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Abstract One of the key tasks in computational viscoelasticity is the time integration

of the constitutive equation. It is important that the behaviour of the integrators is

well understood since they are used in a variety of applications. In the present paper,

the performance of conventional semi-analytical methods and implicit Runge-Kutta

methods for the integral model of linear viscoelasticity with Prony series is evalu-

ated analytically and numerically. Although a linear viscoelastic constitutive equation

is considered, the analyzed integrators can be extended to handle also Schapery-type

nonlinear constitutive equations. Numerical examples involving a simple uniaxial prob-

lem and multiaxial simulations are presented in order to analyze and compare the time

integrators.

Keywords linear viscoelasticity · time integration · semi-analytical methods · implicit

Runge-Kutta methods · Maxwell model

1 Introduction

Efficient time integrators may be needed in deterministic parameter estimation meth-

ods (Goh et al., 2004; Sorvari and Malinen, 2007), in interconversion methods (Dooling

et al., 1997; Touati and Cederbaum, 1998) as well as in finite element method (Poon

and Ahmad, 1998, 1999). Thus, one of the key issues in computational viscoelasticity

is the time integration of viscoelastic constitutive equations.

The response of a viscoelastic material depends on the excitation history. For the

integral models of viscoelasticity, the entire excitation history must be kept in memory

in order to evaluate the response numerically. Therefore, the memory storage increases

in time. The storage problem can be avoided by representing the kernel function as a

Prony series. Due to the semigroup property of the exponential function, i.e. exp(a+
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b) = exp(a)exp(b) for any constants a and b, the use of a Prony series enables an

efficient recursive relation to be derived (Simo and Hughes, 1998). In conventional time

integration methods, the Prony series representation is combined with a simplified

assumption of the loading program within a time increment. For example, constant

(Zienkiewicz et al., 1968), piecewise constant (Herrman and Peterson, 1968), linear

(Taylor et al., 1970) and even exponential (Argyris et al., 1991) time variation of the

excitation history have been used. Similar integration methodologies have also been

succesfully applied for Schapery’s nonlinear viscoelastic model (Henriksen, 1984; Beijer

and Spoormaker, 2002), for the Duvaut-Lions viscoplasticity model (Simo et al., 1988),

in large strain viscoelasticity (Holzapfel, 1996) and in endochronic plasticity (Hsu et

al., 1991) as well as in other application areas (Patlashenko et al., 2001).

When the kernel function is represented via the Prony series, the problem of in-

tegrating the viscoelastic constitutive equation can be converted to the problem of

integrating an evolution equation of a Maxwell element, which is a first order differ-

ential equation. From the differential perspective the conventional linear viscoelastic

time integration strategies can be interpreted as exponential time differencing (ETD)

schemes (Beylkin et al., 2002; Cox and Matthews, 2002), which have recently been

extensively studied in the area of computational physics. The idea in the exponential

time differencing is to integrate the linear part of the first order differential equation

exactly and to approximate the (nonlinear) source term by an algebraic polynomial.

According to Poon and Ahmad (1998), the differential approach enables flexibility in

choosing of a suitable time integration method and obviates the need for a non-physical

simplified loading program within a time step. However, this approach has not gained

popularity, few exceptions being Poon and Ahmad (1998, 1999); Gramoll et al. (1989).

In literature (Zienkiewicz and Taylor, 2000; Beijer and Spoormaker, 2002) the con-

ventional semi-analytical methods are considered superior over the typical low-order

Runge-Kutta methods. For (visco)plastic constitutive models, a variety of integrators

have been successfully applied, such as the backward Euler method (Schreyer et al.,

1979), implicit Runge-Kutta methods (Büttner, 2002), Rosenbrock methods (Kirchner

and Kollmann, 1999), BDF methods (Kirchner and Simeon, 1999), etc. From this per-

spective, one might wonder why the common solution methods of ordinary differential

equations have not gained popularity. If the generalized trapezoidal rule is considered,

the reasons seem to be rather clear. The stable backward Euler method is asymp-

totically only first-order accurate and the second-order accurate trapezoidal method

yields spurious numerical oscillations when the time step is large. However, the answer

is not so straightforward as it may seem. When the time step is large, the backward

Euler method may perform better than higher-order methods (Kouhia et al., 2005),

and further, the oscillation of the trapezoidal method can be reduced in several ways

(Østerby, 2003).

Although the time integration in linear viscoelasticity can be considered to be

rather well established, it seems that rather little is known about discrepancies and

advantages of the different integrators. In addition, integrators of the linear model

are often extended to handle also nonlinear viscoelastic models. For nonlinear models

the choice of the method is far from obvious. In fact, the motivation for this research

stems from the problem of integrating Schapery’s (Schapery, 1969, 1997) nonlinear

viscoelastic model.

The aim of the present paper is to add understanding to the behavior of the dif-

ferent time integrators so that even a nonspecialist rheologist programmer would be

capable of choosing a proper integrator from among the large arsenal of methods. Be-
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sides evaluating the performance of conventional methods, the performance of implicit

Runge-Kutta methods is evaluated. The analysis ranges from a local error analysis of

a uniaxial model to a multiaxial FEM simulation.

