
 RESEARCH REPORT VTT-R-00831-10

On the Computational Effort of the
Dynamic Flowgraph Methodology

Authors: Ilkka Karanta, Pirkko Kuusela

Confidentiality: Public

RESEARCH REPORT VTT-R-00831-10

2 (44)

Contents

1 Introduction...4

2 Dynamic flowgraph methodology ...5
2.1 An example model ..5
2.2 Analysis of DFM models ...6

3 Analysis of computational effort..9

3.1 Traditional methods of computational complexity analysis9
3.2 Special features of the DFM complexity analysis problem..............................9
3.3 Experimental complexity analysis ...9

3.3.1 Analyzing a very simple model empirically...9
3.3.2 Analyzing more realistic models with computational experiments10

4 Computational experiments..13
4.1 The baseline model ..13

4.1.1 Experiment setup...13
4.1.2 Results...13
4.1.3 Conclusions from the experiment ..15

4.2 Varying the number of states in variables, experiment 116
4.2.1 Experiment setup...16
4.2.2 Results...16
4.2.3 Conclusions from the experiment ..17

4.3 Varying the number of states in variables, experiment 217
4.3.1 Experiment setup...17
4.3.2 Results...17
4.3.3 Conclusions from the experiment ..18

4.4 Increasing the number of variables by adding a new condition node............18
4.4.1 Experiment setup...18
4.4.2 Results...19
4.4.3 Conclusions from the experiment ..20

4.5 Increasing the number of variables by adding a new variable node and
a condition node ...21
4.5.1 Experiment setup...21
4.5.2 Results...22
4.5.3 Conclusions from the experiment ..22

RESEARCH REPORT VTT-R-00831-10

3 (44)

4.6 Increasing the number of variables by adding a new variable node in
parallel ..22
4.6.1 Experiment setup...23
4.6.2 Results...24
4.6.3 Conclusions from the experiment ..25

4.7 Adding a dependent failure variable to the model...26
4.7.1 Experiment setup...26
4.7.2 Results...28
4.7.3 Conclusions from the experiment ..28

4.8 Replacing the condition node with a dependent node29
4.8.1 Experiment setup...29
4.8.2 Results...29
4.8.3 Conclusions from the experiment ..30

4.9 Adding a new triplet to the top event...30
4.9.1 Experiment setup...30
4.9.2 Results...30
4.9.3 Conclusions from the experiment ..30

4.10 Inceasing the time lag in the transition box...31
4.10.1 Experiment setup...31
4.10.2 Results...31
4.10.3 Conclusions from the experiment ..31

5 Other computational effort considerations..32
5.1 Influence of choosing the top event on deductive effort................................32
5.2 Computational effort depends on how the model is built38

6 Conclusions..42

References..43

RESEARCH REPORT VTT-R-00831-10

4 (44)

1 Introduction

The dynamic flowgraph methodology (DFM) [5] is a method for the risk analysis of
discrete-time, discrete-state systems. Its aim is to produce the prime implicants of a
system for a given top event, and ultimately, the probability of the event.

A major issue in the use of the model is that with larger models, analysis times grow
prohibitively long. Furthermore, in practice, seemingly minor changes in the model may
result in dramatic increases in the computation time required.

The aim of this report is to lay some groundwork for the analysis of computational
effort of solving DFM models. Some research questions that we try to address are as
follows. Is there a way in which the computational effort of a DFM computation task
(consisting of a DFM model and a top event applied to it) be analyzed without referring
to any specific computational method used for solving the task? Can the complexity of a
DFM model be separated from the complexity of a top event applied to that model?
How does the top event affect computational effort? How to analyze the sensitivity of
computational effort to specific modelling decisions, e.g. increasing the number of
possible values of a variable by one? Is there a way to analyze the computational effort
inherent in model structure (the way variables are connected together)?

Analysis of the complexity of DFM models, and the effects of modelling decisions on
it, has not been conducted thus far to our knowledge.

A word on the terms “computational complexity” and computational effort” is in
order. Since the term computational complexity is loaded with connotations to rigorous
complexity analysis based on theoretical computer science, and since the approach
taken in this report is experimental, we will mainly use the term computational effort
henceforth.

