figures 25 and 26. Results only up to a processing temperature of 300 °C are shown because of the decomposition of AlMe₃ at higher temperatures.^{216,1189} Re-interpreting these results, to follow, indicates that the ligand exchange reactions are completed faster than dissociation in the self-terminating reactions of both AlMe₃ and H₂O during AlMe₃/H₂O ALD.

Extracting qualitative kinetic information from the results for the H₂O reaction needs some re-interpretation. It is possible to investigate the H2O reaction in AlMe3/H2O ALD under conditions where the ligand exchange reaction of water has terminated but other reactions have not. In Ref. 211, Juppo et al. investigated the AlMe₃/H₂O process under such conditions. Although in Ref. 211 they did not conclude the water reaction to be incomplete, later it was concluded to have been the case.^{215,217,220} The fact that the amount of hydroxyl groups increased with increasing water dose [Figure 25(b)] reveals the incomplete H₂O reaction. Because at the same time the methane production had stopped,²¹¹ qualitative kinetic information exists for the water reaction: the reaction has been investigated under conditions where the methane-producing ligand exchange reaction of water (Equation 20) has been completed, but the dissociation of water (Equation 21), or perhaps association, has not. The ligand exchange reaction of water is evidently completed faster than the other reactions.

Extracting qualitative kinetic information from the results for the AlMe₃ reaction needs additional re-interpretation. It seems to be possible to investigate the AlMe₃/H₂O process also under conditions where the ligand exchange reaction of AlMe3 has terminated but other reactions have not. With increasing temperature, the GPC increased in the experiments of Juppo et al. [Figure 25(a)],²¹¹ whereas in most investigations the GPC has decreased (Figure 19). The increase in GPC²¹¹ came mostly from that more material was deposited during the AlMe₃ reaction, and the amount of methyl groups present on the surface after the AlMe₃ reaction increased with increasing processing temperature [Figure 25(c)]. At saturation, however, the methyl group concentration should be approximately constant (Section IVE). For unsaturated reactions, increasing reaction temperature increases the amount of material adsorbed, because reactions (Equation 7) as well as mass transport get faster. Saturation was not confirmed in the experiments of Ref. 211, except that the methane production from ligand exchange reactions had been completed,²¹¹ and it seems that the AlMe₃ reaction had not fully saturated. Consequently, qualitative kinetic information exists also for the AlMe₃ reaction: the reaction has been investigated under conditions where the ligand exchange reaction of AlMe₃ (Equations 15, 17) has been completed, but the dissociation (Equation 19) has not. Ligand exchange reaction of AlMe₃ is

Figure 25: Summary of the in situ MS results for the AlMe₃/H₂O process of Juppo et al.²¹¹ (open symbols, left axis) and Rahtu et al.²¹⁷ (black squares, right axis): (a) total amount of methane produced during a reaction cycle divided by three, proportional to the GPC Δc_{A1} , (b) the amount of methane produced during the AlMe₃ reaction, proportional to the surface OH group concentration before the AlMe₃ reaction $c_{(O)H}$, (c) the amount of methane produced during the H₂O reaction, proportional to the methyl group concentration after the AlMe₃ reaction Δc_{Me} , and (d) Me/Al ratio on the surface after the AlMe₃ reaction, obtained by dividing Δc_{Me} [panel (c)] with Δc_{A1} [panel (a)]. The results of Juppo et al. obtained for the shortest water pulses are not shown, because in them, the methane-producing reactions had not saturated.²¹¹ All results are in arbitrary units (a.u.). Although the exact dependency is not known, for plotting the results in the same graphs, 25 (unnormalized) units of Juppo et al. (left axis) were assumed to correspond to 1.5 (normalized) units of Rahtu et al. (right axis).

Figure 26: Effect of AlMe₃ and H₂O pulse times to the average Me/Al ratio after AlMe₃ reaction with alumina, as reported by Rahtu et al.²¹⁷ The AlMe₃ and H₂O reactions were saturated after a pulse time of about 3 s.

therefore evidently completed faster than dissociation.

The investigations of Rahtu et al.,²¹⁷ George and coworkers,^{195,196} and Elam et al.²²⁷ support the interpretation made here that ligand exchange reaction of AlMe₃ is completed faster than dissociation. According to the results of Rahtu et al.,²¹⁷ for unsaturated reaction, the average Me/Al ratio of the adsorbed species is lower than when the AlMe₃ reaction is allowed to go to completion (Figure 26). Therefore, ligand exchange reactions, which give a lower Me/Al ratio, seem to occur earlier than dissociation. George and coworkers^{195,196} showed by infrared analysis that, in the beginning of the AlMe₃ reaction, the O-H features decrease immediately in intensity, whereas the C-H features increase only after a delay, which is also in line with the current interpretation. Elam et al.²²⁷ also found qualitative evidence by in situ MS analysis for two kinetic regimes in the AlMe3 reaction, although they did not comment on the types of reactions occurring.

Quantitative kinetic information exists for the AlMe₃/H₂O process for narrow temperature and pressure ranges. Soto et al.¹⁹² investigated the process on flat substrates in ultrahigh vacuum (UHV) at room temperature. They modelled the AlMe₃/H₂O process with three reactions:¹⁹² (i) the ligand exchange reaction of AlMe₃ in the first half-reaction with one surface OH group to release one methane molecule (reaction 15), (ii) the ligand exchange reaction of water in the second half-reaction with one methyl group of a surface ||AlMe₂ species, and (iii) the ligand exchange reaction of water in the second half-reaction with the second methyl group, now in a ||Al(Me)OH species. The kinetics were described similarly as in Section III B assuming irreversible reactions. According to Soto et al.,¹⁹² the probability that the reactions (i), (ii), or (iii) occur when AlMe3 or H2O molecules hit the surface at room temperature are 0.01, 0.25 and 0.009, respectively. Dillon et al.¹⁹⁶ investigated the AlMe₃/H₂O process on high-surfacearea substrates at 227 °C and 0.01 Torr. They modelled the AlMe₃/H₂O process with reactions 15 and 16, assuming irreversible adsorption as in Section IIIB. Dillon et al.¹⁹⁶ extracted rate constants k_a for AlMe₃ reaction of 0.0076 s⁻¹ and H_2O reaction of 0.029 s⁻¹, where the constants are given for 227 °C and 0.01 Torr.

Figure 27: GPC in the AlMe₃/H₂O process at 300 °C as a function of the number of ALD reaction cycles when a chemical SiO₂ rich in OH groups and a hydrogen-terminated silicon are used as substrates. Data from Zhao et al.¹¹⁷⁶

H. Effect of the number of cycles on the GPC

The GPC in the AlMe₃/H₂O process depends on the number of ALD reaction cycles carried out and on the substrate used. Figure 27 shows how the GPC depends on the number of cycles.^{246,1176} On silicon dioxide as substrate, the GPC increases with the number of cycles, and the process seems to follow Type 1 substrate-inhibited growth [Figure 15(c)]. On hydrogen-terminated silicon as substrate, the GPC is low in the beginning of the growth, increases, goes through a maximum, and then decreases to the constant value¹¹⁷⁶. Thus, the process follows Type 2 substrate-inhibited growth [Figure 15(d)].

The increase in GPC with the number of cycles most likely originates from the fact that the number of reactive surface sites increases with the number of cycles. For the AlMe₃/H₂O process at 300 °C on the silicon dioxide substrate, the surface OH group concentration $c_{(O)H}$ is expected to start from about $3-5 \text{ nm}^{-2}$, ^{1190,1196} and to increase with deposition to the value characteristic for aluminum oxide, about 7 nm⁻².^{216,1195} The Si–H bonds on hydrogen-terminated silicon appear not to react with the AlMe₃ and H₂O reactants.²⁴⁶ The characteristic type of GPC curve is explained by that AlMe₃ reacts initially with defect sites on the hydrogen-terminated silicon substrate, after which Al₂O₃ islands begin to deposit.^{239,240,246,247} Furthermore, the Al₃O₃ islands catalyze the oxidation of hydrogen-terminated silicon surface to form reactive SiO_x species.^{239,240,246,247}

I. Growth mode

The growth mode in the AlMe₃/H₂O process has not been systematically investigated. The fact that smooth layers with the expected material density are obtained^{198,199} indicates that the growth mode is generally probably close to two-dimensional. On hydrogen-termination silicon as substrate, however, island growth occurs.²⁴⁶ Islands of ALD-grown Al₂O₃ are revealed both through transmission electron microscopy and through growth mode modeling.²⁴⁶

J. Summary

The AlMe₃/H₂O process can be summarized as follows. AlMe₃ reacts through ligand exchange with practically all surface OH groups, releasing methane. AlMe3 reacts also through dissociation with surface oxygen bridges. The ligand exchange reaction is completed first, after which the dissociation is completed. The AlMe₃ reaction self-terminates because of steric hindrance of the methyl groups, but the surface OH group concentration affects the type and number of adsorbed species. H₂O reacts through ligand exchange with practically all surface methyl groups, releasing methane. H₂O reacts also through dissociation (and perhaps association) with surface oxygen bridges. The ligand exchange reaction is completed first, after which the dissociation is completed. When the H₂O reaction self-terminates, the surface hydroxyl group concentration settles to a value dictated by the temperature and by the chemical nature of the surface.

Although the surface chemistry of the AlMe₃/H₂O process is qualitatively rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates could help to further clarify the details of the process. Because the quantitative relationship between the amount of aluminum adsorbed (or the Me/Al ratio after AlMe₃ chemisorption) and the surface OH group concentration is known, the AlMe₃ reaction might be applicable for probing the surface OH group concentration of oxide materials.

V. DISCUSSION

Several issues may hamper multidisciplinary surface chemistry investigations of ALD: the ALD literature contains incorrect historical assumptions and non-standard, problematic terminology. The effect of experimental conditions on the surface chemistry is not clear,⁶⁷ but one needs to understand this effect to interpret together the results of investigations made at different conditions. To assist multidisciplinary surface chemistry investigations, Section VA discusses the problematic historical assumptions, Section VB the problematic terminology, and Section VC the effect of experimental conditions on the surface chemistry of ALD.

A. Problematic historical assumptions on the surface chemistry of ALD

At least four common historical assumptions on the surface chemistry of ALD are often cited but are in practice seldom valid. The reasons why ALD processes do not follow these assumptions have been discussed in some research articles^{237,247,432,468,488,499–501,1120,1127,1128,1140,1151,1178} but only to a limited extent in existing reviews.^{3,6–66}

1. GPC of a monolayer

Perhaps the oldest of these problematic historical assumptions is GPC of a monolayer. According to this assumption, ALD should lead to growth of one monolayer of the desired material per ALD reaction cycle. This assumption was made already in the 1960s and 1970s by Soviet and Finnish scientists^{2,79} and has been thereafter widely adopted.^{7–9,11,13,17,25–27,31,36,54,62,63,66,318}

In real ALD processes, the GPC in ALD processes is typically less than a monolayer.^{40,62,63,246,488,984,1178,1197} This is also true for the AlMe₃/H₂O process, which is otherwise known as a rather ideal ALD process (Section IV). Recent models^{1127,1128} have clearly shown that in self-terminating reactions of compound reactants, "full monolayer growth" is often impossible due to steric reasons: the ligands of the adsorbed species are simply too large.

Although the reasons for assuming a GPC of a monolayer are seldom itemized in ALD publications, I believe the assumption of a GPC of a monolayer originates from a desired two-dimensional growth mode, because a full monolayer growth should in the absence of multilayer adsorption lead to two-dimensional growth. The persistence of this assumption may also be related to confusing the two definitions of a monolayer (Figure 7): a chemisorbed monolayer and a monolayer of the ALD-grown material. Namely, a chemisorbed monolayer forms by definition in a self-terminating gas–solid reaction. However, this monolayer is unlikely to convert to a monolayer of the ALD-grown material in the second halfreaction of an ALD reaction cycle.

2. Constant GPC over cycles

It has been often assumed, 7-9,11,13,17,23,25-27,31,32,36,38,39,51,205,1198and still often is, 3,55,58,59,63,64,91,1199 that the amount of material deposited in an ALD reaction cycle should remain constant with the number of reaction cycles. Assuming a constant GPC over the cycles is a logical consequence of assuming a GPC of a monolayer. However, as it has been recognized that the GPC can be less than a monolayer (Sections III E and V A 1), it should be obvious that the GPC may vary with the number of cycles when the composition of the surface changes with the number of cycles.^{40,63,64,246,488,984,1178}

3. Constant GPC with temperature

Historically it has been assumed, in line with the assumed GPC of a monolayer, that the GPC in ALD should remain constant with temperature.^{11,30} However, as the GPC may be less than a monolayer, and the GPC is a sensitive function of the reactivity of the reactant molecule and the number and type of reactive sites present on the surface, it is natural that the GPC may change with temperature. The AlMe₃/H₃O ALD process is an example of a process where the GPC decreases with temperature due to decrease in OH surface concentration

(Section IV F). Correspondingly, the assumption of a constant GPC with temperature seems mostly abandoned.^{3,36}

4. Two-dimensional growth mode

Two-dimensional growth mode is also an old assumption in ALD,² and interlinked with the assumed GPC of a monolayer: in the absence of multilayer deposition, a GPC of a monolayer should result in two-dimensional growth. Historically, the assumption of two-dimensional growth has been rather widely accepted,^{9,13,15,19,21,23,26,318} even though island growth (in the beginning of ALD growth) was reported already early.¹⁵⁴ Thereafter, island growth has been observed in many processes.^{246,247,292,488,544,558,1077}

A special deviation from the expected growth mode is the yet unexplained particle formation in the TiCl₄/H₂O and ZnEt₂/H₂O ALD processes: multilayer growth occurs even during one ALD reaction cycle, although the reactions otherwise seem to fulfill the basic ALD requirement of selftermination.^{419,421,600,818,1135,1169}

B. Problematic terminology

In a multidisciplinary field, clear and correct terminology is required for fluent communication between different researchers and research groups. In the field of ALD, at least two terms have non-standard or otherwise difficult definitions. Even the name "ALD" itself could need reconsideration.

1. Growth rate (amount/cycle)

The most common way to refer to the amount of material deposited per reaction cycle is "growth rate (amount/cycle)."^{3,25,26,31,32,40,59,63,66,126,927,985,1178} This term is non-standard, however: the amount of material deposited per reaction cycle is no rate.

In general terms, "rate" refers to a change of a property per unit of time. Continuous deposition processes are typically characterized by a constant growth rate [derivative of the growth curve showing the amount of material deposited vs. time, giving a growth rate (amount/time)]. Growth rate (amount/cycle) has analogously been adopted as a term for ALD, replacing the time in the unit by the number of cycles. This term is confusing not only because it is of non-standard nature, but also because ALD processes have rates, too, which are of interest regarding the surface chemistry and the throughput of the process. The instantaneous growth rate in ALD (amount/time) is related to the kinetics of the reactions and is typically non-constant [see Figure 10(c); deposition rate = growth rate]. The overall growth rate (amount/time), which gives the amount of material deposited in a time unit and which depends on the specific process and on the reactor construction, in turn, is important considering the throughput of the processes. Calling the amount of material deposited per

reaction cycle also a rate (amount/cycle) is confusing, as illustrated also by the problems it has given in modeling substrateinhibited ALD of Type 2.^{992,1178,1200}

To avoid misconceptions, using the term "growth rate (amount/cycle)" to describe the amount of material deposited per cycle should be discouraged. In 1986, Goodman and Pessa⁸ suggested "growth per cycle" as a better term, which has been adopted also in this work [written as growth-per-cycle (GPC)].

2. Monolayer

Monolayer is a convenient unit for discussing ALD growth: it can be considered as a theoretical maximum for the GPC, and the GPC when given in monolayers is useful as a statistical quantity in modeling growth modes in ALD.^{246,247,1140} However, defining the characteristics of a monolayer is not always easy.

The first difficulty is that distinction has often not been made in the ALD literature between a chemisorbed monolayer and a monolayer of the ALD-grown material. Intermixing the two types of monolayers is confusing.

Second, it is not easy to define a monolayer for polycrystalline and amorphous materials. For crystalline materials with a well defined direction of growth, a suitable crystalline plane of the bulk material may be chosen to represent a monolayer of the ALD-grown material, but how to choose the reference monolayer when the direction of growth is not known? A rather widely used and easy approximation is to calculate in that case the monolayer properties from the density of the bulk material. ^{199,237,292,333,984,1127,1128,1140,1177} The representativeness of such monolayer can of course still be questioned.

Third, in ALD, one deposits a bulk material through reactions that occur on the surface. The deposition characteristics are therefore defined by the surface. Because of the discontinuity caused by the surface, the characteristics of the uppermost material layer are likely to differ from those of the bulk material. Therefore, even for single crystal materials defining the monolayer through the bulk structure may not be fully meaningful.

The fourth complication is related to defining a monolayer in catalysis-related ALD work. It has been a custom in the field of catalysis to define the monolayer to correspond to the loading when multilayer formation begins, as determined by experimental techniques such as X-ray diffraction or Raman spectroscopy. Defining monolayer this way does not yet require the substrate to be fully covered by the ALDgrown film, however. Consequently, when defined this way, a monolayer contains typically a few metal atoms per square nanometer,^{246,523,527,819} which is considerably less than typically obtained for example by the density method.

Defining a monolayer is not easy, but discussing ALD growth in terms of monolayers is illustrative. To avoid confusions when using this term, it is important always to state how the reference monolayer has been defined.

3. "Atomic layer" deposition

The name "atomic layer deposition" used also in this work to refer to the technique based on sequential self-terminating gas-solid reactions, is unfortunately misleading. This name gives an impression of depositing full monolayers of material on top of each other. As such, this name directly leads to the four problematic historical assumptions on ALD related to full monolayer growth, as discussed in Section V A. The fact that many different names have been used to refer to the same technique (Table II) testifies of the difficulty of finding a concise but at the same time descriptive name for the technique.

C. Effect of experimental conditions on the surface chemistry

The effect of the experimental conditions on selfterminating gas-solid reactions must be well understood to be able to compare the results of different investigations. To help comparing different investigations and making multidisciplinary studies of ALD, this section discusses the effect of temperature, pressures, type of substrate, saturation/unsaturation of the reactions, and time on ALD reactions. Some challenges in extracting the GPC on high-surface-area substrates are also pointed out.

1. Reaction temperature

Temperature is one of the three parameters, together with the reactant and the surface, that determine the amount and type of species adsorbed in irreversible, saturating chemisorption. Consequently, different experiments should be expected to compare directly only if they have been carried out at the same temperature. (For the effect of substrate heat-treatments, see Section VC 3.) Temperature-dependent experiments, such as temperature-programmed desorption (TPD), can be useful for elucidating the possible chemisorption reactions. If the results are over-interpreted, however, these experiments can also lead to misleading conclusions. For example, the amount of methyl groups chemisorbed in the AlMe3 reaction has been suggested to decrease with increasing temperature^{40,199} on the basis of TPD experiments made after the AlMe₃ reaction at room temperature.¹⁹⁶ Experiments made for the AlMe₃ reaction at different temperatures have indicated, however, that temperature has almost no effect on the number of methyl groups adsorbed (Figure 20).

2. Partial pressure of the reactant

For truly saturating, irreversible reactions, partial pressures are not expected to affect the amount of material adsorbed at saturation (Section III A). There are ALD reactions,^{212,1165} however, where the partial pressure has been suggested to affect the amount of adsorbed species. More systematic studies on the effect of partial pressures would be needed.

Sometimes, gaseous reaction products released in the ligand exchange reaction can re-adsorb onto the surface. For example, the HCl released in the reaction of metal chlorides with OH groups re-adsorbs on the surface, and in this

rides with OH groups re-adsorbs on the surface, and in this case the partial pressure of HCl affects the main adsorption process.^{135,139,143,432,433,1201} Such re-adsorption is undesired in ALD.

A "pressure gap" has been hypothesized to exist between ALD growth at typical pressures ($\sim 0.1-10$ kPa) and in UHV.^{3,211} Experimental investigations on the effect of the reactant pressure on reactions occurring in ALD are infrequent, and as of today, no report has indicated that reactions which occur during typical ALD conditions would not occur in UHV. In contrast, for the AlMe₃/H₂O process, similar reactions have been concluded to occur in UHV and at higher pressures.¹⁹²

3. Substrate

Differences in the surface characteristics of the substrates can cause differences in ALD experiments carried out for the same reactants and reaction temperature(s). The number and type of reactive surface sites may sometimes differ inherently on two substrates, even if the general chemical composition of the substrates is the same. Moreover, differences can be induced for example by thermal or chemical treatments. The reaction chemistry investigation for the AlMe₃ reaction with high-surface-area substrates, discussed in Section IV D, provides an example of differences induced by thermal treatments: with increasing heat-treatment temperature, the OH surface concentration on the substrate decreased. The work of Nechiporenko et al.,¹⁴¹ in turn, illustrates differences induced by chemical treatments: depending on the surface treatment of Ti and Ni substrates, different amounts of chromium chemisorbed in the saturating reaction of chromyl chloride CrO₂Cl₂. The work of Ferguson et al.,^{214,337} who investigated the SiCl₄/H₂O process on boron nitride particles, illustrates inherent differences. The SiO₂ film deposited only patch-like on the basal planes of the boron nitride particles, whereas the edges of the particles were con-formally coated.^{214,337} Evidently, the basal planes of boron nitride contained fewer sites reactive with the SiCl₄ molecule than the edges of the particles. Some substrates may mostly consist of edges areas, whereas other substrates expose primarily well-defined basal planes, which may lead to a different amount of material deposited. The crystalline face exposed may also affect the adsorption process and the structures formed. 109,318,442,703,986,1202

The ALD process modifies the chemical composition of the surface through depositing material. In reaction mechanism investigations on high-surface-area materials, the number of ALD reaction cycles has been typically below ten.^{209,216,291,292,344,418,419,421,434,521,526,527,530,548,552,554,557,818,819,873,1} The high-surface-area substrates have not yet been fully covered by the ALD-grown film; the initial substrate has still been partly exposed, influencing the growth. On flat substrates, the number of ALD reaction cycles has typically been hundreds to thousands, and the initial substrate has been covered by the ALD-grown material.^{211,217,422,425,426,443,487,518,827,844,867,868,1082}

When investigating the surface chemistry, one must take into account the type of surface exposed at the particular experimental conditions.

4. Saturation/unsaturation of the reactions

Saturation of the surface with adsorbed species through allowing each reaction to go to completion is a prerequisite for materials growth by the ALD technique. To compare different experiments in a meaningful way, one must know whether the experiments were made at saturated or unsaturated conditions. If it is not known whether saturation had occurred, comparing different experiments is often of little value. For example, in situ investigations made for the AlMe₃/H₂O process provided important qualitative information of the reaction kinetics, but only after realizing that the investigations were made for unsaturated conditions (Section IV G). In other types of investigations, GPC values both higher and lower than the generally accepted trend (Figure 19) have been reported because of insufficient purge or evacuation¹⁹⁸ and unsaturated reactions,^{200,234} respectively.

5. Time

The time needed for completing the self-terminating reactions can differ in orders of magnitude between different types of experiments. For fast reactions, where mass transport dictates the time required to saturate the surface with adsorbed species, ^{1159,1204,1205} the use of high-surface-area substrates lengthens the processing times compared to flat substrates.¹²⁰⁶ The use of UHV compared to higher pressures also lengthens the processing times.

If different reactions would occur in experiments with different reactant exposure times, as has been suggested, ^{3,211,217} this fact would be expected to be reflected in the value of the GPC, since the GPC is directly related to the reaction chemistry. Quantitative agreement exists between the GPC in the AlMe₃/H₂O process on high-surface-area substrates and flat substrates (Figure 19), suggesting the occurrence of similar reactions. The time scale of the experiment seems not to affect the number or type of species adsorbed in irreversible, saturating gas-solid reactions. Nevertheless, slow, non-saturating reactions, such as thermal decomposition of the ALD reactants or of the adsorbed species, do often manifest themselves at lower temperatures and longer processing times.^{197,216,468,475,922,942,944} The insensitivity of the GPC to the process parameters (time, pressure) when the reactions are truly self-terminating is in unison with the excellent upscaling capability of the ALD processes^{3,201,1207} and the fact that close to 100% step coverage can be obtained by ALD in deep trench structures.^{205,1204}

Figure 28: Illustration of the importance of taking into account the mass of the deposited layer when calculating the GPC on highsurface-area substrates. Difference between Eqs. 25 (full symbols) and 26 (open symbols) for a substrate with a specific surface area of 300 m² g⁻¹: (a) Al₂O₃, assuming a constant GPC $\Delta c_{AI} = 4$ nm⁻²; (b) ZrO₂, assuming $\Delta c_{Zr} = 1.2$ nm⁻²; and (c) HfO₂, assuming $\Delta c_{Hf} = 1.2$ nm⁻². *n* indicates the number of ALD reaction cycles.

6. GPC on high-surface-area substrates

To calculate the GPC on high-surface-area materials, the amount of material adsorbed is typically measured by conventional chemical means, giving the mass of metal M per unit mass of sample, w_M ($g_M g_{samp}^{-1}$). To compare the results with those of other ALD investigations, the results are converted to the amount metal M atoms adsorbed per unit surface area of the substrate, c_M (mm^{-2}). Typically the specific surface area of the substrate, S ($m^2 g_{subst}^{-1}$), is measured for this conversion. However, the relative mass of the original substrate in the samples decreases with increasing amount of material deposited. In addition to the specific surface area of the substrate, the ratio of the total mass of sample (the substrate and the adsorbed material together) m_{samp} (g_{samp}) to the mass of the substrate only m_{subst} (g_{subst}) is needed for calculating c_M :

$$c_{\rm M} = \frac{w_{\rm M} N_{\rm A}}{M_{\rm M} S} \frac{m_{\rm samp}}{m_{\rm subst}}.$$
 (25)

In this equation, N_A is Avogadro's number (mol⁻¹) and M_M is the molar mass of metal M (g_M mol⁻¹).

If term $m_{\text{samp}}/m_{\text{subst}}$ is ignored, and the c_{M} is calculated from a simplified equation:

$$c_{\rm M} = \frac{w_{\rm M} N_{\rm A}}{M_{\rm M} S},\tag{26}$$

error is created that increases with increasing mass of the deposited material. Although the need for this correction was noted already by Kol'tsov and co-workers,^{79,98} in more recent work, the correction has not always been made. The error may be small for low cycle numbers and light materials, but it increases with increasing number of ALD reaction cycles and molar mass of the ALD-grown material, as illustrated in Figure 28. The error also increases with increasing specific surface area of the substrate.