2 Time integrators

The evolution equation of a Maxwell element is given by

dσ∗(t)

dt
= −

1

λ
σ∗(t) + E

dε(t)

dt
, σ∗(0) = Eε(0), (1)

where σ∗ is the internal stress, λ > 0 is the relaxation time and E > 0 is the stiff-

ness modulus of the element. A Maxwell system consists of several Maxwell elements

connected in parallel. The total stress of the system is given by the sum of the inter-

nal stresses. For engineering materials the relaxation process evolves on several time

scales and thus the range of relaxation times may be very wide in a Maxwell system.

The relaxation times are commonly chosen a priori, for example, equidistantly on the

logarithmic time axis one or two per decade of experimental data (Knauss and Zhao,

2007). The value for the ratio between the largest and the smallest relaxation time,

i.e. λmax/λmin, can be 1010 or even higher for a Maxwell system. Therefore, a suitable

integrator should be stable and accurate for both small and large values of λ.

Due to stability restrictions the use of conventional explicit integrators, such as the

forward Euler method, leads to impractically small time steps to be used in practical

analysis. Roughly speaking, a typical explicit integrator has a critical time step of order

λmin for a Maxwell system. Clearly, the use of implicit integrators is a necessity.

In a stiff case, characterized by λ << 1, the solution of the evolution equation

consists of two phases: a fast phase where there is a rapid approach to a slow manifold

followed by a slow phase where the solution evolves along the slow manifold (Cox and

Matthews, 2002), see Fig. 1. In the slow manifold the internal stress is given by (Cox

and Matthews, 2002; Boyd, 2001)

σ∗(t) = Eλ
dε

dt
− Eλ2 d

2ε

dt2
+ Eλ3 d

3ε

dt3
− + . . . (2)

for the Maxwell model.

Since the ordinary differential equation (ODE) (1) involves a time derivative of the

strain, it is advantageous for numerical purposes to transform the ODE to form

y′(t) = F (t, y(t)) = −
1

λ
y(t) +

E

λ
ε(t) (3)

by using a change of variables σ∗(t) = Eε(t) − y(t). The numerical scheme of the

transformed ODE can be transformed back to the original variable σ∗ by using again

the change of variables. The naming convention of the integrators is based on the

integrators of the transformed ODE (3).
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2.1 Runge-Kutta methods

An s-stage implicit Runge-Kutta (RK) method for the transformed ODE (3) is given

by

yn+1 = yn +∆t
s∑

i=1

biki, (4)

ki = F



tn + ci∆t, yn +∆t
s∑

j=1

aijkj



 i = 1, . . . , s, (5)

where aij , bi, ci are the coefficients of the method and ∆t = tn+1 − tn is the step-size.

The backward Euler method for the Maxwell model is given by

σ∗n+1 =
1

1 +∆t/λ
σ∗n +

E∆ε

1 +∆t/λ
(bE), (6)

where ∆ε = ε(tn+1) − ε(tn) is the strain increment1. The trapezoidal or two-stage

Lobatto IIIA method is given by

σ∗n+1 =
1 − 1

2∆t/λ

1 + 1
2∆t/λ

σ∗n +
E∆ε

1 + 1
2∆t/λ

(Tr), (7)

and the two-stage Lobatto IIIC method by

σ∗n+1 =
σ∗n + (1 + 1

2∆t/λ)E∆ε

1 +∆t/λ+ 1
2 (∆t/λ)2

(L3C). (8)

According to Kouhia et al. (2005), the integrator of an inelastic material model

should be at least L-stable, and for the ODE (1) without the source term, the am-

plification factor should be positive and monotonous. Both the backward Euler and

Lobatto IIIC methods fulfil these criteria. However, the trapezoidal method is only

A-stable, i.e. the amplification factor of the trapezoidal method doesnt’t approach zero

as ∆t/λ → ∞. Nevertheless, as it is well known, the trapezoidal method is a good

choice if the time step is sufficiently small. For more details on Lobatto methods and

stability properties of RK methods we refer to Hair and Wanner (1991).

The considered RK methods are closely related to Galerkin methods in time. The

backward Euler and trapezoidal methods can also be derived by applying the Galerkin

methods directly to the ODE (1). The backward Euler is equivalent to the discontinuous

Galerkin method of degree zero and the trapezoidal method is equivalent to the con-

tinuous Petrov-Galerkin method of degree one2. The performance of several Galerkin

methods for creep type inelastic models has been evaluated in Reference Kouhia et al.

(2005).

We would like to emphasize that the RK methods can be extended to handle

thermal (thermorheologically simple models) and nonlinear (Schapery type models)

effects as long as the kernel function is represented via the Prony series, i.e. constitutive

equation can be expressed in differential form.

1 (•)(tm) denotes the exact solution at time tm whereas (•)m denotes the numerical solution
at time tm, m ∈ {n, n+ 1}.

2 For the Galerkin methods we use definitions given in Reference Kouhia et al. (2005).
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2.2 Semi-analytical methods

For viscoelastic materials the most popular time integrators are based on idealized

loading programs in which simplified variation of strain is assumed within a time step.

In what follows we adopt the name semi-analytical (SA) integrators for these types

of methods. To be more specific, we define SA integrators as methods in which the

evolution equation is integrated exactly by approximating strain by a continuous or

discontinuous polynomial within a time step.