This report is organized as follows. First, DFM is introduced in section 2; this section
also contains a short description of the computation by which the prime implicants are
obtained. Analysis of computational effort from the DFM point of view is considered in
section 3. Section 4 describes the computational experiments carried out. Section 5
discusses some ideas from the field of machine learning that could be used in the
complexity analysis of DFM models. Section 6 discusses the computational effort of
fault tree models.

RESEARCH REPORT VTT-R-00831-10

5 (44)

2 Dynamic flowgraph methodology
The dynamic flowgraph methodology (DFM) is an approach to modeling and analyzing
the behaviour of dynamic systems for reliability assessment and verification [5]. DFM
models express the logic of the system in terms of causal relationships between physical
variables and states of the control systems; the time aspects of the system (execution of
control commands, dynamics of the process) are represented as a series of discrete state
transitions. DFM can be used for identifying how certain postulated events may occur in
a system; the result is a set of timed fault trees, whose prime implicants (multi-state
analogue of minimal cut sets) can be used to identify system faults resulting from
unanticipated combinations of software logic errors, hardware failures and adverse
environmental conditions.

DFM has been used to assess the reliability of nuclear power plant control systems
[1], but also of space rockets [13] and chemical batch processes [7].

The basic modelling constructs of DFM have been covered elsewhere [5, 9] and will
not be repeated here.

2.1 An example model
The model described in this section serves two purposes: first, it illustrates the concepts
presented above. Second, it acts as a baseline model for the computational effort
considerations in section 4.

The model consists of three variables A, B and C, of which A and B are in a feedback
loop and C can be considered to represent a failure event. The DFM graph of the system
is as follows:

Figure 1. A simple DFM model used as a baseline for comparisons

The variables A and B in the baseline model may be in either of the two states 1 and
2. Variable C may be in either of the two states T and F.

The decision table of the transfer and the transition boxes are

RESEARCH REPORT VTT-R-00831-10

6 (44)

Table 1. The decision table for variable
A in the model of Figure 1

B C A

1 F 1

1 T 2

2 F 2

2 T 1

Table 2 The decision table for variable
B in the model of Figure 1. There is a 1
step delay between A and B.

A B

1 1

2 2

If C is false (the system works), the value of variable B equals that of variable A, but
with a 1 step time lag. If C is true, then A is the inverse of B with a 1 step time lag.

2.2 Analysis of DFM models
After construction, the DFM model can be analyzed in two different modes, deductive
and inductive [8]. In inductive analysis, event sequences are traced from causes to
effects; this corresponds to simulation of the model. In deductive analysis, event
sequences are traced backward from effects to causes.

A deductive analysis starts with the identification of a particular system condition of
interest (a top event), usually corresponding to a failure. A top event consists here of
variable values at specific time instances. For example, the top event X=low@T=0 &
X=low@T=-1 & Y=small@T=0 might describe a situation where the water level in the
reactor (X) is too low for two consecutive time instances, and the inflow of water (Y) is
still small at the later time.

To find the root causes of the top event, the model is backtracked through the network
of nodes, edges, transfer and transition boxes. This means that the model is worked
backward in the cause-and-effect flow to find what states of variables (and at what time
instances) are needed to produce the top event. The result of a deductive analysis is a
set of prime implicants.

A prime implicant is a conjunction of triplets (V, S, T); each triplet tells that node V
is in state S at time T. The circumstances described by the set of triplets causes the top
event. Prime implicants are similar to minimal cutsets of fault tree analysis, except that
prime implicants are timed and prime implicants deal with multivalued variables (fault
trees deal with Boolean variables). A useful analogy is that deductive analysis
corresponds to minimal cut set search of a fault tree.

Once primary implicants have been found, the top event probability is quantified as in
the MCS analysis of a fault tree.

RESEARCH REPORT VTT-R-00831-10

7 (44)

The application scope of DFM is large. The most important current areas of
application include

 determination of prime implicants or minimal cutsets for PRA
purposes. These can be used to construct timed fault trees.

 inspection of a given design for requirements compliance

 setting up a testing plan by examining what events might lead to
failure

 computation of probabilities of top events for PRA/PSA.

The computation of prime implicants in deductive analysis proceeds by starting at the
top event. The variable(s) in the top event are traced back in causality and time to find
out what triplets might be the immediate reasons for them; then, these triplets are traced
back etc. The information discovered at each step of the backtracking process is
represented in the form of a series of intermediate transition tables, logically equivalent
to gates in a timed fault tree.