VI. CONCLUSION

This work has given an overview of the basic characteristics of ALD, its history, existing ALD processes, and current status of understanding the surface chemistry of in particular the trimethylaluminum/water ALD process. I hope that this review serves its main purpose, that it helps the newcomer to get acquainted with the exciting and challenging field of surface chemistry of ALD, and that it is also a useful guide for the specialist. I also wish that it initiates discussion on the history, assumptions, and terminology of ALD now that we are about to enter the fifth decade of ALD research.

Acknowledgments

Past and present colleagues are acknowledged for numerous discussions related to ALD, which have contributed to my present-day understanding of ALD and thereby assisted in

* riikka.puurunen@iki.fi

- [†] Present address: VTT Technical Research Centre of Finland
- ¹ A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, in *Chemistry of high temperature materials. Proceedings of* 2nd USSR conference on high temperature chemistry of oxides, November 26-29, 1965, Leningrad, USSR (Nauka, Leningrad, USSR, 1967), pp. 149–155, in Russian.
- ² T. Suntola and J. Antson, patent US 4 058 430, 15 November 1977.
- ³ M. Ritala and M. Leskelä, in *Handbook of Thin Film Materials*, edited by H. S. Nalwa (Academic Press, San Diego, 2002), vol. 1, pp. 103–159.
- ⁴ International Technology Roadmap for Semiconductors, http://public.itrs.net/.
- ⁵ Key words used: atomic layer chemical vapo(u)r deposition, atomic layer deposition, atomic layer epitaxy, molecular lamination, molecular layer epitaxy, molecular layering, molecular stratification.
- ⁶ V. B. Aleskovskii, Zh. Prikl. Khim. **47**, 2145 (1974) [J. Appl. Chem. USSR **47**, 2207 (1974)].
- ⁷ T. Suntola and J. Hyvärinen, Annu. Rev. Mater. Sci. **15**, 177 (1985).
- ⁸ C. H. L. Goodman and M. V. Pessa, J. Appl. Phys. **60**, R65 (1986).
- ⁹ S. M. Bedair, B. T. McDermott, Y. Ide, N. H. Karam, H. Hashemi, M. A. Tischler, M. Timmons, J. C. L. Tarn, and N. Elmasry, J. Cryst. Growth **93**, 182 (1988).
- ¹⁰ S. P. DenBaars and P. D. Dapkus, J. Cryst. Growth **98**, 195 (1989).
- ¹¹ T. Suntola, Mater. Sci. Reports **4**, 261 (1989).
- ¹² T. Suntola, Acta Polytech. Scand., Electr. Eng. Ser. 64, 242 (1989).
- ¹³ H. Sitter and W. Faschinger, Adv. Solid State Phys. (Festkörperprobleme) **30**, 219 (1990).
- ¹⁴ T. Pakkanen, in *Atomic layer epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 40–62.
- ¹⁵ M. Leskelä and L. Niinistö, in *Atomic layer epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990),

writing this review. Thanks go especially to Dr. Suvi Haukka (ASM Microchemistry), Prof. Outi Krause (Helsinki University of Technology, HUT), Dr. Marina Lindblad (Fortum), Dr. Marko Tuominen (ASM Microchemistry) and Dr. Annelies Delabie (IMEC). Dr. Jaana Kanervo (HUT) helped to formulate the description of adsorption kinetics for this work. Prof. Anatoly Malygin and Mr. Vitaliy Dorofeev (St. Petersburg State Technological Institute) assisted me to get started exploring the Soviet-Russian branch of ALD, and the IMEC library provided invaluable help in finding many of the cited publications. Dr. Robin Ras (K.U.Leuven, HUT) and Dr. Jörg Schuhmacher (IMEC) gave useful general comments regarding this manuscript and Dr. Jean-luc Doumont (JL Consulting) valuable advice on scientific writing. I gratefully acknowledge a postdoctoral fellowship by IMEC/K.U.Leuven and support from the Academy of Finland (decision 105364) and the National Technology Agency of Finland (Tekes) through the "Nanoramems" project.

pp. 1–39.

- ¹⁶ N. J. Mason, in *Atomic layer epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 63–109.
- ¹⁷ M. A. Tischler and S. M. Bedair, in *Atomic layer epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 110–154.
- ¹⁸ T. Yao, in *Atomic layer epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 155–180.
- ¹⁹ M. Leskelä, Acta Polytech. Scand., Chem. Technol. Ser. 195, 67 (1990).
- ²⁰ V. B. Aleskovskii and V. E. Drozd, Acta Polytech. Scand., Chem. Technol. Ser. **195**, 155 (1990).
- ²¹ H. Watanabe, T. Mizutani, and A. Usui, in Very High Speed Integrated Circuits: Heterostructure, edited by T. Ikoma (Academic Press, San Diego, 1990), vol. 30 of Semiconductors and Semimentals, pp. 1–52.
- ²² S. M. Bedair, Acta Polytech. Scand., Chem. Technol. Ser. 195, 17 (1990).
- ²³ M. A. Herman, Vacuum **42**, 61 (1991).
- ²⁴ B. W. Gregory and J. L. Stickney, J. Electroanal. Chem. **300**, 543 (1991).
- ²⁵ A. Usui and H. Watanabe, Annu. Rev. Mater. Sci. 21, 185 (1991).
- ²⁶ M. Ozeki, Mater. Sci. Rep. **8**, 97 (1992).
- ²⁷ A. Usui, Proc. IEEE **80**, 1641 (1992).
- ²⁸ T. Suntola, Thin Solid Films **216**, 84 (1992).
- ²⁹ T. Suntola, Thin Solid Films **225**, 96 (1993).
- ³⁰ L. Niinistö and M. Leskelä, Thin Solid Films 225, 130 (1993).
 ³¹ T. Suntola, in *Handbook of Crystal Growth*, edited by D. T. J.
- Hurle (Elsevier, Amsterdam, 1994), vol. 3, pp. 601-663.
- ³² S. M. Bedair, J. Vac. Sci. Technol., B **12**, 179 (1994).
- ³³ S. M. Bedair and N. A. El-Masry, Appl. Surf. Sci. 82/83, 7 (1994).
- ³⁴ J. M. Heitzinger, J. M. White, and J. G. Ekerdt, Surf. Sci. **299**, 892 (1994).
- ³⁵ E.-L. Lakomaa, Appl. Surf. Sci. **75**, 185 (1994).
- ³⁶ T. Suntola, in *Handbook of Thin Film Process Technology*, edited by D. A. Glocker and S. I. Shah (IOP Publishing, Bristol,

United Kingdom, 1995), vol. 1, pp. B1.5:1-B1.5:17.

- ³⁷ M. A. Herman, Thin Solid Films **267**, 1 (1995).
- ³⁸ M. Leskelä and M. Ritala, J. Phys. IV France **5**, C5/937 (1995).
- ³⁹ L. Niinistö, M. Ritala, and M. Leskelä, Mater. Sci. Eng., B **41**, 23 (1996).
- ⁴⁰ S. M. George, A. W. Ott, and J. W. Klaus, J. Phys. Chem. **100**, 13121 (1996).
- ⁴¹ T. Suntola, Appl. Surf. Sci. **100/101**, 391 (1996).
- ⁴² A. A. Malygin, A. A. Malkov, and S. D. Dubrovenskii, in Adsorption on new and modified inorganic sorbents, edited by A. Dabrowski and V. A. Tertykh (Elsevier, Amsterdam, 1996), vol. 99 of Stud. Surf. Sci. Catal., pp. 213–236.
- ⁴³ A. A. Malygin, Zh. Prikl. Khim. **69**, 1585 (1996) [Russ. J. Appl. Chem. **69**, 1419 (1996)].
- ⁴⁴ M. A. Herman, Appl. Surf. Sci. **112**, 1 (1997).
- ⁴⁵ M. Ritala, Appl. Surf. Sci. **112**, 223 (1997).
- ⁴⁶ S. Haukka and T. Suntola, Interface Sci. **75**, 119 (1997).
- ⁴⁷ L. Niinistö, Curr. Opin. Solid State Mater. Sci. 3, 147 (1998).
- ⁴⁸ A. A. Malygin, Compos. Interfaces **5**, 561 (1998).
- ⁴⁹ L. Niinistö, J. Therm. Anal. Calorim. **56**, 7 (1999).
- ⁵⁰ S. Haukka, E.-L. Lakomaa, and T. Suntola, in Adsorption and its Applications in Industry and Environmental Protection, edited by A. Dabrowski (Elsevier, Amsterdam, 1999), vol. 120A of Stud. Surf. Sci. Catal., pp. 715–750.
- ⁵¹ M. Leskelä and M. Ritala, J. Phys. IV France **9**, Pr8/837 (1999).
- ⁵² M. Ritala and M. Leskelä, Nanotechnology **10**, 19 (1999).
- ⁵³ J. L. Stickney, Electroanal. Chem. **21**, 75 (1999).
- ⁵⁴ K. Ikeda, J. Yanase, S. Sugahara, and M. Matsumura, J. Korean Phys. Soc. **39**, S447 (2001).
- ⁵⁵ M. Leskelä and M. Ritala, Thin Solid Films **409**, 138 (2002).
- ⁵⁶ A. A. Malygin, Zh. Obshch. Khim. **72**, 617 (2002) [Russ. J. Gen. Chem. **72**, 575 (2002)].
- ⁵⁷ A. C. Jones and P. R. Chalker, J. Phys. D: Appl. Phys. **36**, R80 (2003).
- ⁵⁸ M. Leskelä and M. Ritala, J. Solid State Chem. **171**, 170 (2003).
- ⁵⁹ M. Leskelä and M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003).
 ⁶⁰ T. Saidal A. Londorron, J. Winklar, Y. Liu, and S. Bamanathan.
- ⁶⁰ T. Seidel, A. Londergan, J. Winkler, X. Liu, and S. Ramanathan, Solid State Tech. 46, 67 (2003).
- ⁶¹ A. Hand, Semicon. Int. **26**, 46 (2003).
- ⁶² R. M. C. de Almeida and I. J. R. Baumvol, Surf. Sci. Rep. 49, 1 (2003).
- ⁶³ H. Kim, J. Vac. Sci. Technol., B **21**, 2231 (2003).
- ⁶⁴ M. Ritala, in *High-κ Gate Dielectrics*, edited by M. Houssa (IOP Publishing, London, 2004), pp. 17–64.
- ⁶⁵ L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, Phys. Status Solidi A **201**, 1443 (2004).
- ⁶⁶ A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, K. Kukli, A. Rahtu, M. Ritala, and M. Leskelä, J. Mater. Chem. **14**, 3101 (2004).
- ⁶⁷ Different experimental conditions have been hypothesized to lead to different reactions in ALD processes based on the same reactants (see e.g. Refs. 3,211,217).
- ⁶⁸ No universally accepted definition of ALD is currently available. The definition used in this work is built on the recognized practice of ALD and covers most of ALD processes with compounds as well as elements as reactants. Also other, distinctively different definitions have been suggested, for example, that the GPC should be a monolayer or the GPC should be constant over the cycles. Most ALD processes do not fulfill these criteria, however.
- ⁶⁹ In addition to "self-terminating" used to refer to ALD reactions in this work, ALD reactions have been referred to being saturating, self-limiting, self-extinguishing, etc.

- ⁷⁰ In this review, ALD is defined to be based on gas-solid reactions. Analogous experiments have been made from liquid phase [e.g., Lindroos et al., Appl. Surf. Sci. **75**, 70 (1994)] and electrochemically [e.g., Stickney, Electroanal. Chem. **21**, 75 (1999)] as well. Although in some publications, such experiments may be classified as ALD, in this work they are excluded from the definition.
- ⁷¹ Instead of the reactant of Reactant B, Step #3 may be, for example, a thermal treatment (see Table III).
- ⁷² The term "half-reaction" in ALD should not be confused with the conceptual half-reactions in electrochemistry. In ALD, the half-reactions are real reactions.
- ⁷³ Some ALD processes consist of repeating the self-terminating reactions of more than two reactants, for example, the $WF_6/BEt_3/NH_3$ (Et = ethyl) process to grow WC_xN_y [e.g., Martin Hoyas et al., J. Appl. Phys. **95**, 381 (2004)]. Each new reactant adds a reaction step and a purge/evacuation step to the reaction cycle.
- ⁷⁴ T. Suntola, AVS Topical Conference on Atomic Layer Deposition "ALD 2004," Helsinki, Finland, August 16–18, 2004 (oral presentation).
- ⁷⁵ T. Suntola and J. Antson, patent FIN 52 359, 10 September 1977 (filed 29 November 1974), Instrumentarium Oy.
- ⁷⁶ T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, patent US 4 389 973, 28 June 1983, Oy Lohja Ab.
- ⁷⁷ T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, patent US 4 413 022, 1 November 1983, Canon Kabushiki Kaisha.
- ⁷⁸ G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **43**, 1150 (1970) [J. Appl. Chem. USSR **43**, 1155 (1970)].
- ⁷⁹ S. I. Kol'tsov, Zh. Prikl. Khim. **42**, 1023 (1969) [J. Appl. Chem. USSR **42**, 975 (1969)].
- ⁸⁰ S. I. Kol'tsov, Zh. Prikl. Khim. **43**, 1956 (1970) [J. Appl. Chem. USSR **43**, 1976 (1970)].
- ⁸¹ G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **43**, 430 (1970) [J. Appl. Chem. USSR **43**, 432 (1970)].
- ⁸² S. I. Kol'tsov, V. B. Aleskovskii, A. N. Volkova, and V. M. Smirnov, Zh. Prikl. Khim. **47**, 1254 (1974) [J. Appl. Chem. USSR **47**, 1292 (1974)].
- ⁸³ S. I. Kol'tsov, V. B. Kopylov, V. M. Smirnov, and V. B. Aleskovskii, Zh. Prikl. Khim. **49**, 516 (1976) [J. Appl. Chem. USSR **49**, 525 (1976)].
- ⁸⁴ A. P. Nechiporenko, T. M. Sukhareva, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Kim. **51**, 2447 (1978)
 [J. Appl. Chem. USSR **51**, 2333 (1978)].
- ⁸⁵ S. I. Kol'tsov, T. V. Tuz, and A. N. Volkova, Zh. Prikl. Khim.
 52, 2196 (1979) [J. Appl. Chem. USSR 52, 2074 (1979)].
- ⁸⁶ N. A. Stepanova, V. D. Kupriyanov, and A. A. Malygin, Neorg. Mater. 23, 377 (1987) [Inorg. Mater. 23, 331 (1987)].
- ⁸⁷ Even the American Vacuum Society topical conference on atomic layer deposition, ALD 2004 (Helsinki, Finland, August 16–18, 2004), was organized "celebrating 30 years of ALD." ALD was then defined to have started from filing the first Finnish ALE patent (Ref. 75) in 1974, disregarding the work made in the Soviet Union already in the 1960s.
- ⁸⁸ V. V. Brei, V. A. Kasperskii, and N. E. Gulyanitskaya, React. Kinet. Catal. Lett. **50**, 415 (1993).
- ⁸⁹ V. M. Gun'ko, Kinet. Katal. **34**, 463 (1993) [Kinet. Katal. **34**, 406 (1993)].
- ⁹⁰ S. I. Kol'tsov, V. M. Smirnov, R. R. Rachkovskii, T. V. Malalaeva, and V. B. Aleskovskii, Zh. Prikl. Khim. **51**, 2596 (1978) [J. Appl. Chem. USSR **51**, 2475 (1978)].
- ⁹¹ Yu. K. Ezhovskii and A. I. Klusevich, Neorg. Mater. **39**, 1230

(2003) [Inorg. Mater. 39, 1062 (2003)].

- ⁹² G. V. Anikeev, Yu. K. Ezhovskii, and S. I. Kol'tsov, Neorg. Mater. 24, 619 (1988) [Inorg. Mater. 24, 514 (1988)].
- ⁹³ V. E. Drozd, A. A. Tulub, V. B. Aleskovskii, and D. V. Korol'kov, Appl. Surf. Sci. 82/83, 587 (1994).
- ⁹⁴ V. V. Brei, V. A. Kasperskii, and A. A. Chuiko, Zh. Prikl. Khim. 69, 378 (1996) [Russ. J. Appl. Chem. 69, 335 (1996)].
- ⁹⁵ M. A. Eremeeva, A. P. Nechiporenko, G. N. Kuznetsova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **47**, 2332 (1974) [J. Appl. Chem. USSR **47**, 2390 (1974)].
- ⁹⁶ L. V. Miroshnichenko, A. A. Malygin, and S. I. Kol'tsov, Ogneupory **26**, 22 (1985) [Refractories **26**, 82 (1985)].
- ⁹⁷ S. I. Kol'tsov, Zh. Prikl. Khim. **38**, 1384 (1965) [J. Appl. Chem. USSR **38**, 1352 (1965)].
- ⁹⁸ S. I. Kol'tsov, G. N. Kuznetsova, and V. B. Aleskovskii, Zh. Prikl. Khim. **40**, 2774 (1967) [J. Appl. Chem. USSR **40**, 2644 (1967)].
- ⁹⁹ S. I. Kol'tsov, Zh. Obshch. Khim. **71**, 1616 (2001) [Russ. J. Gen. Chem. **71**, 1531 (2001)].
- ¹⁰⁰ S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Prikl. Khim. **42**, 1028 (1969) [J. Appl. Chem. USSR **42**, 980 (1969)].
- ¹⁰¹ S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Fiz. Kihm. 46, 1292 (1972) [Russ. J. Phys. Chem. 46, 742 (1972)].
- ¹⁰² A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **45**, 3 (1975) [J. Gen. Chem. USSR **45**, 1 (1975)].
- ¹⁰³ S. A. Trifonov, V. A. Lapikov, and A. A. Malygin, Zh. Prikl. Khim. **75**, 986 (2002) [Russ. J. Appl. Chem. **75**, 969 (2002)].
- ¹⁰⁴ A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **43**, 724 (1973) [J. Gen. Chem. USSR **43**, 723 (1973)].
- ¹⁰⁵ A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **50**, 2633 (1980) [J. Gen. Chem. USSR **50**, 2121 (1980)].
- ¹⁰⁶ S. I. Kol'tsov and V. B. Aleskovskii, Zh. Prikl. Khim. 40, 907 (1967) [J. Appl. Chem. USSR 40, 872 (1967)].
- ¹⁰⁷ S. I. Kol'tsov and V. B. Aleskovskii, Zh. Fiz. Khim. **42**, 1210 (1968) [Russ. J. Phys. Chem. **42**, 630 (1968)].
- ¹⁰⁸ V. N. Pak, Yu. P. Kostikov, S. I. Kol'tsov, and V. B. Aleskovskii, Kinet. Katal. **15**, 1358 (1974) [Kinet. Catal. **15**, 1205 (1974)].
- ¹⁰⁹ V. N. Pak, Zh. Fiz. Khim. 50, 1266 (1976) [Russ. J. Phys. Chem. 50, 758 (1976)].
- ¹¹⁰ V. A. Tolmachev, Zh. Prikl. Khim. **55**, 1410 (1982) [J. Appl. Chem. USSR **55**, 1298 (1982)].
- ¹¹¹ V. M. Smirnov, A. A. Malkov, and R. R. Rachovskii, Zh. Prikl. Khim. **65**, 2666 (1992) [J. Appl. Chem. USSR **65**, 2213 (1992)].
- ¹¹² V. N. Pak, I. Yu. Tikhomirova, T. M. Burkat, and B. I. Lobov, Zh. Fiz. Khim. **73**, 2024 (1999) [Russ. J. Phys. Chem. **73**, 1824 (1999)].
- ¹¹³ S. I. Kol'tsov and G. N. Kuznetsova, Zh. Prikl. Khim. **72**, 900 (1999) [Russ. J. Appl. Chem. **72**, 942 (1999)].
- ¹¹⁴ S. I. Kol'tsov, V. E. Drozd, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR **229**, 1145 (1976) [Dokl. Phys. Chem. **229**, 718 (1976)].
- ¹¹⁵ V. P. Dorofeev, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim. **77**, 1077 (2004) [J. Appl. Chem. USSR **77**, 1061 (2004)].
- ¹¹⁶ S. I. Kol'tsov, V. E. Drozd, T. A. Redova, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR **235**, 1090 (1977) [Dokl. Phys. Chem. **235**, 794 (1977)].
- ¹¹⁷ V. B. Aleskovskii, V. E. Drozd, V. F. Kiselev, S. N. Kozlov, S. I. Kol'tsov, A. S. Petrov, and G. S. Plotnikov, Fiz. Tekh. Poluprovodn. **13**, 1397 (1979) [Sov. Phys. Semicond. **13**, 817 (1979)].
- ¹¹⁸ M. N. Tsvetkova, I. M. Yur'evskaya, A. A. Malygin, S. I.

Kol'tsov, and Yu. I. Skorik, Zh. Prikl. Khim. **55**, 256 (1982) [J. Appl. Chem. USSR **55**, 229 (1982)].

- ¹¹⁹ V. A. Tolmachev and M. A. Okatov, Opt. Mekh. Promst. 50, 38 (1983) [Sov. J. Opt. Techol. 50, 706 (1983)].
- ¹²⁰ V. A. Tolmachev, M. A. Okatov, and V. V. Pal'chevskii, Opt. Mekh. Promst. **51**, 57 (1984) [Sov. J. Opt. Technol. **51**, 368 (1984)].
- ¹²¹ M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Neorg. Mater. **20**, 144 (1984) [Inorg. Mater. **20**, 121 (1984)].
- ¹²² L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **59**, 1224 (1986) [J. Appl. Chem. USSR **59**, 1131 (1986)].
- ¹²³ S. K. Gordeev, E. P. Smirnov, and S. I. Kol'tsov, Zh. Obshch. Khim. **52**, 1468 (1982) [J. Gen. Chem. USSR **52**, 1298 (1982)].
- ¹²⁴ S. K. Gordeev and E. P. Smirnov, Zh. Obshch. Khim. **52**, 1464 (1982) [J. Gen. Chem. USSR **52**, 1294 (1982)].
- ¹²⁵ A. B. Zhidkov and E. P. Smirnov, Kinet. Katal. 29, 946 (1988)
 [Kinet. Catal. 29, 813 (1988)].
- ¹²⁶ A. L. Egorov, Yu. K. Ezhovskii, S. I. Kol'tsov, and G. V. Anikeev, Zh. Prikl. Khim. **57**, 2593 (1984) [J. Appl. Chem. USSR **57**, 2395 (1984)].
- ¹²⁷ A. A. Seitmagzimov, V. N. Pak, and S. I. Kol'tsov, Zh. Prikl. Khim. **58**, 92 (1985) [J. Appl. Chem. USSR **58**, 85 (1985)].
- ¹²⁸ L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **59**, 2277 (1986) [J. Appl. Chem. USSR **59**, 2093 (1986)].
- ¹²⁹ L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **64**, 763 (1991) [J. Appl. Chem. USSR **64**, 679 (1991)].
- ¹³⁰ L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **64**, 1435 (1991) [J. Appl. Chem. USSR **64**, 1290 (1991)].
- ¹³¹ N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Zh. Prikl. Khim. **65**, 1117 (1992) [J. Appl. Chem. USSR **65**, 921 (1992)].
- ¹³² N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Thin Solid Films **293**, 91 (1997).
- ¹³³ S. A. Morozov, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **76**, 9 (2003) [Russ. J. Appl. Chem. **76**, 7 (2003)].
- ¹³⁴ L. I. Chernaya, P. E. Matkovskii, V. M. Rudakov, Yu. M. Shul'ga, I. V. Markov, V. I. Tomilo, and Z. G. Busheva, Zh. Obshch. Khim. **62**, 28 (1992) [J. Gen. Chem. USSR **62**, 21 (1992)].
- ¹³⁵ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and A. A. Aleskovskii, Zh. Obshch. Khim. **43**, 1436 (1972) [J. Gen. Chem. USSR **43**, 1426 (1973)].
- ¹³⁶ W. Hanke, R. Bienert, and H.-G. Jerschkewitz, Z. Anorg. Allg. Chem. 414, 109 (1975).
- ¹³⁷ W. Hanke, K. Heise, H.-G. Jerschkewitz, G. Lischke, G. Öhlmann, and B. Parlitz, Z. Anorg. Allg. Chem. **438**, 176 (1978).
- ¹³⁸ A. N. Volkova, A. A. Malygin, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 42, 1431 (1972) [J. Gen. Chem. USSR 42, 1422 (1972)].
- ¹³⁹ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **42**, 2373 (1972) [J. Gen. Chem. USSR **42**, 2368 (1972)].
- ¹⁴⁰ G. N. Kuznetsova, T. V. Shakina, A. A. Malygin, and S. I. Kol'tsov, Kolloidn. Zh. **45**, 574 (1983) [Colloid J. USSR **45**, 503 (1983)].
- ¹⁴¹ A. P. Nechiporenko, G. K. Shevchenko, and S. I. Kol'tsov, Zh. Prikl. Kim. **55**, 1239 (1982) [J. Appl. Chem. USSR **55**, 1133 (1982)].
- ¹⁴² S. I. Kol'tsov, A. A. Malygin, and V. B. Aleskovskii, Zh. Fiz. Khim. **54**, 2331 (1980) [Russ. J. Phys. Chem. **54**, 2331 (1980)].
- ¹⁴³ V. B. Aleskovskii, Yu. M. Artem'ev, and S. F. Gerasimov, Zh. Prikl. Khim. **67**, 212 (1994) [Russ. J. Appl. Chem. **67**, 192 (1994)].

