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Ranging of UHF RFID Tag Using
Stepped Frequency Read-Out

Ville Viikari, Senior Member, IEEE, Pekka Pursula, Member, IEEE, and Kaarle Jaakkola

Abstract—This paper presents a phase-based method for ob-
taining the distance of an RFID tag with unknown properties.
The tag’s response is measured by the reader at several discrete
frequencies at the threshold power of the tag. The dispersive
properties of the modulated reflection coefficient of the tag are
estimated from the measured power sensitivity and their effect is
compensated in the distance estimation. The method is derived
using a simple theoretical model for the tag and the performance
of the method is experimentally verified at 860 MHz.

Index Terms—Radio frequency identification (RFID), tracking,
transponders, wireless sensors.

I. INTRODUCTION

L OCATION sensing systems have a great deal of potential
in several applications. Among the most obvious are lo-

cation detection of products in a warehouse, medical personnel
and patients in a hospital, equipment in a laboratory, and first
responders and victims in a rescue operation. Future ubiquitous
sensing, computing, and manufacturing systems will also neces-
sitate automatic location sensing.

Most location sensing systems, such as the global positioning
system (GPS) and wireless local area network (WLAN)-based
systems utilize microwaves, but they can also be based on other
parts of the electromagnetic spectrum, such as infrared [1], or
acoustic waves [2], [3]. Location systems are reviewed for ex-
ample in [4]–[6].

Radio frequency identification (RFID) can also be used for lo-
cation sensing and it has several advantages over other methods
in short-range applications. The RFID provides very low-cost
and small tags with advanced features such as anticollision pro-
tocols and nonvolatile memory. The tags can be passive re-
quiring no battery, which could limit the operation conditions
or lifetime of the tag. Most importantly, RFID is already widely
used and the existing RFID infrastructure could be used for lo-
cation sensing.

RFID is typically used as a proximity location sensor. The
proximity sensor simply identifies whether a certain tag is
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within the read-range of the reader or not, and its location res-
olution equals to the coverage area of the reader device. More
sophisticated RFID systems utilize the received signal strength
indicator (RSSI), i.e., the signal attenuation due to free-space
loss for determining the tag distance [7]–[10]. The received
signal strength, however, is highly sensitive to the tag and the
reader alignment, tag antenna mismatch due to proximity of
conductive or dielectric material, and multipath propagation.
Therefore, the RSSI-based distance measurement accuracy is
low when multipath propagation occurs, the tag alignment is
unknown, or the tag can be mismatched due to proximity of
dielectric or conductive materials. The RSSI-based distance
measurement also necessitates knowledge on the modulation
depth of the tag.

The time-of-flight or phase-based distance measurement
principle used by the radar typically provides better distance
measurement accuracy than the bare amplitude-based es-
timation. The radar concept for measuring the distance of
modulated backscatterers, i.e., tags or transponders, is called
secondary radar [11]. In this concept, the transponders reply at
a frequency, which is offset from that transmitted by the reader
device. Harmonic radar, where the frequency offset is a multiple
of the fundamental frequency, is an example of the secondary
radar and it was first proposed for traffic applications [12] and
later was used for tracking insects [13]–[15] and avalanche
victims [16]. The somewhat similar intermodulation radar prin-
ciple is also proposed for traffic applications and for reading
out wireless MEMS [17] and ferroelectric sensors [18]. Novel
amplifying transponder based on switched injection-locked
oscillator and an active retrodirective transponder are described
in [19] and [20], respectively, to name a few applications of the
secondary radar and transponders.

