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1 Introduction 
 
The  dynamic  flowgraph  methodology  (DFM)  [5]  is  a  method  for  the  risk  analysis  of  
discrete-time, discrete-state systems. Its aim is to produce the prime implicants of a 
system for a given top event, and ultimately, the probability of the event. 

A major issue in the use of the model is that with larger models, analysis times grow 
prohibitively long. Furthermore, in practice, seemingly minor changes in the model may 
result in dramatic increases in the computation time required. 

The aim of this report is to lay some groundwork for the analysis of computational 
effort  of  solving  DFM models.  Some research  questions  that  we  try  to  address  are  as  
follows.  Is  there  a  way in  which  the  computational  effort  of  a  DFM computation  task  
(consisting of a DFM model and a top event applied to it) be analyzed without referring 
to any specific computational method used for solving the task? Can the complexity of a 
DFM model be separated from the complexity of a top event applied to that model? 
How does the top event affect computational effort? How to analyze the sensitivity of 
computational effort to specific modelling decisions, e.g. increasing the number of 
possible values of a variable by one? Is there a way to analyze the computational effort 
inherent in model structure (the way variables are connected together)? 

Analysis of the complexity of DFM models, and the effects of modelling decisions on 
it, has not been conducted thus far to our knowledge.  

A word on the terms “computational complexity” and computational effort” is in 
order. Since the term computational complexity is loaded with connotations to rigorous 
complexity analysis based on theoretical computer science, and since the approach 
taken in this report is experimental, we will mainly use the term computational effort 
henceforth.  

This report is organized as follows. First, DFM is introduced in section 2; this section 
also contains a short description of the computation by which the prime implicants are 
obtained. Analysis of computational effort from the DFM point of view is considered in 
section 3. Section 4 describes the computational experiments carried out. Section 5 
discusses some ideas from the field of machine learning that could be used in the 
complexity analysis of DFM models. Section 6 discusses the computational effort of 
fault tree models. 

 



 

RESEARCH REPORT VTT-R-00831-10

5 (44)
 

 

 

2 Dynamic flowgraph methodology 
The dynamic flowgraph methodology (DFM) is an approach to modeling and analyzing 
the behaviour of dynamic systems for reliability assessment and verification [5]. DFM 
models express the logic of the system in terms of causal relationships between physical 
variables and states of the control systems; the time aspects of the system (execution of 
control commands, dynamics of the process) are represented as a series of discrete state 
transitions. DFM can be used for identifying how certain postulated events may occur in 
a system; the result is a set of timed fault trees, whose prime implicants (multi-state 
analogue of minimal cut sets) can be used to identify system faults resulting from 
unanticipated combinations of software logic errors, hardware failures and adverse 
environmental conditions. 

DFM has been used to assess the reliability of nuclear power plant control systems 
[1], but also of space rockets [13] and chemical batch processes [7]. 

The basic modelling constructs of DFM have been covered elsewhere [5, 9] and will 
not be repeated here. 

2.1 An example model 
The model described in this section serves two purposes: first, it illustrates the concepts 
presented above. Second, it acts as a baseline model for the computational effort 
considerations in section 4. 

The model consists of three variables A, B and C, of which A and B are in a feedback 
loop and C can be considered to represent a failure event. The DFM graph of the system 
is as follows: 

 
Figure 1. A simple DFM model used as a baseline for comparisons 

The variables A and B in the baseline model may be in either of the two states 1 and 
2. Variable C may be in either of the two states T and F. 

The decision table of the transfer and the transition boxes are  
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Table 1. The decision table for variable 
A in the model of Figure 1 

B C A 

1 F 1 

1 T 2 

2 F 2 

2 T 1 

 

Table 2 The decision table for variable 
B in the model of Figure 1. There is a 1 
step delay between A and B. 

A B 

1 1 

2 2 

 

If  C is false (the system works),  the value of variable B equals that  of variable A, but 
with a 1 step time lag. If C is true, then A is the inverse of B with a 1 step time lag. 

 

2.2 Analysis of DFM models 
After construction, the DFM model can be analyzed in two different modes, deductive 
and inductive [8]. In inductive analysis, event sequences are traced from causes to 
effects;  this  corresponds  to  simulation  of  the  model.  In  deductive  analysis,  event  
sequences are traced backward from effects to causes.  

A deductive analysis starts with the identification of a particular system condition of 
interest (a top event), usually corresponding to a failure. A top event consists here of 
variable values at specific time instances. For example, the top event X=low@T=0 & 
X=low@T=-1 & Y=small@T=0 might describe a situation where the water level in the 
reactor (X) is too low for two consecutive time instances, and the inflow of water (Y) is 
still small at the later time. 

To find the root causes of the top event, the model is backtracked through the network 
of nodes, edges, transfer and transition boxes. This means that the model is worked 
backward in the cause-and-effect flow to find what states of variables (and at what time 
instances) are needed to produce the top event.  The result of a deductive analysis is a 
set of prime implicants.  

A prime implicant is a conjunction of triplets (V, S, T); each triplet tells that node V 
is in state S at time T. The circumstances described by the set of triplets causes the top 
event. Prime implicants are similar to minimal cutsets of fault tree analysis, except that 
prime implicants are timed and prime implicants deal with multivalued variables (fault 
trees deal with Boolean variables). A useful analogy is that deductive analysis 
corresponds to minimal cut set search of a fault tree. 

Once primary implicants have been found, the top event probability is quantified as in 
the MCS analysis of a fault tree. 
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The application scope of DFM is large. The most important current areas of 
application include 

 determination of prime implicants or minimal cutsets for PRA 
purposes. These can be used to construct timed fault trees. 

 inspection of a given design for requirements compliance 

 setting up a testing plan by examining what events might lead to 
failure 

 computation of probabilities of top events for PRA/PSA. 

The computation of prime implicants in deductive analysis proceeds by starting at the 
top event. The variable(s) in the top event are traced back in causality and time to find 
out what triplets might be the immediate reasons for them; then, these triplets are traced 
back etc. The information discovered at each step of the backtracking process is 
represented in the form of a series of intermediate transition tables, logically equivalent 
to gates in a timed fault tree. 

The transition table is structured as follows. Each column in the table represents a 
variable at a given time instance (e.g. A@-1).  Each row represents a combination of 
values for the variables that makes a triplet the top event happen; when deductive 
analysis  has  been  carried  out,  each  row  is  a  prime  implicant.  Thus,  each  entry  in  the  
table represents the state of a variable at a given time instance. An entry might also be 
“don’t-care”, if the state of the variable@time-instance in the column is not relevant for 
the prime implicant in the row. 