The exact solution for the transformed ODE is given by

y(tn+1) = e−∆t/λy(tn) +
E

λ

∫ tn+1

tn

e−(tn+1−τ)/λε(τ )dτ. (9)

The simplest approximation to evaluate the integral analytically is to assume that

the strain is constant throughout the time interval. Approximating ε(τ ) in a backward

manner, i.e. ε(τ ) = εn+1, and transforming the resulting scheme to the original variable

yields

σ∗n+1 = e−∆t/λσ∗n + e−∆t/λE∆ε (SA1). (10)

The SA1 method was first introduced by Zienkiewicz et al. (1968) for a Kelvin system.

A better approximation to the integral is to assume piecewise constant variation of

strain which gives

σ∗n+1 = e−∆t/λσ∗n + e−∆t/(2λ)E∆ε (SA2). (11)

This scheme is often derived by integrating the evolution equation exactly (see Eq.

(18)) and then using the midpoint rule to the integral and the center difference scheme

to the time derivative of strain, see e.g. Simo and Hughes (1998) and also Feng (1992).

Rather than approximating strain in a constant manner, we may approximate the

strain rate to be constant. Linear variation of strain gives

σ∗n+1 = e−∆t/λσ∗n +
1 − e−∆t/λ

∆t/λ
E∆ε (SA3). (12)

The SA3 method is commonly attributed to Taylor et al. (1970). For small ∆t/λ the

second term of the right-hand side of Eq. (12) suffers from cancellation error. Thus, to

avoid rounding errors a series expansion should be used when ∆t/λ is small

1 − e−∆t/λ

∆t/λ
= 1 −

1

2

(
∆t

λ

)
+

1

6

(
∆t

λ

)2

− + . . . . (13)

The considered SA schemes have also been extended to nonlinear viscoelastic mod-

els. The constant and piecewise constant schemes have been generalized to the nonlinear

creep-based Schapery’s model by Beijer and Spoormaker (2002). For Schapery’s model

a time integration method which reduces in a linear case to the SA3 method was de-

rived by Henriksen (1984) and has been used by many other researchers (Czyz and

Szyszkowski, 1999; Lai and Bakker, 1996; Kennedy, 1998; Haj-Ali and Muliana, 2004).

Rather interestingly, we see that the only difference between the SA3 method and

the trapezoidal and Lobatto IIIC methods is the order of approximation of the expo-

nential function. We may rewrite Eqs. (7), (8) and (12) as

σ∗n+1 = Q(−∆t/λ)σ∗n +
1 −Q(−∆t/λ)

∆t/λ
E∆ε, (14)
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where Q(z) is the exponential function for the SA3 method, the diagonal (1,1)-Padé

approximation for the trapezoidal method and the subdiagonal (0,2)-Padé approxima-

tion for the Lobatto IIIC method. Similarly, we see that the SA1 method reduces to the

backward Euler method when the (0,1)-Padé approximation is used to the exponential.

Another interesting observation can be made when λ is small. In that case the first

term in the series (2) is recovered for the SA3 method as well as for the backward

Euler and Lobatto IIIC methods. Note the interesting behavior of the backward Euler

method. For large λ the backward Euler method approaches the SA1 method while for

small λ the backward Euler method approaches the SA3 method.

2.3 Integrating factor methods

Yet another possible approach is the direct numerical integration of the integral in

Eq. (9). At first glance, this might seem to be a promising alternative. However, as

we will soon see, a direct numerical integration is not generally a good choice. This

kind of approach has been used for example in Oden and Armstrong (1971) where the

Simpson’s rule was used for a thermoviscoelastic model, see also Rivkin and Givoli

(2000). These methods can be identified as integrating factor (IF) methods (Minchev

and Wright, 2005) where the ODE (3) is transformed to form

d

dt

(
yet/λ

)
=
E

λ
ε(t)et/λ, (15)

and then a RK method is applied to the ODE. Applying the generalized trapezoidal

rule to (15) and transforming the resulting scheme to the original variable σ∗ yields

the generalized IF trapezoidal rule

σ∗n+1 = e−∆t/λσ∗n + Eε(tn+1)(1 − θ∆t/λ)

−Eε(tn)(1 + [1 − θ]∆t/λ)e−∆t/λ. (16)

The cases θ = 0, θ = 1/2 and θ = 1 corresponds to forward, trapezoidal, and backward

integration of the integral in Eq. (9)

To demonstrate a weakness in the IF methods we consider a problem with constant

strain. It is most important that a time integrator of the viscoelastic model behaves

correctly in this simple stress relaxation problem. When the strain is constant, the

local error for the generalized IF trapezoidal rule is given by

E ≡ σ∗(tn+1) − σ∗n+1

= −Eε
(
(1 − θ∆t/λ) − (1 + [1 − θ]∆t/λ)e−∆t/λ

)
. (17)

For ∆t/λ >> 1 the error is ∼ θ∆t/λ indicating a linear growth of the error except

for the forward IF Euler which is accurate at limit ∆t/λ → ∞. It can also be shown

that if Simpson’s rule is applied to Eq. (9), E → ∞ at the limit. Clearly, we cannot

use integration rules which have integration point at the right end point of the inter-

val, i.e. at tn+1. Therefore, the only practical choice is the forward IF Euler method

which, however, is far more less accurate than the SA methods. Consequently, in the

forthcoming sections, the analysis is concentrated only on the SA and RK methods.