The phase-based distance measurement combined with the
RFID could enable both the identification and the distance de-
termination of a passive transponder that is not straightforward
by the most aforementioned methods. Phase-based distance es-
timation of RFID is studied in a few articles. A frequency-mod-
ulated continuous wave (FMCW) RFID reader capable for dis-
tance measurement is presented in [21] and distance estimators
for RFID are presented and studied by simulations in [22] and
[23]. The phase-based distance determination of generic RFID
tag is challenging due to two things. First, the dispersive proper-
ties of the modulated reflection coefficient of the tag affect the
distance determination and should therefore be known in ad-
vance. Second, the modulated reflection coefficient is sensitive
to the received power by the tag. These issues are not addressed
at all in [21] and [22]. The power and frequency dependent re-
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Fig. 1. Electrical equivalent circuit of the RFID antenna and chip.

flection coefficient of the tag is included in the analysis pre-
sented in [23], but no method to solve these unknown properties
is proposed. In this paper, we present a phase-based method for
determining the distance of an RFID tag with unknown disper-
sive properties and power response.

II. RANGING PRINCIPLE

A. Frequency Response of the Tag

Consider an RFID tag at a distance from the reader. The
reader illuminates the tag by a CW and the tag produces mod-
ulated backscattering by switching its reflection coefficient be-
tween two states, and . The corresponding signal differ-
ence between the two states at the reader device is

(1)

where is the unknown two-way signal attenuation,
is the angular frequency and is the speed of light. Solving the
distance from necessitates that the modulated reflec-
tion coefficient is known.

B. Modulated Reflection Coefficient of the Tag

Let us represent an RFID tag with the electrical equivalent
circuit shown in Fig. 1. The capacitive RFID chip is modeled
with a series resistance and a capacitance and the antenna
is represented with a series resistance and an inductance .

The tag modulates its reflection coefficient by switching the
capacitance between two states: and . Note that the
capacitance change direction between the two states is assumed
unknown and can be either positive or negative. The modulated
reflection coefficient is given as

(2)

where , ,
, and denotes complex conjugate. When

, (2) can be approximated as

(3)

where the resonance frequency is and the
loaded quality factor . The phase
of the modulated reflection coefficient is

(4)

Approximating (4) by the first-order Taylor’s expansion near the
resonance gives

(5)

Substituting (5) into (1) gives

(6)
where

(7)

and is the wavelength at the resonance frequency. For ex-
ample, when the loaded quality factor of the tag is ,
the distance measurement error of at 867 MHz is 1.1 m when

is neglected (assumed constant).

C. Power Sensitivity of the Tag

The power sensitivity of the tag (the threshold power that
turns the tag on) is inversely proportional to the power dissi-
pated in the chip resistance in Fig. 1, and can be written as
[24]

(8)

D. Distance Estimation of the Tag

In the proposed distance estimation method, the reader de-
vice records the response of the tag at several discrete frequency
points at the power sensitivity of the tag. The power sensitivity is
measured at all frequencies by gradually increasing the transmit
power and detecting the first reply from the tag. The tag param-
eters, and are then estimated using the following least
squares fit:

(9)

where is the unknown signal attenuation due to the free-space
and other loss, is the measured power sensitivity
of the tag, and is given by (8).

The tag parameters obtained from (9) are used to estimate the
modulated reflection coefficient with (3). Note that and
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Fig. 2. Experimental measurement setup for measuring the distance of an RFID
tag.

does not affect the frequency behavior of the modulated reflec-
tion coefficient and can be set to one. Hence, the fit concerns
finding the resonance frequency and the quality factor of the
tag.

The distance is obtained using Fourier transform

(10)

where is the measured difference signal between
the two reflection coefficient states of the tag and
is the modulated reflection coefficient of the tag obtained from
(9) and (3). When the computing power is limited, the linear
approximation of the distance correction term given in (7) can
be used.

There is a constant phase ambiguity of in the estimated
modulated reflection coefficient [the term in
(6)]. This phase-term does not affect the absolute value of the
Fourier transform given in (10) nor the estimated distance .

The effective impedance of the RFID chip depends on the ap-
plied power and therefore the modulated reflection coefficient
of the tag is also power dependent. The response of the tag is
always measured at the power sensitivity of the tag, which en-
sures that the properties of the tag remains unchanged and does
not affect the estimated distance.