An intermediate transition table is constructed as follows. First, the transition table 
contains only the top event. On each step of the deductive process, a copy of the 
decision table is made, and a variable in the decision table is expanded in the way that it 
is removed from the table, and its input variables (at the proper time instances) are 
inserted in its place. Also the rows in the decision table of the variable are inserted into 
the transition table. Then the transition table is simplified to eliminate impossible 
conditions from the table; for example, a single variable cannot be in two different 
states at the same time instance. 

The expansion of the table goes on until all variable@timeinstance pairs in the table 
are either for condition nodes (that don’t depend on any input variable), or for process 
variable nodes where timeinstance  start-of-the-deductive-analysis. 

A short example clarifies the procedure. 
Consider  the  simple  DFM  model  described  in  section  2.1.  Let  the  top  event  be  

A=2@0,  that  is,  the  state  of  variable  A  is  2  at  time  0.  The  transition  table  of  the  top  
event is 
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Table 3. Transition table for the top event A=2@0 

t=0  

A TOP 

2 T 

 
The decision table for variable A is represented in Table 1 (page 6). Two rows in the 

decision table give state 2 for A. Variable A is replace by variables B and C. The 
resulting transition table is 

Table 4. The transition table after the first backtrack  

t=0 t=0  

B C TOP 

1 T T 

2 F T 

 
When we further backtrack in the model, we see from Table 2 that B exactly equals A 

after a delay of 1 unit. Thus we replace B=1@0 with A=1@-1 and B=2@0 with A=2@-
1, yielding the following transition table: 

Table 5. The transition table after the second backtrack 

t=-1 t=0  

A C TOP 

1 T T 

2 F T 
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3 Analysis of computational effort 

3.1 Traditional methods of computational complexity analysis 
In theoretical computer science, quite much literature exists on computational 
complexity analysis in general (see, e.g., [3]). The standard vehicle of analysis is the 
Turing machine. The time complexity of a computation performed by a Turing machine 
is the number of transitions in the computation. 

It seems natural to apply this view of computational complexity also to the analysis of 
DFM.  However,  doing  such  a  rigorous  analysis  is  a  tedious  task.  On  the  other  hand,  
typical information obtained from a theoretical complexity analysis – worst-case 
complexity and average-case complexity – don’t usually shed much light on how 
various modelling decisions affect computational complexity. Therefore, a more light-
weight approach, based on experimentation, is adopted in this report. 

Although a different approach is taken, it is still useful to consider what elements of 
complexity analysis could be adapted to the present context. In DFM, a natural parallel 
to Turing machine transitions is the evaluation of a transition table. Therefore, a natural 
proxy for time complexity is the number of elements in transition tables generated by 
the  computation.  Also  the  number  of  resulting  prime  implicants  and  the  number  of  
triplets in them may shed some light on the computational complexity issue; here, 
however, it must be noted that the relationship between computational complexity and 
the number of prime implicants is a loose one at best, if it exists at all. 

3.2 Special features of the DFM complexity analysis problem 
When analyzing the computational effort of a DFM computation task (a system model 
and a related top event), the interest is in the counting of possible alternatives that must 
be inspected.  

3.3 Experimental complexity analysis  

3.3.1 Analyzing a very simple model empirically 
This method is empirical, based on computer experiments. The idea is to formulate a 
very simple model – baseline model – and a simple top event. These are then enhanced 
in a number of ways. For each enhancement as well as the baseline model, the following 
key figures are recorded:  

 computation time (if different from 0) 
 number of time steps 
 the number of intermediate steps in the computation, and the sizes of transition 

tables in each phase 
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  the number of resulting prime implicants, and the minimum and maximum 
number of variables involved in them. 

The baseline model is described in section 2.1. The enhancements to the basic model 
are as follows: 

 Changing the number of states in variable nodes from 2 to 3 (section 4.2) 
 Increasing the number of variables by adding a new condition node (section 4.3) 
 Increasing the number of variables by adding a new variable node (section 4.4) 
 Replacing a condition node with a dependent condition node (section 4.5) 
 Adding a dependent condition node without deleting the existing condition node 
 Increasing the complexity of the top event by adding a new triplet  
 Increasing the time lag in the transition box 1 3. 

Each model is analyzed for four different number of time steps (1, 2, 3, 4). The top 
event in each case (except the last one) is A=2@T=0 & A=2@T=-1. 

3.3.2 Analyzing more realistic models with computational experiments 
This is also an empirical method of analysis. The idea is to select a reasonably realistic 
model, augment it with various extensions - e.g. corresponding to those listed in section 
3.3.1 - and see how computation time, number of prime implicants etc. are affected. 

Experiments can be conducted by the same principles as for the simple baseline 
model – that is, add new process nodes and condition nodes, increase the number of 
states  of  a  node,  tweak  the  decision  table  of  a  transition  or  transfer  box  etc.  Thus,  it  
could be verified whether the findings with the simple model carry on to more realistic 
settings. Another benefit is that with larger models, the differences in computation time 
are more substantial and can be measured. 

3.3.2.1 Potential models 
The report [4] lists four models that have been used in the comparison of two DFM 
programs, DYMONDA and YADRAT. These models handle tank water level control, 
emergency water cooling system, filling of a reactor tank, and a BWR feedwater control 
system. In addition, this section lists some models described in DFM literature. Using 
them has the advantage that results obtained can in some cases be compared with results 
in the literature. A DFM model has been proposed for each of them, although the level 
of detail in model description varies. 

3.3.2.1.1 Pressure tank model 
This model is used in [12], section 3.5. It is a slight modification of the pressure tank 
example used in Chapter VIII of [11]. It is illustrated in Figure 2. 
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Figure 2. A simple pressure tank model 

The  model  consists  of  a  pressure  tank  and  its  control  equipment  and  logic.  If  the  
pressure in the tank falls below a certain limit, more is pumped into it; if the pressure in 
the tank rises above a certain limit, gas is let out through a valve. 

3.3.2.1.2 Digital feedwater control system of a generic pressurized water reactor 
This is the benchmark system used in [2] for the comparison of Markov/CCMT and 
DFM in probabilistic risk assessment. The purpose of the digital feedwater control 
system is to maintain steam generator water level within designated limits from an 
assigned setpoint. The model is illustrated in Figure 3. 
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Figure 3. Digital feedwater control system of a generic pressurized water reactor 
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4 Computational experiments 
This section describes a number of experiments made on a simple DFM model that is 
modified to reveal the effects of different modelling decisions. For each experiment, its 
setup and results are described, and some conclusions are drawn. 