Finally, we point out that the poor performance of the IF methods has been reported

in other application areas as well, see e.g. Cox and Matthews (2002).
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3 Local error analysis

For the local error analysis we follow the approach taken in Reference Kværnø (2004).

In addition, it is assumed that the strain is independent of relaxation time λ.

The exact solution for the evolution equation of a Maxwell element is given by

σ∗(tn+1) = e−∆t/λσ∗(tn) + Ee−∆t/λ
∫ ∆t

0
eτ/λ d

dτ
ε(tn + τ )dτ. (18)

Without loss of generality, we may assume hereafter that E = 1 or equivalently we

may consider the dimensionless form of the evolution equation. By expanding ε(tn +τ )

into a Taylor series gives

σ∗(tn+1) = e−∆t/λσ∗(tn) +
∞∑

k=1

ε(k)(tn)
1

(k − 1)!

× e−∆t/λ
∫ ∆t

0
eτ/λτk−1dτ. (19)

After integrating each term separately, we get

σ∗(tn+1) = ϕ0(∆t/λ)σ∗(tn) +

∞∑

k=1

ϕk(∆t/λ)ε(k)(tn)∆tk, (20)

where

ϕk(z) =
1

(−z)k



e−z −
k−1∑

j=0

(−z)j

j!



 k = 1, 2, . . . , (21)

and ϕ0(z) = exp(−z) by definition.

The RK and SA methods can be written in a uniform form as

σ∗n+1 = ψ0(∆t/λ)σ∗n + ψ1(∆t/λ)E∆ε. (22)

In the following, it is assumed that the exact solution is known at time tn, i.e. σ∗n =

σ∗(tn). Functions ψ0(z) and ψ1(z) for the methods are given in Table 1. By expanding

ε(tn+1) we arrive at the following formula

σ∗n+1 = ψ0(∆t/λ)σ∗(tn) +
∞∑

k=1

ψk(∆t/λ)ε(k)(tn)∆tk, (23)

where ψk(z) =
ψ1(z)

k!
.

By subtracting Eq. (23) from Eq. (20) we obtain the local truncation error

σ∗(tn+1) − σ∗n+1 = E0(∆t/λ)σ∗(tn)

+
∞∑

k=1

Ek(∆t/λ)ε(k)(tn)∆tk, (24)

where the error function is Ek(z) = ϕk(z)−ψk(z). When σ∗(tn) is on the slow manifold

(see Eq. (2)), then the truncation error is

σ∗(tn+1) − σ∗n+1 =
∞∑

k=1

Ẽk(∆t/λ)ε(k)(tn)∆tk, (25)

where Ẽk(z) = Ek(z) − E0(z)/(−z)
k.
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3.1 Nonstiff case

In the nonstiff case, ∆t/λ << 1, we express the error functions in terms of a Taylor

series expansion. The dominant terms of the error functions are given in Tables 2 and

3. Then, by inserting the dominant terms into the truncation error equation we obtain

the local errors. For the first-order accurate methods the errors are given by

EbE ≈
1

2
·

1

λ2

[
−σ∗(tn) + λε′(tn)

]
∆t2, (26)

ESA1 ≈
1

2
·
1

λ
ε′(tn)∆t2, (27)

and for the higher-order methods

ETr ≈
1

12
·

1

λ3

[
σ∗(tn) − λε′(tn) + λ2ε′′(tn)

]
∆t3, (28)

EL3C ≈
1

12
·

1

λ3

[
−2σ∗(tn) + 2λε′(tn) + λ2ε′′(tn)

]
∆t3, (29)

ESA2 ≈
1

12
·

1

λ2

[
1

2
ε′(tn) + λε′′(tn)

]
∆t3, (30)

ESA3 ≈
1

12
·
1

λ
ε′′(tn)∆t3. (31)

The results are as expected. When λ << 1 and σ∗(tn) is on the slow manifold, the

errors for the RK methods are given by

EbE ≈

[
1

2
ε′′(tn) + O (λ)

]
∆t2, (32)

ETr ≈

[
1

12
ε′′′(tn) + O (λ)

]
∆t3, (33)

EL3C ≈

[
1

4

1

λ
ε′′(tn) −

1

6
ε′′′(tn) + O (λ)

]
∆t3. (34)

In this case the error of the backward Euler and trapezoidal methods is almost inde-

pendent of λ whereas for the Lobatto IIIC method the error behaves similarly as for

the SA3 method.

3.2 Stiff case

In the stiff case, ∆t/λ >> 1, we ignore the exponential terms and expand the error

functions as a function of (∆t/λ)−1. The dominant terms are given in Tables 4 and 5.