The transition table is structured as follows. Each column in the table represents a
variable at a given time instance (e.g. A@-1). Each row represents a combination of
values for the variables that makes a triplet the top event happen; when deductive
analysis has been carried out, each row is a prime implicant. Thus, each entry in the
table represents the state of a variable at a given time instance. An entry might also be
“don’t-care”, if the state of the variable@time-instance in the column is not relevant for
the prime implicant in the row.

An intermediate transition table is constructed as follows. First, the transition table
contains only the top event. On each step of the deductive process, a copy of the
decision table is made, and a variable in the decision table is expanded in the way that it
is removed from the table, and its input variables (at the proper time instances) are
inserted in its place. Also the rows in the decision table of the variable are inserted into
the transition table. Then the transition table is simplified to eliminate impossible
conditions from the table; for example, a single variable cannot be in two different
states at the same time instance.

The expansion of the table goes on until all variable@timeinstance pairs in the table
are either for condition nodes (that don’t depend on any input variable), or for process
variable nodes where timeinstance start-of-the-deductive-analysis.

A short example clarifies the procedure.
Consider the simple DFM model described in section 2.1. Let the top event be

A=2@0, that is, the state of variable A is 2 at time 0. The transition table of the top
event is

RESEARCH REPORT VTT-R-00831-10

8 (44)

Table 3. Transition table for the top event A=2@0

t=0

A TOP

2 T

The decision table for variable A is represented in Table 1 (page 6). Two rows in the

decision table give state 2 for A. Variable A is replace by variables B and C. The
resulting transition table is

Table 4. The transition table after the first backtrack

t=0 t=0

B C TOP

1 T T

2 F T

When we further backtrack in the model, we see from Table 2 that B exactly equals A

after a delay of 1 unit. Thus we replace B=1@0 with A=1@-1 and B=2@0 with A=2@-
1, yielding the following transition table:

Table 5. The transition table after the second backtrack

t=-1 t=0

A C TOP

1 T T

2 F T

RESEARCH REPORT VTT-R-00831-10

9 (44)

3 Analysis of computational effort

3.1 Traditional methods of computational complexity analysis
In theoretical computer science, quite much literature exists on computational
complexity analysis in general (see, e.g., [3]). The standard vehicle of analysis is the
Turing machine. The time complexity of a computation performed by a Turing machine
is the number of transitions in the computation.

It seems natural to apply this view of computational complexity also to the analysis of
DFM. However, doing such a rigorous analysis is a tedious task. On the other hand,
typical information obtained from a theoretical complexity analysis – worst-case
complexity and average-case complexity – don’t usually shed much light on how
various modelling decisions affect computational complexity. Therefore, a more light-
weight approach, based on experimentation, is adopted in this report.

Although a different approach is taken, it is still useful to consider what elements of
complexity analysis could be adapted to the present context. In DFM, a natural parallel
to Turing machine transitions is the evaluation of a transition table. Therefore, a natural
proxy for time complexity is the number of elements in transition tables generated by
the computation. Also the number of resulting prime implicants and the number of
triplets in them may shed some light on the computational complexity issue; here,
however, it must be noted that the relationship between computational complexity and
the number of prime implicants is a loose one at best, if it exists at all.

3.2 Special features of the DFM complexity analysis problem
When analyzing the computational effort of a DFM computation task (a system model
and a related top event), the interest is in the counting of possible alternatives that must
be inspected.

3.3 Experimental complexity analysis

3.3.1 Analyzing a very simple model empirically
This method is empirical, based on computer experiments. The idea is to formulate a
very simple model – baseline model – and a simple top event. These are then enhanced
in a number of ways. For each enhancement as well as the baseline model, the following
key figures are recorded:

 computation time (if different from 0)
 number of time steps
 the number of intermediate steps in the computation, and the sizes of transition

tables in each phase

RESEARCH REPORT VTT-R-00831-10

10 (44)

 the number of resulting prime implicants, and the minimum and maximum
number of variables involved in them.

The baseline model is described in section 2.1. The enhancements to the basic model
are as follows:

 Changing the number of states in variable nodes from 2 to 3 (section 4.2)
 Increasing the number of variables by adding a new condition node (section 4.3)
 Increasing the number of variables by adding a new variable node (section 4.4)
 Replacing a condition node with a dependent condition node (section 4.5)
 Adding a dependent condition node without deleting the existing condition node
 Increasing the complexity of the top event by adding a new triplet
 Increasing the time lag in the transition box 1 3.