- ¹⁴⁴ N. A. Stepanova, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **50**, 465 (1977) [J. Appl. Chem. USSR **50**, 450 (1977)].
- ¹⁴⁵ R. A. Bisengaliev, B. V. Novikov, V. B. Aleskovskii, V. E. Drozd, D. A. Ageev, V. I. Gubaidullin, and A. P. Savchenko, Fiz. Tverd. Tela **40**, 820 (1998) [Phys. Solid State **40**, 754 (1998)].
- ¹⁴⁶ S. I. Kol'tsov, V. B. Aleskovskii, G. N. Kuznetsova, and N. G. Roslyakova, Neorg. Mater. **3**, 1509 (1967) [Inorg. Mater. **3**, 1318 (1967)].
- ¹⁴⁷ Yu. K. Ezhovskii and A. I. Klyuikov, Zr. Prikl. Khim. **73**, 881 (2000) [Russ. J. Appl. Chem. **73**, 933 (2000)].
- ¹⁴⁸ Yu. K. Ezhovskii and D. P. Mikhaevich, Neorg. Mater. 40, 1043 (2004) [Inorg. Mater. 40, 909 (2004)].
- ¹⁴⁹ D. P. Mikhaevich and Yu. K. Ezhovskii, Zh. Prikl. Khim. **76**, 1238 (2003) [Russ. J. Appl. Chem. **76**, 1197 (2003)].
- ¹⁵⁰ R. R. Rachkovskii, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Neorg. Khim. **15**, 3158 (1970) [Russ. J. Inorg. Chem. **15**, 1646 (1970)].
- ¹⁵¹ V. E. Drozd and V. B. Aleskovskii, Appl. Surf. Sci. 82/83, 591 (1994).
- ¹⁵² Transliterated "molekulyarnoe naslaivanie".
- ¹⁵³ J. Nishizawa, H. Abe, and T. Kurabayashi, J. Electrochem. Soc. **132**, 1197 (1985).
- ¹⁵⁴ M. Ahonen, M. Pessa, and T. Suntola, Thin Solid Films 65, 301 (1980).
- ¹⁵⁵ Y. Aoyagi, A. Doi, S. Iwai, and S. Namba, J. Vac. Sci. Technol., B 5, 1460 (1987).
- ¹⁵⁶ V. B. Kopylov, M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim. **54**, 293 (1981) [J. Appl. Chem. USSR **54**, 186 (1981)].
- ¹⁵⁷ D. Hausmann, J. Becker, S. L. Wang, and R. G. Gordon, Science **298**, 402 (2002).
- ¹⁵⁸ J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films **413**, 16 (2002).
- ¹⁵⁹ B. Mårlid, M. Ottosson, U. Pettersson, K. Larsson, and J.-O. Carlsson, Thin Solid Films **402**, 167 (2002).
- ¹⁶⁰ S. F. Komarov, J. J. Lee, J. B. Hudson, and M. P. D'Evelyn, Diamond Relat. Mater. 7, 1087 (1998).
- ¹⁶¹ T. I. Hukka, R. E. Rawles, and M. P. D'Evelyn, Thin Solid Films 225, 212 (1993).
- ¹⁶² R. Huang and A. H. Kitai, Appl. Phys. Lett. **61**, 1450 (1992).
- ¹⁶³ R. Huang and A. H. Kitai, J. Electron. Mater. **22**, 215 (1993).
- ¹⁶⁴ R. Huang and A. H. Kitai, J. Mater. Sci. Lett. **12**, 1444 (1993).
 ¹⁶⁵ M. Putkonen, T. Sajavaara, and L. Niinistö, J. Mater. Chem. **10**, 1857 (2000).
- ¹⁶⁶ M. Putkonen, M. Nieminen, and L. Niinistö, Thin Solid Films 466, 103 (2004).
- ¹⁶⁷ T. Hatanpää, J. Ihanus, J. Kansikas, I. Mutikainen, M. Ritala, and M. Leskelä, Chem. Mater. **11**, 1846 (1999).
- ¹⁶⁸ M. Putkonen, L.-S. Johansson, E. Rauhala, and L. Niinistö, J. Mater. Chem. 9, 2449 (1999).
- ¹⁶⁹ J. M. Hartmann, J. Cibert, F. Kany, H. Mariette, M. Charleux, P. Alleysson, R. Langer, and G. Feuillet, J. Appl. Phys. **80**, 6257 (1996).
- ¹⁷⁰ J. M. Hartmann, M. Charleux, H. Mariette, and J. L. Rouvière, Appl. Surf. Sci. **112**, 142 (1997).
- ¹⁷¹ T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, in SID International Symposium in San Diego, California, 29 April-1 May 1980, Digest of Technical Papers (SID, Los Angeles, California, 1980), pp. 108–109.
- ¹⁷² J. Aarik, A. Aidla, A. Jaek, A.-A. Kiisler, and A.-A. Tammik, Acta Polytech. Scand., Ser. Chem. Technol. Metall. **195**, 201 (1990).

- ¹⁷³ L. Hiltunen, H. Kattelus, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Mater. Chem. Phys. 28, 379 (1991).
- ¹⁷⁴ H. Kattelus, M. Ylilammi, J. Saarilahti, J. Antson, and S. Lindfors, Thin Solid Films **225**, 296 (1993).
- ¹⁷⁵ M. Nieminen, L. Niinistö, and R. Lappalainen, Microchim. Acta **119**, 13 (1995).
- ¹⁷⁶ M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grassenbauer, Thin Solid Films **286**, 54 (1996).
- ¹⁷⁷ D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, Thin Solid Films **289**, 250 (1996).
- ¹⁷⁸ K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **144**, 300 (1997).
- ¹⁷⁹ S. J. Yun, K. H. Lee, J. Skarp, H. R. Kim, and K. S. Nam, J. Vac. Sci. Technol., A **15**, 2993 (1997).
- ¹⁸⁰ S. J. Yun, J. S. Kang, M. C. Paek, and K. S. Nam, J. Korean Phys. Soc. **33**, S170 (1998).
- ¹⁸¹ M. Tiitta, E. Nykänen, P. Soininen, L. Niinistö, M. Leskelä, and R. Lappalainen, Mater. Res. Bull. **33**, 1315 (1998).
- ¹⁸² M. Nieminen and L. Niinistö, Fresenius J. Anal. Chem. 364, 224 (1999).
- ¹⁸³ Y. S. Kim, J. S. Kang, S. J. Yun, and K. I. Cho, J. Korean Phys. Soc. **35**, S216 (1999).
- ¹⁸⁴ K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 148, F35 (2001).
- ¹⁸⁵ G. Oya, M. Yoshida, and Y. Sawada, Appl. Phys. Lett. **51**, 1143 (1987).
- ¹⁸⁶ G. Oya and Y. Sawada, J. Cryst. Growth **99**, 572 (1990).
- ¹⁸⁷ M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Acta Polytech. Scand., Chem. Technol. Ser. **195**, 193 (1990).
- ¹⁸⁸ M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, Science **288**, 319 (2000).
- ¹⁸⁹ P. I. Räisänen, M. Ritala, and M. Leskelä, J. Mater. Chem. **12**, 1415 (2002).
- ¹⁹⁰ G. S. Higashi and L. J. Rothberg, J. Vac. Sci. Tech., B 3, 1460 (1985).
- ¹⁹¹ G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. **55**, 1963 (1989).
- ¹⁹² C. Soto and W. T. Tysoe, J. Vac. Sci. Technol., A **9**, 2686 (1991).
- ¹⁹³ C. Soto, R. Wu, D. W. Bennett, and W. T. Tysoe, Chem. Mater. 6, 1705 (1994).
- ¹⁹⁴ V. E. Drozd, A. P. Baraban, and I. O. Nikiforova, Appl. Surf. Sci. 82/83, 583 (1994).
- ¹⁹⁵ S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, Appl. Surf. Sci. 82/83, 460 (1994).
- ¹⁹⁶ A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surf. Sci. 322, 230 (1995).
- ¹⁹⁷ E.-L. Lakomaa, A. Root, and T. Suntola, Appl. Surf. Sci. **107**, 107 (1996).
- ¹⁹⁸ A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way, and S. M. George, Appl. Surf. Sci. **107**, 128 (1996).
- ¹⁹⁹ A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, Thin Solid Films **292**, 135 (1997).
- ²⁰⁰ A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, K. C. McCarley, and J. D. Way, Chem. Mater. 9, 707 (1997).
- ²⁰¹ J. I. Skarp, P. J. Soininen, and P. T. Soininen, Appl. Surf. Sci. 112, 251 (1997).
- ²⁰² P. Ericsson, S. Bengtsson, and J. Skarp, Microelectr. Eng. 36, 91 (1997).
- ²⁰³ Y. Kim, S. M. Lee, C. S. Park, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett. **71**, 3604 (1997).
- ²⁰⁴ B. S. Berland, I. P. Gartland, A. W. Ott, and S. M. George, Chem. Mater. **10**, 3941 (1998).
- ²⁰⁵ M. Ritala, M. Leskelä, J.-P. Dekker, C. Mutsaers, P. J. Soininen,

and J. Skarp, Chem. Vap. Deposition 5, 7 (1999).

- ²⁰⁶ M. Ritala, M. Juppo, K. Kukli, A. Rahtu, and M. Leskelä, J. Phys. IV 9, Pr8/1021 (1999).
- ²⁰⁷ R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén, J. Phys. IV France 9, Pr8/493 (1999).
- ²⁰⁸ E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. **76**, 176 (2000).
- ²⁰⁹ R. L. Puurunen, A. Root, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, J. Phys. Chem. B **104**, 6599 (2000).
- ²¹⁰ A. M. Uusitalo, T. T. Pakkanen, M. Kröger-Laukkanen, L. Niinistö, K. Hakala, S. Paavola, and B. Löfgren, J. Mol. Catal., A 160, 343 (2000).
- ²¹¹ M. Juppo, A. Rahtu, M. Ritala, and M. Leskelä, Langmuir 16, 4034 (2000).
- ²¹² R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, Thin Solid Films **368**, 1 (2000).
- ²¹³ J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films **371**, 95 (2000).
- ²¹⁴ J. D. Ferguson, A. W. Weimer, and S. M. George, Appl. Surf. Sci. **162/163**, 280 (2000).
- ²¹⁵ M. Juppo, Doctoral thesis, University of Helsinki, Finland (2001).
- ²¹⁶ R. L. Puurunen, M. Lindblad, A. Root, and A. O. I. Krause, Phys. Chem. Chem. Phys. **3**, 1093 (2001).
- ²¹⁷ A. Rahtu, T. Alaranta, and M. Ritala, Langmuir **17**, 6506 (2001).
- ²¹⁸ A. Paranjpe, S. Gopinath, T. Omstead, and R. Bubber, J. Electrochem. Soc. **148**, G465 (2001).
- ²¹⁹ E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, Microelectron. Eng. **59**, 341 (2001).
- ²²⁰ A. Rahtu, Doctoral thesis, University of Helsinki, Finland (2002).
- ²²¹ R. Puurunen, Doctoral thesis, Helsinki University of Technology, Espoo, Finland (2002), http://lib.hut.fi/Diss/2002/isbn9512261421/.
- ²²² O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin Solid Films **402**, 248 (2002).
- ²²³ H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. De Gendt, M. Heyns, J. Maes, et al., J. Non-Cryst. Solids **303**, 83 (2002).
- ²²⁴ W. F. A. Besling, E. Young, T. Conard, C. Zhao, R. Carter, W. Vandervorst, M. Caymax, S. De Gendt, M. Heyns, J. Maes, et al., J. Non-Cryst. Solids **303**, 123 (2002).
- ²²⁵ L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids **303**, 17 (2002).
- ²²⁶ J. W. Elam, Z. A. Zechrist, and S. M. George, Thin Solid Films 414, 43 (2002).
- ²²⁷ J. W. Elam, M. D. Groner, and S. M. George, Rev. Sci. Instrum. 73, 2981 (2002).
- ²²⁸ M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films **413**, 186 (2002).
- ²²⁹ J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, J. W. Elam, and S. M. George, Chem. Mater. 14, 2276 (2002).
- ²³⁰ B. Brijs, C. Huyghebaert, S. Nauwelaerts, M. Caymax, W. Vandervorst, K. Nakajima, K. Kimura, A. Bergmaier, G. Döllinger, W. N. Lennard, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 190, 505 (2002).
- ²³¹ J. W. Elam and S. M. George, Chem. Mater. **15**, 1020 (2003).
- ²³² T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Appl. Phys. Lett. **82**, 2883 (2003).
- ²³³ N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George, and Y. C. Lee, Sens. Actuators, A **103**, 100 (2003).

- ²³⁴ R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. **94**, 6411 (2003).
- ²³⁵ S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films **425**, 216 (2003).
- ²³⁶ S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Appl. Surf. Sci. 211, 352 (2003).
- ²³⁷ R. L. Puurunen, Chem. Vap. Deposition **9**, 327 (2003).
- ²³⁸ J.-F. Damlencourt, O. Renault, A. Chabli, F. Martin, and M.-N. Séméria, J. Mater. Sci. - Mater. Electron. 14, 379 (2003).
- ²³⁹ M. M. Frank, Y. J. Chabal, and G. D. Wilk, Appl. Phys. Lett. 82, 4758 (2003).
- ²⁴⁰ M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk, M.-Y. Ho, E. B. O. da Rosa, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. **83**, 740 (2003).
- ²⁴¹ P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, et al., Appl. Phys. Lett. **83**, 180 (2003).
- ²⁴² J. S. Lee, B. Min, K. Cho, S. Kim, J. Park, Y. T. Lee, N. S. Kim, M. S. Lee, S. O. Park, and J. T. Moon, J. Cryst. Growth **254**, 443 (2003).
- ²⁴³ M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639 (2004).
- ²⁴⁴ T. Kawahara, K. Torii, R. Mitsuhashi, A. Muto, A. Horiuchi, H. Ito, and H. Kitajima, Jpn. J. Appl. Phys., Part 1 43, 4129 (2004).
- ²⁴⁵ S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Mater. Sci. Eng., B 107, 251 (2004).
- ²⁴⁶ R. L. Puurunen, W. Vandervorst, W. F. A. Besling, O. Richard, H. Bender, T. Conard, C. Zhao, A. Delabie, M. Caymax, S. De Gendt, et al., J. Appl. Phys. **96**, 4878 (2004).
- ²⁴⁷ R. L. Puurunen and W. Vandervorst, J. Appl. Phys. **96**, 7686 (2004).
- ²⁴⁸ R. T. Brewer, M.-T. Ho, K. Z. Zhang, L. V. Goncharova, D. G. Starodub, T. Gustafsson, Y. J. Chabal, and N. Moumen, Appl. Phys. Lett. **85**, 3830 (2004).
- ²⁴⁹ R. K. Grubbs, C. E. Nelson, N. J. Steinmetz, and S. M. George, Thin Solid Films 467, 16 (2004).
- ²⁵⁰ S. S. Lee, J. Y. Baik, K.-S. An, Y. D. Suh, J.-H. Oh, and Y. Kim, J. Phys. Chem. B **108**, 15128 (2004).
- ²⁵¹ M. Kang, J.-S. Lee, S.-K. Sim, B. Min, K. Cho, H. Kim, M.-Y. Sung, S. Kim, S. A. Song, and M.-S. Lee, Thin Solid Films **466**, 265 (2004).
- ²⁵² C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, and J. Jeong, J. Vac. Sci. Technol., B 22, 1838 (2004).
- ²⁵³ R. G. Vitchev, J. J. Pireaux, T. Conard, H. Bender, J. Wolstenholme, and C. Defranoux, Appl. Surf. Sci. 235, 21 (2004).
- ²⁵⁴ J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 16, 5602 (2004).
- ²⁵⁵ H. Bender, T. Conard, O. Richard, B. Brijs, J. Pétry, W. Vandervorst, C. Defranoux, P. Boher, N. Rochat, C. Wyon, et al., Mater. Sci. Eng., B **109**, 60 (2004).
- ²⁵⁶ P. Boher, C. Defranoux, P. Heinrich, J. Wolstenholme, and H. Bender, Mater. Sci. Eng., B **109**, 64 (2004).
- ²⁵⁷ C. Lee, C. S. Hwang, and H. J. Kim, Integr. Ferroelectr. **67**, 49 (2004).
- ²⁵⁸ R. Matero, Doctoral thesis, University of Helsinki, Finland (2004).
- ²⁵⁹ D. Wu, J. Lu, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, M. Östling, and S.-L. Zhang, Solid-State Electron. **49**, 193 (2005).
- ²⁶⁰ D. R. G. Mitchell, D. J. Attard, K. S. Finnie, G. T. C. J. Barbé, C. Depagne, and J. R. Bartlett, Appl. Surf. Sci. (2005), in press.

- ²⁶¹ S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang, and H. Y. Chu, Electrochem. Solid-State Lett. 8, H21 (2005).
- ²⁶² R. L. Puurunen, Appl. Surf. Sci. (2005), in press.
- ²⁶³ J.-F. Fan, J. Sugioka, and K. Toyoda, Jpn. J. Appl. Phys., Part 2 30, L1139 (1991).
- ²⁶⁴ J.-F. Fan and K. Toyoda, Appl. Surf. Sci. **60/61**, 765 (1992).
- ²⁶⁵ J.-F. Fan and K. Toyoda, Jpn. J. Appl. Phys., Part 2 **32**, L1349 (1993).
- ²⁶⁶ H. Kumagai, K. Toyoda, M. Matsumoto, and M. Obara, Jpn. J. Appl. Phys., Part 1 **32**, 6137 (1993).
- ²⁶⁷ H. Kumagai, M. Matsumoto, and Y. Kawamura, Jpn. J. Appl. Phys., Part 1 **33**, 7086 (1994).
- ²⁶⁸ H. Kumagai and K. Toyoda, Appl. Surf. Sci. **82/83**, 481 (1994).
- ²⁶⁹ H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, Appl. Phys. Lett. **70**, 2338 (1997).
- ²⁷⁰ J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, J. Appl. Phys. **92**, 6739 (2002).
- ²⁷¹ J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, Mater. Chem. Phys. **78**, 733 (2003).
- ²⁷² S. K. Kim and C. S. Hwang, J. Appl. Phys. **96**, 2323 (2004).
- ²⁷³ T.-P. Lee, C. Jang, B. Haselden, M. Dong, S. Park, L. Bartholomew, H. Chatham, and Y. Senzaki, J. Vac. Sci. Technol., B 22, 2295 (2004).
- ²⁷⁴ S. W. Choi, C. M. Jang, D. Y. Kim, J. S. Ha, H. S. Park, W. Koh, and C. S. Lee, J. Korean Phys. Soc. 42, S975 (2003).
- ²⁷⁵ S. J. Yun, J. W. Lim, and J.-H. Lee, Electrochem. Solid State Lett. **7**, C13 (2004).
- ²⁷⁶ J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. **7**, F45 (2004).
- ²⁷⁷ W.-S. Jeon, S. Yang, C.-S. Lee, and S.-W. Kang, J. Electrochem. Soc. **149**, C306 (2002).
- ²⁷⁸ K. Kukli, M. Ritala, M. Leskelä, and J. Jokinen, J. Vac. Sci. Tech., A **15**, 2214 (1997).
- ²⁷⁹ K. S. An, W. T. Cho, K. H. Sung, S. S. Lee, and Y. Kim, Bull. Korean Chem. Soc. 24, 1659 (2003).
- ²⁸⁰ W. Cho, K. Sung, K. S. An, S. S. Lee, T. M. Chung, and Y. Kim, J. Vac. Sci. Technol., A **21**, 1366 (2003).
- ²⁸¹ Y.-S. Min, Y. J. Cho, and C. S. Hwang, Chem. Mater. **17**, 626 (2005).
- ²⁸² K.-E. Elers, M. Ritala, M. Leskelä, and L.-S. Johansson, J. Phys. IV. 5, C5/1021 (1995).
- ²⁸³ J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihelä, and M. Leskelä, Thin Solid Films **289**, 159 (1996).
- ²⁸⁴ Y. J. Lee and S.-W. Kang, Thin Solid Films **446**, 227 (2004).
- ²⁸⁵ Y. J. Lee, J. Cryst. Growth **266**, 568 (2004).
- ²⁸⁶ T. M. Mayer, J. W. Rogers, Jr., and T. A. Michalske, Chem. Mater. **3**, 641 (1991).
- ²⁸⁷ M. E. Bartram, T. A. Michalske, J. W. Rogers, Jr., and R. T. Paine, Chem. Mater. 5, 1424 (1993).
- ²⁸⁸ H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. **340**, 88 (1995).
- ²⁸⁹ D. Riihelä, M. Ritala, R. Matero, M. Leskelä, J. Jokinen, and P. Haussalo, Chem. Vap. Deposition 2, 277 (1996).
- ²⁹⁰ F. G. McIntosh, E. L. Piner, J. C. Roberts, M. K. Behbehani, M. E. Aumer, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. **112**, 98 (1997).
- ²⁹¹ R. L. Puurunen, A. Root, P. Sarv, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, Appl. Surf. Sci. 165, 193 (2000).
- ²⁹² R. L. Puurunen, A. Root, P. Sarv, M. M. Viitanen, H. H. Brongersma, M. Lindblad, and A. O. I. Krause, Chem. Mater. 14, 720 (2002).
- ²⁹³ M. Asif Khan, J. N. Kuznia, R. A. Skogman, and D. T. Olson, Appl. Phys. Lett. **61**, 2539 (1992).

- ²⁹⁴ M. Asif Khan, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 3470 (1993).
- ²⁹⁵ H. Liu and J. W. Rogers, Jr., J. Vac. Sci. Technol., A **17**, 325 (1999).
- ²⁹⁶ J. N. Kidder, Jr., J. S. Kuo, A. Ludviksson, T. P. Pearsall, J. W. Rogers, Jr., J. M. Grant, L. R. Allen, and S. T. Hsu, J. Vac. Sci. Technol., A **13**, 711 (1995).
- ²⁹⁷ A. Ludviksson, D. W. Robinson, and J. W. Rogers, Jr., Thin Solid Films 289, 6 (1996).
- ²⁹⁸ J. N. Kidder, Jr., H. K. Yun, J. W. Rogers, Jr., and T. P. Pearsall, Chem. Mater. **10**, 777 (1998).
- ²⁹⁹ M. Ishii, S. Iwai, H. Kawata, T. Ueki, and Y. Aoyagi, J. Cryst. Growth **180**, 15 (1997).
- ³⁰⁰ M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Appl. Phys. Lett. **71**, 1044 (1997).
- ³⁰¹ M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Thin Solid Films **318**, 6 (1998).
- ³⁰² S. Hirose, M. Yamaura, and H. Munekata, Appl. Surf. Sci. **150**, 89 (1999).
- ³⁰³ R. Kobayashi, J. Cryst. Growth **113**, 491 (1991).
- ³⁰⁴ M. Akamatsu, S. Narahara, T. Kobayashi, and F. Hasegawa, Appl. Surf. Sci. **82/83**, 228 (1994).
- ³⁰⁵ S. M. Bedair, M. A. Tischler, T. Katsuyama, and N. A. El-Masry, Appl. Phys. Lett. 47, 51 (1985).
- ³⁰⁶ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, J. Vac. Sci. Technol., B 5, 1184 (1987).
- ³⁰⁷ S. P. DenBaars, P. D. Dapkus, C. A. Beyler, A. Hariz, and K. M. Dzurko, J. Cryst. Growth **93**, 195 (1988).
- ³⁰⁸ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Thin Solid Films **174**, 63 (1989).
- ³⁰⁹ T. Meguro, S. Iwai, Y. Aoyagi, K. Ozaki, Y. Yamamoto, T. Suzuki, Y. Okano, and A. Hirata, J. Cryst. Growth **99**, 540 (1990).
- ³¹⁰ N. Ohtsuka, K. Kitahara, M. Ozeki, and K. Kodama, J. Cryst. Growth **99**, 346 (1990).
- ³¹¹ Y. Aoyagi, T. Meguro, S. Iwai, and A. Doi, Mater. Sci. Eng., B 10, 121 (1991).
- ³¹² S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. **60**, 377 (1992).
- ³¹³ K. Kitahara, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 1 32, 1051 (1993).
- ³¹⁴ M. Ozeki and N. Ohtsuka, Appl. Surf. Sci. **82/83**, 233 (1994).
- ³¹⁵ N. Hayafuji, G. M. Eldallal, A. Dip, P. C. Colter, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 82/83, 18 (1994).
- ³¹⁶ M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 **30**, L435 (1991).
- ³¹⁷ M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Thin Solid Films 225, 74 (1993).
- ³¹⁸ H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Surf. Sci. **82/83**, 57 (1994).
- ³¹⁹ S. Hirose, N. Kano, M. Deura, K. Hara, H. Munekata, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 34, L1436 (1995).
- ³²⁰ S. Hirose, H. Ibuka, A. Yoshida, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth **208**, 49 (2000).
- ³²¹ D. E. Aspnes, I. Kamiya, H. Tanaka, R. Bhat, L. T. Florez, J. P. Harbison, W. E. Quinn, M. Tamargo, S. Gregory, M. A. A. Pudensi, et al., Thin Solid Films **225**, 26 (1993).
- ³²² K. Kitahara, N. Ohtsuka, T. Ashino, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 2 32, L236 (1993).
- ³²³ K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **62**, 1420 (1993).
- ³²⁴ I. Suemune, Appl. Surf. Sci. **82/83**, 149 (1994).
- ³²⁵ M. Nagano, S. Iwai, K. Nemoto, and Y. Aoyagi, Jpn. J. Appl.

Phys., Part 2 33, L1289 (1994).

- ³²⁶ N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Phys. Lett. 65, 1115 (1994).
- ³²⁷ N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Surf. Sci. 82/83, 132 (1994).
- ³²⁸ S. Hirose, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth **172**, 13 (1997).
- ³²⁹ S. Hirose, M. Yamaura, A. Yoshida, H. Ibuka, K. Hara, and H. Munekata, J. Cryst. Growth **194**, 16 (1998).
- ³³⁰ S. Hirose, A. Yoshida, M. Yamaura, N. Kano, and H. Munekata, J. Mater. Sci.-Mater. Electron. **11**, 7 (2000).
- ³³¹ Y. J. Lee and S.-W. Kang, J. Vac. Sci. Technol., A 20, 1983 (2002).
- ³³² Y. J. Lee and S.-W. Kang, Electrochem. Solid-State Lett. 5, C91 (2002).
- ³³³ O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, Surf. Sci. **334**, 135 (1995).
- ³³⁴ J. W. Klaus, A. W. Ott, J. M. Johnson, and S. M. George, Appl. Phys. Lett. **70**, 1092 (1997).
- ³³⁵ J. W. Klaus, A. W. Ott, and S. M. George, Surf. Rev. Lett. 6, 435 (1999).
- ³³⁶ M. A. Cameron, I. P. Gartland, J. A. Smith, S. F. Diaz, and S. M. George, Langmuir **16**, 7435 (2000).
- ³³⁷ J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 12, 3472 (2000).
- ³³⁸ J. W. Klaus, O. Sneh, and S. M. George, Science **278**, 1934 (1997).
- ³³⁹ J. W. Klaus and S. M. George, Surf. Sci. **447**, 81 (2000).
- ³⁴⁰ B. A. McCool and W. J. DeSisto, Ind. Eng. Chem. Res. 43, 2478 (2004).
- ³⁴¹ B. A. McCool and W. J. DeSisto, Chem. Vap. Deposition 10, 190 (2004).
- ³⁴² J.-H. Lee, U.-J. Kim, C.-H. Han, S.-K. Rha, W.-J. Lee, and C.-O. Park, Jpn. J. Appl. Phys., Part 2 43, L328 (2004).
- ³⁴³ J. D. Ferguson, E. R. Smith, A. W. Weimer, and S. M. George, J. Electrochem. Soc. **151**, G528 (2004).
- ³⁴⁴ M. Lindblad and A. Root, in *Preparation of Catalysts VII. Proceedings of the 7th International Symposium "Scientific Bases for the Preparation of Heterogeneous Catalysts," Louvain-la-Neuve, Belgium, September 1-4, 1998*, edited by B. Delmon, P. A. Jacobs, R. Maggi, J. A. Martens, P. Grange, and G. Poncelet (Elsevier, Amsterdam, 1998), vol. 118 of *Stud. Surf. Sci. Catal.*, pp. 817–826.
- ³⁴⁵ W. Gasser, Y. Uchida, and M. Matsumura, Thin Solid Films 250, 213 (1994).
- ³⁴⁶ K. Yamaguchi, S. Imai, N. Ishitobi, M. Takemoto, H. Miki, and M. Matsumura, Appl. Surf. Sci. **130-132**, 202 (1998).
- ³⁴⁷ S. Morishita, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 5738 (1995).
- ³⁴⁸ S. Morishita, W. Gasser, K. Usami, and M. Matsumura, J. Non-Cryst. Solids 187, 66 (1995).
- ³⁴⁹ J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, Surf. Sci. **418**, L14 (1998).
- ³⁵⁰ M. Yokoyama, J. Korean Phys. Soc. **35**, S71 (1999).
- ³⁵¹ A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama, Appl. Phys. Lett. **79**, 665 (2001).
- ³⁵² W. J. Lee, J. H. Lee, C. O. Park, Y. S. Lee, S. J. Shin, and S. K. Rha, J. Korean Phys. Soc. 45, 1352 (2004).
- ³⁵³ H. Goto, K. Shibahara, and S. Yokoyama, Appl. Phys. Lett. 68, 3257 (1996).
- ³⁵⁴ S. Yokoyama, H. Goto, T. Miyamoto, N. Ikeda, and J. Shibahara, Appl. Surf. Sci. **112**, 75 (1997).
- ³⁵⁵ S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci. 130-132, 352 (1998).