The local errors are now given by

EL3C ≈ 2λ2
[
−σ∗(tn) + λε′(tn)

]
1

∆t2
, (35)

EbE ≈ λ

[
−σ∗(tn) + λε′(tn)

]
1

∆t
, (36)

ETr ≈ σ∗(tn) − λε′(tn) + λ2ε′′(tn), (37)

ESA1 ≈ λε′(tn), (38)

ESA2 ≈ λε′(tn), (39)

ESA3 ≈
1

2
λε′′(tn)∆t. (40)
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The local errors behave rather differently as a function of the time step. For the back-

ward Euler and for Lobatto IIIC methods, the error decreases as the step size increases.

For the trapezoidal, SA1 and SA2 methods the leading error term is independent of

the time step. In addition, the error is approximately the same for the SA1 and SA2

methods. Once again, the best choice seems to be the SA3 method. However, in the

slow manifold case the error of the trapezoidal method has a quadratic dependency on

the time step

EbE ≈ EL3C ≈
1

2
λε′′(tn)∆t, (41)

ETr ≈
1

6
λε′′′(tn)∆t2, (42)

Furthermore, the error is now the same for the SA3, backward Euler and Lobatto IIIC

methods.

3.3 A numerical example

We consider a differential equation

dσ∗(t)

dt
= −

1

λ
σ∗(t) +

d

dt
(− cos t), σ∗(t0) = σ∗0 , (43)

with initial conditions

σ∗0 = 1 (off the slow manifold), (44)

σ∗0 =
λ

1 + λ2
(sin t0 − λ cos t0) (on the slow manifold). (45)

where t0 = π/4. The exact solution is given by

σ∗(t) =

(
σ∗0 −

λ

1 + λ2
(sin t0 − λ cos t0)

)
e−(t−t0)/λ

+
λ

1 + λ2
(sin t− λ cos t). (46)

The errors after one time step are shown in Fig. 2. The numerical results are in

accordance with the theoretical predictions. We see that in the stiff case the error is

almost the same for the SA1 and SA2 methods and for the backward Euler and Lobatto

IIIC methods the error decreases as the time step increases. In the slow manifold case

we see that the error is approximately the same for the backward Euler, Lobatto IIIC

and SA3 methods when ∆t/λ >> 1. In addition, the trapezoidal method produces the

lowest error.

4 Uniaxial Maxwell solid

4.1 Constitutive model

We consider a linearly viscoelastic constitutive equation of the form

σ(t) =

∫ t

−∞

E(t− τ )ε̇(τ )dτ, (47)
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with a kernel function

E(t) = E∞ + (E0 − E∞)e−t/λ, (48)

where E∞ is the long-term modulus and E0 is the instantaneous modulus. The model

represents the standard linear viscoelastic solid in which a Maxwell element is connected

in parallel to a Hookean spring. Alternatively, the constitutive equation can be written

as

σ(t) = E∞ε(t) + σ∗(t), (49)

where the evolution of the internal stress is given by Eq. (1) with E = E0 − E∞. The

numerical solution for the internal stress is given by Eq. (22).

In the following we analyze the performance of the integrators in typical exper-

iments which are most likely encountered in practice. We consider two strain-based

experiments

ε(t) = ε0, (50)

ε(t) = ε̇0t, (51)

and a stress-based experiment (creep, σ(t) = σ0)

ε(t) =
σ0

(E0 −E∞)

(
1 − (1 − η)e−ηt/λ

)
(1/η − 1), (52)

where η = E∞/E0 ∈ (0, 1) is a dimensionless parameter. For elastic materials we would

have η = 1 whereas for viscoelastic liquid η = 0. Although we consider also a stress-

based experiment, we study a strain-driven problem in which the stress is regarded

as the unknown variable. Further, we are mainly interested in cases in which ∆t/λ

is relatively large, say greater than one. For values ∆t/λ << 1 we may expect the

integrators to behave according to the local error analysis given in Section 3.1.

4.2 Relaxation

For this problem the SA methods yield exact results. For the RK methods we charac-

terized the performance of the integrators in terms of an amplification factor, i.e. ratio

σ∗n+1/σ
∗

n, which are

AbE =
1

1 +∆t/λ
, (53)

ATr =
1 − 1

2∆t/λ

1 + 1
2∆t/λ

, (54)

AL3C =
1

1 +∆t/λ+ 1
2 (∆t/λ)2

. (55)

The exact amplification factor is exp(−∆t/λ). The amplification factors are shown in

Fig. 3. The backward Euler and Lobatto IIIC methods are accurate for both very small

and large time steps. Trivially, at limit ∆t/λ→ ∞ the A-stable trapezoidal method is

inaccurate. However, in the nonstiff case the trapezoidal method is more accurate than

• the backward Euler when ∆t/λ . 2.6,

• the Lobatto IIIC when ∆t/λ . 0.9,

when measured by |Aexact − Anum|. We note that when ∆t/λ > 2, the amplification

factor of the trapezoidal method is negative and in that case the trapezoidal method

produces oscillations.
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4.3 Constant strain rate problem

To begin with, we illustrate in Fig. 4 the typical performance of the integrators in a

constant strain rate case. The numerical solution of the backward Euler and Lobatto

IIIC methods follows the true solution smoothly whereas for the SA1 and SA2 methods

the numerical solution diverges from the true solution after the transient phase. The

most notable difference is observed between the backward Euler and SA2 methods.

After the transient phase, asymptotically only first-order accurate Euler scheme is

more accurate than the second-order accurate SA2 method. The SA3 method gives

exact result for the constant strain rate problem.