Each model is analyzed for four different number of time steps (1, 2, 3, 4). The top
event in each case (except the last one) is A=2@T=0 & A=2@T=-1.

3.3.2 Analyzing more realistic models with computational experiments
This is also an empirical method of analysis. The idea is to select a reasonably realistic
model, augment it with various extensions - e.g. corresponding to those listed in section
3.3.1 - and see how computation time, number of prime implicants etc. are affected.

Experiments can be conducted by the same principles as for the simple baseline
model – that is, add new process nodes and condition nodes, increase the number of
states of a node, tweak the decision table of a transition or transfer box etc. Thus, it
could be verified whether the findings with the simple model carry on to more realistic
settings. Another benefit is that with larger models, the differences in computation time
are more substantial and can be measured.

3.3.2.1 Potential models
The report [4] lists four models that have been used in the comparison of two DFM
programs, DYMONDA and YADRAT. These models handle tank water level control,
emergency water cooling system, filling of a reactor tank, and a BWR feedwater control
system. In addition, this section lists some models described in DFM literature. Using
them has the advantage that results obtained can in some cases be compared with results
in the literature. A DFM model has been proposed for each of them, although the level
of detail in model description varies.

3.3.2.1.1 Pressure tank model
This model is used in [12], section 3.5. It is a slight modification of the pressure tank
example used in Chapter VIII of [11]. It is illustrated in Figure 2.

RESEARCH REPORT VTT-R-00831-10

11 (44)

Figure 2. A simple pressure tank model

The model consists of a pressure tank and its control equipment and logic. If the
pressure in the tank falls below a certain limit, more is pumped into it; if the pressure in
the tank rises above a certain limit, gas is let out through a valve.

3.3.2.1.2 Digital feedwater control system of a generic pressurized water reactor
This is the benchmark system used in [2] for the comparison of Markov/CCMT and
DFM in probabilistic risk assessment. The purpose of the digital feedwater control
system is to maintain steam generator water level within designated limits from an
assigned setpoint. The model is illustrated in Figure 3.

RESEARCH REPORT VTT-R-00831-10

12 (44)

Figure 3. Digital feedwater control system of a generic pressurized water reactor

RESEARCH REPORT VTT-R-00831-10

13 (44)

4 Computational experiments
This section describes a number of experiments made on a simple DFM model that is
modified to reveal the effects of different modelling decisions. For each experiment, its
setup and results are described, and some conclusions are drawn.

4.1 The baseline model
This is the model described in section 2.1. The model was analyzed with respect to the
number of time steps in the analysis. The purpose of the experiment is to gain insight on
how computational effort behaves when the number of time steps is increased.
Additionally, the following questions concerning prime implicants are analyzed. How
does the number of prime implicants behave when the number of time steps is
increased? Is there any pattern (e.g. repetition) observable in the prime implicants as the
number of time steps is increased?

4.1.1 Experiment setup
The baseline model was used as such. The number of time steps was increased from 1 to
4.

4.1.2 Results
The model was analyzed for the size of the associated tables and the complexity of the
resulting prime implicants as a function of the number of time steps. The results are
given in

Table 6. Complexity of the baseline model as a function of time steps

N = #
time
steps

Sizes of transition tables
at each intermediary
stage (# rows, #
columns)

Total #
elements
in trans.
tables

prime
implicants

Minimum and
maximum number of
variables in the prime
implicants

1 1x2, 2x3, 1x2(1x3), 2x3 17 2 3, 3

2 1x2, 2x3, 1x2(1x3), 2x3,
4x4

33 4 4, 4

3 1x2, 2x3, 1x2(1x3), 2x3,
4x4, 8x5

73 8 5, 5

4 1x2, 2x3, 1x2(1x3), 2x3,
4x4, 8x5, 16x6

169 16 6, 6

RESEARCH REPORT VTT-R-00831-10

14 (44)

As seen from Table 6, the number of prime implicants grows exponentially as a
function of time steps. Another observation is that the number of triplets in each prime
implicant – denote it by V1(n) – grows as n+2.