- ³⁵⁶ S. Morishita, S. Sugahara, and M. Matsumura, Appl. Surf. Sci. **112**, 198 (1997).
- ³⁵⁷ H. Nagasawa and Y. Yamaguchi, Thin Solid Films **225**, 230 (1993).
- ³⁵⁸ H. Nagasawa and Y. Yamaguchi, Appl. Surf. Sci. 82/83, 405 (1994).
- ³⁵⁹ E. Sadayuki, S. Imai, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 **34**, 6166 (1996).
- ³⁶⁰ J. Sumakeris, L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, Thin Solid Films **225**, 219 (1993).
- ³⁶¹ T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Cryst. Growth **95**, 461 (1989).
- ³⁶² S. Hara, Y. Aoyagi, M. Kawai, S. Misakawa, E. Sakuma, and S. Yoshida, Surf. Sci. **273**, 437 (1992).
- ³⁶³ T. Fuyuki, T. Yoshinobu, and H. Matsunami, Thin Solid Films 125, 225 (1993).
- ³⁶⁴ S. Hara, T. Meguro, Y. Aoyagi, and M. Kawai, Thin Solid Films 225, 240 (1993).
- ³⁶⁵ S. Yokoyama, K. Ohba, and A. Nakajima, Appl. Phys. Lett. **79**, 617 (2001).
- ³⁶⁶ J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Electrochem. Soc. **137**, 1898 (1990).
- ³⁶⁷ J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Cryst. Growth **99**, 502 (1990).
- ³⁶⁸ J. A. Yarmoff, D. K. Shuh, T. D. Durbin, C. W. Lo, D. A. Lapiano-Smith, F. R. McFreely, and F. J. Himpsel, J. Vac. Sci. Technol., A **10**, 2303 (1992).
- ³⁶⁹ S. Imai, T. Iizuka, O. Sugiura, and M. Matsumura, Thin Solid Films 225, 168 (1993).
- ³⁷⁰ S. Imai and M. Matsumura, Appl. Surf. Sci. **82/83**, 322 (1994).
- ³⁷¹ D. D. Koleske and S. M. Gates, Appl. Surf. Sci. 82/83, 344 (1994).
- ³⁷² D. D. Koleske and S. M. Gates, J. Appl. Phys. **76**, 1615 (1994).
- ³⁷³ S. Sugahara, E. Hasunuma, S. Imai, and M. Matsumura, Appl. Surf. Sci. **107**, 161 (1996).
- ³⁷⁴ E. Hasunuma, S. Sugahara, S. Hoshino, S. Imai, K. Ikeda, and M. Matsumura, J. Vac. Sci. Technol., A 16, 679 (1998).
- ³⁷⁵ Y. Satoh, K. Ikeda, S. Sugahara, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 **39**, 5732 (2000).
- ³⁷⁶ Y. Takahashi and T. Urisu, Jpn. J. Appl. Phys., Part 2 **30**, L209 (1991).
- ³⁷⁷ H. Akazawa, Phys. Rev. B **54**, 10917 (1996).
- ³⁷⁸ H. Akazawa, J. Appl. Phys. **81**, 3320 (1997).
- ³⁷⁹ P. A. Coon, M. L. Wise, A. C. Dillon, M. B. Robinson, and S. M. George, J. Vac. Sci. Technol., B **10**, 221 (1992).
- ³⁸⁰ F. Hirose, M. Suemitsu, and N. Miyamoto, Appl. Surf. Sci. 60/61, 592 (1992).
- ³⁸¹ J. Murota, M. Sakuraba, and S. Ono, Appl. Phys. Lett. **62**, 2353 (1993).
- ³⁸² M. Sakuraba, J. Murota, T. Watanabe, Y. Sawada, and S. Ono, Appl. Surf. Sci. **82/83**, 354 (1994).
- ³⁸³ D. D. Koleske, S. M. Gates, and D. B. Beach, J. Appl. Phys. 72, 4073 (1992).
- ³⁸⁴ S. M. Gates, D. D. Koleske, J. R. Heath, and M. Copel, Appl. Phys. Lett. **62**, 510 (1993).
- ³⁸⁵ D. D. Koleske and S. M. Gates, Appl. Phys. Lett. **64**, 884 (1994).
- ³⁸⁶ Y. Suda, D. Lubben, T. Motooka, and J. Greene, J. Vac. Sci. Technol., B 7, 1171 (1989).
- ³⁸⁷ D. Lubben, R. Tsu, T. R. Bramblett, and J. E. Greene, J. Vac. Sci. Technol., A 9, 3003 (1991).
- ³⁸⁸ D. Lin, T. Miller, and T. Chiang, Phys. Rev. B **47**, 6543 (1993).
- ³⁸⁹ Y. Suda, M. Ishida, M. Yamashita, and H. Ikeda, Appl. Surf. Sci. 82/83, 332 (1994).

- ³⁹⁰ Y. Suda, Y. Misato, and D. Shiratori, Jpn. J. Appl. Phys., Part 1 38, 2390 (1999).
- ³⁹¹ J. Nishizawa, A. Murai, T. Ohizumi, T. Kurabayashi, K. Ohtsuka, and T. Yoshida, J. Cryst. Growth **209**, 327 (2000).
- ³⁹² J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 233, 161 (2001).
- ³⁹³ J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth **226**, 39 (2001).
- ³⁹⁴ Y. Suda, N. Hosoya, and K. Miki, Appl. Surf. Sci. 216, 424 (2003).
 ³⁹⁵ H. Akagana, X. Haumi, T. Haim, and M. Nagaga, Phys. Rev. B.
- ³⁹⁵ H. Akazawa, Y. Utsumi, T. Urisu, and M. Nagase, Phys. Rev. B 47, 15946 (1993).
- ³⁹⁶ H. Akazawa, Appl. Surf. Sci. **82/83**, 394 (1994).
- ³⁹⁷ H. Akazawa and Y. Utsumi, J. Appl. Phys. 78, 2725 (1995).
- ³⁹⁸ M. Ishida, M. Yamashita, Y. Nagata, and Y. Suda, Jpn. J. Appl. Phys., Part 1 **35**, 4011 (1996).
- ³⁹⁹ H. Akazawa, J. Cryst. Growth **173**, 343 (1997).
- ⁴⁰⁰ Y. Suda, N. Hosoya, and D. Shiratori, J. Cryst. Growth **237**, 1404 (2002).
- ⁴⁰¹ A. Mahajan, J. Irby, D. Kinosky, R. Qian, S. Thomas, S. Banerjee, A. Tasch, and T. Picraux, Thin Solid Films **225**, 177 (1993).
- ⁴⁰² S. Imai, S. Takagi, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 **30**, 3646 (1991).
- ⁴⁰³ W. K. Kim, S. W. Kang, and S. W. Rhee, J. Vac. Sci. Technol., A **21**, L16 (2003).
- ⁴⁰⁴ W. K. Kim, S. W. Kang, S. W. Rhee, N. I. Lee, J. H. Lee, and H. K. Kang, J. Vac. Sci. Technol., A **20**, 2096 (2002).
- ⁴⁰⁵ J. Kim and K. Yong, Electrochem. Solid-State Lett. 7, F35 (2004).
- ⁴⁰⁶ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, R. I. Hegde, D. C. Gilmer, and P. J. Tobin, J. Electrochem. Soc. **151**, F98 (2004).
- ⁴⁰⁷ R. G. Gordon, J. Becker, D. Hausmann, and S. Suh, Chem. Mater. **13**, 2463 (2001).
- ⁴⁰⁸ J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. **75**, 33 (1994).
- ⁴⁰⁹ O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films **450**, 240 (2004).
- ⁴¹⁰ M. Tammenmaa, H. Antson, M. Asplund, L. Hiltunen, M. Leskelä, L. Niinistö, and E. Ristolainen, J. Cryst. Growth 84, 151 (1987).
- ⁴¹¹ J. Rautanen, M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Utriainen, Appl. Surf. Sci. 82/83, 553 (1994).
- ⁴¹² P. Soininen, L. Niinistö, E. Nykänen, and M. Leskelä, Appl. Surf. Sci. **75**, 99 (1994).
- ⁴¹³ T. Hänninen, I. Mutikainen, V. Saanila, M. Ritala, M. Leskelä, and J. C. Hanson, Chem. Mater. 9, 1234 (1997).
- ⁴¹⁴ S. Dey and S. J. Yun, Appl. Surf. Sci. **143**, 191 (1999).
- ⁴¹⁵ M. Ylilammi and T. Ranta-aho, J. Electrochem. Soc. 141, 1278 (1994).
 ⁴¹⁶ M. Bullonon, M. Nieminon, I. Niinistä, and L. Niinistä, Chem.
- ⁴¹⁶ M. Putkonen, M. Nieminen, J. Niinistö, and L. Niinistö, Chem. Mater. 13, 4701 (2001).
- ⁴¹⁷ S. B. Desu, Mater. Sci. Eng., B **13**, 299 (1992).
- ⁴¹⁸ E.-L. Lakomaa, S. Haukka, and T. Suntola, Appl. Surf. Sci. 60/61, 742 (1992).
- ⁴¹⁹ S. Haukka, E.-L. Lakomaa, and A. Root, J. Phys. Chem. **97**, 5085 (1993).
- ⁴²⁰ S. Haukka, E.-L. Lakomaa, and T. Suntola, Thin Solid Films 225, 280 (1993).
- ⁴²¹ S. Haukka, E.-L. Lakomaa, O. Jylhä, J. Vilhunen, and S. Hornytzkyj, Langmuir 9, 3497 (1993).
- ⁴²² M. Ritala and M. Leskelä, Thin Solid Films **225**, 288 (1993).
- ⁴²³ M. Ritala, M. Leskelä, L.-S. Johansson, and L. Niinistö, Thin

Solid Films 228, 32 (1993).

- ⁴²⁴ S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 82/83, 548 (1994).
- ⁴²⁵ J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, J. Cryst. Growth **148**, 268 (1995).
- ⁴²⁶ J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, and T. Uustare, J. Cryst. Growth **169**, 496 (1996).
- ⁴²⁷ J. Aarik, A. Aidla, and T. Uustare, Philos. Mag. Lett. **73**, 115 (1996).
- ⁴²⁸ A. Rosental, P. Adamson, A. Gerst, and A. Niilisk, Appl. Surf. Sci. **107**, 178 (1996).
- ⁴²⁹ V. E. Drozd, N. N. Kopilov, and V. B. Aleskovski, Appl. Surf. Sci. **112**, 258 (1997).
- ⁴³⁰ J. Aarik, A. Aidla, V. Sammelselg, and T. Uustare, J. Cryst. Growth **181**, 259 (1997).
- ⁴³¹ J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films **305**, 270 (1997).
- ⁴³² H. Siimon and J. Aarik, J. Phys. D: Appl. Phys. **30**, 1725 (1997).
- ⁴³³ H. Siimon, J. Aarik, and T. Uustare, in *Proceedings of the four*teenth international conference of Chemical Vapor Deposition and EUROCVD-11, edited by M. D. Allendorf and C. Bernard (Electrochemical Society, Pennington, New Jersey USA, 1997), vol. 97-25 of Electrochem. Soc. Proceedings, pp. 131–138.
- ⁴³⁴ M. Lindblad, S. Haukka, A. Kytökivi, E.-L. Lakomaa, A. Rautiainen, and T. Suntola, Appl. Surf. Sci. **121/122**, 286 (1997).
- ⁴³⁵ A. Rosental, P. Adamson, A. Gerst, H. Koppel, and A. Tarre, Appl. Surf. Sci. **112**, 82 (1997).
- ⁴³⁶ V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson, and T. Uustare, Appl. Surf. Sci. **134**, 78 (1998).
- ⁴³⁷ A. Suisalu, J. Aarik, H. Mändar, and I. Sildos, Thin Solid Films 336, 295 (1998).
- ⁴³⁸ A. Rosental, A. Tarre, P. Adamson, A. Gerst, A. Kasikov, and A. Niilisk, Appl. Surf. Sci. **142**, 204 (1999).
- ⁴³⁹ V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, and L. Niinistö, J. Anal. At. Spectrom. 14, 523 (1999).
- ⁴⁴⁰ K. Schrijnemakers, N. R. E. N. Impens, and E. F. Vansant, Langmuir 15, 5807 (1999).
- ⁴⁴¹ A. Turković, Mater. Sci. Eng., B **75**, 85 (2000).
- ⁴⁴² J. Aarik, A. Aidla, H. Mändar, and V. Sammelselg, J. Cryst. Growth **220**, 531 (2000).
- ⁴⁴³ R. Matero, A. Rahtu, and M. Ritala, Chem. Mater. **13**, 4506 (2001).
- ⁴⁴⁴ J. Aarik, A. Aidla, H. Mändar, and T. Uustare, Appl. Surf. Sci. 172, 148 (2001).
- ⁴⁴⁵ A. Tarre, A. Rosental, V. Sammelselg, and T. Uustare, Appl. Surf. Sci. **175/176**, 111 (2001).
- ⁴⁴⁶ J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, and A. Hårsta, J. Cryst. Growth **242**, 189 (2002).
- ⁴⁴⁷ B. J. Ninness, D. W. Bousfield, and C. P. Tripp, Colloids Surf., A **214**, 195 (2003).
- ⁴⁴⁸ K. S. Finnie, G. Triani, K. T. Short, D. R. G. Mitchell, D. J. Attard, J. R. Bartlett, and C. J. Barbé, Thin Solid Films **440**, 109 (2003).
- ⁴⁴⁹ D. R. G. Mitchell, D. J. Attard, and G. Triani, Thin Solid Films 441, 85 (2003).
- ⁴⁵⁰ J. D. Ferguson, A. R. Yoder, A. W. Weimer, and S. M. George, Appl. Surf. Sci. **226**, 393 (2004).
- ⁴⁵¹ X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
- ⁴⁵² M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Adv. Mater. **16**, 2052 (2004).
- ⁴⁵³ W. Gu and C. P. Tripp, Langmuir **21**, 211 (2005).

- ⁴⁵⁴ H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, and M. Suzuki, Thin Solid Films **263**, 47 (1995).
- ⁴⁵⁵ J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **193**, 277 (2002).
- ⁴⁵⁶ K. Kukli, M. Ritala, M. Schusky, M. Leskelä, T. Sajavaara, J. Keinonen, T. Uustare, and A. Hårsta, Chem. Vap. Deposition 6, 303 (2000).
- ⁴⁵⁷ K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Håsta, M. Ritala, and M. Leskelä, Langmuir 16, 8122 (2000).
- ⁴⁵⁸ M. Schuisky, A. Hårsta, A. Aidla, K. Kukli, A.-A. Kiisler, and J. Aarik, J. Electrochem. Soc. **147**, 3319 (2000).
- ⁴⁵⁹ M. Schuisky, J. Aarik, K. Kukli, A. Aidla, and A. Hårsta, Langmuir **17**, 5508 (2001).
- ⁴⁶⁰ M. Schuisky, K. Kukli, J. Aarik, J. Lu, and A. Hårsta, J. Cryst. Growth **235**, 293 (2002).
- ⁴⁶¹ V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, and J. Keinonen, Chem. Vap. Deposition **10**, 143 (2004).
- ⁴⁶² M. Ritala, M. Leskelä, and E. Rauhala, Chem. Mater. **6**, 556 (1994).
- ⁴⁶³ J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskelä, Thin Solid Films **370**, 163 (2000).
- ⁴⁶⁴ J. Aarik, J. Karlis, H. Mändar, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. **181**, 339 (2001).
- ⁴⁶⁵ A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater. **13**, 817 (2001).
- ⁴⁶⁶ I.-D. Kim, H. L. Tuller, H.-S. Kim, and J.-S. Park, Appl. Phys. Lett. **85**, 4705 (2004).
- ⁴⁶⁷ H. Döring, K. Hashimoto, and A. Fujushima, Ber. Bunsen-Ges. Phys. Chem **96**, 620 (1992).
- ⁴⁶⁸ M. Ritala, M. Leskelä, L. Niinistö, and P. Haussalo, Chem. Mater. 5, 1174 (1993).
- ⁴⁶⁹ J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **161**, 385 (2000).
- ⁴⁷⁰ A. Rahtu and M. Ritala, Chem. Vap. Deposition **8**, 21 (2002).
- ⁴⁷¹ H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. **16**, 1197 (2004).
- ⁴⁷² J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. **7**, H33 (2004).
- ⁴⁷³ D. K. Jeong, N. H. Park, S. H. Jung, W. G. Jung, H. Shin, J. G. Lee, and J. Y. Kim, Mater. Sci. Forum **449-452**, 1165 (2004).
- ⁴⁷⁴ D. Jeong, J. Lee, H. Shin, J. Lee, J. Kim, and M. Sung, J. Korean Phys. Soc. **45**, 1249 (2004).
- ⁴⁷⁵ J. Keränen, E. Iiskola, C. Guimon, A. Auroux, and L. Niinistö, in *Proceedings of the 8th International Symposium "Scientific Bases for the Preparation of Heterogeneous Catalysts," Louvain-la-Neuve, Belgium, September 9-12, 2002*, edited by E. Gaigneaux, D. E. De Vos, P. Grange, P. A. Jacobs, J. A. Martens, P. Ruiz, and G. Poncelet (Elsevier, Amsterdam, 2002), vol. 143 of Stud. Surf. Sci. Catal., pp. 777–785.
- ⁴⁷⁶ D.-S. Kil, J.-M. Lee, and J.-S. Roh, Chem. Vap. Deposition 8, 195 (2002).
- ⁴⁷⁷ S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
- ⁴⁷⁸ J. P. Lee, M. H. Park, T. M. Chung, Y. Kim, and M. M. Sung, Bull. Korean Chem. Soc. **25**, 475 (2004).
- ⁴⁷⁹ J. J. Park, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, and S. G. Yoon, Integr. Ferroelectr. **68**, 129 (2004).
- ⁴⁸⁰ L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, and P. Soininen, Thin Solid Films **166**, 149 (1988).
- ⁴⁸¹ M. Ritala, M. Leskelä, E. Rauhala, and P. Haussalo, J. Electrochem. Soc. **142**, 2731 (1995).
- ⁴⁸² M. Ritala, T. Asikainen, M. Leskelä, J. Jokinen, R. Lappalainen, M. Utriainen, L. Niinistö, and E. Ristolainen, Appl. Surf. Sci. **120**, 199 (1997).

- ⁴⁸³ P. Mårtensson, M. Juppo, M. Ritala, M. Leskelä, and J.-O. Carlsson, J. Vac. Sci. Technol., B **17**, 2122 (1999).
- ⁴⁸⁴ J. Uhm, S. Lee, J. Lee, Y. D. Kim, H. Jeon, T. Cha, and K. Yi, J. Korean Phys. Soc. **35**, S765 (1999).
- ⁴⁸⁵ C. H. Ahn, S. G. Cho, H. J. Lee, K. H. Park, and S. H. Jeong, Met. Mater. Int. 7, 621 (2001).
- ⁴⁸⁶ J. Uhm and H. Jeon, Jpn. J. Appl. Phys., Part 1 **40**, 4657 (2001).
 ⁴⁸⁷ M. Juppo, A. Rahtu, and M. Ritala, Chem. Mater. **14**, 281 (2002).
- ⁴⁸⁸ A. Satta, J. Schuhmacher, C. M. Whelan, W. Vandervorst, S. H. Brongersma, G. P. Beyer, K. Maex, A. Vantomme, M. M. Viitanen, H. H. Brongersma, et al., J. Appl. Phys. **92**, 7641 (2002).
- ⁴⁸⁹ S. Li, Z. L. Dong, B. K. Lim, M. H. Liang, C. Q. Sun, W. Gao, H. S. Park, and T. White, J. Phys. Chem. B **106**, 12797 (2002).
- ⁴⁹⁰ K.-E. Elers, V. Saanila, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Chem. Vap. Deposition 8, 149 (2002).
- ⁴⁹¹ K.-E. Elers, V. Saanila, W.-M. Li, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Thin Solid Films 434, 94 (2003).
- ⁴⁹² J. Kim, H. Hong, S. Ghosh, K.-Y. Oh, and C. Lee, Jpn. J. Appl. Phys., Part 1 42, 1375 (2003).
- ⁴⁹³ J. Kim, H. Hong, K. Oh, and C. Lee, Appl. Surf. Sci. **210**, 231 (2003).
- ⁴⁹⁴ A. Satta, A. Vantomme, J. Schuhmacher, C. M. Whelan, V. Sutcliffe, and K. Maex, Appl. Phys. Lett. 84, 4571 (2004).
- ⁴⁹⁵ M. Juppo, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **147**, 3377 (2000).
- ⁴⁹⁶ M. Juppo, P. Alén, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Electrochem. Solid-State Lett. 5, C4 (2002).
- ⁴⁹⁷ M. Ritala, M. Leskelä, E. Rauhala, and J. Jokinen, J. Electrochem. Soc. **145**, 2914 (1998).
- ⁴⁹⁸ J.-S. Min, H.-S. Park, and S.-W. Kang, Appl. Phys. Lett. **75**, 1521 (1999).
- ⁴⁹⁹ J.-W. Lim, J.-S. Park, and S.-W. Kang, J. Appl. Phys. **87**, 4632 (2000).
- ⁵⁰⁰ J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Appl. Phys. **88**, 6327 (2000).
- ⁵⁰¹ J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 148, C403 (2001).
- ⁵⁰² J. H. Yun, E. S. Choi, C. M. Jang, and C. S. Lee, Jpn. J. Appl. Phys., Part 2 **41**, L418 (2002).
- ⁵⁰³ J. Y. Kim, H. K. Kim, Y. Kim, Y. D. Kim, W. M. Kim, and H. Jeon, J. Korean Phys. Soc. 40, 176 (2002).
- ⁵⁰⁴ H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, J. Korean Phys. Soc. 41, 739 (2002).
- ⁵⁰⁵ J. W. Elam, M. Schuisky, J. D. Ferguson, and S. M. George, Thin Solid Films **436**, 145 (2003).
- ⁵⁰⁶ J. Y. Kim, G. H. Choi, Y. D. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 **42**, 4245 (2003).
- ⁵⁰⁷ S. G. Park and D.-H. Kim, Jpn. J. Appl. Phys., Part 1 43, 303 (2004).
- ⁵⁰⁸ J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Korean Phys. Soc. **45**, 1639 (2004).
- ⁵⁰⁹ J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Electrochem. Soc. **152**, G29 (2005).
- ⁵¹⁰ J. Y. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 2 42, L414 (2003).
- ⁵¹¹ D.-H. Kim, Y. J. Kim, J.-H. Park, and J. H. Kim, Mater. Sci. Eng. C 24, 289 (2004).
- ⁵¹² J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, J. Vac. Sci. Technol., A **22**, 8 (2004).
- ⁵¹³ J.-S. Min, Y.-W. Son, W.-G. Kang, S.-S. Chun, and S.-W. Kang, Jpn. J. Appl. Phys., Part 1 **37**, 4999 (1998).