To verify the observations let us first analyze a case where the solution approaches

the steady-state solution σ∗ = (E0 −E∞)λε̇0. When the strain increment is constant,

the recursive relation (22) yields a geometric series and therefore the numerical solution

can be expressed in a closed form. When time tends to infinity, i.e. n→ ∞, the solution

is given by

σ∗ = (E0 −E∞)λε̇0 ·
∆t

λ

ψ1(∆t/λ)

1 − ψ0(∆t/λ)

≡ (E0 −E∞)λε̇0 · f(∆t/λ). (56)

The RK methods produce a correct limit value irrespective of the size of the time

step. For the SA1 and SA2 methods f(∆t/λ) decreases rapidly as ∆t/λ increases. In

the stability limit of the forward Euler method we find that f(2) ≈ 0.31 for the SA1

method and f(2) ≈ 0.85 for the SA2 method.

In the transient phase we may expect the SA methods to perform reasonably well.

This is illustrated in Fig. 5 where the relative errors after the first time step are

shown. For small time steps the SA2 method is the most accurate. However, even the

backward Euler method is more accurate than the SA2 method when the time step is

large enough. For large time steps the best choice is the Lobatto IIIC method.

Finally, we point out that we may expect the integrators to perform similarly also

in a constant stress rate case since in that case, too, the strain rate tends to a constant

value after a transient phase.

4.4 Creep

In the case of creep, the exact amplification factor is exp(−η∆t/λ). The local error is

given by

σ∗(tn+1) − σ∗n+1 = e−η∆t/λσ∗(tn) − σ∗n+1

= e−η∆t/λσ∗(tn) − ψ0(∆t/λ)σ∗(tn)

−ψ1(∆t/λ)(E0 − E∞)∆ε

= e−η∆t/λσ∗(tn)

−

(
ψ0(∆t/λ) + ψ1(∆t/λ)

× (1 − 1/η)(e−η∆t/λ − 1)

)
σ∗(tn)

≡ (Aexact −Anum)σ∗(tn), (57)
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where Anum can be viewed as the ”local” amplification factor.

In the limit ∆t/λ → ∞ all of the methods are accurate except the trapezoidal

method. However, the amplification factors behave rather differently as ∆t/λ increases.

When η is small, the amplification factors of the SA1 and SA2 methods approach the

limit value rapidly, whereas for the backward Euler, Lobatto IIIC and SA3 methods,

a slower but smoother behavior is observed, see Fig. 6. From Fig. 6 it can also be seen

that the trapezoidal method performs considerably well even for large ∆t/λ. Clearly, for

stress-based experiments, the retardation time τ = λ/η > λ, which is a time constant

of the creep compliance, characterizes the stiffness of the problem. Consequently, the

stability of the integrator of the viscoelastic model should be tested for a relaxation

type problem rather than for a creep type problem.

For a nearly elastic material, the SA methods perform considerably better than the

RK methods. This is shown in Fig. 7.

5 Multiaxial material model

5.1 Material model

We consider an isotropic constitutive model where the total stress σ = [σ11 σ22 σ33 σ12 σ13 σ23]
T

and strain ε = [ε11 ε22 ε33 ε12 ε13 ε23]
T are decomposed into deviatoric and volumetric

parts

σ(t) = s(t) + mp(t), (58)

ε(t) = e(t) +
1

3
mφ(t), m = [1 1 1 0 0 0]T, (59)

where s is the deviatoric stress, p = 1
3mT

σ is the mean stress, e is the deviatoric strain

and φ = mT
ε is the volume change. The deviatoric stress is given by

s(t) = 2

∫ t

0
G(t− τ )ė(τ )dτ, (60)

where G(t) is the shear modulus and the mean stress is given by

p(t) =

∫ t

0
K(t− τ )φ̇(τ )dτ, (61)

where K(t) is the bulk modulus. We assume that the bulk and shear moduli are given

by

K(t) = K∞ + (K0 −K∞)e−t/λK ,

G(t) = G∞ + (G0 −G∞)e−t/λG .
(62)

Corresponding compliances for bulk and shear are

B(t) = B0 + (B∞ −B0)(1 − e−t/τB),

J(t) = J0 + (J∞ − J0)(1 − e−t/τJ ),
(63)

where

B0 =
1

K0
, B∞ =

1

K∞

, τB = λK
K0

K∞

, (64)

J0 =
1

G0
, J∞ =

1

G∞

, τJ = λG
G0

G∞

. (65)
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5.2 Stress integration procedure

The numerical solution for stress is given by

σn+1 = sn+1 + mpn+1

= 2G∞e(tn+1) + s
∗

n+1 +K∞mφ(tn+1) + mp∗n+1, (66)

in which

s
∗

n+1 = ψ0(∆t/λG)s∗n + 2ψ1(∆t/λG)(G0 −G∞)∆e,

p∗n+1 = ψ0(∆t/λK)p∗n + ψ1(∆t/λK)(K0 −K∞)∆φ,
(67)

where the functions ψ0(z) and ψ1(z) for the SA and RK methods are given in Table 1.