The prime implicants are listed in

Table 7. The prime implicants of the baseline model at different time steps

time steps Prime implicants

1 B=1@-1 & C=T@-1 & C=F@0
B=2@-1 & C=F@-1 & C=F@0

2 B=1@-2 & C=F@-2 & C=T@-1 & C=F@0
B=1@-2 & C=T@-2 & C=F@-1 & C=F@0
B=2@-2 & C=F@-2 & C=F@-1 & C=F@0
B=2@-2 & C=T@-2 & C=T@-1 & C=F@0

3 B=1@-3 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0
B=1@-3 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0
B=1@-3 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0
B=1@-3 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0
B=2@-3 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0
B=2@-3 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0
B=2@-3 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0
B=2@-3 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0

4 B=1@-4 & C=F@-4 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0
B=1@-4 & C=F@-4 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0
B=1@-4 & C=F@-4 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0
B=1@-4 & C=F@-4 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0
B=1@-4 & C=T@-4 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0
B=1@-4 & C=T@-4 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0
B=1@-4 & C=T@-4 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0
B=1@-4 & C=T@-4 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0
B=2@-4 & C=F@-4 & C=F@-3 & C=F@-2 & C=F@-1 & C=F@0
B=2@-4 & C=F@-4 & C=F@-3 & C=T@-2 & C=T@-1 & C=F@0
B=2@-4 & C=F@-4 & C=T@-3 & C=F@-2 & C=T@-1 & C=F@0
B=2@-4 & C=F@-4 & C=T@-3 & C=T@-2 & C=F@-1 & C=F@0
B=2@-4 & C=T@-4 & C=F@-3 & C=F@-2 & C=T@-1 & C=F@0
B=2@-4 & C=T@-4 & C=F@-3 & C=T@-2 & C=F@-1 & C=F@0
B=2@-4 & C=T@-4 & C=T@-3 & C=F@-2 & C=F@-1 & C=F@0
B=2@-4 & C=T@-4 & C=T@-3 & C=T@-2 & C=T@-1 & C=F@0

RESEARCH REPORT VTT-R-00831-10

15 (44)

It is easy to see that, although the number of prime implicants increases exponentially,
they follow a simple pattern: either B=1 initially, and C=T for an odd number of times
since the start of the analysis, or B=2 initially and C=T an even number of times since,
and C=F@0.

However, it is more important what growth pattern the number of elements in
transition tables — a better proxy for computational effort than the number of prime
implicants — takes. It is easy to see from Table 6 that in this model, there is a regularity
in the transition table size sequences. Denote the number total number of elements in
transition tables for solving the model with N time steps by XN. For the number of time
steps N+1, the sequence is the same as for N time steps except that a table with size
2N(N+2) is appended to the end. Assuming that the pattern holds, we get the formula

)2(21 NXX N

NN (1)

with X0=11. For example, it can be predicted that the total number of elements in
transition tables for N = 5 equals 169 + 25+1(5 + 3) = 169 + 256 = 425 elements. As seen
from (1), the increment of the number of elements grows exponentially. Thus we may
tentatively conclude that XN grows exponentially as a function of N.

4.1.3 Conclusions from the experiment
The observation that the number of prime implicants increases exponentially as a
function of the number of time steps is easy to explain. Each value of variable A can be
arrived in two ways: either its value was the same in the previous time step, or its value
was off by one and C=T at the previous time step.

The more important observation that the total number of elements in decision tables
seems to increase also exponentially is more difficult to explain. However, if the
observation holds more generally, it has important consequences to the complexity
analysis of DFM. Validation (or otherwise) of this hypothesis must wait the rigorous
analysis of the DFM deductive analysis algorithm.
The experiment brings about the following hypothesis: all distinct prime implicants
occur in a finite number of time steps. Here, two prime implicants are distinct if they
don’t follow a common pattern recognizable by e.g. a regular expression. This number
depends on the topology of the DFM graph, and the decision tables and time steps
involved. If the number of time steps is larger than this, only prime implicants
equivalent to those obtained by a smaller number of time steps emerge.
If the hypothesis is true (as it seems), it has profound effect on determining the number
of time steps needed to find all relevant prime implicants. Let the number of prime
implicants obtained by running the analysis n steps be Pn. We can tentatively formulate
a candidate for a stopping criterion in increasing the number of time steps in DFM:

RESEARCH REPORT VTT-R-00831-10

16 (44)

Increasing the number of time steps can be stopped if either of the following
two conditions are met:

1. the difference in the number of prime implicants between two
consecutive analysis runs (with # of time steps increased by 1)
reaches a constant:

nnnn PPPP 11

2. the ratio of the number of prime implicants between two consecutive
analysis runs reaches a constant:

11 nnnn PPPP

An alternative way to choose the maximum number of analysis steps needed is to
analyze the model and the top event. A useful proxy for the number of time steps
needed could be the maximum of the delays of the feedback loops of the model (here
the delay of a feedback loop is the sum of delays in it).