4.1 The baseline model 
This is the model described in section 2.1. The model was analyzed with respect to the 
number of time steps in the analysis. The purpose of the experiment is to gain insight on 
how computational effort behaves when the number of time steps is increased.  
Additionally, the following questions concerning prime implicants are analyzed. How 
does the number of prime implicants behave when the number of time steps is 
increased? Is there any pattern (e.g. repetition) observable in the prime implicants as the 
number of time steps is increased? 

4.1.1 Experiment setup 
The baseline model was used as such. The number of time steps was increased from 1 to 
4. 

4.1.2 Results 
The model was analyzed for the size of the associated tables and the complexity of the 
resulting  prime  implicants  as  a  function  of  the  number  of  time  steps.  The  results  are  
given in  

Table 6. Complexity of the baseline model as a function of time steps 

N  =  #  
time 
steps 

Sizes of transition tables 
at each intermediary 
stage  (#  rows,  #  
columns) 

Total # 
elements 
in trans. 
tables 

# prime 
implicants 

Minimum and 
maximum   number  of  
variables in the prime 
implicants 

1 1x2, 2x3, 1x2(1x3), 2x3 17 2 3, 3 

2 1x2, 2x3, 1x2(1x3), 2x3, 
4x4 

33 4 4, 4 

3 1x2, 2x3, 1x2(1x3), 2x3, 
4x4, 8x5 

73 8 5, 5 

4 1x2, 2x3, 1x2(1x3), 2x3, 
4x4, 8x5, 16x6 

169 16 6, 6 
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As seen from Table 6, the number of prime implicants grows exponentially as a 
function of time steps. Another observation is that the number of triplets in each prime 
implicant – denote it by V1(n) – grows as n+2. 

The prime implicants are listed in 

Table 7. The prime implicants of the baseline model at different time steps 

# time steps Prime implicants 

1 B=1@-1 & C=T@-1 & C=F@0 
B=2@-1 & C=F@-1 & C=F@0 

2 B=1@-2 & C=F@-2 & C=T@-1 & C=F@0 
B=1@-2 & C=T@-2 & C=F@-1 & C=F@0 
B=2@-2 & C=F@-2 & C=F@-1 & C=F@0 
B=2@-2 & C=T@-2 & C=T@-1 & C=F@0 

3 B=1@-3 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0 
B=1@-3 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0 
B=1@-3 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0 
B=1@-3 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0 
B=2@-3 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0 
B=2@-3 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0 
B=2@-3 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0 
B=2@-3 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0 

4 B=1@-4 & C=F@-4 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0  
B=1@-4 & C=F@-4 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0  
B=1@-4 & C=F@-4 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0  
B=1@-4 & C=F@-4 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0 
B=1@-4 & C=T@-4 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0 
B=1@-4 & C=T@-4 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0 
B=1@-4 & C=T@-4 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0 
B=1@-4 & C=T@-4 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0 
B=2@-4 & C=F@-4 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0 
B=2@-4 & C=F@-4 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0 
B=2@-4 & C=F@-4 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0 
B=2@-4 & C=F@-4 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0 
B=2@-4 & C=T@-4 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0 
B=2@-4 & C=T@-4 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0 
B=2@-4 & C=T@-4 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0 
B=2@-4 & C=T@-4 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0 
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It is easy to see that, although the number of prime implicants increases exponentially, 
they follow a simple pattern: either B=1 initially, and C=T for an odd number of times 
since the start of the analysis, or B=2 initially and C=T an even number of times since, 
and C=F@0. 

However, it is more important what growth pattern the number of elements in 
transition  tables  —  a  better  proxy  for  computational  effort  than  the  number  of  prime  
implicants — takes. It is easy to see from Table 6 that in this model, there is a regularity 
in the transition table size sequences. Denote the number total number of elements in 
transition tables for solving the model with N time steps by XN. For the number of time 
steps N+1,  the  sequence  is  the  same  as  for  N time  steps  except  that  a  table  with  size  
2N(N+2) is appended to the end. Assuming that the pattern holds, we get the formula 

 
)2(21 NXX N

NN  (1) 
 

with X0=11. For example, it can be predicted that the total number of elements in 
transition tables for N = 5 equals 169 + 25+1(5 + 3) = 169 + 256 = 425 elements. As seen 
from (1), the increment of the number of elements grows exponentially. Thus we may 
tentatively conclude that XN grows exponentially as a function of N. 

4.1.3 Conclusions from the experiment 
The observation that the number of prime implicants increases exponentially as a 
function of the number of time steps is easy to explain. Each value of variable A can be 
arrived in two ways: either its value was the same in the previous time step, or its value 
was off by one and C=T at the previous time step. 

The more important observation that the total number of elements in decision tables 
seems to increase also exponentially is more difficult to explain. However, if the 
observation holds more generally, it has important consequences to the complexity 
analysis  of  DFM.  Validation  (or  otherwise)  of  this  hypothesis  must  wait  the  rigorous  
analysis of the DFM deductive analysis algorithm. 
The experiment brings about the following hypothesis: all distinct prime implicants 
occur in a finite number of time steps. Here, two prime implicants are distinct if they 
don’t follow a common pattern recognizable by e.g. a regular expression. This number 
depends  on  the  topology  of  the  DFM  graph,  and  the  decision  tables  and  time  steps  
involved. If the number of time steps is larger than this, only prime implicants 
equivalent to those obtained by a smaller number of time steps emerge. 
If the hypothesis is true (as it seems), it has profound effect on determining the number 
of time steps needed to find all relevant prime implicants. Let the number of prime 
implicants obtained by running the analysis n steps be Pn. We can tentatively formulate 
a candidate for a stopping criterion in increasing the number of time steps in DFM: 
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Increasing the number of time steps can be stopped if either of the following 
two conditions are met:  

1. the difference in the number of prime implicants between two 
consecutive analysis runs (with # of time steps increased by 1) 
reaches a constant:  

nnnn PPPP 11  

2. the ratio of the number of prime implicants between two consecutive 
analysis runs reaches a constant: 

11 nnnn PPPP  

An alternative way to choose the maximum number of analysis steps needed is to 
analyze the model and the top event. A useful proxy for the number of time steps 
needed could be the maximum of the delays of the feedback loops of the model (here 
the delay of a feedback loop is the sum of delays in it). 
 