The consistent tangent operator, which will be needed in the forthcoming analysis

and which is also very important when solving nonlinear finite element (FE) equations,

is given by

CT =
∂σn+1

∂ε(tn+1)
= 2

[
G∞ + ψ1(∆t/λG)(G0 −G∞)

] [
I −

1

3
mm

T
]

+

[
K∞ + ψ1(∆t/λK)(K0 −K∞)

]
mm

T. (68)

where I is the identity matrix. To get a rough idea of the relative difference of the

various tangent moduli we compare the volumetric part of the moduli. The volumetric

part can be given in form

[
1 + ψ1(∆t/λK)(1/ηK − 1)

]
C

∗, (69)

where ηK = K∞/K0 ∈ (0, 1) is a dimensionless parameter and C∗ = K∞mmT is a

common factor. The relative difference can be now computed as a function of ηK and

∆t/λK . The exact tangent operator is problem-dependent. Thus, the SA3 method,

which is perhaps the most commonly used method in practical applications (Abaqus,

2004; Taylor, 2008) and is very accurate according to the local error analysis, was

chosen as the reference method. The relative difference is shown in Fig. 8 using the

value ηK = 0.1 for the dimensionless parameter. It is seen that for small time steps

the SA2 method is closest to the SA3 method. For the backward Euler and Lobatto

IIIC methods the difference significantly decreases once the maximum difference is

attained. Consequently, for large time steps the Lobatto IIIC method is closest to the

SA3 method.

5.3 Uniaxial tension

We consider a problem where the isotropic material is subjected to uniaxial stress

σ11(t) = σ̇0t where σ̇0 = 0.5 kPa. In this case we try to find the solution for the

volume change and for the deviatoric strain components. The exact solutions for the

volume change and for the deviatoric strain component in 1-direction are given by

φ(t) =
1

3
(B ∗ σ̇11)(t), e11(t) =

1

3
(J ∗ σ̇11)(t), (70)
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where ∗ is the convolution operator. The material parameters are given in Table 6.

The solution for the strain components is found by solving a residual equation

σ(tn+1) − σn+1(εn+1) = 0, (71)

using the Newton-Raphson method

ε
k+1
n+1 = ε

k
n+1 + C

−1
T

(
σ(tn+1) − σn+1(ε

k
n+1)

)
. (72)

where k is the iteration number, σ(tn+1) is the exact stress vector and σn+1 is the

computed stress vector. Since the residual equation is linear, the Newton-Raphson

method converges in one iteration. Once convergence is achieved, the volume change

and deviatoric strain components are computed and the internal stress variables are

updated.

The relative error at time t = 10 s is shown as a function of the time step in Figs.

9 and 10. For the deviatoric part the problem is nonstiff and thus for the deviatoric

strain component the first-order accurate SA1 and backward Euler methods produce

largest errors. For the volume part the problem is stiffer, the time constants, λK and

τB , are order of a second. Furthermore, at time t = 10 s the transient phase, due to the

exponential function, has completely damped out. In this case the performance of the

SA1 and SA2 methods decreases. Even for a time step of size 0.1 s the backward Euler

is more accurate than the SA2 method. This is consistent with the observation made

in Section 4.3. Further, we see that for the trapezoidal method the error drastically

increases as the time step is increased from 1 s to 10 s. The Lobatto IIIC and SA3

methods behave similarly in both cases, the only difference is that the relative error is

slightly higher for the Lobatto IIIC method.

5.4 FEM-example: beam with a tip load

A beam with a tip load F (t) = F0H(t) is analyzed, see Fig. 11. This problem has

been previously considered in References Poon and Ahmad (1998); Zocher and Groves

(1997). The length L of the beam is 20 m and the beam has a rectangular cross-section

of size 1 m × 1 m. The solution for the tip displacement, according to Euler-Bernoulli

beam theory, is given by

w(t) =
F0L

3

27I

[
3J(t) +B(t)

]
, (73)

where I is the area moment of inertia of the beam. The physical properties of the beam

are given in Table 6.

The isotropic model was implemented in the commercial FE-code ABAQUS using

the user subroutine UMAT. The step function H(t) was modeled by a ramp history

wherein the force was increased to a constant value in a single time increment of size

10−4 s. The size of the load F0 was 1 N. A mesh consisting of 10 × 10 × 200 elements

was used in the analysis. The time step was fixed at 5 s.

The simulation results are shown in Fig. 12. The results are in accordance with the

uniaxial creep case. Compared to the backward Euler, Lobatto IIIC and SA3 methods,

the numerical solution of the SA1 and SA2 methods reaches the steady-state solution

rapidly. Again, the trapezoidal method performs extremely well although the time step

is relatively large compared to the relaxation times.
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6 Concluding remarks

In this paper, the performance of various time integrators of the integral model of linear

viscoelasticity was studied. Both analytical and numerical analyses were presented.

The main results can be summarized as follows:

• The difference between the SA3, L3C and Tr methods, and between the SA1 and

bE methods is in the order of approximation of the exponential function.

• The bE and L3C methods are accurate for both a very small and a very large time

step. For nonstiff problems, say ∆t/λ < 2, the Tr method can be considered to be

the best choice among the RK methods.

• According to the local error analysis, the accuracy of the RK methods depends

strongly on whether the initial values are on the slow manifold or not.