- ⁵¹⁴ D.-J. Kim, Y.-B. Jung, M.-B. Lee, Y.-H. Lee, J.-H. Lee, and J.-H. Lee, Thin Solid Films **372**, 276 (2000).
- ⁵¹⁵ S. M. Rossnagel, A. Sherman, and F. Turner, J. Vac. Sci. Technol., B **18**, 2016 (2000).
- ⁵¹⁶ H. Kim and S. M. Rossnagel, J. Vac. Sci. Technol., A **20**, 802 (2002).
- ⁵¹⁷ A. Rahtu, M. Ritala, and M. Leskelä, Chem. Mater. **13**, 1528 (2001).
- ⁵¹⁸ A. Rahtu and M. Ritala, Langmuir **18**, 10046 (2002).
- ⁵¹⁹ J. C. Badot, S. Ribes, E. B. Yousfi, V. Vivier, J. P. Pereira-Ramos, N. Baffier, and D. Lincot, Electrochem. Solid-State Lett. **3**, 485 (2000).
- ⁵²⁰ J. C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, and D. Lincot, J. Mater. Chem. 14, 3411 (2004).
- ⁵²¹ J. Keranen, C. Guimon, E. Iiskola, A. Auroux, and L. Niinisto, J. Phys. Chem. B **107**, 10773 (2003).
- ⁵²² J. Keränen, C. Guimon, A. Auroux, E. I. Iiskola, and L. Niinistö, Phys. Chem. Chem. Phys. 5, 5333 (2003).
- ⁵²³ J. Keränen, C. Guimon, E. Liskola, A. Auroux, and L. Niinistö, Catal. Today **78**, 149 (2003).
- ⁵²⁴ J. Keränen, A. Auroux, S. Ek, and L. Niinistö, Appl. Catal., A 228, 213 (2002).
- ⁵²⁵ A. Gervasini, P. Carniti, J. Keränen, L. Niinistö, and A. Auroux, Catal. Today 96, 187 (2004).
- ⁵²⁶ S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 75, 220 (1994).
- ⁵²⁷ A. Kytökivi, J.-P. Jacobs, A. Hakuli, J. Meriläinen, and H. H. Brongersma, J. Catal. **162**, 190 (1996).
- ⁵²⁸ A. Hakuli, A. Kytökivi, and A. O. I. Krause, Appl. Catal., A **190**, 219 (2000).
- ⁵²⁹ J. M. Kanervo and A. O. I. Krause, J. Phys. Chem. B **105**, 9778 (2001).
- ⁵³⁰ R. L. Puurunen, S. M. K. Airaksinen, and A. O. I. Krause, J. Catal. **213**, 281 (2003).
- ⁵³¹ O. Nilsen, M. Peussa, H. Fjellvåg, L. Niinistö, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).
- ⁵³² O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 444, 44 (2003).
- ⁵³³ O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 468, 65 (2004).
- ⁵³⁴ M. A. Herman, O. Jylhä, and M. Pessa, J. Cryst. Growth 66, 480 (1984).
- ⁵³⁵ M. Pessa and O. Jylhä, Appl. Phys. Lett. **45**, 646 (1984).
- ⁵³⁶ W. Faschinger, F. Hauzenberger, P. Juza, A. Pesek, and H. Sitter, J. Electron. Mater. 22, 497 (1993).
- ⁵³⁷ W. Faschinger, Phys. Scr. **T49**, 492 (1993).
- ⁵³⁸ J. M. Hartmann, G. Feuillet, M. Charleux, and H. Mariette, J. Appl. Phys. **79**, 3035 (1996).
- ⁵³⁹ J. M. Hartmann, M. Charleux, J. L. Rouvière, and H. Mariette, Appl. Phys. Lett. **70**, 1113 (1997).
- ⁵⁴⁰ S. Kuroda, Y. Terai, K. Takita, T. Okuno, and Y. Masumoto, J. Cryst. Growth **184/185**, 274 (1998).
- ⁵⁴¹ F. Kany, J. M. Hartmann, H. Ulmer-Tuffigo, and H. Mariette, Superlattices Microstruct. 23, 1359 (1998).
- ⁵⁴² J. M. Hartmann, F. Kany, M. Charleux, Y. Samson, J. L. Rouvière, and H. Mariette, J. Appl. Phys. **84**, 4300 (1998).
- ⁵⁴³ J. M. Hartmann, F. Kany, F. Chautain, J. L. Rouvière, A. Wasiela, and H. Mariette, J. Cryst. Growth **184/185**, 279 (1998).
- ⁵⁴⁴ M. de Ridder, P. C. van de Ven, R. G. van Welzenis, H. H. Brongersma, S. Helfensteyn, C. Creemers, P. Van Der Voort, M. Baltes, M. Mathieu, and E. F. Vansant, J. Phys. Chem. B **106**, 13146 (2002).
- ⁵⁴⁵ O. Nilsen, M. Lie, S. Foss, H. Fjellvåg, and A. Kjekshus, Appl.

Surf. Sci. 227, 40 (2004).

- ⁵⁴⁶ B. S. Lim, A. Rahtu, and R. G. Gordon, Nat. Mater. 2, 749 (2003).
- ⁵⁴⁷ L. B. Backman, A. Rautiainen, M. Lindblad, and A. O. I. Krause, Appl. Catal., A **191**, 55 (2000).
- ⁵⁴⁸ A. Rautiainen, M. Lindblad, L. B. Backman, and R. L. Puurunen, Phys. Chem. Chem. Phys. **4**, 2466 (2002).
- ⁵⁴⁹ L. B. Backman, A. Rautiainen, A. O. I. Krause, and M. Lindblad, Catal. Today 43, 11 (1998).
- ⁵⁵⁰ L. B. Backman, A. Rautiainen, M. Lindblad, O. Jylhä, and A. O. I. Krause, Appl. Catal., A 208, 223 (2001).
- ⁵⁵¹ V. G. Milt, M. A. Ulla, and E. A. Lombardo, Catal. Lett. **65**, 67 (2000).
- ⁵⁵² V. G. Milt, M. A. Ulla, and E. A. Lombardo, J. Catal. **200**, 241 (2001).
- ⁵⁵³ V. G. Milt, E. A. Lombardo, and M. A. Ulla, Appl. Catal., B **37**, 63 (2002).
- ⁵⁵⁴ R. L. Puurunen, T. A. Zeelie, and A. O. I. Krause, Catal. Lett. **83**, 27 (2002).
- ⁵⁵⁵ H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, and L.-S. Johansson, Appl. Surf. Sci. **112**, 243 (1997).
- ⁵⁵⁶ J. Chae, H.-S. Park, and S. W. Kang, Electrochem. Solid-State Lett. 5, C64 (2002).
- ⁵⁵⁷ M. Lindblad, L. P. Lindfors, and T. Suntola, Catal. Lett. **27**, 323 (1994).
- ⁵⁵⁸ J. P. Jacobs, L. P. Lindfors, J. G. H. Reintjes, O. Jylhä, and H. H. Brongersma, Catal. Lett. **25**, 315 (1994).
- ⁵⁵⁹ P. Mäki-Arvela, L. P. Tiainen, M. Lindblad, K. Demirkan, R. S. N. Kumar, T. Ollonqvist, J. Väyrynen, T. Salmi, and D. Yu. Murzin, Appl. Catal., A **241**, 271 (2003).
- ⁵⁶⁰ M. Utriainen, M. Kröger-Laukkanen, and L. Niinistö, Mater. Sci. Eng., B 54, 98 (1998).
- ⁵⁶¹ M. Utriainen, M. Kröger-Laukkanen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 157, 151 (2000).
- ⁵⁶² H. Seim, H. Mölsä, M. Nieminen, H. Fjellvåg, and L. Niinistö, J. Mater. Chem. 7, 449 (1997).
- ⁵⁶³ R. G. van Welzenis, R. A. M. Bink, and H. H. Brongersma, Appl. Surf. Sci. **107**, 255 (1996).
- ⁵⁶⁴ A. M. Molenbroek, S. Haukka, and B. S. Clausen, J. Phys. Chem. B **102**, 10680 (1998).
- ⁵⁶⁵ J. S. Huo, R. Solanki, and J. McAndrew, J. Mater. Res. **17**, 2394 (2002).
- ⁵⁶⁶ L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, J. Phys. IV **11**, Pr3/1103 (2001).
- ⁵⁶⁷ B. Meester, L. Reijnen, A. Goossens, and J. Schoonman, J. Phys. IV **11**, Pr3/1147 (2001).
- ⁵⁶⁸ J. Johansson, J. Kostamo, M. Karppinen, and L. Niinistö, J. Mater. Chem. **12**, 1022 (2002).
- ⁵⁶⁹ L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, Chem. Vap. Deposition **9**, 15 (2003).
- ⁵⁷⁰ P. Mårtensson and J.-O. Carlsson, Chem. Vap. Deposition 3, 45 (1997).
- ⁵⁷¹ T. Törndahl, M. Ottosson, and J.-O. Carlsson, Thin Solid Films **458**, 129 (2004).
- ⁵⁷² A. Johansson, T. Törndahl, L. M. Ottosson, M. Boman, and J.-O. Carlsson, Mater. Sci. Eng., C 23, 823 (2003).
- ⁵⁷³ M. Juppo, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol., A 15, 2330 (1997).
- ⁵⁷⁴ A. Niskanen, A. Rahtu, T. Sajavaara, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **152**, G25 (2005).
- ⁵⁷⁵ P. Mårtensson and J.-O. Carlsson, J. Electrochem. Soc. **145**, 2926 (1998).
- ⁵⁷⁶ A. U. Mane and S. A. Shivashankar, Mater. Sci. Semicond. Process. 7, 343 (2004).

- ⁵⁷⁷ R. Solanki and B. Pathangey, Electrochem. Solid-State Lett. 3, 479 (2000).
- ⁵⁷⁸ K. Kopalko, M. Godlewski, E. Guziewicz, E. Łusakowska, W. Paszkowicz, J. Domagała, E. Dynowska, A. Szczerbakow, A. Wójcik, and M. R. Phillips, Vacuum 74, 269 (2004).
- ⁵⁷⁹ K. S. A. Butcher, P. Afifuddin, P.-T. Chen, M. Godlewski, A. Szczerbakow, E. M. Goldys, T. L. Tansley, and J. A. Freitas, Jr., J. Cryst. Growth **246**, 237 (2002).
- ⁵⁸⁰ K. Kaiya, N. Yoshii, N. Takahashi, and T. Nakamura, J. Mater. Sci. Lett. **19**, 2089 (2000).
- ⁵⁸¹ K. Kaiya, N. Yoshii, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H. Yamamoto, Chem. Mater. **13**, 1952 (2001).
- ⁵⁸² K. Kopalko, M. Godlewski, J. Z. Domagala, E. Lusakowska, R. Minikayev, W. Paszkowicz, and A. Szczerbakow, Chem. Mater. 16, 1447 (2004).
- ⁵⁸³ B. W. Sanders and A. Kitai, Chem. Mater. **4**, 1005 (1992).
- ⁵⁸⁴ V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, Appl. Surf. Sci. 82/83, 34 (1994).
- ⁵⁸⁵ B. Sang and M. Konagai, Jpn. J. Appl. Phys., Part 2 35, L602 (1996).
- ⁵⁸⁶ K. Saito, Y. Watanabe, K. Takahashi, T. Matsuzawa, B. Sang, and M. Konagai, Sol. Energy Mater. Sol. Cells **49**, 187 (1997).
- ⁵⁸⁷ A. Yamada, B. Sang, and M. Konagai, Appl. Surf. Sci. **112**, 216 (1997).
- ⁵⁸⁸ B. Sang, A. Yamada, and M. Konagai, Sol. Energy Mater. Sol. Cells **49**, 19 (1997).
- ⁵⁸⁹ B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 2 37, L1125 (1998).
- ⁵⁹⁰ B. Sang, K. Dairiki, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 **38**, 4983 (1999).
- ⁵⁹¹ S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 38, 4989 (1999).
- ⁵⁹² A. Yamada and M. Konagai, Solid State Phenom. **67/68**, 237 (1999).
- ⁵⁹³ A. W. Ott and R. P. H. Chang, Mater. Chem. Phys. 58, 132 (1999).
- ⁵⁹⁴ A. Shimizu, S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Thin Solid Films **361/362**, 193 (2000).
- ⁵⁹⁵ E. B. Yousfi, J. Fouache, and D. Lincot, Appl. Surf. Sci. **153**, 223 (2000).
- ⁵⁹⁶ E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla, and D. Lincot, Thin Solid Films **361/362**, 183 (2000).
- ⁵⁹⁷ E. B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, and D. Lincot, Thin Solid Films **387**, 29 (2001).
- ⁵⁹⁸ Y. Yamamoto, K. Saito, K. Takahashi, and M. Konagai, Sol. Energy Mater. Sol. Cells 65, 125 (2001).
- ⁵⁹⁹ C. H. Liu, M. Yan, X. Liu, E. Seelig, and R. P. H. Chang, Chem. Phys. Lett. **355**, 43 (2002).
- ⁶⁰⁰ C. H. Liu and R. P. H. Chang, J. Chem. Phys. **116**, 8139 (2002).
- ⁶⁰¹ J. Sterner, J. Kessler, and L. Stolt, J. Vac. Sci. Technol., A 20, 278 (2002).
- ⁶⁰² M. Schuisky, J. W. Elam, and S. M. George, Appl. Phys. Lett. 81, 180 (2002).
- ⁶⁰³ J. Lim, K. Shin, K. W. Kim, and C. Lee, Mater. Sci. Eng., B 107, 301 (2004).
- ⁶⁰⁴ J. Lim, K. Shin, H. W. Kim, and C. Lee, J. Lumin. **109**, 181 (2004).
- ⁶⁰⁵ S.-H. K. Park and Y. E. Lee, J. Mater. Sci. **39**, 2195 (2004).
- ⁶⁰⁶ J. Lim, K. Shin, H. Kim, and C. Lee, Thin Solid Films **475**, 256 (2005).
- ⁶⁰⁷ J. D. Ferguson, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol., A **23**, 118 (2005).
- ⁶⁰⁸ M. Tammenmaa, T. Koskinen, L. Hiltunen, L. Niinistö, and M. Leskelä, Thin Solid Films **124**, 125 (1985).

- ⁶⁰⁹ K. Kobayashi and S. Okudaira, Chem. Lett. 26, 511 (1997).
- ⁶¹⁰ A. Wójcik, K. Kopalko, M. Godlewski, E. Łusakowska, W. Paszkowicz, K. Dybko, J. Domagała, A. Szczerbakow, and E. Kamińska, Acta Phys. Pol. A **105**, 667 (2004).
- ⁶¹¹ W. Faschinger, P. Juza, S. Ferreira, H. Zajicek, A. Pesek, H. Sitter, and K. Lischka, Thin Solid Films **225**, 270 (1993).
- ⁶¹² T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth **148**, 223 (1995).
- ⁶¹³ A. Koukitu, T. Miyazawa, H. Ikeda, and H. Seki, J. Cryst. Growth **123**, 95 (1992).
- ⁶¹⁴ M. Pessa, R. Mäkelä, and T. Suntola, Appl. Phys. Lett. **38**, 131 (1981).
- ⁶¹⁵ J. A. Lahtinen, A. Lu, T. Tuomi, and M. Tammenmaa, J. Appl. Phys. **58**, 1851 (1985).
- ⁶¹⁶ M. Oikkonen, J. Appl. Phys. **62**, 1385 (1987).
- ⁶¹⁷ J. Hyvärinen, M. Sonninen, and R. Törnqvist, J. Cryst. Growth 86, 695 (1988).
- ⁶¹⁸ M. Oikkonen, M. Tammenmaa, and M. Asplund, Mater. Res. Bull. **23**, 133 (1988).
- ⁶¹⁹ M. Oikkonen, T. Tuomi, and M. Luomajärvi, J. Appl. Phys. **63**, 1070 (1988).
- ⁶²⁰ V. Balek, J. Fusek, O. Kříž, M. Leskelä, L. Niinistö, E. Nykänen, J. Rautanen, and P. Soininen, J. Mater. Res. 9, 119 (1994).
- ⁶²¹ J. Ihanus, M. Ritala, M. Leskelä, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. **120**, 43 (1997).
- ⁶²² J. Ihanus, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. **112**, 154 (1997).
- ⁶²³ A. Szczerbakow, M. Godlewski, E. Dynowska, V. Yu. Ivanov, K. Świątek, E. M. Goldys, and M. R. Phillips, Acta Phys. Pol., A **97**, 579 (1998).
- ⁶²⁴ A. Szczerbakow, E. Dynowska, M. Godlewski, and K. Swiatek, J. Cryst. Growth **183**, 708 (1998).
- ⁶²⁵ S. J. Yun, S. Dey, and K. S. Nam, J. Korean Phys. Soc. **33**, S454 (1998).
- ⁶²⁶ J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, and D. Morton, Appl. Phys. Lett. 83, 2566 (2003).
- ⁶²⁷ A. Hunter and A. H. Kitai, J. Cryst. Growth **91**, 111 (1988).
- ⁶²⁸ M. D. Bhise, B. Sanders, N. Dalacu, and A. H. Kitai, J. Mater. Sci. 24, 3164 (1989).
- ⁶²⁹ Y.-H. Wu, T. Toyoda, Y. Kawakami, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 2 29, L727 (1990).
- ⁶³⁰ S. Yamaga and A. Yoshikawa, J. Cryst. Growth **117**, 152 (1992).
- ⁶³¹ C. H. Liu, M. Yokoyama, and Y. K. Su, Jpn. J. Appl. Phys., Part 1 35, 5416 (1996).
- ⁶³² C. H. Liu, M. Yokoyama, Y. K. Su, and N. C. Lee, Jpn. J. Appl. Phys., Part 1 35, 2749 (1996).
- ⁶³³ C.-T. Hsu, M. Yokoyama, and Y. K. Su, Mater. Chem. Phys. **51**, 102 (1997).
- ⁶³⁴ C. T. Hsu, Thin Solid Films **335**, 284 (1998).
- ⁶³⁵ M. Yokoyama and N.-T. Chen, J. Cryst. Growth **223**, 369 (2001).
- ⁶³⁶ G. Stuyven, P. De Visschere, A. Hikavyy, and K. Neyts, J. Cryst. Growth **234**, 690 (2002).
- ⁶³⁷ Y. S. Kim and S. J. Yun, Appl. Surf. Sci. **229**, 105 (2004).
- ⁶³⁸ H. Fujiwara, H. Kiryu, and I. Shimizu, J. Appl. Phys. **77**, 3927 (1995).
- ⁶³⁹ M. Oikkonen, M. Blomberg, T. Tuomi, and M. Tammenmaa, Thin Solid Films **124**, 317 (1985).
- ⁶⁴⁰ T. Yao and T. Takeda, Appl. Phys. Lett. **48**, 160 (1986).
- ⁶⁴¹ T. Yao, T. Takeda, and R. Watanuki, Appl. Phys. Lett. **48**, 1615 (1986).
- ⁶⁴² T. Yao, Jpn. J. Appl. Phys., Part 2 **25**, L544 (1986).

- ⁶⁴³ T. Takeda, T. Kurosu, M. Lida, and T. Yao, Surf. Sci. **174**, 548 (1996).
- ⁶⁴⁴ T. Yao, Jpn. J. Appl. Phys., Part 2 25, L942 (1986).
- ⁶⁴⁵ S. Dosho, Y. Takemura, M. Konagai, and K. Takahashi, J. Cryst. Growth **95**, 580 (1989).
- ⁶⁴⁶ Y. Takemura, M. Konagai, K. Yamasaki, C. H. Lee, and K. Takahashi, J. Electron. Mater. **22**, 437 (1993).
- ⁶⁴⁷ M. Konagai, Y. Takemura, K. Yamasaki, and K. Takahashi, Thin Solid Films **225**, 256 (1993).
- ⁶⁴⁸ H. Akinaga and K. Tanaka, Appl. Surf. Sci. **82/83**, 298 (1994).
- ⁶⁴⁹ Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 34, 5949 (1995).
- ⁶⁵⁰ K. Arai, Z. Q. Zhu, T. Sekiguchi, T. Yasuda, F. Lu, N. Kuroda, Y. Segawa, and T. Yao, J. Cryst. Growth **184/185**, 254 (1998).
- ⁶⁵¹ A. Szczerbakow, E. Dynowska, K. Swiatek, and M. Godlewski, J. Cryst. Growth **207**, 148 (1999).
- ⁶⁵² A. Ohtake, T. Hanada, T. Yasuda, K. Arai, and T. Yao, Phys. Rev. B **60**, 8326 (1999).
- ⁶⁵³ A. Ohtake, T. Hanada, K. Arai, T. Komura, S. Miwa, K. Kimura, T. Yasuda, C. Jin, and T. Yao, J. Cryst. Growth **201/202**, 490 (1999).
- ⁶⁵⁴ E. Guziewicz, M. Godlewski, K. Kopalko, E. Lusakowska, E. Dynowska, M. Guziewicz, M. M. Godlewski, and M. Phillips, Thin Solid Films **446**, 172 (2004).
- ⁶⁵⁵ J. Y. Lee, J. H. Chang, M. Yang, H. S. Ahn, S. N. Yi, K. Goto, K. Godo, H. Makino, M. Cho, T. Yao, et al., Curr. Appl. Phys. 4, 611 (2004).
- ⁶⁵⁶ A. Koukitu, A. Saegusa, M. Kitho, H. Ikeda, and H. Seki, Jpn. J. Appl. Phys., Part 2 **31**, L2165 (1992).
- ⁶⁵⁷ R. Kimura, M. Konagai, and K. Takahashi, J. Cryst. Growth 116, 283 (1992).
- ⁶⁵⁸ C. D. Lee, B. H. Lim, C. Lim, H. L. Park, C. H. Chung, and S. K. Chang, J. Cryst. Growth **117**, 148 (1992).
- ⁶⁵⁹ C. D. Lee, B. K. Kim, J. W. Kim, S. K. Chang, and S. H. Suh, J. Appl. Phys. **76**, 928 (1994).
- ⁶⁶⁰ C. D. Lee, B. K. Kim, J. W. Kim, H. L. Park, C. H. Chung, S. K. Chang, J. I. Lee, and S. K. Noh, J. Cryst. Growth **138**, 136 (1994).
- ⁶⁶¹ A. Yoshikawa, T. Okamoto, H. Yasuda, S. Yamaga, and H. Kasai, J. Cryst. Growth **101**, 86 (1990).
- ⁶⁶² A. Yoshikawa, M. Kobayashi, and S. Tokita, Appl. Surf. Sci. 82/83, 316 (1994).
- ⁶⁶³ I. Bhat and S. Akram, J. Cryst. Growth **138**, 127 (1994).
- ⁶⁶⁴ C. D. Lee, S. I. Min, and S. K. Chang, J. Korean Phys. Soc. 28, S136 (1995).
- ⁶⁶⁵ C. D. Lee, S. I. Min, and S. K. Chang, J. Cryst. Growth **159**, 108 (1996).
- 666 C.-T. Hsu, Jpn. J. Appl. Phys., Part 1 35, 4476 (1996).
- ⁶⁶⁷ C.-T. Hsu, J. Cryst. Growth **193**, 33 (1998).
- ⁶⁶⁸ C.-T. Hsu, Mater. Chem. Phys. **52**, 240 (1998).
- ⁶⁶⁹ C. T. Hsu, Mater. Chem. Phys. **58**, 6 (1999).
- ⁶⁷⁰ M. Yokoyama, N. T. Chen, and H. Y. Ueng, J. Cryst. Growth 212, 97 (2000).
- ⁶⁷¹ Y. G. Kim, Y. S. Joh, J. H. Song, K. S. Baek, S. K. Chang, and E. D. Sim, Appl. Phys. Lett. 83, 2656 (2003).
- ⁶⁷² W. S. Rees, D. M. Green, T. J. Anderson, E. Bretschneider, B. Pathangey, C. Park, and J. Kim, J. Electron. Mater. **21**, 361 (1992).
- ⁶⁷³ Y. Takemura, H. Nakanishi, M. Konagai, and K. Takahashi, Jpn. J. Appl. Phys. **30**, L246 (1991).
- ⁶⁷⁴ Y. Takemura, M. Konagai, H. Nakanishi, and K. Takahashi, J. Cryst. Growth **117**, 144 (1992).
- ⁶⁷⁵ F. Hauzenberger, W. Faschinger, P. Juza, A. Pesek, K. Lischka, and H. Sitter, Thin Solid Films **225**, 265 (1993).

- ⁶⁷⁶ B. Daudin, S. Tatarenko, and D. Brun-Le Cunff, Phys. Rev. B 52, 7822 (1995).
- ⁶⁷⁷ J. T. Sadowski and M. A. Herman, Appl. Surf. Sci. **112**, 148 (1997).
- ⁶⁷⁸ E. M. Larramendi, E. Purón, L. C. Hernández, M. Sánchez, S. De Roux, O. de Melo, G. Romero-Paredes, R. Peña-Sierra, and M. Tamura, J. Cryst. Growth **223**, 447 (2001).
- ⁶⁷⁹ E. M. Larramendi, E. López-Luna, O. De Melo, and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1725 (2002).
- ⁶⁸⁰ W.-S. Wang, H. Ehsani, and I. Bhat, J. Electron. Mater. **22**, 873 (1993).
- ⁶⁸¹ M. Nieminen, L. Niinistö, and E. Rauhala, J. Mater. Chem. 6, 27 (1996).
- ⁶⁸² M. Utriainen, S. Lehto, L. Niinistö, C. Düsco, N. Q. Khanh, Z. E. Horváth, I. Bársony, and B. Pécz, Thin Solid Films **297**, 39 (1997).
- ⁶⁸³ C. Adelmann, E. Martinez-Guerrero, J. Barjon, J. Brault, L. S. Dang, H. Mariette, G. Mula, and B. Daudin, Phys. Status Solidi A **188**, 673 (2001).
- ⁶⁸⁴ C. Adelmann, J. Brault, J.-L. Rouvière, H. Mariette, G. Mula, and B. Daudin, J. Appl. Phys. **91**, 5498 (2002).
- ⁶⁸⁵ A. Koukitu, Y. Kumagai, T. Taki, and H. Seki, Jpn. J. Appl. Phys., Part 1 **38**, 4980 (1999).
- ⁶⁸⁶ Y. Kumagai, M. Mayumi, A. Koukitu, and H. Seki, Appl. Surf. Sci. **159/160**, 427 (2000).
- ⁶⁸⁷ H. Tsuchiya, M. Akamatsu, M. Ishida, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 35, L748 (1996).
- ⁶⁸⁸ N. H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina, N. El-Masry, and S. M. Bedair, Appl. Phys. Lett. **67**, 94 (1995).
- ⁶⁸⁹ K. S. Boutros, F. G. McIntosh, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. El-Masry, Appl. Phys. Lett. **67**, 1856 (1995).
- ⁶⁹⁰ E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, Appl. Phys. Lett. **70**, 461 (1997).
- ⁶⁹¹ S.-C. Huang, H.-Y. Wang, C.-J. Hsu, J.-R. Gong, C.-I. Chiang, S.-L. Tu, and H. Chang, J. Mater. Sci. Lett. **17**, 1281 (1998).
- ⁶⁹² H. Y. Wang, S. C. Huang, T. Y. Yan, J. R. Gong, T. Y. Lin, and Y. F. Chen, Mater. Sci. Eng., B **57**, 218 (1999).
- ⁶⁹³ M. Asif Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. **60**, 1366 (1992).
- ⁶⁹⁴ M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, Appl. Phys. Lett. **60**, 2917 (1992).
- ⁶⁹⁵ J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F. Davis, Thin Solid Films **225**, 244 (1993).
- ⁶⁹⁶ A. Usui, H. Sunakawa, F. J. Stützler, and K. Ishida, Appl. Phys. Lett. **56**, 289 (1990).
- ⁶⁹⁷ B. T. McDermott, K. G. Reid, N. A. El-Masry, S. M. Bedair, W. M. Duncan, X. Yin, and F. H. Pollak, Appl. Phys. Lett. **56**, 1172 (1990).
- ⁶⁹⁸ Y. Sakuma, M. Ozeki, N. Ohtsuka, and K. Kodama, J. Appl. Phys. **68**, 5660 (1990).
- ⁶⁹⁹ B. T. McDermott, N. A. El-Masry, B. L. Jiang, F. Hyuga, S. M. Bedair, and W. M. Duncan, J. Cryst. Growth **107**, 96 (1991).
- ⁷⁰⁰ J. R. Gong, S. Nakamura, M. Leonard, S. M. Bedair, and N. A. El-Masry, J. Electron. Mater. **21**, 965 (1992).
- ⁷⁰¹ H. Isshiki, Y. Aoyagi, and T. Sugano, Microelectron. Eng. 43/44, 301 (1998).
- ⁷⁰² M. Yoshimoto, A. Kajimoto, and H. Matsunami, Thin Solid Films **225**, 70 (1993).
- ⁷⁰³ A. Usui and H. Sunakawa, Jpn. J. Appl. Phys., Part 2 25, L212 (1986).
- ⁷⁰⁴ A. Koukitu, H. Nakai, A. Saegusa, T. Suzuki, O. Nomura, and