4.2 Varying the number of states in variables, experiment 1 
The baseline model is compared with a model where the number of states in the 
continuous variables has been increased from 2 to 3. The purpose of this experiment is 
to gain insight into how computational effort increases when the number of states in a 
variable is increased. 

It  is  easy  to  see  that  for  this  model,  the  prime  implicants  are  produced  by  the  
following three patterns: 

 B=1 initially, and C=T for 3n+1 times in the analysis interval 
 B=2 initially, and C=T for 3n times in the analysis interval 
 B=3 initially, and C=T for 3n+2 times in the analysis interval 

4.2.1 Experiment setup 
The idea here is to increase the number of the continuous variables A and B in the 

baseline model from 2 to 3. In increasing the number of variables, the design decision 
remaining is how to set up the decision tables. Here, to preserve symmetry, the decision 
table is altered so that when C=F, A equals B with a 1 step time lag; if C=T, A is rotated 
so that B=1 A=2, B=2 A=3, and B=3 A=1. 

4.2.2 Results 
The complexity results are exactly the same as with the baseline model (see Table 6). 
Also the number of prime implicants is the same as in the baseline model. 
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This is notable in the light that the prime implicants are different from those of the base 
model (see above). 

 

4.2.3 Conclusions from the experiment 
The experiment shows that it is possible to increase the number of states in the variables 
without affecting computational effort in any way. On a closer inspection, this isn’t 
surprising: because branching in decision tables hasn’t been affected in any way: in the 
decision table of A, there are still exactly two ways to arrive in a given value for A. 

4.3 Varying the number of states in variables, experiment 2 
The purpose of this experiment, compared with the previous experiment, is to see how 
branching in decision tables affects computational effort. In the previous experiment, 
there was no branching. Here, several rows in the decision table of A lead to state 2. 

4.3.1 Experiment setup 
The basic idea here is the same as in the previous experiment 4.2: to increase the 
number of states in process variables. However, here a different decision table is 
constructed for node A: if C=F, then A=B; if C=T, then A=2. 

4.3.2 Results 

Table 8. Computational effort of the model of section 2.1 with modifications explained 
in section 4.3.1 as a function of time steps 

N  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 2x3, 1x1(2x3), 2x2 2 1, 1 

2 1x2, 2x3, 1x1(2x3), 2x2, 2x2, 
3x3 

3 1, 1 

3 1x2, 2x3, 1x1(2x3), 2x2, 2x2, 
3x3, 3x3, 4x4 

4 1, 1 

4 1x2, 2x3, 1x1(2x3), 2x2, 2x2, 
3x3, 3x3, 4x4, 4x4, 5x5 

5 1, 1 

The number of prime implicants grows linearly, whereas the number of triplets in 
each prime implicants stays the same. 
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Here,  again,  it  is  more  interesting  to  consider  the  number  of  elements  in  transition  
tables.  It  is  easily  seen  from  Table  8  that  the  total  number  of  elements  in  transition  
tables, XN, is 

22
1 )2()1( NNXX NN  (2) 

Summing, we get the general formula 
N

k
N

NNNNNNXkkXX
1

0
22

0 6
6)32)(2)(1()2)(1(1  (3) 

The latter formula is obtained by a straightforward application of the sum of squares 
formula (see, e.g., [14], p. 33). Thus we see that XN is a third degree polynomial with 
respect to the number of time steps. 

4.3.3 Conclusions from the experiment 
The most remarkable feature of these results is that here (with branching in the decision 
table of A), effort wrt. the number of time steps is polynomial, whereas in the previous 
experiment, exponential growth was obtained. Thus, the present model is 
computationally less demanding than the baseline model of section 2.1, even though the 
number of states is larger. 

Another salient feature of the experiment is that the number of triplets needed for 
each prime implicant stays constant. This might provide a key to understanding why 
effort wrt. the number of time steps is linear. 

A caveat of these conclusions is that they hold only if the number of elements in the 
transition tables follows the pattern present in Table 8.  

4.4 Increasing the number of variables by adding a new 
condition node 

The baseline model is compared with a model to which a new condition node has been 
added. This experiment aims at producing information about how new fault modes 
affect DFM model complexity: a condition node can be equated with a fault mode, 
either a single failure (if the condition node is connected to one variable node) or a 
dependent failure (if the condition node is connected to two or more variable nodes). 

4.4.1 Experiment setup 
A new fault variable D, identical to C, was added to the input of B; the decision table 
for B was made symmetrically like that of A (see Table 1). The model looks as follows: 
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Figure 4. The simple feedback model of section 2.1 with a new condition node D 

The decision table of B was made symmetrical to that of A in the baseline model (see 
section 2.1). 

4.4.2 Results 

Table 9. Computational effort of the model  of section 4.4.1 as a function of time steps 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 2x3, 2x4(2x3), 4 x 4 4 4, 4 

2 1x2, 2x3, 2x4(2x3), 4x4, 8x5, 
16x6 

16 6, 6 

3 1x2, 2x3, 2x4(2x3), 4x4, 8x5, 
16x6 , 32x7,   64 x 8 

64 8, 8 

4 1x2, 2x3, 2x4(2x3), 4x4, 8x5, 
16x6 , 32x7,  64x8, 128x9, 
256x10  

256 10, 10 

It is easy to see that the number of prime implicants, V3(n), equals 4n. 
When the numbers of prime implicants are compared with those of the baseline 

model, a clear pattern emerges: 
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Table 10. Numbers of prime implicants produced by model of this section and model 2.1 
compared 

Number of time steps 1 2 3 4 

P3=prime implicants of this model  4 16 64 256 

P1=prime implicants of model 2.1 2 4 8 16 

P3/ P1 2 4 8 16 

Thus, P3 is the square of P1.  
Another comparison can be made between the numbers of triplets in the prime 

implicants produced by the two models. This can be compared with the ratio 

2
2
22

)(
)(

1

3 n

n
n

nV
nV

 (4) 

The  sizes  of  transition  tables  show  also  a  pattern.  Namely.  the  total  number  of  
elements in the transition tables with N number of steps, XN, is now 

)22(2)12(2 212
1 NNXX NN

NN   (5)  

and, solving for XN, 

N

j

j
N jXX

2

1
0 )2(2   (7) 

 
so that XN grows faster than exponentially1 with regard to the number of time steps. It is 
seen from Table 9 that XN = 2 + 6 = 8.  

4.4.3 Conclusions from the experiment 
Adding a new condition node to the model has a dramatic effect on computational 

effort in this case. It seems that the number of elements in transition tables grows faster 
than exponentially, and that the number of prime implicants produced by two condition 
nodes equals the product of the numbers of prime implicants produced by each 
condition node.  

