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ABSTRACT

Verification of safety critical digital instrumentation and control (I&C) systems is challenging because of more
and more complicated control functions enabled by programmable logic controllers. Design verification is an
important task in the design flow because it enables to detect design errors earlier and helps to avoid expensive
redesign and reimplementation work caused by undetected design errors found later. Systems have been
typically verified by testing and simulation techniques. Both approaches have their advantages and are useful in
many situations but in cases where exhaustive verification with reasonable effort and time is needed, none of
them alone is suitable. Model checking is a computer-aided formal method that can be used for verifying correct
functioning of a system design model. In model checking the task is to determine whether a model of a system
satisfies a given requirement, which is checked against all executions of the system model. In addition to
introducing the model checking methodology, this paper gives examples of industrial cases where model
checking has been successfully used and discusses its applicability to verifying safety logic designs.

1 INTRODUCTION

Verification of safety critical digital instrumentation and control (I&C) systems is challenging because
programmable logic controllers enable complicated control functions and the state spaces of the designs become
easily too large for comprehensive manual inspection. Design verification is a key task in the design flow
because it can eliminate tricky design errors which are hard to detect later in the development process and are
very expensive to repair leading often to a major redesign and reimplementation cycle.

Typically, systems have been verified by testing and simulation techniques. There are several subtypes of testing
(black box, white box, etc.), but the basic idea in all testing is using the system itself for getting evidence of its
correctness. In simulation, the aim is to imitate the system behaviour by a model and verify the correctness of the
system by simulating different scenarios one by one. That is time-consuming and impractical when the number
of reachable states of the system grows up to thousands or millions. An alternative formal method is deductive
verification, which uses axioms and proof rules to prove the correctness of systems. It is time-consuming and can
be performed only by experts with considerable experience. These three methods have their advantages and they
are useful in many situations. However, in cases where exhaustive verification with reasonable effort and time is
needed, none of them alone is suitable.

Model checking is a computer-aided formal method that can be used for verifying correct functioning of a
system design model. In model checking, the task is to determine whether a model of a system satisfies a given
requirement, which is checked against all executions of the system model. This paper introduces the model
checking methodology, gives examples of industrial cases where it has been successfully used, and discusses its
benefits and limitations in verifying safety logic designs.

2 MODEL CHECKING METHODOLOGY

Model checking /7/ is a computer-aided verification method developed to formally verify correct functioning of
a system design model by examining all of its possible behaviours. The models used in model checking are quite
similar to those used in simulation, as basically the model must describe the behaviour of the system design for
all sequences of inputs. However, unlike simulation, model checkers examine the behaviour of the system design
with all input sequences and compare it to the specification of the system. In model checking, at least in
principle, the analysis can be made fully automatic with computer aided tools. The specification is expressed in a
suitable language, temporal logics being a prime example, describing the allowed behaviours of a system. Given

mailto:janne.valkonen@vtt.fi
mailto:kim.bjorkman@vtt.fi
http://www.vtt.fi
mailto:ilkka.niemela@tkk.fi
mailto:jfrits@tcs.hut.fi
http://www.aalto.fi


a model and a specification as input, a model checking algorithm decides whether the system violates its
specification or not. If none of the behaviours of the system violates the given specification, the model of the
system is correct. Otherwise, the model checker will automatically give a counter example execution of the
system demonstrating why the property is violated.

Using model checking for system design verification involves typically the following four steps: (i) modelling
the design, (ii) requirement specification, (iii) running the model checker, (iv) interpreting the results. Next we
briefly describe the methodology that we have used for these steps. For model checking, the system design needs
to be captured using the modelling language supported by the model checking tool to be used. Modelling
languages of state-of-the-art model checking tools support well modelling of typical components used in digital
I&C system designs. For systematic modelling methodology, a key issue is to develop an approach that leads to
models that are easy to review, revise and update and that support traceability. In our approach this means
identifying the system boundaries and the interface between the system and its environment and exploiting the
component structure of the design to create a corresponding modular modelling approach. Another important
issue is choosing an appropriate level of abstraction for the model so that irrelevant details are abstracted away
and, thus, the computational cost of performing the model checking task remains reasonable. When using model
checking to verify whether a system design satisfies a specification, this is done against an environment model
describing how the environment and the system interact. In our approach we use simple environment models that
allow the environment to behave quite freely and independent of the system design under verification. This leads
to safe model checking results: if the model checking tool determines that the system model satisfies the
specification, then this is the case in all kinds of environments and the correct behaviour is not based on
assumptions on the environment.