• For stiff problems we may expect the SA3, L3C and bE methods to behave in

a similar fashion. A similar conclusion can be drawn between the SA1 and SA2

methods.

• The SA3, L3C and bE methods seem to behave more smoothly than the SA1 and

SA2 methods. This should be noted if a notable change is made in the size of the

time step.

• The stability analysis should be performed for a relaxation type problem rather

than for a creep type problem.

• As regards the asymptotically first-order accurate methods, the bE method is a

better choice than the SA1 method.

• Considering the overall performance of the integrators, the SA3 method is a superior

choice. However, the L3C method behaves very similarly to the SA3 method.

Finally, we would like to point out that the analysis was focused on the relaxation-

based material model. That is, we assumed that the relaxation modulus is the known

material function. For nonlinear models, such as Schapery’s model, the creep-based

material model is often used. The results derived herein cannot be directly extended

to creep-based models.
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Fig. 1 Fast and slow manifolds in a case of constant strain-rate loading, i.e. ε̇ = constant,
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10−12

10−10

10−8

10−6

10−4

10−2

100

10−4 10−3 10−2 10−1 100

er
ro

r

∆t

SA1
SA2
SA3
bE
Tr

L3C

1

10−12

10−10

10−8

10−6

10−4

10−2

100

10−4 10−3 10−2 10−1 100

er
ro

r

∆t

SA1
SA2
SA3
bE
Tr

L3C

1

Fig. 2 The absolute value of the error for the internal stress after one time step (λ = 10−2).
(a) the initial value is off the slow manifold, (b) the initial value is on the slow manifold.
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Fig. 3 Amplification factors in the relaxation problem.
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Fig. 4 Constant strain-rate loading (ε̇0 = 1 s−1, λ = 1 s).
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Fig. 5 Relative error after first time step in the constant strain rate loading case.
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Fig. 6 Amplification factors in the creep problem, η = 0.1.
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Fig. 7 Amplification factors in the creep problem, η = 0.8.

10−5

10−4

10−3

10−2

10−1

100

0.1 1 10 100

re
la

ti
ve

d
iff

er
en

ce

∆t/λK

SA1
SA2
bE
Tr

L3C

1

Fig. 8 Relative difference in tangent moduli, ηK = 0.1.
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Fig. 9 Relative error in φ at time t = 10 s.
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0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

w
[m

]

t [s]

Exact
SA1
SA2
SA3
bE
Tr

L3C

1

Fig. 12 Tip displacement.

Table 1 Functions ψk(z) for the numerical methods.

ψ0 ψ1

SA1 e−z e−z

SA2 e−z e−z/2

SA3 e−z 1−e−z

z

bE 1

1+z
1

1+z

Tr
1−z/2

1+z/2

1

1+z/2

L3C 1

1+z+z2/2

1+z/2

1+z+z2/2
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Table 2 Error functions Ek(z) for the methods when z << 1.

E0 E1 E2

SA1 0 1

2
z + O(z2) 1

3
z + O(z2)

SA2 0 1

24
z2 + O(z3) 1

12
z + O(z2)

SA3 0 0 1

12
z + O(z2)

bE − 1

2
z2 + O(z3) 1

2
z + O(z2) 1

3
z + O(z2)

Tr 1

12
z3 + O(z4) − 1

12
z2 + O(z3) 1

12
z + O(z2)

L3C − 1

6
z3 + O(z4) 1

6
z2 + O(z3) 1

12
z + O(z2)

Table 3 Error functions Ẽk(z) for the methods when z << 1.

Ẽ1 Ẽ2 Ẽ3

bE 0 1

2
+ O(z) − 1

2z
+ O(1)

Tr 0 0 1

12
+ O(z)

L3C 0 1

4
z + O(z2) − 1

6
+ O(z)

Table 4 Error functions Ek(z) for the methods when z >> 1.

E0 E1 E2

SA1 0 1

z
+ O( 1

z2 ) 1

z
+ O( 1

z2 )

SA2 0 1

z
+ O( 1

z2 ) 1

z
+ O( 1

z2 )

SA3 0 0 1

2z
+ O( 1

z2 )

bE − 1

z
+ O( 1

z2 ) 1

z2 + O( 1

z3 ) 1

2z
+ O( 1

z2 )

Tr 1 + O( 1

z
) − 1

z
+ O( 1

z2 ) 1

z2 + O( 1

z3 )

L3C − 2

z2 + O( 1

z3 ) 2

z3 + O( 1

z4 ) 1

2z
+ O( 1

z2 )

Table 5 Error functions Ẽk(z) for the methods when z >> 1.

Ẽ1 Ẽ2 Ẽ3

bE 0 1

2z
+ O( 1

z2 ) 1

3z
+ O( 1

z2 )

Tr 0 0 1

6z
+ O( 1

z2 )

L3C 0 1

2z
+ O( 1

z2 ) 1

3z
+ O( 1

z2 )
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Table 6 Mechanical properties.

Uniaxial tension Beam with a tip load

K0 10 MPa 0.38 MPa

K∞ 8 MPa 0.08 MPa

λK 1 s 1 s

G0 6 MPa 0.19 MPa

G∞ 1 MPa 0.04 MPa

λG 5 s 1 s
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