Another conclusion is that, in this case, the number of variables in the prime 
implicants produced by the condition nodes equals the sum of the numbers of the 
variables produced by each condition node. 

                                                
1 Finding a closed-form expression for the sum in (7) is an unsolved problem (see 
http://www.research.att.com/~njas/sequences/index.html, entry A036799), but it is easy to see that the 
dominating term in the sum grows faster than exponentially. 
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So far, generalizations of these two conclusions are just hypotheses. More 
experimentation  and  theoretical  analysis  would  be  needed  to  verify  (or  refute)  the  
generalizations. 

Adding a new condition node to a DFM model has an analogy in traditional reliability 
analysis. Each condition node adds a new possibility for the system to fail, that is, a new 
set of prime implicants to minimal cutsets. If two condition nodes are independent, the 
number of prime implicants produced by them should be the product of the numbers 
produced by each.  

4.5 Increasing the number of variables by adding a new 
variable node and a condition node 

The purpose of this experiment is to highlight how adding variables to a feedback loop 
affects computational effort. 

 

4.5.1 Experiment setup 
A new variable node, D, was introduced to the model 2.1. Since it isn’t the number of 
variables per se that increases computational complexity but rather the branching 
occurring in the decision tables corresponding to those variables, also a new condition 
node was added to the model. The resulting model looks as follows:  

 
Figure 5. The simple feedback model with a new variable node D and condition nodes E 
and F 
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4.5.2 Results 

Table 11. Complexity of the model  of section 4.5.1 as a function of time steps 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 2x3, 4x4, 4x4(4x5), 8x5, 
16x6 

16 6, 6 

2 1x2, 2x3, 4x4, 4x4(4x5), 8x5, 
16x6, 32x7, 64x8, 128x9 

128 9, 9 

 Computation was interrupted   

Here it seems that the number of prime implicants follows a pattern 23n+1. 
It is premature to predict the number of elements in transition tables, XN, based on just 

two time steps. However, one can hypothesize from Table 11 that  
)33(2)23(2)13(2 13313

1 NNNXX NNN
NN   (8) 

From this XN  can be solved to be 
N

j

j
N jXX

3

1

1
0 )3(2   (9) 

Here X0 = 2 + 6 + 16 = 24. 

4.5.3 Conclusions from the experiment 
This experiment supports the hypothesis put forth in section 4.4.2 that the number of 
prime implicants is the product of the complexities induced by individual condition 
nodes. 

If the hypothesis put forth on the number of transition table elements is true, 
computational effort (as measured by the number of transition table elements) grows 
faster than exponentially. 

4.6 Increasing the number of variables by adding a new 
variable node in parallel 

The experiment aims at producing information on how adding a new variable parallel to 
an  existing  variable  affects  computational  effort.  In  addition,  the  effect  of  slightly  
varying the decision table is analyzed. 

Since the new node is added in parallel, it is natural to compare the results to those of 
section 4.5: there the new node was added in series. 
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4.6.1 Experiment setup 
A new variable was inserted to the model in parallel of the variable B. The topology of 
the model is now  

 
Figure 6. The simple feedback model with a new variable node C in parallel with B,  

and condition node E 

The decision table of variable C equals that of variable A in the baseline case (Table 1), 
with inputs B and E instead of B and C. The decision table of variable A is subject to 
change because of a new input variable. Its decision table is now 

Table 12. The decision table for variable A in the model of Figure 6 

B C D A 

1 F 1 1 

1 F 2 2 

1 T 1 2 

1 T 2 1 

2 F 1 2 

2 F 2 1 

2 T 1 1 

2 T 2 2 

The  idea  in  the  decision  table  is  that  whenever  C=F,  A  =  (B  xor  D)  (that  is,  the  
exclusive  or).  When  C=T,  A  =  (B  xor  D).  This  means  rather  perfect  symmetry:  the  
effect of C is to reverse the truth value that A would otherwise get. 
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A variant of the present model is one in which only the decision table for A is 
changed to the following form, breaking the symmetry between variables B and D: 

Table 13. An alternative decision table for variable A in the model of Figure 6 

B C D A 

1 F 1 1 

1 F 2 2 

1 T 1 2 

1 T 2 2 

2 F 1 2 

2 F 2 1 

2 T 1 1 

2 T 2 2 

The only difference here is that in the fourth line, 1 has been changed to 2. This will 
have dramatic effects on the number of prime implicants and computational effort, as 
we shall see. 

4.6.2 Results 

Table 14. Computational effort of the model  of section 4.6.1 as a function of time steps, 
with the symmetric decision table for A 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 4x4, 4x4(4x5), 2x3(2x4), 
8x5, 8x5(8x6), 4x4 

4 4, 4 

2 1x2, 4x4, 4x4(4x5), 2x3(2x4), 
8x5, 8x5(8x6), 4x4(8x5), 4x4 

4 4, 4 

3 1x2, 4x4, 4x4(4x5), 2x3(2x4), 
8x5, 8x5(8x6), 4x4(8x5), 4x4 

4 4, 4 

4 1x2, 4x4, 4x4(4x5), 2x3(2x4), 
8x5, 8x5(8x6), 4x4(8x5), 4x4 

4 4, 4 
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Computational effort (as measured by the number of elements in transition tables) 
stays constant. 

Table 15. Computational effort of the model  of section 4.6.1 as a function of time steps, 
with the nonsymmetric decision table for A 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 4x4, 4x4(5x5), 1x3(2x4), 
8x5, 8x5(10x5) 

8 4, 4 

2 1x2, 4x4, 4x4(5x5), 1x3(2x4), 
8x5, 8x5(10x6), 8x5, 16x7, 
16x7(16x8), 12x7 

12 4, 6 

3 1x2, 4x4, 4x4(5x5), 1x3(2x4), 
8x5, 8x5(10x6), 8x5, 16x7, 
16x7(16x8), 12x7, 24x9, 
24x9(24x10) 

24 4, 7 

4 1x2, 4x4, 4x4(5x5), 1x3(2x4), 
8x5, 8x5(10x6), 8x5, 16x7, 
16x7(16x8), 12x7, 24x9, 
24x9(24x10), 24x9, 40x11, 
40x11(40x12), 32x11 

32 4, 9 

 
It turns out that a slight breaking up of the symmetry in the decision table has 

dramatic effects on computational effort and the number of prime implicants. Also the 
number of  prime implicants, and the maximum number of variables in them, doesn’t 
grow steadily. 