4.2 Varying the number of states in variables, experiment 1
The baseline model is compared with a model where the number of states in the
continuous variables has been increased from 2 to 3. The purpose of this experiment is
to gain insight into how computational effort increases when the number of states in a
variable is increased.

It is easy to see that for this model, the prime implicants are produced by the
following three patterns:

 B=1 initially, and C=T for 3n+1 times in the analysis interval
 B=2 initially, and C=T for 3n times in the analysis interval
 B=3 initially, and C=T for 3n+2 times in the analysis interval

4.2.1 Experiment setup
The idea here is to increase the number of the continuous variables A and B in the

baseline model from 2 to 3. In increasing the number of variables, the design decision
remaining is how to set up the decision tables. Here, to preserve symmetry, the decision
table is altered so that when C=F, A equals B with a 1 step time lag; if C=T, A is rotated
so that B=1 A=2, B=2 A=3, and B=3 A=1.

4.2.2 Results
The complexity results are exactly the same as with the baseline model (see Table 6).
Also the number of prime implicants is the same as in the baseline model.

RESEARCH REPORT VTT-R-00831-10

17 (44)

This is notable in the light that the prime implicants are different from those of the base
model (see above).

4.2.3 Conclusions from the experiment
The experiment shows that it is possible to increase the number of states in the variables
without affecting computational effort in any way. On a closer inspection, this isn’t
surprising: because branching in decision tables hasn’t been affected in any way: in the
decision table of A, there are still exactly two ways to arrive in a given value for A.

4.3 Varying the number of states in variables, experiment 2
The purpose of this experiment, compared with the previous experiment, is to see how
branching in decision tables affects computational effort. In the previous experiment,
there was no branching. Here, several rows in the decision table of A lead to state 2.

4.3.1 Experiment setup
The basic idea here is the same as in the previous experiment 4.2: to increase the
number of states in process variables. However, here a different decision table is
constructed for node A: if C=F, then A=B; if C=T, then A=2.

4.3.2 Results

Table 8. Computational effort of the model of section 2.1 with modifications explained
in section 4.3.1 as a function of time steps

N = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 2x3, 1x1(2x3), 2x2 2 1, 1

2 1x2, 2x3, 1x1(2x3), 2x2, 2x2,
3x3

3 1, 1

3 1x2, 2x3, 1x1(2x3), 2x2, 2x2,
3x3, 3x3, 4x4

4 1, 1

4 1x2, 2x3, 1x1(2x3), 2x2, 2x2,
3x3, 3x3, 4x4, 4x4, 5x5

5 1, 1

The number of prime implicants grows linearly, whereas the number of triplets in
each prime implicants stays the same.

RESEARCH REPORT VTT-R-00831-10

18 (44)

Here, again, it is more interesting to consider the number of elements in transition
tables. It is easily seen from Table 8 that the total number of elements in transition
tables, XN, is

22
1)2()1(NNXX NN (2)

Summing, we get the general formula
N

k
N

NNNNNNXkkXX
1

0
22

0 6
6)32)(2)(1()2)(1(1 (3)

The latter formula is obtained by a straightforward application of the sum of squares
formula (see, e.g., [14], p. 33). Thus we see that XN is a third degree polynomial with
respect to the number of time steps.

4.3.3 Conclusions from the experiment
The most remarkable feature of these results is that here (with branching in the decision
table of A), effort wrt. the number of time steps is polynomial, whereas in the previous
experiment, exponential growth was obtained. Thus, the present model is
computationally less demanding than the baseline model of section 2.1, even though the
number of states is larger.

Another salient feature of the experiment is that the number of triplets needed for
each prime implicant stays constant. This might provide a key to understanding why
effort wrt. the number of time steps is linear.

A caveat of these conclusions is that they hold only if the number of elements in the
transition tables follows the pattern present in Table 8.