Another key step is requirement specification where requirements are typically given as natural language
statements that are formalized in the specification language supported by the model checking tool to be used.
This is a challenging task where often ambiguous and vague requirements need to be formalized as precise
statements in the formal specification language (such as temporal logic) of the model checking tool. This task
interacts with modelling where the level of abstraction and the system/environment interface as well as
component interfaces need to be designed to support requirement specification so that requirements can be
formalized as statements on these interfaces. Given the system model and a specification formalizing a given
requirement statement, running the model checking tool on them is often the most straightforward part.
Interpreting the results produced by the tool is in principle quite simple if the created model supports traceability,
i.e., supports interpreting the behaviours of the model as behaviours of the original design. However, counter
example executions demonstrating that a specification is violated by the system design can be quite complicated
and further tool support may be needed to illustrate the underlying erroneous system behaviour.

3 MODEL CHECKING IN I&C DESIGN

The basic idea of model checking was introduced in the early 1980s but only in the 1990s novel symbolic model
checking techniques led to new tools such as SMV and a breakthrough in scalability /6/. Nowadays, for example
all major microprocessor manufacturers use model checking techniques to verify their processor designs. Other
areas where model-checking has been widely applied include verification of data communications protocols with
tools like Spin /9/ and real-time controllers with tools like UPPAAL /3/. Also model checking of real source
code has become feasible with new techniques. A good example of success in this area is the SLAM project /1/
at Microsoft where a model checker for C programs has been developed for verifying the use of locking
primitives of Windows device drivers and adopted in the Windows driver development kit /2/.

3.1 Practical experiences

The applicability of model checking for verifying various kinds of I&C designs has been studied by analysing
several industrial cases with the NuSMV and UPPAAL model checkers. The analysed cases include an
emergency cooling system of a nuclear reactor /12,13/, an industrial arc protection system /10,11,12,13,15/, a
changeover switching unit for a busbar, a stepwise shutdown system /4,5/, and an embedded control software of
an uninterruptible power supply (UPS) /8/. The last two cases are introduced below.

The  stepwise  shutdown  system  is  used  for  the  stepwise  control  of  an  industrial  process  towards  the  normal
operating state in case of disturbances. The purpose of the system is to reduce the possibility that the process
enters an undesired state where the more complicated actual shutdown function is required. The system design is
composed of logic gates and a timed loop to make the control stepwise, i.e., the process is driven towards a safer
state for a certain period after which it waits another period and continues this cycle as long as necessary. The



performance and applicability of two model checking tools, NuSMV and UPPAAL, were analysed and
compared /4,5/. Both tools were successfully employed for verifying basic safety properties of the system and
were able to reveal the same hidden design errors. Model checking times of the NuSMV model ranged between
0.3s and 30s depending on the used time step (10-1000ms) and the verified property. The size of the state space
of the most complicated scenario modelled with NuSMV was 1018. The computation times of the UPPAAL
model were between 9s and 20s, being without a few exceptions a bit longer than those of NuSMV.

In addition to verifying the correct behaviour of the design, the NuSMV tool was used to analyse the fulfilment
of the single failure criteria with several different failure models. The failure scenarios were created by
combining the following properties: the failures were detected or they remained undetected, failed input signals
were given non-deterministic values or they kept their previous values, and input signals might fail or recover at
any time step. The case study demonstrated that in addition to finding design errors, it is possible to determine
the fulfilment of single failure criteria with model checking.

The applicability of model checking to timed embedded software was studied with the UPPAAL model checker
in  a  case  concerning  the  verification  of  control  software  of  an  Uninterruptible  Power  Supply  (UPS)  /8/.  UPS
devices provide backup power and protect the connected equipment in case of power disturbances. The control
of the UPS device requires several time delays of different scale making the validation of the control software
challenging. Several failure cases related to the operation of the UPS were investigated. The model of the system
was verified against the system specifications obtained from the failure cases and model checking revealed that
the control software of the UPS does not operate properly in two of the failure situations. The two errors found
with model checking were related to timing. In addition to verifying single failure tolerance, the specifications
were also verified against a model in which several failures can happen simultaneously but in that case most of
the properties were not satisfied any longer. The model checking times for the single failure models ranged
between 1s and 34s. The size of the state space varied depending on the verified property and the largest state
space was about 205,000 states. The results of the case study indicate that model checking can be used for
verifying the correct operation and finding errors from embedded control software.

3.2 Benefits and limitations

The case studies have clearly demonstrated the power of model checking in verification of I&C systems designs.
The method is directly usable for verifying designs of safety I&C systems containing tens of inputs and rather
complicated timing behaviour.

An advantage of the model checking method compared to traditional testing and simulation activities is that it
can provide full coverage for verification (see Figure 1). This is realized in cases where the reachable system
state space becomes too large for efficient exhaustive simulation or manual inspection. For example, if a
combination circuit contains 60 inputs the number of different input combinations is 260 = 1.2·1018. Assuming
there was a highly efficient simulator that could simulate 107 input combinations per second, it would take over
3600 years to go through all the input combinations. On the other hand, the model checking times of such a
circuit range typically from a few seconds to a few minutes per verified property.