H. Seki, Jpn. J. Appl. Phys., Part 2 27, L744 (1988).

- ⁷⁰⁵ J. Ahopelto, H. P. Kattelus, J. Saarilahti, and I. Suni, J. Cryst. Growth **99**, 550 (1990).
- ⁷⁰⁶ A. Koukitu, H. Ikeda, H. Suzuki, and H. Seki, Jpn. J. Appl. Phys., Part 2 **30**, L1712 (1991).
- ⁷⁰⁷ A. Koukitu, H. Ikeda, H. Yasutake, and H. Seki, Jpn. J. Appl. Phys., Part 2 30, L1847 (1991).
 ⁷⁰⁸ C. Sasacha Y. Kata and A. Uuni Jan. J. Appl. Phys. Bart 2 30.
- ⁷⁰⁸ C. Sasaoka, Y. Kato, and A. Usui, Jpn. J. Appl. Phys., Part 2 30, L1756 (1991).
 ⁷⁰⁹ C. Sasaoka, Y. Kata, and A. Usui, J. Crust. Crowth 115, 04
- ⁷⁰⁹ C. Sasaoka, Y. Kato, and A. Usui, J. Cryst. Growth **115**, 94 (1991).
- ⁷¹⁰ K. Nishi, A. Usui, and H. Sakaki, Appl. Phys. Lett. **61**, 31 (1992).
- ⁷¹¹ A. Usui, Thin Solid Films **225**, 53 (1993).
- ⁷¹² K. Nishi, A. Usui, and H. Sakaki, Thin Solid Films **225**, 47 (1993).
- ⁷¹³ Y. Takahashi, M. Yagi, A. Koukitu, and H. Seki, Jpn. J. Appl. Phys., Part 2 **32**, L1277 (1993).
- ⁷¹⁴ A. Koukitu, N. Takahashi, Y. Miura, and H. Seki, Jpn. J. Appl. Phys., Part 2 **33**, L613 (1994).
- ⁷¹⁵ A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth **146**, 467 (1995).
- ⁷¹⁶ A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth **163**, 180 (1996).
- ⁷¹⁷ H. Kattelus, J. Ahopelto, and I. Suni, Acta Polytech. Scand., Electr. Eng. Ser. 64, 155 (1989).
- ⁷¹⁸ Y. Jin, R. Kobayashi, K. Fujii, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 29, L1350 (1990).
- ⁷¹⁹ K. Ishikawa, R. Kobayashi, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 **31**, 1716 (1992).
- ⁷²⁰ R. Kobayashi, K. Ishikawa, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 **31**, L1730 (1992).
- ⁷²¹ R. Kobayashi, S. Narahara, K. Ishikawa, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 **32**, L164 (1993).
- ⁷²² T. Taki and A. Koukitu, Appl. Surf. Sci. **112**, 127 (1997).
- ⁷²³ A. Doi, Y. Aoyagi, and S. Namba, Appl. Phys. Lett. 49, 785 (1986).
- ⁷²⁴ M. A. Tischler and S. M. Bedair, J. Cryst. Growth **77**, 89 (1986).
- ⁷²⁵ M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. 48, 1681 (1986).
- ⁷²⁶ M. A. Tischler, N. G. Anderson, and S. M. Bedair, Appl. Phys. Lett. **49**, 1199 (1986).
- ⁷²⁷ S. P. DenBaars, C. A. Beyler, A. Hariz, and P. D. Dapkus, Appl. Phys. Lett. **51**, 1530 (1987).
- ⁷²⁸ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Appl. Phys. Lett. **53**, 1509 (1988).
- ⁷²⁹ K. Mochizuki, M. Ozeki, K. Kodama, and N. Ohtsuka, J. Cryst. Growth **93**, 557 (1988).
- ⁷³⁰ Y. Ide, B. T. McDermott, M. Hashemi, S. M. Bedair, and W. D. Goodhue, Appl. Phys. Lett. **53**, 2314 (1988).
- ⁷³¹ K. Kitahara, N. Ohtsuka, and M. Ozeki, J. Vac. Sci. Technol., B 7, 700 (1989).
- ⁷³² K. Kodama, M. Ozeki, K. Mochizuki, and N. Ohtsuka, Appl. Phys. Lett. **54**, 656 (1989).
- ⁷³³ P. D. Dapkus, S. P. DenBaars, Q. Chen, W. G. Jeong, and B. Y. Maa, Prog. Cryst. Growth. Charact. Mater. **19**, 137 (1989).
- ⁷³⁴ E. Colas, R. Bhat, B. J. Skromme, and G. C. Nihous, Appl. Phys. Lett. **55**, 2769 (1989).
- ⁷³⁵ Y. Kawakyu, H. Ishikawa, M. Sasaki, and M. Mashita, Jpn. J. Appl. Phys., Part 2 28, L1439 (1989).
- ⁷³⁶ A. Watanabe, T. Isu, M. Hata, T. Kamijoh, and Y. Katayama, Jpn. J. Appl. Phys., Part 2 28, L1080 (1989).
- ⁷³⁷ M. L. Yu, U. Memmert, and T. F. Kuech, Appl. Phys. Lett. 55, 1011 (1989).

- ⁷³⁸ T. H. Chiu, Appl. Phys. Lett. **55**, 1244 (1989).
- ⁷³⁹ B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **19**, 289 (1990).
 ⁷⁴⁰ M. Hashemi, J. Ramdani, B. T. McDermott, K. Reid, and S. M.
- Bedair, Appl. Phys. Lett. **56**, 964 (1990). ⁷⁴¹ K. Kodama, M. Ozeki, Y. Sakuma, K. Mochizuki, and N. Oht-
- suka, J. Cryst. Growth **99**, 535 (1990). ⁷⁴² J. R. Creighton, K. R. Lykke, V. A. Shamamian, and B. D. Kay,
- Appl. Phys. Lett. **57**, 279 (1990).
- ⁷⁴³ T. H. Chiu, J. E. Cunningham, A. Robertson, Jr., and D. L. Malm, J. Cryst. Growth **105**, 155 (1990).
- ⁷⁴⁴ K. Kitahara, N. Ohtsuka, O. Ueda, M. Funagura, and M. Ozeki, Jpn. J. Appl. Phys., Part 2 29, L2457 (1990).
- ⁷⁴⁵ A. Watanabe, T. Kamijoh, M. Hata, T. Isu, and Y. Katayama, Vacuum **41**, 965 (1990).
- ⁷⁴⁶ M. de Keijser and C. van Opdorp, Appl. Phys. Lett. 58, 1187 (1991).
- ⁷⁴⁷ J. R. Gong, P. S. Colter, D. Jung, S. A. Hussien, C. A. Parker, A. Dip, F. Huyga, W. M. Duncam, and S. M. Bedair, J. Cryst. Growth **107**, 83 (1991).
- ⁷⁴⁸ S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. 59, 2148 (1991).
- ⁷⁴⁹ S. Yokoyama, M. Shinohara, and N. Inoue, J. Cryst. Growth 115, 89 (1991).
- ⁷⁵⁰ K. G. Reid, H. M. Urdianyk, and S. M. Bedair, Appl. Phys. Lett. 59, 2397 (1991).
- ⁷⁵¹ M. Sasaki, Y. Kawakyu, H. Ishikawa, and M. Mashita, Jpn. J. Appl. Phys., Part 2 **31**, L1313 (1992).
- ⁷⁵² J. P. Simko, T. Meguro, S. Iwai, K. Ozasa, A. Hirata, Y. Aoyagi, and T. Sugano, Jpn. J. Appl. Phys., Part 2 **31**, L1518 (1992).
- ⁷⁵³ D. E. Aspnes, I. Kamiya, and R. Bhat, J. Vac. Sci. Technol., B 10, 1725 (1992).
- ⁷⁵⁴ N. Kobayashi and Y. Kobayashi, Thin Solid Films **225**, 32 (1993).
- ⁷⁵⁵ M. L. Yu, J. Appl. Phys. **73**, 716 (1993).
- ⁷⁵⁶ M. L. Yu, Thin Solid Films **225**, 7 (1993).
- ⁷⁵⁷ J. R. Creighton and B. A. Bansenauer, Thin Solid Films **225**, 17 (1993).
- ⁷⁵⁸ K. G. Reid, A. F. Myers, N. A. El-Masry, and S. M. Bedair, Thin Solid Films **225**, 59 (1993).
- ⁷⁵⁹ A. Dip, G. M. Eldallal, P. C. Colter, N. Hayafuji, and S. M. Bedair, Appl. Phys. Lett. **62**, 2378 (1993).
- ⁷⁶⁰ H. Liu, P. A. Zawadzki, and P. E. Norris, Thin Solid Films **225**, 105 (1993).
- ⁷⁶¹ M. Mashita, M. Sasaki, Y. Kawakyu, and H. Ishikawa, J. Cryst. Growth **131**, 61 (1993).
- ⁷⁶² H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Phys. Lett. **63**, 1528 (1993).
- ⁷⁶³ C. A. Wang and D. M. Tracy, J. Electron. Mater. **23**, 185 (1994).
- ⁷⁶⁴ S. J. Park, J. S. Ha, J. R. Ro, J. K. Sim, E. H. Lee, and C. Jeon, J. Vac. Sci. Technol., B **12**, 1623 (1994).
- ⁷⁶⁵ H. Yokoyama, M. Tanimoto, M. Shinohara, and N. Inoue, Jpn. J. Appl. Phys., Part 2 33, L1292 (1994).
- ⁷⁶⁶ J. Nishizawa and T. Kurabayashi, Appl. Surf. Sci. **106**, 11 (1996).
- ⁷⁶⁷ J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, Appl. Surf. Sci. **103**, 275 (1996).
- ⁷⁶⁸ J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, J. Cryst. Growth **160**, 21 (1996).
- ⁷⁶⁹ K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, Appl. Surf. Sci. **112**, 102 (1997).
- ⁷⁷⁰ S. Hirose, A. Yoshida, M. Yamaura, and H. Munekata, Appl. Phys. Lett. **74**, 964 (1999).
- ⁷⁷¹ K. Kono, T. Kurabayashi, J. Nishizawa, and M. Esashi, Jpn. J. Appl. Phys., Part 1 **39**, 5737 (2000).

- ⁷⁷² B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. **58**, 1762 (1991).
- ⁷⁷³ B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. **58**, 2261 (1991).
- ⁷⁷⁴ B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **20**, 589 (1991).
- ⁷⁷⁵ Q. Chen, C. A. Beyler, P. D. Dapkus, J. J. Alwan, and J. J. Coleman, Appl. Phys. Lett. **60**, 2418 (1992).
- ⁷⁷⁶ B. Y. Maa and P. D. Dapkus, Thin Solid Films **225**, 12 (1993).
- ⁷⁷⁷ B. Y. Maa, P. D. Dapkus, P. Chen, and A. Madhukar, Appl. Phys. Lett. **62**, 2551 (1993).
- ⁷⁷⁸ M. Y. Jow, B. Y. Maa, T. Morishita, and P. D. Dapkus, J. Electron. Mater. 24, 25 (1995).
- ⁷⁷⁹ E. Arès, S. P. Watkins, P. Yeo, G. A. Horley, P. O'Brien, and A. C. Jones, J. Appl. Phys. **83**, 3390 (1998).
- ⁷⁸⁰ J. A. Gupta, J. C. Woicik, S. P. Watkins, K. E. Miyano, J. G. Pellegrino, and E. D. Crozier, J. Cryst. Growth **195**, 34 (1998).
- ⁷⁸¹ T. Meguro, T. Suzuki, K. Ozaki, Y. Okano, A. Hirata, Y. Yamamoto, S. Iwai, Y. Aoyagi, and S. Namba, J. Cryst. Growth 93, 190 (1988).
- ⁷⁸² H. Ohno, S. Ohtsuka, H. Ishii, Y. Matsubara, and H. Hasegawa, Appl. Phys. Lett. **54**, 2000 (1989).
- ⁷⁸³ Q. Chen and P. D. Dapkus, Thin Solid Films **225**, 115 (1993).
- ⁷⁸⁴ T. Kurabayashi, K. Kono, H. Kikuchi, J. Nishizawa, and M. Esashi, J. Cryst. Growth **229**, 152 (2001).
- ⁷⁸⁵ Y. Oyama, K. Tezuka, K. Suto, and J.-I. Nishizawa, J. Cryst. Growth **246**, 15 (2002).
- ⁷⁸⁶ J. Nishizawa, T. Kurabayashi, P. Płotka, H. Kikuchi, and T. Hamano, J. Cryst. Growth **244**, 236 (2002).
- ⁷⁸⁷ J. Nishizawa, T. Kurabayashi, P. Plotka, H. Kikuchi, and T. Hamano, Mater. Sci. Semicond. Process. 6, 429 (2003).
- ⁷⁸⁸ T. Ohno, Y. Oyama, K. Saito, K. Suto, and J. Nishizawa, Thin Solid Films **464/465**, 123 (2004).
- ⁷⁸⁹ M. Aït-Lhouss, J. L. Castaño, B. J. García, and J. Piqueras, J. Appl. Phys. **78**, 5834 (1995).
- ⁷⁹⁰ K. Fujii, I. Suemune, T. Koui, and M. Yamanishi, Appl. Phys. Lett. **60**, 1498 (1992).
- ⁷⁹¹ K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **61**, 2577 (1992).
- ⁷⁹² C. Sasaoka, M. Yoshida, and A. Usui, Jpn. J. Appl. Phys., Part 2 27, L490 (1988).
- ⁷⁹³ K. Mori, M. Yoshida, A. Usui, and H. Terao, Appl. Phys. Lett. 52, 27 (1988).
- ⁷⁹⁴ P. Yeo, R. Arès, S. P. Watkins, G. A. Horley, P. O'Brien, and A. C. Jones, J. Electron. Mater. **26**, 1174 (1997).
- ⁷⁹⁵ S. Sugahara, Y. Uchida, T. Kitamura, T. Nagai, M. Matsuyama, T. Hattori, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 36, 1609 (1997).
- ⁷⁹⁶ M. Matsuyama, S. Sugahara, K. Ikeda, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys. **39**, 2536 (2000).
- ⁷⁹⁷ S. Sugahara, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. 82/83, 380 (1994).
- ⁷⁹⁸ S. Sugahara, M. Kadoshima, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. **90**, 349 (1995).
- ⁷⁹⁹ S. Sugahara, K. Hosaka, and M. Matsumura, Appl. Surf. Sci. 132, 327 (1998).
- ⁸⁰⁰ Y. Takahashi, H. Ishii, and K. Fujinaga, J. Electrochem. Soc. 136, 1826 (1989).
- ⁸⁰¹ Y. Takahashi, Y. Sese, and T. Urisu, Jpn. J. Appl. Phys., Part 1 28, 2387 (1989).
- ⁸⁰² M. Sakuraba, J. Murota, N. Mikoshiba, and S. Ono, J. Cryst. Growth **115**, 79 (1991).
- ⁸⁰³ K. H. Huang, T. S. Ku, and D. S. Lin, Phys. Rev. B 56, 4878 (1997).
- ⁸⁰⁴ D.-S. Lin, J.-L. Wu, S.-Y. Pan, and T.-C. Chiang, Phys. Rev. Lett. **90**, 046102 (2003).
- 805 M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sa-

javaara, E. Rauhala, and J. Keinonen, Chem. Vap. Deposition 7, 75 (2001).

- ⁸⁰⁶ A. Rahtu, T. Hänninen, and M. Ritala, J. Phys. IV **11**, Pr3/923 (2001).
- ⁸⁰⁷ A. Kosola, M. Putkonen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. **211**, 102 (2003).
- ⁸⁰⁸ J. Ihanus, T. Hänninen, T. Hatanpää, T. Aaltonen, I. Mutikainen, T. Sajavaara, J. Keinonen, M. Ritala, and M. Leskelä, Chem. Mater. **14**, 1937 (2002).
- ⁸⁰⁹ J. Ihanus, T. Hänninen, T. Hatanpää, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **151**, H221 (2004).
- ⁸¹⁰ J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, J. Mater. Chem. 4, 1239 (1994).
- ⁸¹¹ P. Soininen, E. Nykänen, L. Niinistö, and M. Leskelä, Chem. Vap. Deposition 2, 69 (1996).
- ⁸¹² R. Lappalainen, M. Karjalainen, R. Serimaa, S. Sevanto, and M. Leskelä, J. Appl. Phys. 87, 1153 (2000).
- ⁸¹³ J. Niinistö, M. Putkonen, and L. Niinistö, Chem. Mater. 16, 2953 (2004).
- ⁸¹⁴ H. Mölsa, L. Niinistö, and M. Utriainen, Adv. Mater. Opt. Electron. 4, 389 (1994).
- ⁸¹⁵ M. Putkonen, T. Sajavaara, L.-S. Johansson, and L. Niinistö, Chem. Vap. Deposition 7, 44 (2001).
- ⁸¹⁶ K. Kukli, M. Peussa, L.-S. Johansson, E. Nykänen, and L. Niinistö, Mater. Sci. Forum **315-3**, 216 (1999).
- ⁸¹⁷ M. Ritala and M. Leskelä, Appl. Surf. Sci. **75**, 333 (1994).
- ⁸¹⁸ A. Kytökivi, E.-L. Lakomaa, and A. Root, Langmuir **12**, 4395 (1996).
- ⁸¹⁹ A. Kytökivi, E.-L. Lakomaa, A. Root, H. Österholm, J.-P. Jacobs, and H. H. Brongersma, Langmuir **13**, 2717 (1997).
- ⁸²⁰ K. Kukli, M. Ritala, and M. Leskelä, Nanostruct. Mater. 8, 785 (1997).
- ⁸²¹ M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. **76**, 436 (2000).
- ⁸²² H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, J. Appl. Phys. 87, 1921 (2000).
- ⁸²³ M. Cassir, F. Goubina, C. Bernay, P. Vernoux, and D. Lincot, Appl. Surf. Sci. **193**, 120 (2002).
- ⁸²⁴ A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, Nat. Mater. 1, 241 (2002).
- ⁸²⁵ J. Aarik, A. Aidla, H. Mändar, T. Uustare, and V. Sammelselg, Thin Solid Films **408**, 97 (2002).
- ⁸²⁶ K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, J. Appl. Phys. **92**, 1833 (2002).
- ⁸²⁷ A. Rahtu and M. Ritala, J. Mater. Chem. **12**, 1484 (2002).
- ⁸²⁸ H. Kim, C. O. Chui, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. **83**, 2647 (2003).
- ⁸²⁹ E. Bonera, G. Scarel, and M. Fanciulli, J. Non-Cryst. Solids 322, 105 (2003).
- ⁸³⁰ G. Scarel, S. Ferrari, S. Spiga, C. Wiemer, G. Tallarida, and M. Fanciulli, J. Vac. Sci. Technol., A **21**, 1359 (2003).
- ⁸³¹ S.-Y. Lee, H. Kim, P. C. McIntyre, K. C. Saraswat, and J.-S. Byun, Appl. Phys. Lett. **82**, 2874 (2003).
- ⁸³² S. Ferrari, M. Modreanu, G. Scarel, and M. Fanciulli, Thin Solid Films 450, 124 (2004).
- ⁸³³ J. Lee, J. Koo, H. S. Sim, H. Jeon, and Y. Won, J. Korean Phys. Soc. 44, 915 (2004).
- ⁸³⁴ J. Okabayashi, S. Toyoda, H. Kumigashira, M. Oshima, K. Usuda, M. Niwa, and G. L. Liu, Appl. Phys. Lett. 85, 5959 (2004).
- ⁸³⁵ N. Yoshii, N. Takahashi, T. Nakamura, and M. Yoshioka, Electrochem. Solid-State Lett. 5, C85 (2002).
- 836 N. Takahashi, N. Yoshii, S. Nonobe, T. Nakamura, and

M. Yoshioka, J. Electron. Mater. 32, 1107 (2003).

- ⁸³⁷ K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Thin Solid Films **416**, 72 (2002).
- ⁸³⁸ K. Kukli, K. Forsgren, J. Aarik, T. Uustare, A. Aidla, A. Niskanen, M. Ritala, M. Leskelä, and A. Hårsta, J. Cryst. Growth 231, 262 (2001).
- ⁸³⁹ K. Kukli, K. Forsgren, M. Ritala, M. Leskelä, J. Aarik, and A. Hårsta, J. Electrochem. Soc. **148**, F227 (2001).
- ⁸⁴⁰ K. Kukli, M. Ritala, T. Uustare, J. Aarik, K. Forsgren, T. Sajavaara, M. Leskelä, and A. Hårsta, Thin Solid Films **410**, 53 (2002).
- ⁸⁴¹ K. Forsgren, J. Westlinder, J. Lu, J. Olsson, and A. Hårsta, Chem. Vap. Deposition 8, 105 (2002).
- ⁸⁴² M. Putkonen and L. Niinistö, J. Mater. Chem. **11**, 3141 (2001).
- ⁸⁴³ M. Kröger-Laukkanen, M. Peussa, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. **183**, 290 (2002).
- ⁸⁴⁴ M. Putkonen, J. Niinistö, K. Kukli, T. Sajavaara, M. Karppinen, H. Yamauchi, and L. Niinistö, Chem. Vap. Deposition 9, 207 (2003).
- ⁸⁴⁵ J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. **95**, 84 (2004).
- ⁸⁴⁶ R. Matero, M. Ritala, M. Leskelä, T. Sajavaara, A. C. Jones, and J. L. Roberts, Chem. Mater. **16**, 5630 (2004).
- ⁸⁴⁷ K. Kukli, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 6, 297 (2000).
- ⁸⁴⁸ A. Nakajima, T. Kidera, H. Ishii, and S. Yokoyama, Appl. Phys. Lett. 81, 2824 (2002).
- ⁸⁴⁹ J. Park, B. Choi, N. Park, H. J. Shin, J. G. Lee, and J. Kim, Integr. Ferroelectr. 48, 23 (2002).
- ⁸⁵⁰ H. Ishii, A. Nakajima, and S. Yokoyama, J. Appl. Phys. **95**, 536 (2004).
- ⁸⁵¹ D. Jeong, J. Lee, and J. Kim, Integr. Ferroelectr. **67**, 41 (2004).
- ⁸⁵² J. Koo, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 **41**, 3043 (2002).
 ⁸⁵³ Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C. G. Park, J.
- ⁸⁵³ Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C.-G. Park, J. Appl. Phys. **92**, 5443 (2002).
- ⁸⁵⁴ K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 42, L685 (2003).
- ⁸⁵⁵ K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 43, L1296 (2004).
- ⁸⁵⁶ R. Matero, M. Ritala, M. Leskelä, A. C. Jones, P. A. Williams, J. F. Bickley, A. Steiner, T. J. Leedham, and H. O. Davies, J. Non-Cryst. Solids **303**, 24 (2002).
- ⁸⁵⁷ D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. **14**, 4350 (2002).
- ⁸⁵⁸ D. M. Hausmann and R. G. Gordon, J. Cryst. Growth **249**, 251 (2003).
- ⁸⁵⁹ W.-H. Nam and S.-W. Rhee, Chem. Vap. Deposition **10**, 201 (2004).
- ⁸⁶⁰ J. S. Becker, E. Kim, and R. G. Gordon, Chem. Mater. **16**, 3497 (2004).
- ⁸⁶¹ S. V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M. A. Leskelä, P. Fejes, A. Demkov, C. Wang, et al., Phys. Status Solidi B 241, 2268 (2004).
- ⁸⁶² K. Kukli, M. Ritala, M. Leskelä, and R. Lappalainen, Chem. Vap. Deposition 4, 29 (1998).
- ⁸⁶³ K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. 86, 5656 (1999).
- ⁸⁶⁴ K.-E. Elers, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. 82/83, 468 (1994).
- ⁸⁶⁵ M. Juppo, M. Vehkamäki, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol., A **16**, 2845 (1998).
- ⁸⁶⁶ O.-K. Kwon, J.-H. Kim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **151**, G109 (2004).

- ⁸⁶⁷ T. Aaltonen, A. Rahtu, M. Ritala, and M. Leskelä, Electrochem. Solid State Lett. 6, C130 (2003).
- ⁸⁶⁸ T. Aaltonen, P. Alen, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 9, 45 (2003).
- ⁸⁶⁹ T. Aaltonen, M. Ritala, Y. L. Tung, Y. Chi, K. Arstila, K. Meinander, and M. Leskelä, J. Mater. Res. **19**, 3353 (2004).
- ⁸⁷⁰ O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. **7**, C46 (2004).
- ⁸⁷¹ O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **151**, C753 (2004).
- ⁸⁷² Y.-S. Min, E. J. Bae, K. S. Jeong, Y. J. Cho, J.-H. Lee, W. B. Choi, and G.-S. Park, Adv. Mater. **15**, 1019 (2003).
- ⁸⁷³ M. Lashdaf, T. Hatanpää, A. O. I. Krause, J. Lahtinen, M. Lindblad, and M. Tiitta, Appl. Catal., A. **241**, 51 (2003).
- ⁸⁷⁴ T. Aaltonen, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition **10**, 215 (2004).
- ⁸⁷⁵ J. J. Senkevich, F. Tang, D. Rogers, J. T. Drotar, C. Jezewski, W. A. Lanford, G. C. Wang, and T. M. Lu, Chem. Vap. Deposition 9, 258 (2003).
- ⁸⁷⁶ T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth **130**, 29 (1993).
- ⁸⁷⁷ Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Appl. Phys. Lett. **71**, 3799 (1997).
- ⁸⁷⁸ Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Langmuir **14**, 1493 (1998).
- ⁸⁷⁹ M. Han, Y. Luo, J. E. Moryl, R. M. Osgood, Jr., and J. G. Chen, Surf. Sci. **415**, 251 (1998).
- ⁸⁸⁰ M. Han, Y. Luo, J. E. Moryl, and R. M. Osgood, Jr., Surf. Sci. 425, 259 (1999).
- ⁸⁸¹ Y. Luo, M. Han, D. A. Slater, and R. M. Osgood, Jr., J. Vac. Sci. Technol., A **18**, 438 (2000).
- ⁸⁸² Y. Z. Feng and S. P. Guo, J. Mater. Sci. Lett. **15**, 1824 (1996).
- ⁸⁸³ M. Y. Shen, T. Goto, E. Kurtz, Z. Zhu, and T. Yao, J. Phys.: Condens. Matter **10**, L171 (1998).
- ⁸⁸⁴ E. Kurtz, H. D. Jung, T. Hanada, Z. Zhu, T. Sekiguchi, and T. Yao, J. Cryst. Growth **184/185**, 242 (1998).
- ⁸⁸⁵ E. Kurtz, T. Sekiguchi, Z. Zhu, T. Yao, J. X. Shen, Y. Oka, M. Y. Shen, and T. Goto, Superlattices Microstruct. 25, 119 (1999).
- ⁸⁸⁶ I. Hernández-Calderón, M. García-Rocha, and P. Díaz-Arencibia, Phys. Status Solidi B **241**, 558 (2004).
- ⁸⁸⁷ M. Pessa, P. Huttunen, and M. A. Herman, J. Appl. Phys. 54, 6047 (1983).
- ⁸⁸⁸ M. Pessa, O. Jylhä, P. Huttunen, and M. A. Herman, J. Vac. Sci. Technol., A 2, 418 (1984).
- ⁸⁸⁹ M. Pessa, O. Jylhä, and M. A. Herman, J. Cryst. Growth 67, 255 (1984).
- ⁸⁹⁰ M. A. Herman, M. Vulli, and M. Pessa, J. Cryst. Growth **73**, 403 (1985).
- ⁸⁹¹ M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. 21, 969 (1986).
- ⁸⁹² M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. 21, 841 (1986).
- ⁸⁹³ M. A. Herman, P. Juza, W. Faschinger, and H. Sitter, Cryst. Res. Technol. 23, 307 (1988).
- ⁸⁹⁴ W. Faschinger, H. Sitter, and P. Juza, Appl. Phys. Lett. **53**, 2519 (1988).
- ⁸⁹⁵ W. Faschinger and H. Sitter, J. Cryst. Growth **99**, 566 (1990).
- ⁸⁹⁶ W. Faschinger, P. Juza, and H. Sitter, J. Cryst. Growth **115**, 692 (1991).
- ⁸⁹⁷ P. Juza, W. Faschinger, and H. Sitter, Microchim. Acta **107**, 265 (1992).
- ⁸⁹⁸ H. Sitter and W. Faschinger, Thin Solid Films **225**, 250 (1993).
- ⁸⁹⁹ V. B. Veron, A. Arnoult, B. Daudin, and S. Tatarenko, Phys. Rev. B 54, R5267 (1996).