4.4 Increasing the number of variables by adding a new
condition node

The baseline model is compared with a model to which a new condition node has been
added. This experiment aims at producing information about how new fault modes
affect DFM model complexity: a condition node can be equated with a fault mode,
either a single failure (if the condition node is connected to one variable node) or a
dependent failure (if the condition node is connected to two or more variable nodes).

4.4.1 Experiment setup
A new fault variable D, identical to C, was added to the input of B; the decision table
for B was made symmetrically like that of A (see Table 1). The model looks as follows:

RESEARCH REPORT VTT-R-00831-10

19 (44)

Figure 4. The simple feedback model of section 2.1 with a new condition node D

The decision table of B was made symmetrical to that of A in the baseline model (see
section 2.1).

4.4.2 Results

Table 9. Computational effort of the model of section 4.4.1 as a function of time steps

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 2x3, 2x4(2x3), 4 x 4 4 4, 4

2 1x2, 2x3, 2x4(2x3), 4x4, 8x5,
16x6

16 6, 6

3 1x2, 2x3, 2x4(2x3), 4x4, 8x5,
16x6 , 32x7, 64 x 8

64 8, 8

4 1x2, 2x3, 2x4(2x3), 4x4, 8x5,
16x6 , 32x7, 64x8, 128x9,
256x10

256 10, 10

It is easy to see that the number of prime implicants, V3(n), equals 4n.
When the numbers of prime implicants are compared with those of the baseline

model, a clear pattern emerges:

RESEARCH REPORT VTT-R-00831-10

20 (44)

Table 10. Numbers of prime implicants produced by model of this section and model 2.1
compared

Number of time steps 1 2 3 4

P3=prime implicants of this model 4 16 64 256

P1=prime implicants of model 2.1 2 4 8 16

P3/ P1 2 4 8 16

Thus, P3 is the square of P1.
Another comparison can be made between the numbers of triplets in the prime

implicants produced by the two models. This can be compared with the ratio

2
2
22

)(
)(

1

3 n

n
n

nV
nV

 (4)

The sizes of transition tables show also a pattern. Namely. the total number of
elements in the transition tables with N number of steps, XN, is now

)22(2)12(2 212
1 NNXX NN

NN (5)

and, solving for XN,

N

j

j
N jXX

2

1
0)2(2 (7)

so that XN grows faster than exponentially1 with regard to the number of time steps. It is
seen from Table 9 that XN = 2 + 6 = 8.

4.4.3 Conclusions from the experiment
Adding a new condition node to the model has a dramatic effect on computational

effort in this case. It seems that the number of elements in transition tables grows faster
than exponentially, and that the number of prime implicants produced by two condition
nodes equals the product of the numbers of prime implicants produced by each
condition node.

Another conclusion is that, in this case, the number of variables in the prime
implicants produced by the condition nodes equals the sum of the numbers of the
variables produced by each condition node.

1 Finding a closed-form expression for the sum in (7) is an unsolved problem (see
http://www.research.att.com/~njas/sequences/index.html, entry A036799), but it is easy to see that the
dominating term in the sum grows faster than exponentially.

RESEARCH REPORT VTT-R-00831-10

21 (44)

So far, generalizations of these two conclusions are just hypotheses. More
experimentation and theoretical analysis would be needed to verify (or refute) the
generalizations.

Adding a new condition node to a DFM model has an analogy in traditional reliability
analysis. Each condition node adds a new possibility for the system to fail, that is, a new
set of prime implicants to minimal cutsets. If two condition nodes are independent, the
number of prime implicants produced by them should be the product of the numbers
produced by each.

4.5 Increasing the number of variables by adding a new
variable node and a condition node

The purpose of this experiment is to highlight how adding variables to a feedback loop
affects computational effort.

4.5.1 Experiment setup
A new variable node, D, was introduced to the model 2.1. Since it isn’t the number of
variables per se that increases computational complexity but rather the branching
occurring in the decision tables corresponding to those variables, also a new condition
node was added to the model. The resulting model looks as follows:

Figure 5. The simple feedback model with a new variable node D and condition nodes E
and F

RESEARCH REPORT VTT-R-00831-10

22 (44)

4.5.2 Results

Table 11. Complexity of the model of section 4.5.1 as a function of time steps

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 2x3, 4x4, 4x4(4x5), 8x5,
16x6

16 6, 6

2 1x2, 2x3, 4x4, 4x4(4x5), 8x5,
16x6, 32x7, 64x8, 128x9

128 9, 9

 Computation was interrupted

Here it seems that the number of prime implicants follows a pattern 23n+1.
It is premature to predict the number of elements in transition tables, XN, based on just

two time steps. However, one can hypothesize from Table 11 that
)33(2)23(2)13(2 13313

1 NNNXX NNN
NN (8)

From this XN can be solved to be
N

j

j
N jXX

3

1

1
0)3(2 (9)

Here X0 = 2 + 6 + 16 = 24.