Finding an analytic expression for the total number of elements in transition tables in 
Table  15  is  not  an  easy  task.  However,  it  is  easy  to  see  that  the  number  of  elements  
grows very rapidly as a function of the number of time steps:  the XN for N=1,…,4 are 
117, 465, 897, and 2345, respectively. 

4.6.3 Conclusions from the experiment 
It is surprising the perfectly symmetric decision table helps produce a situation in which 
the number of prime implicants, or the effort of computing them, are constant with 
respect to the number of time steps. It is as of yet unclear why this is so. It might be that 
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the deductive analysis algorithm of DYMONDA makes use of the symmetry in the 
decision table. 

Even more surprising is the dramatic effect that changing one 2 to 1 in the decision 
Table 12 has on the computational effort. Further analysis is needed to find out why 
such an effect takes place. 

An initial guess for the reasons lies in the structure of the decision table. In the 
perfectly symmetric decision table, no branching can occur; when the symmetry is 
broken, branching takes place. 

When compared with the results in section 4.5, it would seem that increasing  the 
length of a feedback loop will contribute more to computational effort than just adding a 
new (parallel) variable to it. 

4.7 Adding a dependent failure variable to the model 
In this experiment, the baseline model is appended by a condition node that connects to 
both process variable nodes. 

4.7.1 Experiment setup 
A new fault variable D was added to the model and connected to both A and B. The 
effect  of  D is  exactly  as  that  of  C,  except  that  it  affects  both  continuous  nodes  at  the  
same time. The model looks as follows: 

 
Figure 7. The simple feedback model of section 2.1 with a new dependent fault variable 
D 

The logic in the decision table for A is that if either C or D is true, then A is inverted. In 
the decision table for B, D inverts A if true. 
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Table 16. Decision table of A for the model in Figure 7. 

B C D A 

1 F F 1 

1 F T 2 

1 T F 2 

1 T T 2 

2 F F 2 

2 F T 1 

2 T F 1 

2 T T 1 

 

Table 17. Decision table of B for the model inFigure 7. There is a 1 step delay between 
the inputs and B. 

A D B 

1 F 1 

2 F 2 

1 T 2 

2 T 1 
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4.7.2 Results 

Table 18. Computational effort of the model  of section 4.7.1 as a function of time steps 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 1x2, 3x4, 4x4(4x5), 4x5(6x5) 4 3, 5 

2 1x2, 3x4, 4x4(4x5), 3x4(3x5), 
4x5(6x6) 

12 4, 7 

3 1x2, 3x4, 3x4(3x5), 4x5(6x6), 
8x6, 12x7(16x8), 16x8, 24x8, 
36x9(48x10) 

36 5, 9 

4 largest 108x11 108 6, 11 

 
It turns out that the number of prime implicants with n time steps is three times the 

number of prime implicants with n-1 time steps. 
The number of elements in decision tables follows a complex pattern. It is remarkable 

here that, whereas previously the sequence of sizes of transition tables, XN, has followed 
the pattern that each sequence (with N time steps) is a prefix to the sequence with N+1 
time steps, here the pattern breaks down. Therefore it is more difficult to analyze XN 
here. 

However,  it  is  easy  to  see  that  the  number  of  elements  grows  very  rapidly  as  a  
function of the number of time steps: the XN for N = 1, 2, 3 are 50, 62 and 822, 
respectively. 

4.7.3 Conclusions from the experiment 
The number of prime implicants increases exponentially as the function of time steps. 
However, the basis of the exponent is 3. This shows remarkable symmetry: when there 
was only one condition node (section 4.1), the basis of the exponent was 2, and when 
there were two independent condition nodes (section 4.4), the basis was 4. 

The number of elements in transition tables seems to grow very rapidly. 
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4.8 Replacing the condition node with a dependent node 

4.8.1 Experiment setup 
In this model, the discrete variable C is the input of both A and B. It also has the same 
kind of effect on both variables as it had on A in the baseline model. 

 
Figure 8. The simple feedback model of section 2.1 with the discrete variable C being a 
dependent fault variable 

4.8.2 Results 

Table 19. Computational effort of the model  of section 4.8.1 as a function of time steps 

n = # 
time 
steps 

Sizes of transition tables 
at each intermediary 
stage  (#  rows,  #  
columns) 

# elements 
in transition 
tables 

# prime 
implicants 

Minimum and 
maximum   number  of  
variables in the prime 
implicants 

1 2x1, 2x3, 2x3(2x4), 
2x3(2x4) 

24 2 3, 3 

2 2x1, 2x3, 2x3(2x4), 
2x3(2x4), 4x4, 4x4(4x5), 
2x3 

66 2 3, 3 

3 2x1, 2x3, 2x3(2x4), 
2x3(2x4), 4x4, 4x4(4x5), 
4x4(8x5), 4x4(4x5), 2x3 

126 2 3, 3 

4 2x1, 2x3, 2x3(2x4), 
2x3(2x4), 4x4, 4x4(4x5), 
4x4(8x5), 4x4(4x5), 
4x4(8x5), 4x4(4x5), 2x3 

186 2 3, 3 

The same two prime implicants occur no matter what the number of time steps.  
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There are too few steps taken here to analyze the growth in the number of elements in 
transition tables XN.  However,  it  seems that  after  an  initial  transient  XN+1 = XN  +  60.  
Such a linear growth would be the simplest growth pattern observed so far (except in 
Table 14 where the number of elements remained constant after an initial transient). 

4.8.3 Conclusions from the experiment 
The number of prime implicants stays constant as a function of time steps. However, the 
number of operations to yield these prime implicants, as measured by the number and 
size of transition tables, grows. After an initial transient, this growth seems to be linear. 

 

4.9 Adding a new triplet to the top event 

4.9.1 Experiment setup 
The new triplet was chosen to be A=2@-2. Thus the top event is now A=2@T=0 & 
A=2@T=-1 & A=2@T=-2. 

4.9.2 Results 

Table 20. Computational effort of the model  as a function of time steps 

n  =  #  
time 
steps 

Sizes of transition tables at 
each intermediary stage (# 
rows, # columns) 

# prime 
implicants 

Minimum and maximum  
number of variables in the 
prime implicants 

1 The number of time steps is 
too small for the top event 

  

2 1x3, 2x4, 1x3(1x4), 2x4, 
1x3(1x4), 2x4 

2 4, 4 

3 1x3, 2x4, 1x3(1x4), 2x4, 
1x3(1x4), 2x4, 2x4, 4x5 

4 5, 5 

4 1x3, 2x4, 1x3(1x4), 2x4, 
1x3(1x4), 2x4, 2x4, 4x5, 4x5, 
8x6 

8 6, 6 

 

4.9.3 Conclusions from the experiment 
The complexity behaviour in this experiment was essentially similar to the baseline 
model with the original top event. This seems to indicate that the top event doesn’t have 
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as much impact on computational effort as the model. However, more experimentation 
is needed to affirm this hypothesis. 