- ⁹⁰⁰ J. T. Sadowski and M. A. Herman, Thin Solid Films **306**, 266 (1997).
- ⁹⁰¹ L. Marsal, H. Mariette, Y. Samson, J. L. Rouviere, and E. Picard, Appl. Phys. Lett. **73**, 2974 (1998).
- ⁹⁰² J. M. Hartmann, M. Charleux, J. Cibert, and H. Mariette, Appl. Phys. Lett. **72**, 3151 (1998).
- ⁹⁰³ T. Taliercio, P. Lefebvre, N. Magnea, J. Allègre, and H. Mathieu, J. Cryst. Growth **184/185**, 288 (1998).
- ⁹⁰⁴ L. Carbonell, S. Tatarenko, J. Cibert, J. M. Hartmann, G. Mula, V. H. Etgens, and A. Arnoult, Appl. Surf. Sci. **123/124**, 283 (1998).
- ⁹⁰⁵ L. Marsal, Y. Samson, J. L. Rouviere, and H. Mariette, J. Cryst. Growth **201/202**, 1226 (1999).
- ⁹⁰⁶ H. Mariette, M. Charleux, J. M. Hartmann, F. Kany, D. Martrou, L. Marsal, N. Magnèa, and J. L. Rouviére, Microelectron. J. **30**, 329 (1999).
- ⁹⁰⁷ H. Mariette, L. Marsal, L. Besombes, F. Tinjod, B. Gilles, K. Kheng, and J. L. Rouvière, J. Cryst. Growth **237/239**, 227 (2002).
- ⁹⁰⁸ M. García-Rocha and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1667 (2002).
- ⁹⁰⁹ T. Volkmann, M. Ahr, and M. Biehl, Phys. Rev. B **69**, 165303 (2004).
- ⁹¹⁰ E. M. Larramendi, O. de Melo, M. Hernández Vélez, and M. C. Tamargo, J. Appl. Phys. 96, 7164 (2004).
- ⁹¹¹ H. S. Lee, H. L. Park, and T. W. Kim, Appl. Phys. Lett. **85**, 5598 (2004).
- ⁹¹² I. Bhat, H. Ehsani, W. S. Wang, S. K. Ghandhi, and N. H. Karam, J. Vac. Sci. Technol., B **10**, 1376 (1992).
- ⁹¹³ W.-S. Wang, H. E. Ehsani, and I. B. Bhat, J. Cryst. Growth **124**, 670 (1992).
- ⁹¹⁴ N. H. Karam, R. G. Wolfson, I. B. Bhat, H. Ehsani, and S. K. Gandhi, Thin Solid Films **225**, 261 (1993).
- ⁹¹⁵ R. M. Emerson, J. L. Hoyt, and J. F. Gibbons, Appl. Phys. Lett. 65, 1103 (1994).
- ⁹¹⁶ S. Dakshinamurthy and I. Bhat, J. Electron. Mater. 27, 521 (1998).
- ⁹¹⁷ T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 141, 3210 (1994).
- ⁹¹⁸ T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 142, 3538 (1995).
- ⁹¹⁹ T. Asikainen, M. Ritala, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. **99**, 91 (1996).
- ⁹²⁰ T. Asikainen, M. Ritala, W.-M. Li, R. Lappalainen, and M. Leskelä, Appl. Surf. Sci. **112**, 231 (1997).
- ⁹²¹ M. Ritala, T. Asikainen, and M. Leskelä, Electrochem. Solid State Lett. 1, 156 (1997).
- ⁹²² A. W. Ott, J. M. Johnson, J. W. Klaus, and S. M. George, Appl. Surf. Sci. **112**, 205 (1997).
- ⁹²³ T. Asikainen, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 82/83, 122 (1994).
- ⁹²⁴ J.-F. Guillemoles, B. Canava, E. B. Yousfi, P. Cowache, A. Galtayries, T. Asikainen, M. Powalla, D. Hariskos, H.-W. Schock, and D. Lincot, Jpn. J. Appl. Phys., Part 1 40, 6065 (2001).
- ⁹²⁵ N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, Prog. Photovolt. **11**, 437 (2003).
- ⁹²⁶ S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Thin Solid Films 431/432, 359 (2003).
- ⁹²⁷ N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, App. Surf. Sci. 222, 65 (2004).
- ⁹²⁸ T. Inushima, T. Shiraishi, and V. Yu. Davydov, Solid State Commun. **110**, 491 (1989).
- ⁹²⁹ W. K. Chen, J. C. Chen, L. Anthony, and P. L. Liu, Appl. Phys. Lett. 55, 987 (1989).

- ⁹³⁰ D. Bertone, J. Electron. Mater. **21**, 265 (1992).
- ⁹³¹ C. A. Tran, R. A. Masut, J. L. Brebner, and R. Leonelli, Appl. Phys. Lett. **62**, 2375 (1993).
- ⁹³² C. A. Tran, R. A. Masut, J. L. Brebner, M. Jouanne, L. Salamanca-Riba, C. C. Shen, B. Sieber, and A. Miri, J. Cryst. Growth **145**, 332 (1994).
- ⁹³³ C. A. Tran, R. A. Masut, J. L. Brebner, and M. Jouanne, J. Appl. Phys. **75**, 2398 (1994).
- ⁹³⁴ D. G. Patrikarakos, N. Shukla, and M. E. Pemble, J. Cryst. Growth **170**, 215 (1997).
- ⁹³⁵ Y. Kobayashi and N. Kobayashi, Jpn. J. Appl. Phys., Part 2 31, L71 (1992).
- ⁹³⁶ T. W. Lee, H. Hwang, Y. Moon, E. Yoon, and Y. D. Kim, J. Korean Phys. Soc. **34**, S25 (1999).
- ⁹³⁷ Y. D. Kim, M. S. Lee, T.-W. Lee, H. Hwang, S. Yoon, Y. Moon, and E. Yoon, Microelectron. Eng. **51/52**, 43 (2000).
- ⁹³⁸ N. Pan, J. Carter, S. Hein, D. Howe, L. Goldman, L. Kupferberg, S. Brierley, and K. C. Hsieh, Thin Solid Films **225**, 64 (1993).
- ⁹³⁹ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth **205**, 253 (1999).
- ⁹⁴⁰ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth **209**, 252 (2000).
- ⁹⁴¹ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Vac. Sci. Technol., A **17**, 3008 (1999).
- ⁹⁴² W. G. Jeong, E. P. Menu, and P. D. Dapkus, Appl. Phys. Lett. 55, 244 (1989).
- ⁹⁴³ D. Jung and S. M. Bedair, J. Mater. Res. **9**, 3022 (1994).
- ⁹⁴⁴ C. A. Tran, R. Ares, S. P. Watkins, G. Soerensen, and Y. Lacroix, J. Electron. Mat. 24, 1597 (1995).
- ⁹⁴⁵ R. Arès, J. Hu, P. Yeo, and S. P. Watkins, J. Cryst. Growth **195**, 234 (1998).
- ⁹⁴⁶ K. Mori, S. Sugou, Y. Kato, and A. Usui, Appl. Phys. Lett. 60, 1717 (1992).
- ⁹⁴⁷ M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. **49**, 274 (1986).
- ⁹⁴⁸ B. T. McDermott, N. A. El-Masry, M. A. Tischler, and S. M. Bedair, Appl. Phys. Lett. **51**, 1830 (1987).
- ⁹⁴⁹ P. E. Thompson, J. L. Davis, J. Waterman, R. J. Wagner, D. Gammon, D. K. Gaskill, and R. Stahlbush, J. Appl. Phys. 69, 7166 (1991).
- ⁹⁵⁰ G. S. Lee, P. E. Thompson, J. L. Davis, J. P. Omaggio, and W. A. Schmidt, Solid-State Electron. **36**, 387 (1993).
- ⁹⁵¹ H. Viirola and L. Niinistö, Thin Solid Films **249**, 144 (1994).
- ⁹⁵² H. Viirola and L. Niinistö, Thin Solid Films **251**, 127 (1994).
- ⁹⁵³ C. Dücsö, N. Q. Khanh, Z. Horváth, I. Bársony, M. Utriainen, S. Lehto, M. Nieminen, and L. Niinistö, J. Electrochem. Soc. 143, 683 (1996).
- ⁹⁵⁴ M. Utriainen, K. Kovács, J. M. Campbell, L. Niinistö, and F. Réti, J. Electrochem. Soc. **146**, 189 (1999).
- ⁹⁵⁵ M. Utriainen, L. Niinistö, and R. Matero, Appl. Phys. A 68, 339 (1999).
- ⁹⁵⁶ M. Utriainen, H. Lattu, H. Viirola, L. Niinistö, R. Resch, and G. Friedbacher, Mikrochim. Acta **133**, 119 (2000).
- ⁹⁵⁷ A. Rosental, A. Tarre, A. Gerst, T. Uustare, and V. Sammelselg, Sens. Actuators, B **77**, 297 (2001).
- ⁹⁵⁸ T. Takeuchi, K. Shoji, T. Tadano, I. Doteshita, and S. Onodera, Thin Solid Films 442, 98 (2003).
- ⁹⁵⁹ J. Lu, J. Sundqvist, M. Ottosson, A. Tarre, A. Rosental, J. Aarik, and A. Hårsta, J. Cryst. Growth **260**, 191 (2004).
- ⁹⁶⁰ T. Takeuchi, I. Doteshita, and S. Asami, Surf. Interface Anal. 36, 1133 (2004).
- ⁹⁶¹ A. Tarre, A. Rosental, A. Aidla, J. Aarik, J. Sundqvist, and A. Hårsta, Vacuum **67**, 571 (2002).

- ⁹⁶² A. Rosental, A. Tarre, A. G. J. Sundqvist, A. Hårsta, A. Aidla, J. Aarik, V. Sammelselg, and T. Uustare, Sens. Actuators, B **93**, 552 (2003).
- ⁹⁶³ A. Tarre, A. Rosental, J. Sundqvist, A. Hårsta, T. Uustare, and V. Sammelselg, Surf. Sci. **532**, 514 (2003).
- ⁹⁶⁴ J. Sundqvist, A. Tarre, A. Rosental, and A. Hårsta, Chem. Vap. Deposition 9, 21 (2003).
- ⁹⁶⁵ V. Saanila, J. Ihanus, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 4, 227 (1998).
- ⁹⁶⁶ M. Nieminen, M. Putkonen, and L. Niinistö, Appl. Surf. Sci. 174, 155 (2001).
- ⁹⁶⁷ R. Haugsru, A. E. Gunnaes, and O. Nilsen, Oxid. Met. **59**, 215 (2003).
- ⁹⁶⁸ W. He, S. Schuetz, R. Solanki, J. Belot, and J. McAndrew, Electrochem. Solid-State Lett. 7, G131 (2004).
- ⁹⁶⁹ D. H. Triyoso, R. I. Hegde, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, D. Werho, R. Rai, L. B. La, et al., J. Vac. Sci. Technol., B **22**, 2121 (2004).
- ⁹⁷⁰ K. Kukli, H. Heikkinen, E. Nykänen, and L. Niinistö, J. Alloys Compd. 275-277, 10 (1998).
- ⁹⁷¹ J. Päiväsaari, M. Putkonen, and L. Niinistö, J. Mater. Chem. **12**, 1828 (2002).
- ⁹⁷² K. Kukli, M. Ritala, T. Pilvi, T. Sajavaara, M. Leskelä, A. C. Jones, H. C. Aspinall, D. C. Gilmer, and P. J. Tobin, Chem. Mater. 16, 5162 (2004).
- ⁹⁷³ J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films 472, 275 (2005).
- ⁹⁷⁴ J. Päiväsaari, M. Putkonen, T. Sajavaara, and L. Niinistö, J. Alloys Compd. **374**, 124 (2004).
- ⁹⁷⁵ G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Yu. Lebedinskii, and A. Zenkevich, Appl. Phys. Lett. **85**, 630 (2004).
- ⁹⁷⁶ H. Kattelus, M. Yilammi, J. Salmi, T. Ranta-Aho, E. Nykänen, and I. Suni, in *Amorphous Insulating Thin Films*, edited by J. Kanicki, W. L. Warren, R. A. B. Devine, and M. Matsumura (Materials Research Society, Warrendale, USA, 1993), vol. 284 of *Mater. Res. Soc. Symp. Proc.*, pp. 511–516.
- ⁹⁷⁷ M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grassenbauer, Thin Solid Films **250**, 72 (1994).
- ⁹⁷⁸ K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, Appl. Phys. Lett. 68, 3737 (1996).
- ⁹⁷⁹ J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films **340**, 110 (1999).
- ⁹⁸⁰ J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, and T. Uustare, J. Cryst. Growth **220**, 105 (2000).
- ⁹⁸¹ J. Aarik, A. Aidla, H. Mändar, T. Uustare, K. Kukli, and M. Schuisky, Appl. Surf. Sci. **173**, 15 (2001).
- ⁹⁸² M. Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeong, and K. S. Hyun, Appl. Phys. Lett. **81**, 334 (2002).
- ⁹⁸³ M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002).
- ⁹⁸⁴ M. L. Green, M. Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Räisanen, D. Muller, et al., J. Appl. Phys. **92**, 7168 (2002).
- ⁹⁸⁵ E. P. Gusev, C. Cabral, Jr., M. Copel, C. D'Emic, and M. Gribelyuk, Microelectron. Eng. **69**, 145 (2003).
- ⁹⁸⁶ M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, et al., J. Appl. Phys. **93**, 1477 (2003).
- ⁹⁸⁷ G. D. Wilk and D. A. Muller, Appl. Phys. Lett. **83**, 3984 (2003).
- ⁹⁸⁸ J.-F. Damlencourt, O. Renault, D. Samour, A.-M. Papon, C. Leroux, F. Martin, S. Marthon, M.-N. Séméria, and X. Garros, Solid-State Electron. 47, 1613 (2003).

- ⁹⁸⁹ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, D. C. Gilmer, R. Hedge, R. Rai, and L. Prabhu, J. Mater. Sci. -Mater. Electron. **14**, 361 (2003).
- ⁹⁹⁰ H. B. Park, M. Cho, J. Park, S. W. Lee, C. S. Hwang, J.-P. Kim, J.-H. Lee, N.-I. Lee, H.-K. Kang, J.-C. Lee, et al., J. Appl. Phys. **94**, 3641 (2003).
- ⁹⁹¹ T. Lee, J. Ahn, J. Oh, Y. Kim, Y. B. Kim, D. K. Choi, and J. Jung, J. Korean Phys. Soc. **42**, 272 (2003).
- ⁹⁹² R. L. Puurunen, J. Appl. Phys. **95**, 4777 (2004).
- ⁹⁹³ C. Wiemer, S. Ferrari, M. Fanciulli, G. Pavia, and L. Lutterotti, Thin Solid Films 450, 134 (2004).
- ⁹⁹⁴ J. Aarik, A. Aidla, A. Kikas, T. Käämbre, R. Rammula, P. Ritslaid, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 230, 292 (2004).
- ⁹⁹⁵ J.-J. Ganem, I. Trimaille, I. C. Vickridge, D. Blin, and F. Martin, Nucl. Instrum. Methods Phys. Res., Sect. B **219/220**, 856 (2004).
- ⁹⁹⁶ J.-F. Damlencourt, O. Weber, O. Renault, J.-M. Hartmann, C. Poggi, F. Ducroquet, and T. Billon, J. Appl. Phys. **96**, 5478 (2004).
- ⁹⁹⁷ K. Nakajima, S. Joumori, M. Suzuki, K. Kimura, T. Osipowicz, K. L. Tok, J. Z. Zheng, A. See, and B. C. Zhang, Appl. Surf. Sci. 237, 416 (2004).
- ⁹⁹⁸ D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, et al., J. Electrochem. Soc. **151**, F220 (2004).
- ⁹⁹⁹ K. Kukli, J. Aarik, M. Ritala, T. Uustare, T. Sajavaara, J. Lu, J. Sundqvist, A. Aidla, L. Pung, A. Hårsta, et al., J. Appl. Phys. 96, 5298 (2004).
- ¹⁰⁰⁰ H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, and M.-H. Cho, Appl. Phys. Lett. **85**, 2902 (2004).
- ¹⁰⁰¹ J. Aarik, H. Mändar, M. Kirm, and L. Pung, Thin Solid Films 466, 41 (2004).
- ¹⁰⁰² E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D'Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett. 85, 2334 (2004).
- ¹⁰⁰³ P. S. Lysaght, J. J. Peterson, B. Foran, C. D. Young, G. Bersuker, and H. R. Huff, Mater. Sci. Semicond. Process. 7, 259 (2004).
- ¹⁰⁰⁴ G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari, and M. Fanciulli, Mater. Sci. Eng. B **109**, 11 (2004).
- ¹⁰⁰⁵ S. Dueñas, H. Castán, H. García, J. Barbolla, K. Kukli, M. Ritala, and M. Leskelä, Thin Solid Films **474**, 222 (2005).
- ¹⁰⁰⁶ R. Chen, H. Kim, P. C. McIntyre, and S. F. Bent, Chem. Mater. 17, 536 (2005).
- ¹⁰⁰⁷ R. L. Puurunen, A. Delabie, S. Van Elshocht, M. Caymax, M. L. Green, B. Brijs, O. Richard, H. Bender, T. Conard, I. Hoffijk, et al., Appl. Phys. Lett. 86, 073116 (2005).
- ¹⁰⁰⁸ A. Delabie, R. L. Puurunen, B. Brijs, M. Caymax, T. Conard, B. Onsia, O. Richard, W. Vandervorst, C. Zhao, M. M. Viitanen, et al., J. Appl. Phys. (2005), in press.
- ¹⁰⁰⁹ S. Nonobe, N. Takahashi, and T. Nakamura, Solid State Sci. 6, 1217 (2004).
- ¹⁰¹⁰ N. Takahashi, S. Nonobe, and T. Nakamura, J. Solid State Chem. **177**, 3944 (2004).
- ¹⁰¹¹ S.-W. Kang, S.-W. Rhee, and S. M. George, J. Vac. Sci. Technol., A **22**, 2392 (2004).
- ¹⁰¹² K. Forsgren, A. Hårsta, J. Aarik, A. Aidla, J. Westlinder, and J. Olsson, J. Electrochem. Soc. **149**, F139 (2002).
- ¹⁰¹³ J. Aarik, J. Sundqvist, A. Aidla, J. Lu, T. Sajavaara, K. Kukli, and A. Hårsta, Thin Solid Films **418**, 69 (2002).
- ¹⁰¹⁴ K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskelä, and A. Hårsta, J. Appl. Phys. **92**, 5698 (2002).
- ¹⁰¹⁵ J. Sundqvist, A. Hårsta, J. Aarik, K. Kukli, and A. Aidla, Thin Solid Films **427**, 147 (2003).
- ¹⁰¹⁶ J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Hårsta, and J.-O.

Carlsson, J. Cryst. Growth 273, 510 (2004).

- ¹⁰¹⁷ H. S. Chang, S.-K. Baek, H. Park, H. Hwang, J. H. Oh, W. S. Shin, J. H. Yeo, K. H. Hwang, S. W. Nam, H. D. Lee, et al., Electrochem. Solid-State Lett. 7, F42 (2004).
- ¹⁰¹⁸ Y. Senzaki, S. Park, H. Chatham, L. Bartholomew, and W. Nieveen, J. Vac. Sci. Technol., A **22**, 1175 (2004).
- ¹⁰¹⁹ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Vap. Deposition 9, 315 (2003).
- ¹⁰²⁰ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Mater. **15**, 1722 (2003).
- ¹⁰²¹ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and N. L. Tobin, Chem. Vap. Deposition **10**, 91 (2004).
- ¹⁰²² M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwanga, G. H. Jang, and J. Jeong, Appl. Phys. Lett. **83**, 5503 (2003).
- ¹⁰²³ M. Cho, D. S. Jeong, J. Park, H. B. Park, S. W. Lee, T. J. Park, and C. S. Hwang, Appl. Phys. Lett. 85, 5953 (2004).
- ¹⁰²⁴ A. Deshpande, R. Inman, G. Jursich, and C. Takoudis, J. Vac. Sci. Technol., A 22, 2035 (2004).
- ¹⁰²⁵ D. Wang, Y.-L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon, and H. Dai, J. Am. Chem. Soc. **126**, 11602 (2004).
- ¹⁰²⁶ S. Choi, J. Koo, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 44, 35 (2004).
- ¹⁰²⁷ K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition 8, 199 (2002).
- ¹⁰²⁸ K. Kukli, M. Ritala, J. Lu, A. Hårsta, and M. Leskelä, J. Electrochem. Soc. **151**, F189 (2004).
- ¹⁰²⁹ T. Lee, H.-K. Ko, Y. Kim, J. Ahn, Y. B. Kim, K. S. Kim, and D. K. Choi, J. Korean Phys. Soc. 45, 1308 (2004).
- ¹⁰³⁰ W.-H. Nam and S.-W. Rhee, Electrochem. Solid-State Lett. 7, C55 (2004).
- ¹⁰³¹ J. Conley, J. F., Y. Ono, W. Zhuang, D. J. Tweet, W. Gao, S. K. Mohammed, and R. Solanki, Electrochem. Solid-State Lett. 5, C57 (2002).
- ¹⁰³² J. Conley, J. F., Y. Ono, D. J. Tweet, W. Zhuang, and R. Solanki, J. Appl. Phys. **93**, 712 (2003).
- ¹⁰³³ J. Conley, J. F., Y. Ono, R. Solanki, G. Stecker, and W. Zhuang, Appl. Phys. lett. 82, 3508 (2003).
- ¹⁰³⁴ W.-K. Kim, S.-W. Rhee, N.-I. Lee, J.-H. Lee, and H.-K. Kang, J. Vac. Sci. Technol., A **22**, 1285 (2004).
- ¹⁰³⁵ M. S. Kim, S. A. Rogers, Y. S. Kim, J. H. Lee, and H. K. Kang, J. Korean Phys. Soc. 45, 1317 (2004).
- ¹⁰³⁶ J. Aarik, A. Aidla, K. Kukli, and T. Uustare, J. Cryst. Growth 144, 116 (1994).
- ¹⁰³⁷ K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, Thin Solid Films 260, 135 (1995).
- ¹⁰³⁸ H. Siimon and J. Aarik, J. Phys. IV France 5, C5/277 (1995).
- ¹⁰³⁹ J. Aarik, K. Kukli, A. Aidla, and L. Pung, Appl. Surf. Sci. **103**, 331 (1996).
- ¹⁰⁴⁰ K. Kukli, M. Ritala, R. Matero, and M. Leskelä, J. Cryst. Growth **212**, 459 (2000).
- ¹⁰⁴¹ K. Kukli, M. Ritala, and M. Leskelä, Chem. Mater. **12**, 1914 (2000).
- ¹⁰⁴² K. Kukli, J. Aarik, A. Aidla, K. Forsgren, J. Sundqvist, A. Hårsta, T. Uustare, H. Mändar, and A. A. Kiisler, Chem. Mater. **13**, 122 (2001).
- ¹⁰⁴³ J. Sundqvist, H. Högberg, and A. Hårsta, Chem. Vap. Deposition 9, 245 (2003).
- ¹⁰⁴⁴ K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **142**, 1670 (1995).
- ¹⁰⁴⁵ K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **112**, 236 (1997).
- ¹⁰⁴⁶ Y. S. Kim, S. H. K. Park, S. J. Yun, and J. S. Kang, J. Korean

Phys. Soc. 37, 975 (2000).