As simulation and testing are able to handle only one case at a time, model checking examines all the possible
behaviours in one execution. Model checking enables extensive verification of both positive and negative
properties, such as “All system executions lead to a certain system state” or “None of the system executions lead
to a certain state”, which is not possible with testing or simulation.



Figure 1.  Model checking vs. testing and simulation.

The main benefits of model checking in the verification of digitalized safety logics are achieved at the design
phase of the development process. It is possible with reasonable effort to model a system on an adequate level,
formulate required safety properties in the specification language, and perform full verification of the properties.
Once the model is made, it is rather easy to check different scenarios and see how small changes, for instance, in
the input signals affect the behaviour of the system. The analysed case studies show how minor changes in the
design may lead to unexpected errors that are hard to detect.

Despite the clear benefits and potential of the model checking methodology, it still has some limitations and
unsolved problems. Logical circuits containing both complex timing aspects and a large number of input
variables are challenging to model and verify. The number of inputs and internal states in the design determine
the size of the state space. The complexity of the timing behaviour and the size of the state space of the model
affect the model checking time. One limitation of the employed model checking tools is that they support only
the basic mathematical operations and integer values. That creates challenges when modelling complex
functions, such as PID controllers.

Requirements verified by model checking are typically originating from high level system documentation such
as overall requirements specifications and functional descriptions. Those upper level requirements need to be
broken into several more specific sub-requirements to reach the level of detail where model checking can be
used. Verification of one upper level requirement is typically done by verifying several sub-requirements that are
divided into several temporal logic statements verified by model checking. This is how the overall verification
can be constructed. It is not an easy task because the coverage of each temporal logic statement has to be
considered carefully to make sure that all the aspects of the original upper level requirement have been taken into
account.

To make model checking feasible, the system model and the environment model are typically abstracted views
of the real system still covering the essential behaviour. The real challenge is to abstract the system model to
sufficient level because the abstraction is always a trade-off between accuracy and performance.

It has to be remembered that model checking always concerns a model made of the actual system. Hence, when
choosing an appropriate abstraction of a system to be modelled one should be careful to cover all the relevant
system behaviour because only then the correctness of a positive model checking result can be guaranteed. On
the other hand, a negative model checking result indicating a counter example execution violating a specification
can often be checked against the actual system. Hence, model checking can be beneficial for generating
interesting test cases concerning improbable and unexpected situations of the actual system that a test designer
would not normally consider. In case of verifying a design model, the design error implied by a negative model
checking result can normally be found by following the given counter example execution manually. Experience
has shown that finding the same error by performing only manual inspections is difficult and that computerized
tools are needed.



4 CONCLUSIONS

Modern digitalized I&C systems consist of complicated control tasks that are challenging to verify. Traditional
verification methods like testing, simulation, and deductive verification have their advantages but none of them
alone is suitable for exhaustive verification with reasonable effort. Model checking is a formal verification
method enabling complete verification of a system design model. The task is to create a model of the design and
its relevant environment and use them to determine whether a given requirement is satisfied by its specification,
which is checked against all executions of the system model.

In this paper, basic model checking methodology was introduced, examples of industrial cases where it has been
successfully used were given and its benefits and limitations, and applicability to verifying safety logic designs
were discussed. Some of the biggest advantages of model checking are its ability to handle large state spaces and
provide full coverage for verification by examining all the possible behaviours of the system model. Creating
and modifying models for model checkers is rather straightforward and fast compared to making simulation
models or running tests in a real system environment. The main benefits of model checking in the verification of
digitalized safety logics are achieved at the design phase of the development process. It helps in defining
interesting test cases for the actual system testing and often reveals design errors that easily could be left
unfound with only traditional verification methods or be found much later in the development cycle causing
extra effort and cost.

In spite of the increased computing power and sophisticated model checking algorithms, the state explosion
problem is still present and limits the use of model checking. Systems having highly complicated timing
behaviour or complex control functions are challenging to verify. Models are always abstracted views on the real
system. The real challenge is to find a suitable level of details to be included in the model to end up to a
sufficient trade-off between accuracy of the model and the performance of the model checker. Making the model
is just the start of the verification process. Finding the requirements for the system and deriving the temporal
logic statements to be given to the model checker are challenging phases of verification. In case the model
checker finds an error it gives a counter example demonstrating the sequence of state transitions violating the
checked property. Analysing this counter example and finding the cause of the error is challenging and may be
time consuming. Computerized tools for counter example analysis are needed.

The purpose of model checking is not to replace testing and simulation but to complement and support them.
Each of the methods has its own benefits and limitations and there is a proper role for all of them in the overall
system development and verification process.
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