 

4.10 Increasing the time lag in the transition box 

4.10.1 Experiment setup 
The time lag in the transition box of the baseline model was increased 1 3. 

4.10.2 Results 

Table 21. Computational effort of the model as a function of time steps and the lag in 
the transition box 

n  =  #  
time 
steps 

Length of lag 
in transition 
box 

Sizes  of  transition  tables  
at each intermediary 
stage (# rows, # columns) 

# prime 
implicants 

Minimum and 
maximum  number 
of variables in the 
prime implicants 

1 2 1x2, 2x3, 4x4 4 4, 4 

1 3 1x2, 2x3, 4x4 4 4, 4 

1 4 1x2, 2x3, 4x4 4 4, 4 

2 2 1x2, 2x3, 4x4, 8x5 8 5, 5 

 
Increasing the lag beyond 2 didn’t have any effect on the prime implicants in the first 
three cases. Indeed, the same prime implicants were obtained in each case. 

4.10.3 Conclusions from the experiment 
When compared to the baseline (section 4.1), the results for the first three cases seem 
intuitive. With the lag being 2 or more and the number of time steps only 1, variable A 
doesn’t have any influence on itself. Thus it is the initial values of B and C for the two 
time instances that determine the values of A for those time instances.  

When the number of time steps is increased (and the lag is kept at 2), the familiar 
exponential growth in the number of prime implicants ensues. 



 

RESEARCH REPORT VTT-R-00831-10

32 (44)
 

 

 

5 Other computational effort considerations 

5.1 Influence of choosing the top event on deductive effort 
We  illustrate  how  branching  in  the  deductive  analysis  may  depend  on  the  chosen  top  
event. By branching we mean here the number of preimages, or solutions, for a given 
variable value. For example, if the value of variable X depends on variables Y and Z, 
we are interested in the number of value combinations of Y and Z that result  to some 
given value of X. We call this branching, and each value combination is a preimage. 
Decision tables describe how values of a given variable depend on the values of other 
variables and they determine the amount of branching as deductive analysis proceeds. 

 
Case 1: Normal events occur in many ways 

 
Here we analyze a setting in which normal events occur is many ways, alarming events 
in a few ways and failures are rare. Assume that all variables are discretized into three 
values: normal, alarm, and failure. The top variable depends on k new variables, where 
each variable in turn again depend on k other new variables and so on. See illustration 
in Figure 9. 

 We assume that each variable appears only once in this chain.  As we are interested 
in the ratios in which the three possible values occur, we define for variable X, 
R(X=normal)=rn, R(X=alarm) = ra, R(X=failure)=rf, where rn+ra+rf=1. Thus the above 
ratios describe how the decision table for X looks like, for the purposes of deductive 
analysis. Note that there is no randomness in this definition, but these ratios behave like 
probabilities.  
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Figure 9: Illustration of chain in defining variables. 

We assume that the ratios will be backpropagated from top variable to variables that 
define it and further on. From level i to level i+1, we assume that  R( Xi+1=normal | Xi = 
normal) = Rnn, which is the ratio of normal values at level i+1, given that the variable at 
level i has  value  normal.  We  denote  the  top  level  by  0.  Also  R(  Xi+1=alarm |  Xi = 
normal) = Rna and similarly for other combinations of normal, alarm and failure values. 
This ratio definition can be written in the matrix form 

 
 
 
 

 
where  row  sums  equal  to  1.  Although  the  top  event  X at  level  0,  depend  on  k other 
variables at level 1, we consider that only the value of previous level variable defines 
values at the next level, i.e., there is no cross dependence between values of variables at 
a given level.  The above ratio propagation matrix is similar to a state transition matrix 
of Markov chains, see e.g. [6].  
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The branching of the deductive analysis starting from the top event proceeds as 
follows: Branching after the first step is r3k, where r= rn, ra or rf depending on weather 
the  top  event  is  “X=normal”, “X=alarm” or “X=failure”, respectively.  This is because 
there are 3k rows in the decision table of X (because of k variables defining X and each 
variable having 3 possible values).  As the ratio of normal, alarm and failure states are 
rn, ra and rf, there are 3k rn normal rows, etc.  The first deductive step will produce event 

1 OR  2 OR … OR  d”, where d= r3k.  Each statement  i is  of  the  form “X1
1 = v1 

AND … AND X1
k = vk”, where vi= normal, alarm or failure. The deductive analysis 

proceeds on each level 1 variable in turn in a similar fashion. 
When analysis is continued to mth level the average branching will be 
 

 
where T denotes transpose and 0 = (1 0 0) for top event “X=normal” or (0 1 0) for top 
event “X= alarm” or  (0 0 1) for top event “X=failure”.  Note that m is exactly the state 
probability vector after m state transitions in a Markov chain with initial state 
probabilities given by 0.  

The average branching can be plotted as a function of the level of deductive analysis. 
Here it is easy to see how branching depends on the top event chosen. Initial ratios rn, ra 
and rf together with the ratio transition matrix R needs to be defined for each scenario.  
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Figure 10: Average branching depending on the top event, N=normal, A=alarm and 
F=failure. N,k refers to top event “X=normal”, where each variable depends on k other 
variables, where k= 3 or 4. Parameters are rn=0.9, ra=0.07, Rnn=0.9, 
Rna=0.05,Ran=0.25, Raa=0.5, R 

 
Figure 10 illustrates how asking about normal events will produce a lot of variation 

on how they can occur. Curves corresponding to asking about normal events, (N,4 and 
N,3) have the highest number of branching. These are also the only decreasing curves. 
Asking about failure events (curves F,4 and F,3) will produce less branching (and 
diversity), but variable values gradually start to obtain values “alarm” or “normal” the 
more frequently  when the depth of definition chain increases.  

In the second example illustrated in Figure 11 the failure state is absorbing, i.e., once 
the variable at the higher level fails, then the variables at a lower level will obtain value 
“failure” too.  Normal and alarm states gradually develop into the failure state.   