- ¹⁰⁴⁷ J.-C. Kwak, Y.-H. Lee, and B.-H. Choi, Appl. Surf. Sci. 230, 249 (2004).
- ¹⁰⁴⁸ H.-J. Song, C.-S. Lee, and S.-W. Kang, Electrochem. Solid-State Lett. 4, F13 (2001).
- ¹⁰⁴⁹ Y.-H. Lee, J.-C. Kwak, B.-S. Gang, H.-C. Kim, B.-H. Choi, B.-K. Jeong, S.-H. Park, and K.-H. Lee, J. Electrochem. Soc. **151**, C52 (2004).
- ¹⁰⁵⁰ D. M. Hausmann, P. de Rouffignac, A. Smith, R. Gordon, and D. Monsma, Thin Solid Films **443**, 1 (2003).
- ¹⁰⁵¹ M. Ritala, P. Kalsi, D. Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, Chem. Mater. **11**, 1712 (1999).
- ¹⁰⁵² P. Alén, M. Juppo, M. Ritala, M. Leskelä, T. Sajavaara, and J. Keinonen, J. Mater. Res. **17**, 107 (2002).
- ¹⁰⁵³ H. Kim, A. J. Kellock, and S. M. Rossnagel, J. Appl. Phys. 92, 7080 (2002).
- ¹⁰⁵⁴ H. Kim, J. C. Cabral, C. Lavoie, and S. M. Rossnagel, J. Vac. Sci. Technol., B **20**, 1321 (2002).
- ¹⁰⁵⁵ H. Kim, C. Lavoie, M. Copel, V. Narayanan, D.-G. Park, and S. M. Rossnagel, J. Appl. Phys. **95**, 5848 (2004).
- ¹⁰⁵⁶ Y. Y. Wu, A. Kohn, and M. Eizenberg, J. Appl. Phys. 95, 6167 (2004).
- ¹⁰⁵⁷ W. F. Besling, M.-L. Ignacimouttou, A. Humbert, M. Mellier, and J. Torres, Microelectron. Eng. **76**, 60 (2004).
- ¹⁰⁵⁸ O. van der Straten, Y. Zhu, K. Dunn, E. T. Eisenbraun, and A. E. Kaloyeros, J. Mater. Res. **19**, 447 (2004).
- ¹⁰⁵⁹ J.-S. Park, M.-J. Lee, C.-S. Lee, and S.-W. Kang, Electrochem. Solid State Lett. 4, C17 (2001).
- ¹⁰⁶⁰ J.-S. Park, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 149, C28 (2002).
- ¹⁰⁶¹ J. Y. Kim, K. W. Lee, H. O. Park, Y. D. Kim, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 45, 1069 (2004).
- ¹⁰⁶² H. Kim and S. M. Rossnagel, Thin Solid Films **441**, 331 (2003).
- ¹⁰⁶³ A. M. Lemonds, J. M. White, and J. G. Ekerdt, Surf. Sci. **538**, 191 (2003).
- ¹⁰⁶⁴ P. Tägtström, P. Mårtensson, U. Jansson, and J.-O. Carlsson, J. Electrochem. Soc. **146**, 3139 (1999).
- ¹⁰⁶⁵ M. Lindblad and L. P. Lindfors, in *Proceedings of the 10th International Congress on Catalysis: "New Frontiers in Catalysis", Budapest, Hungary, July 19-24, 1992*, edited by L. Guczi (Elsevier, Amsterdam, 1993), vol. 75 of *Stud. Surf. Sci. Catal.*, pp. 1763–1770.
- ¹⁰⁶⁶ J. W. Klaus, S. J. Ferro, and S. M. George, Appl. Surf. Sci. 162–163, 479 (2000).
- ¹⁰⁶⁷ J. W. Klaus, S. J. Ferro, and S. M. George, J. Electrochem. Soc. 147, 1175 (2000).
- ¹⁰⁶⁸ H. S. Sim, S.-I. Kim, H. Jeon, and Y. T. Kim, Jpn. J. Appl. Phys., Part 1 42, 6359 (2003).
- ¹⁰⁶⁹ H. S. Sim, S.-I. Kim, and Y. T. Kim, J. Vac. Sci. Technol., B 21, 1411 (2003).
- ¹⁰⁷⁰ H. S. Sim, J. H. Park, and Y. T. Kim, Phys. Status Solidi A **201**, R92 (2004).
- ¹⁰⁷¹ J. S. Becker, S. Suh, S. Wang, and R. G. Gordon, Chem. Mater. 15, 2969 (2003).
- ¹⁰⁷² J. S. Becker and R. G. Gordon, Appl. Phys. Lett. 82, 2239 (2003).
- ¹⁰⁷³ A. Rugge, J. S. Becker, R. G. Gordon, and S. H. Tolbert, Nano Lett. **3**, 1293 (2003).
- ¹⁰⁷⁴ T. W. Scharf, S. V. Prasad, T. M. Mayer, R. S. Goeke, and M. T. Dugger, J. Mater. Res. **19**, 3443 (2004).
- ¹⁰⁷⁵ D.-H. Kim, Y. J. Kim, Y. S. Song, B.-T. Lee, J. H. Kim, S. Suh, and R. Gordon, J. Electrochem. Soc. **150**, C740 (2003).
- ¹⁰⁷⁶ J. W. Klaus, S. J. Ferro, and S. M. George, Thin Solid Films **360**, 145 (2000).

- ¹⁰⁷⁷ J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Thin Solid Films **386**, 41 (2001).
- ¹⁰⁷⁸ J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Surf. Sci. **479**, 121 (2001).
- ¹⁰⁷⁹ R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, Science **303**, 989 (2004).
- ¹⁰⁸⁰ R. K. Grubbs, N. J. Steinmetz, and S. M. George, J. Vac. Sci. Technol., B **22**, 1811 (2004).
- ¹⁰⁸¹ T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, J. Electrochem. Soc. **151**, G489 (2004).
- ¹⁰⁸² T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Mater. **15**, 1924 (2003).
- ¹⁰⁸³ M. Leskelä, L. Niinistö, P. Niemelä, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, Vacuum **41**, 1457 (1990).
- ¹⁰⁸⁴ E. Nykänen, J. Laine-Ylijoki, P. Soininen, L. Niinistö, M. Leskelä, and L. G. Hubert-Pfalzgraf, J. Mater. Chem. 4, 1409 (1994).
- ¹⁰⁸⁵ M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, J. Mater. Chem. **14**, 3191 (2004).
- ¹⁰⁸⁶ A. Salzer, Pure Appl. Chem. **71**, 1557 (1999).
- ¹⁰⁸⁷ T. I. Hukka, T. A. Pakkanen, and M. P. D'Evelyn, Surf. Sci. **359**, 213 (1996).
- ¹⁰⁸⁸ A. Heyman and C. B. Musgrave, J. Phys. Chem. B **108**, 5718 (2004).
- ¹⁰⁸⁹ Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett. 80, 3304 (2002).
- ¹⁰⁹⁰ M. D. Halls and K. Raghavachari, J. Chem. Phys. **118**, 10221 (2003).
- ¹⁰⁹¹ M. D. Halls, K. Raghavachari, M. M. Frank, and Y. J. Chabal, Phys. Rev. B 68, 161302 (2003).
- ¹⁰⁹² L. Jeloaica, A. Estéve, M. D. Rouhani, and D. Estéve, Appl. Phys. Lett. 83, 542 (2003).
- ¹⁰⁹³ Y. Xu and C. B. Musgrave, Chem. Mater. **16**, 646 (2004).
- ¹⁰⁹⁴ M. D. Halls and K. Raghavachari, J. Phys. Chem. B **108**, 4058 (2004).
- ¹⁰⁹⁵ M. D. Halls and K. Raghavachari, J. Phys. Chem. A **108**, 2982 (2004).
- ¹⁰⁹⁶ K. Raghavachari and M. D. Halls, Mol. Phys. **102**, 381 (2004).
- ¹⁰⁹⁷ S. D. Elliott and J. C. Greer, J. Mater. Chem. **14**, 3246 (2004).
- ¹⁰⁹⁸ S. D. Elliott and H. P. Pinto, J. Electroceram. **13**, 117 (2004).
- ¹⁰⁹⁹ J. K. Kang and C. B. Musgrave, J. Appl. Phys. **91**, 3408 (2002).
- ¹¹⁰⁰ Y. Okamoto, J. Phys. Chem. B **103**, 11074 (1999).
 ¹¹⁰¹ C. Mui, Y. Widjaja, J. K. Kang, and C. B. Musgrave, Surf. Sci.
- **557**, 159 (2004).
- ¹¹⁰² P. Hirva and T. Pakkanen, Surf. Sci. **220**, 137 (1989).
- ¹¹⁰³ M. J. Calhorda, L. F. Veiros, and L. Niinistö, Acta Chem. Scand. 50, 862 (1996).
- ¹¹⁰⁴ R. Leboda, V. M. Gunko, M. Marciniak, A. A. Malygin, A. A. Malkin, W. Grzegorczyk, B. J. Trznadel, E. M. Pakhlov, and E. F. Voronin, J. Colloid Interface Sci. **218**, 23 (1999).
- ¹¹⁰⁵ V. M. Gunko, R. Leboda, M. Marciniak, W. Grzegorczyk, J. Skubiszewska-Zieba, A. A. Malygin, and A. A. Malkov, Langmuir **16**, 3227 (2000).
- ¹¹⁰⁶ T. Tanaka, T. Nakajima, and K. Yamashita, Thin Solid Films **409**, 51 (2002).
- ¹¹⁰⁷ P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. 136, 137 (1998).
- ¹¹⁰⁸ P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. 148, 9 (1999).
- ¹¹⁰⁹ P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. 157, 92 (2000).
- ¹¹¹⁰ T. A. Pakkanen, V. Nevalainen, M. Lindblad, and P. Makkonen, Surf. Sci. **188**, 456 (1987).
- ¹¹¹¹ M. Lindblad and T. A. Pakkanen, J. Comput. Chem. 9, 581

(1988).

- ¹¹¹² K. Tóth, T. A. Pakkanen, P. Hirva, and J. Muilu, Surf. Sci. 277, 395 (1992).
- ¹¹¹³ Y. Mochizuki, T. Takada, and A. Usui, Jpn. J. Appl. Phys., Part 2 32, L197 (1993).
- ¹¹¹⁴ Y. Mochizuki, T. Takada, and A. Usui, Phys. Rev. B 47, 13420 (1993).
- ¹¹¹⁵ Y. Mochizuki, T. Takada, and A. Usui, Appl. Surf. Sci. 82-83, 200 (1994).
- ¹¹¹⁶ V. V. Brodskii, E. A. Rykova, A. A. Bagatur'yants, and A. A. Korkin, Comput. Mater. Sci. **24**, 278 (2002).
- ¹¹¹⁷ Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett. **81**, 304 (2002).
- ¹¹¹⁸ N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm, Comput. Mater. Sci. **28**, 250 (2003).
- ¹¹¹⁹ Y. J. Widjaja, H. Han, and C. B. Musgrave, J. Phys. Chem. B 107, 9319 (2003).
- ¹¹²⁰ M. Deminsky, A. Knizhnik, I. Belov, S. Umanskii, E. Rykova, A. Bagatur'yants, B. Potapkin, M. Stoker, and A. Korkin, Surf. Sci. **549**, 67 (2004).
- ¹¹²¹ J. H. Han, G. Gao, Y. Widjaja, E. Garfunkel, and C. B. Musgrave, Surf. Sci. 550, 199 (2004).
- ¹¹²² M. Petersen, Comput. Mater. Sci. **30**, 77 (2004).
- ¹¹²³ Y. Widjaja and C. B. Musgrave, J. Chem. Phys. **117**, 1931 (2002).
- ¹¹²⁴ A. Estéve, M. Djafari Rouhani, L. Jeloaica, and D. Estéve, Comput. Mater. Sci. 27, 75 (2003).
- ¹¹²⁵ C. Mui and C. B. Musgrave, J. Phys. Chem. B **108**, 15150 (2004).
- ¹¹²⁶ M. Siodmiak, G. Frenking, and A. Korkin, J. Phys. Chem. A 104, 1186 (2000).
- ¹¹²⁷ M. Ylilammi, Thin Solid Films **279**, 124 (1996).
- ¹¹²⁸ R. L. Puurunen, Chem. Vap. Deposition **9**, 249 (2003).
- ¹¹²⁹ G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
- ¹¹³⁰ R. M. Wallace and G. D. Wilk, Crit. Rev. Solid State Mater. Sci. 28, 231 (2003).
- ¹¹³¹ J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).
- ¹¹³² T. Kawahara and K. Torii, IEICE Trans. Electron. **E87-C**, 2 (2004).
- ¹¹³³ K. Kukli, M. Ritala, M. Leskelä, S. Dueñas, H. Castán, H. García, and J. Barbolla, AVS Topical Conference on Atomic Layer Deposition "ALD 2004," Helsinki, Finland, August 16– 18, 2004 (oral presentation).
- ¹¹³⁴ One group^{979,980} has reported GPC values for the HfCl₄/H₂O process at 300 °C, which are about three times as high as the typically reported ~ 0.05 nm.^{982,984,985,992,998,1127,1132} No clarification has been proposed for the different findings, although the particular reactor used in Refs. 979,980 has been concluded to result in systematically higher values than other reactors.¹¹³³ ALD is a surface-controlled process, and getting significantly different GPC values in different reactors should in principle not be possible, unless the process itself or the chosen parameters do not represent ALD conditions.
- ¹¹³⁵ R. L. Puurunen, Chem. Vap. Deposition (2005), in press.
- ¹¹³⁶ J. W. Elam, G. Xiong, C. Y. Han, J. P. Birrell, G. A. Willing, H. H. Wang, J. N. Hryn, and M. J. Pellin, AVS Topical Conference on Atomic Layer Deposition "ALD 2004," Helsinki, Finland, August 16–18, 2004 (oral presentation).
- ¹¹³⁷ E. Graugnard, J. S. King, D. Heineman, and C. J. Summers, AVS Topical Conference on Atomic Layer Deposition "ALD 2004," Helsinki, Finland, August 16–18, 2004 (oral presentation).
- ¹¹³⁸ M. Ritala, A. Rahtu, M. Leskelä, and K. Kukli, patent

US6632279, 14 October 2003 (filed 13 October 2000), ASM Microchemistry Oy.

- ¹¹³⁹ G. E. Rodgers, *Introduction to coordination, solid state, and descriptive inorganic chemistry* (McGraw-Hill, Singapore, 1994).
- ¹¹⁴⁰ R. L. Puurunen, Chem. Vap. Deposition **10**, 159 (2004).
- ¹¹⁴¹ B. S. Lim, A. Rahtu, J.-S. Park, and R. G. Gordon, Inorg. Chem. 42, 7951 (2003).
- ¹¹⁴² A. Rahtu, B. S. Lim, and R. Gordon, AVS Topical Conference on Atomic Layer Deposition "ALD 2003," San Jose, California, USA, August 4–6, 2003 (oral presentation).
- ¹¹⁴³ B. S. Lim, A. Rahtu, P. de Rouffignac, and R. G. Gordon, Appl. Phys. Lett. 84, 3957 (2004).
- ¹¹⁴⁴ J. Hukkamäki, S. Suvanto, M. Suvanto, and T. T. Pakkanen, Langmuir **20**, 10288 (2004).
- ¹¹⁴⁵ D. H. Everett, Pure Appl. Chem. **31**, 579 (1972), web version http://www.iupac.org/reports/2001/colloid_2001/-manual_of_s_and_t.pdf.
- ¹¹⁴⁶ For amorphous and polycrystalline materials, defining a monolayer may be more difficult, as discussed in Section V B 2.
- ¹¹⁴⁷ Sometimes, the reactions used in ALD investigations do not fulfill the criterion of self-termination. Typical deviations of self-terminating adsorption are caused by (i) continuous adsorption, often caused by too low processing temperatures and unoptimized purge times, (ii) desorption of the adsorbed reactants during purge or evacuation, often caused by too high processing temperatures, (iii) non-saturating irreversible chemisorption, caused by thermal decomposition of the gas-phase reactant or the adsorbed surface species, and (iv) unsaturation, caused by insufficient time or reactant dose for the reactions to go to completion.
- ¹¹⁴⁸ H. S. Fogler, *Elements of chemical reaction engineering* (Prentice Hall, Upper Saddle River, New Jersey, USA, 1992), 2nd ed.
- ¹¹⁴⁹ G. Eres and J. W. Sharp, J. Appl. Phys. **74**, 7241 (1993).
- ¹¹⁵⁰ G. Eres, Appl. Phys. Lett. **67**, 1727 (1995).
- ¹¹⁵¹ H.-S. Park, J.-S. Min, J.-W. Lim, and S.-W. Kang, Appl. Surf. Sci. **158**, 81 (2000).
- ¹¹⁵² M. K. Gobbert, S. G. Webster, and T. S. Cale, J. Electrochem. Soc. **149**, G461 (2002).
- ¹¹⁵³ M. K. Gobbert, V. Prasad, and T. S. Cale, J. Vac. Sci. Technol., B 20, 1031 (2002).
- ¹¹⁵⁴ M. K. Gobbert, V. Prasad, and T. S. Cale, Thin Solid Films **410**, 129 (2002).
- ¹¹⁵⁵ In this work, symbol Q is used for the chemisorption coverage, instead of the more commonly used Θ or θ . This is done to avoid confusion with the coverage of the ALD-grown material denoted Θ in growth mode models^{247,1140} and the coverage of the ligands denoted θ in a GPC model.¹¹²⁸ The use of three different symbols testifies to the three different definitions for the term monolayer: for chemisorption, for physisorption, and for the ALD-grown MZ_x material (Section III A). Coverage is in all cases defined¹¹⁴⁵ as "the ratio of the amount of adsorbed substance to the monolayer capacity," and thus obtained by dividing the amount of adsorbed species with the monolayer capacity.
- ¹¹⁵⁶ ALD processes are in a steady state with a constant deposition rate only after termination of the reactions when the deposition rate is zero, which is a major difference compared to typical CVD processes.
- ¹¹⁵⁷ J. Aarik, A. Aidla, and K. Kukli, Appl. Surf. Sci. **75**, 180 (1994).
- ¹¹⁵⁸ J. Aarik and H. Siimon, Appl. Surf. Sci. **81**, 281 (1994).
- ¹¹⁵⁹ M. Ylilammi, J. Electrochem. Soc. **142**, 2474 (1995).
- ¹¹⁶⁰ H. Siimon and J. Aarik, J. Phys. IV France 5, C5/245 (1995).
- ¹¹⁶¹ In this work, term *chemisorption* is defined to refer to all

processes where the ML_n reactant (dissociation, association) or just fragments of it (ligand exchange) are attached to the surface. Other ALD publications may use other definitions. For example, Ritala and Leskelä³ consider as "true chemisorption" only the reactions where all parts of the reactant are attached to the surface (dissociation, association), and do not classify the (ligand) exchange reactions as chemisorption.

- ¹¹⁶² One can visualize the ligand exchange reaction in two ways: either the central metal atom of the ML_n compound (or of the ML_z species) exchanges one of its ligands L with a bond to the surface; or the surface exchanges its ligand –a with another "ligand," a MZ_z species.
- ¹¹⁶³ R. J. Peglar, F. H. Hambleton, and J. A. Hockey, J. Catal. 20, 309 (1971).
- ¹¹⁶⁴ M. E. Bartram, T. A. Michalske, and J. W. Rogers, Jr., J. Phys. Chem. **95**, 4453 (1991).
- ¹¹⁶⁵ A. Hakuli and A. Kytökivi, Phys. Chem. Chem. Phys. 1, 1607 (1999).
- ¹¹⁶⁶ I. V. Babich, Yu. V. Plyuto, P. Van Der Voort, and E. F. Vansant, J. Chem. Soc., Faraday Trans. **93**, 3191 (1997).
- ¹¹⁶⁷ I. V. Babich, Yu. V. Plyuto, P. Van Der Voort, and E. F. Vansant, J. Colloid Interface Sci. **189**, 144 (1997).
- ¹¹⁶⁸ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **46**, 2166 (1976) [J. Gen. Chem. USSR **46**, 2085 (1976)].
- ¹¹⁶⁹ P. J. Kooyman, P. van der Waal, P. A. J. Verdaasdonk, K. C. Jansen, and H. van Bekkum, Catal. Lett. **13**, 229 (1992).
- ¹¹⁷⁰ C. Musgrave, AVS Topical Conference on Atomic Layer Deposition "ALD 2003," San Jose, California, USA, August 4–6, 2003 (oral presentation).
- ¹¹⁷¹ Growth of a full monolayer of the ALD-grown material per cycle is sometimes regarded "theoretical" ALD. However, no theory appears to exist that would predict such growth.
- ¹¹⁷² In relation with Model III, it is probably in practice not possible to reach a ligand content equivalent to a physisorbed monolayer of the ligands, because the ligands are bonded to surface atoms and thus are not free to move in the same way as truly physisorbed molecules.
- ¹¹⁷³ Desorption of the adsorbed species during purging periods has also been suggested to account for the GPC of less than a monolayer.^{1117,1121,1123,1153} This suggestion, however, contradicts the essential requirement of irreversibility for the selfterminating ALD reactions (Section III A).
- ¹¹⁷⁴ Increase in temperature may also turn an irreversible reaction into a reversible reaction. Such effect is not discussed in this work, because through it, the self-terminating characteristics of the reaction are lost.
- ¹¹⁷⁵ In this work, term *ALD window* is used for referring to the temperature range where an ALD process fulfills the criterion of self-terminating reactions. The same term has been used for referring to other things also, most particularly, to a temperature range where the GPC is constant (e.g., Refs. 11,30).
- ¹¹⁷⁶ C. Zhao, B. Brijs, F. Dortu, S. De Gendt, M. Caymax, M. Heyns, W. Besling, and J. W. Maes, in *Analytical and Diagnostic Techniques for Semiconductor Materials, Devices and Processes*, edited by B. O. Kolbesen, C. L. Claeys, P. Stallhofer, and F. Tardif (Electrochemical Society, Pennington, New Jersey, USA, 2003), vol. PV 2003-3 of *Electrochem. Soc. Proc.*, pp. 243–250.
- ¹¹⁷⁷ A. Martin Hoyas, J. Schuhmacher, D. Shamiryan, J. Waeterloos, W. Besling, J. P. Celis, and K. Maex, J. Appl. Phys. 95, 381 (2004).
- ¹¹⁷⁸ M. A. Alam and M. L. Green, J. Appl. Phys. **94**, 3403 (2003).
- ¹¹⁷⁹ D. Shamiryan, Doctoral thesis, Katholieke Universiteit Leuven,

- ¹¹⁸⁰ H. Lüth, Surfaces and Interfaces of Solids (Springer-Verlag, Berlin, 1993), 2nd ed.
- ¹¹⁸¹ Y. Horikoshi, M. Kawashima, and H. Yamaguchi, Jpn. J. Appl. Phys., Part 2 25, L868 (1986).
- ¹¹⁸² O. Ueda, K. Kitahara, N. Ohtsuka, A. Hobbs, and M. Ozeki, J. Cryst. Growth **115**, 133 (1991).
- ¹¹⁸³ J. Kunawicz, P. Jones, and J. A. Hockey, Trans. Faraday Soc. 67, 848 (1971).
- ¹¹⁸⁴ J. Kratochvíla, Z. Kadle, A. Kazda, and Z. Salajka, J. Non-Cryst. Solids **143**, 14 (1992).
- ¹¹⁸⁵ D. C. Bertolet and J. W. Rogers, Jr., Chem. Mater. **5**, 391 (1993).
- ¹¹⁸⁶ H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. **320**, 145 (1994).
 ¹¹⁸⁷ B. A. Morrow and A. H. Hardin, J. Dhua, Chem. **83**, 2125.
- ¹¹⁸⁷ B. A. Morrow and A. H. Hardin, J. Phys. Chem. 83, 3135 (1979).
- ¹¹⁸⁸ A. W. Apblett and A. R. Barron, Organometallics **9**, 2137 (1990).
- ¹¹⁸⁹ L. M. Yeddanapalli and C. C. Schubert, J. Chem. Phys. **14**, 1 (1946).
- ¹¹⁹⁰ S. Haukka and A. Root, J. Phys. Chem. **98**, 1695 (1994).
- ¹¹⁹¹ From the experiments on alumina [Figure 21(a)], we have $\Delta c_{A1} (nm^{-2}) = (5.9 \pm 0.2) + (-0.0050 \pm 0.003) T(^{\circ}C)$. From the GPC measured for flat substrates (Figure 19), we have $\Delta c_{A1} (nm^{-2}) = (6.3 \pm 0.6) + (-0.0081 \pm 0.0024) T(^{\circ}C)$. These equations are close to the same within the error limits.
- ¹¹⁹² R. Anwander, C. Palm, O. Groeger, and G. Engelhardt, Organometallics **17**, 2027 (1998).
- ¹¹⁹³ Model II is not able to describe the GPC in the AlMe₃/H₂O process: for a surface complex with one methyl group, the maximum GPC calculated with Model II is lower than the observed real value (Ref. 992).
 ¹¹⁹⁴ E. A. Cotten and C. Wilkinger, *Basia Inserguia Chemistry*.
- ¹¹⁹⁴ F. A. Cotton and G. Wilkinson, *Basic Inorganic Chemistry* (John Wiley & Sons, New York, 1976), p. 88.
- ¹¹⁹⁵ H. Knözinger and P. Ratnasamy, Catal. Rev.—Sci. Eng. **17**, 31 (1978).
- ¹¹⁹⁶ L. T. Zhuravlev, Langmuir **3**, 316 (1987).

- ¹¹⁹⁷ J. E. Crowell, J. Vac. Sci. Technol., A **21**, S88 (2003).
- ¹¹⁹⁸ Yu. K. Ezhovskii and P. M. Vainshtein, Zh. Fiz. Khim. **71**, 2222 (1997) [Russ. J. Phys. Chem. **71**, 2009 (1997)].
- ¹¹⁹⁹ K. L. Choy, Prog. Mater. Sci. **48**, 57 (2003).
- ¹²⁰⁰ In Ref. 1178, chemical kinetics was incorrectly declared as the starting point of modeling how the amount of material deposited by ALD increases with reaction cycles, apparently because the GPC was called a "growth rate (amount/cycle)," and chemical kinetics describes rates (see Ref. 992).
- ¹²⁰¹ A. A. Malygin, V. F. Dergachev, and S. I. Kol'tsov, Zh. Prikl. Khim. **59**, 430 (1986) [J. Appl. Chem. USSR **59**, 392 (1986)].
- ¹²⁰² P. M. Vainshtein and Yu. K. Ezhovskii, Zh. Prikl. Khim. **71**, 227 (1998) [Russ. J. Appl. Chem. **71**, 235 (1998)].
- ¹²⁰³ K. Schrijnemakers, P. Van Der Voort, and E. F. Vansant, Phys. Chem. Chem. Phys. **1**, 2569 (1999).
- ¹²⁰⁴ R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
- ¹²⁰⁵ V. F. Dergachev, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim. **54**, 1972 (1981) [J. Appl. Chem. USSR **54**, 1722 (1981)].
- ¹²⁰⁶ High-surface-area substrates have typically a specific surface area of 100–300 m² g⁻¹, ^{209,216,419} so for example for 10 g of the substrate, a surface area of 1000–3000 m² has to be reacted. Flat substrates have typically a surface area of 0.003–0.07 m²—from square substrates of 5 cm × 5 cm in research reactors up to circular substrates with 30 cm diameter in semiconductor processing lines. The surface area to be reacted on high-surface-area substrates can thus be at least six orders of magnitude higher than on flat substrates.
- ¹²⁰⁷ S. Haukka, A. Kytökivi, E.-L. Lakomaa, U. Lehtovirta, M. Lindblad, V. Lujala, and T. Suntola, in *Preparation of Catalysts VI. Proceedings of the 6th International Symposium "Scientific Bases for the Preparation of Heterogeneous Catalysts," Louvain-la-Neuve, Belgium, September 5-8, 1994*, edited by G. Poncelet, J. Martens, B. Delmon, P. A. Jacobs, and P. Grange (Elsevier, Amsterdam, 1995), vol. 91 of *Stud. Surf. Sci. Catal.*, pp. 957–966.