The proposed method enables ranging all the tags within the
reader field simultaneously using standard inventory procedure,
because the tag responses can be distinguished by their EPC
codes. Also standard reader hardware can be used. The method
requires only that the transmit power can be adjusted and that
the phase of the difference signal can be measured.

The accuracy of the method depends on the bandwidth, the
signal-to-noise ratio, and the level of multipath propagation. The
effect of these parameters on the distance measurement accu-
racy of RFID tag is analyzed in [23]. The method is likely not
applicable in Europe, where only a narrow band (865–868 MHz)
is allocated to UHF RFID [25], but could be applicable espe-
cially in the USA, where the available UHF RFID band ranges
from 902–928 MHz [26]. Note also that the method could pro-
vide very high accuracy in special applications where the fre-
quency allocations can be exceeded.

Fig. 3. The measured and fitted power sensitivity of the tag as a function of the
frequency. Different lines are for different distances.

III. EXPERIMENTS

A. Measurement Setup

The distance estimation method is experimentally tested in an
anechoic chamber using an RFID test equipment (Tagformance
lite 2.01) as a reader device, see Fig. 2. The transmit and re-
ceive channels of the RFID test device are coupled to a single
reader antenna (SPA 8090/75/8/0/V2) through a circulator ( )
and the tested RFID tag is placed on a movable holder. The tag
antenna is comprised of two shorted patches and it measures
88 30 3 mm. The tag is equipped with the Monza 23 RFID
chip. The response of the tag is measured from 840–876 MHz
with 3 MHz interval (13 frequency points) at the distances from
0.3–4.7 m.

B. Estimated Parameters of the Tag

The measured power sensitivity of the tag at 1, 2, and 3 m
distances are shown in Fig. 3 with the fitted curves. The best fit
is obtained at 1 m due to the best signal-to-noise ratio but the
deviations are relatively low even at 3 m distance.

Fig. 4 shows the estimated quality factor and the resonance
frequency of the tag at different distances. The average of the
estimated resonance occurs at approximately 864 MHz with
maximum deviations of MHz and MHz. The estimated
quality factor ranges from 10 to 17 and its average is 14.

C. Estimated Distance of the Tag

The estimated distance of the tag as a function of the true dis-
tance is shown in Fig. 5. The red circles show the uncorrected
distance estimate. In this distance, the dispersive properties
of the tag are not taken into account in (9), in other words,

is assumed constant. The corrected distance obtained
with the method proposed in this paper is shown with blue
squares. Black lines are linear fits to both data.
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Fig. 4. The estimated quality factor and the resonance frequency of the tag at
different distances.

Fig. 5. The estimated uncorrected (red circles) and corrected (blue squares)
distances of the tag as a function of the true distance.

The distance offset between the corrected and uncorrected re-
sults is approximately 1.4 m. This agrees well with the theoreti-
cally derived linear approximation for the offset distance, which
is at 867 MHz with .

The variation in the corrected distance estimate is slightly
larger than that in the uncorrected distance estimate due to the
uncertainty in estimating the quality factor and the resonance
frequency of the tag. However, the distance measurement accu-
racy in this experiment is relatively good as the mean absolute
error in the corrected data is 68 mm.

IV. CONCLUSION

We have proposed a phase-based method for determining
the distance of an RFID tag with unknown properties. In this
method, the reader records the response of the tag at different
frequencies at the threshold power of the tag. The dispersive
properties of the modulated reflection coefficient are estimated
from the measured power sensitivity and are taken into account
in the distance estimation. Implementing the method neces-
sitates only that the transmit power of the RFID reader can
be adjusted and that the phase of the difference signal can be
measured. Thus only software modifications to the reader are
required.

The method is experimentally verified at 860 MHz and it is
found to provide accurate distance estimate the maximum error
being 0.4 m. Better accuracy could be achieved by using larger
bandwidth or longer integration time.
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