Cases illustrated in Figure 10 and Figure 11 are compared in Figure 12, when each 
variable  depends  on  3  other  new  variables.  We  can  see  that  ability  to  recover  from  a  
failure state, i.e., whether failure state is absorbing or not, affects on branching most, if 
the top event concerns about failure and there is minor impact on branching for top 
events concerning alarm states. The influence on normal states is not considered 
relevant.  
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Figure 11: Average branching depending on the top event, N=normal, A=alarm and 
F=failure. Failure state is absorbing. N,k refers to top event “X=normal”, where each 
variable depends on k other variables, where k= 3 or 4. Parameters are rn=0.9, 
ra=0.07, Rnn=0.9, Rna=0.05,Ran=0.25, Raa=0.5, Rfn =0, Rfa=0. 
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Figure 12: Comparison of branching when k= 3. “N, F no abs” refers to normal top 
event and failure state is not absorbing. Other curves are denoted accordingly. 

 
 
 
 

Case 2: A water tank with a valve 
 

An example of a water tank with a valve has been discussed in [4]. The system has three 
components: a water tank, a water level measurement device and a water level control 
valve. A constant flow of water into the tank is assumed. When the high level limit is 
reached, the water level measurement device sends an open command to the control 
valve, causing discharge of the tank. When the low level limit is reached, the water level 
measurement device sends a close command to the control valve. Unwanted situations 
are too high level of the tank (overfilling or overpressurisation) or too low level of the 
tank. These may happen due to failure of the components. 

The DFM decision tables for the system are given in [4]. The decision tables indicate 
symmetries in the system and all states have equally many preimages. Therefore the 
selection of the variable value in the top event does not have any influence on the 
branching of the deductive analysis, when probabilities of states are not considered. 
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In the original model the water level was discretized into three levels: high, middle 

and low, coded by values 1,0,-1, respectively. Assume next that water levels high and 
middle are equally interesting and there is no need to make a distinction between those. 
Then we can make a coarser discretization and cope with smaller decision tables. Let us 
code water level, WL, and water level measurement, WLM, as binary valued: 1 
indicates OK value (previously middle or high) and -1 indicates low value. Presumably 
the ratios of water level values would change, making value 1 more frequent than -1. 
First, the new coarser scale leads to conflicting rules in the decision tables for water 
level, WL and valve, V. Original rules that lead to confliction in coarser scale are shown 
in Table 22.  

 

#Output       
ID Time   
WL 0 -1 0 
#Inputs     
V -1 1 1 
WL -1 0 1 
#End     
#Output       
ID Time   
V 0 0 1 
#Inputs     
V -1 0 1 
VF 0 0 0 
WLM 0 1 1 
#End     

Table 22: Rules that lead to confliction in coarse scaling. 

Depending on the selection of the winning rule in rule conflict, the number of columns 
(i.e., preimages of certain water level values or valve values) resulting to different states 
may change. Here the selection can be done so that each state has equally many 
preimages. Then the deductive analysis branches equally much regardless of the value 
of the variable in the top event.  If selection is done so that states have unequal number 
of preimages, then deductive analysis branches differently depending on the values of 
the variables in the top event. In this case only a minor change in ratios occurs.  

 

5.2 Computational effort depends on how the model is built  
The  aim  of  this  section  is  to  illustrate  some  model  building  aspects.  In  general,  the  
computational effort of solving a fault tree (or top event) depends on the breadth and 
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width of the tree. However, when the shape of the tree can be detected in advance, the 
computational effort may be improved. We illustrate this by writing a top event in 
various logically equivalent forms. However, different forms may behave 
computationally differently and in some cases the computational performance may 
depend on how some computer software treats the model internally.  

Let us consider a top event, called TOP, concerning six Boolean variables A, B, C, D, 
E and F. We denote logical operators AND, OR and NOT by ·, + and ¬, respectively. 
We can write 

 
 
 
 
The last from is obtained by using ¬V · G + V · H = (V + G) · (¬V · H). The second 

expression is in the prime implicant form. The first expression clearly expresses the fact 
that the top event concerns A AND some more complicated event. While the prime 
implicant form can be seen as a completely balanced from, the first form is quite the 
opposite. Note that the prime implicant form is actually the problem solved. In reality, 
the top event is unlikely to be expressed in the prime implicant form. The last form 
consists  of  two  somewhat  complicated  events  connected  by  OR  operator.  This  could  
represent a more typical case of the top event.  

Fault trees in all cases are built by reading the top event from left to right. The fault 
tree  corresponding  to  the  first  form of  the  top  event  is  illustrated  in  Figure  13.  In  the  
first  form the  unbalance  is  easy  to  see.  Computational  effort  of  the  evaluation  can  be  
very low – if evaluation is started from A and this happens to be false – or high, if 
computation is started from the right-hand branch of the fault tree. Now the 
computational  time  may  depend  on  how  software  starts  to  solve  the  problem  and  
whether the software can detect asymmetries in the problem and utilize it in the 
solution.  
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Figure 13: Fault tree of top event, and gate at highest level. 

The fault tree of the top event in prime implicant from is illustrated in Figure 14. This 
form is likely to be computed with similar computational effort is various software 
implementations. All branches in OR gate need to be computed and all sub-problems 
are of equal size and complexity.  

 
 



 

RESEARCH REPORT VTT-R-00831-10

41 (44)
 

 

 

 
Figure 14: Fault tree of the top event in prime implicant form. 

A compromise between the two above formulations and fault trees is illustrated in 
Figure 15. There the tree is balanced by braches of almost equal complexity, but the 
topmost gate is OR. Some fault tree solver softwares examine the shape of the fault tree 
in advance to optimize the computational effort. However, it is not clear if Dymonda is 
taking advantage of examining the top event for reducing the computational effort. This 
last fault tree would be beneficial to convert to the first presented form in order to utilize 
the asymmetry and speed the solving.  
  

 

 
Figure 15: Fault tree of the top event, balanced branches. 
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6 Conclusions 
A common theme that emerges from the experiments in section 4 and considerations in 
section 5 is that it is the branching occurring in decision tables that determines 
computational complexity of a DFM model. Here branching is to be understood as the 
number of rows that match a given state of the result variable. The role of the top event 
is more subsidiary, mainly relating to whether the variables in it can be linked with a 
chain of variables to a variable whose decision table contains a lot of branching.  

It yet remains a research issue to define this branching in more precise terms, and find 
the principles that govern its relations to computational complexity in model structures 
that are typically used. Another research topic, only tangentially touched in this report, 
is the dependence of the sizes of the transition tables on model structure. 
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