4.5.3 Conclusions from the experiment
This experiment supports the hypothesis put forth in section 4.4.2 that the number of
prime implicants is the product of the complexities induced by individual condition
nodes.

If the hypothesis put forth on the number of transition table elements is true,
computational effort (as measured by the number of transition table elements) grows
faster than exponentially.

4.6 Increasing the number of variables by adding a new
variable node in parallel

The experiment aims at producing information on how adding a new variable parallel to
an existing variable affects computational effort. In addition, the effect of slightly
varying the decision table is analyzed.

Since the new node is added in parallel, it is natural to compare the results to those of
section 4.5: there the new node was added in series.

RESEARCH REPORT VTT-R-00831-10

23 (44)

4.6.1 Experiment setup
A new variable was inserted to the model in parallel of the variable B. The topology of
the model is now

Figure 6. The simple feedback model with a new variable node C in parallel with B,

and condition node E

The decision table of variable C equals that of variable A in the baseline case (Table 1),
with inputs B and E instead of B and C. The decision table of variable A is subject to
change because of a new input variable. Its decision table is now

Table 12. The decision table for variable A in the model of Figure 6

B C D A

1 F 1 1

1 F 2 2

1 T 1 2

1 T 2 1

2 F 1 2

2 F 2 1

2 T 1 1

2 T 2 2

The idea in the decision table is that whenever C=F, A = (B xor D) (that is, the
exclusive or). When C=T, A = (B xor D). This means rather perfect symmetry: the
effect of C is to reverse the truth value that A would otherwise get.

RESEARCH REPORT VTT-R-00831-10

24 (44)

A variant of the present model is one in which only the decision table for A is
changed to the following form, breaking the symmetry between variables B and D:

Table 13. An alternative decision table for variable A in the model of Figure 6

B C D A

1 F 1 1

1 F 2 2

1 T 1 2

1 T 2 2

2 F 1 2

2 F 2 1

2 T 1 1

2 T 2 2

The only difference here is that in the fourth line, 1 has been changed to 2. This will
have dramatic effects on the number of prime implicants and computational effort, as
we shall see.

4.6.2 Results

Table 14. Computational effort of the model of section 4.6.1 as a function of time steps,
with the symmetric decision table for A

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 4x4, 4x4(4x5), 2x3(2x4),
8x5, 8x5(8x6), 4x4

4 4, 4

2 1x2, 4x4, 4x4(4x5), 2x3(2x4),
8x5, 8x5(8x6), 4x4(8x5), 4x4

4 4, 4

3 1x2, 4x4, 4x4(4x5), 2x3(2x4),
8x5, 8x5(8x6), 4x4(8x5), 4x4

4 4, 4

4 1x2, 4x4, 4x4(4x5), 2x3(2x4),
8x5, 8x5(8x6), 4x4(8x5), 4x4

4 4, 4

RESEARCH REPORT VTT-R-00831-10

25 (44)

Computational effort (as measured by the number of elements in transition tables)
stays constant.

Table 15. Computational effort of the model of section 4.6.1 as a function of time steps,
with the nonsymmetric decision table for A

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 4x4, 4x4(5x5), 1x3(2x4),
8x5, 8x5(10x5)

8 4, 4

2 1x2, 4x4, 4x4(5x5), 1x3(2x4),
8x5, 8x5(10x6), 8x5, 16x7,
16x7(16x8), 12x7

12 4, 6

3 1x2, 4x4, 4x4(5x5), 1x3(2x4),
8x5, 8x5(10x6), 8x5, 16x7,
16x7(16x8), 12x7, 24x9,
24x9(24x10)

24 4, 7

4 1x2, 4x4, 4x4(5x5), 1x3(2x4),
8x5, 8x5(10x6), 8x5, 16x7,
16x7(16x8), 12x7, 24x9,
24x9(24x10), 24x9, 40x11,
40x11(40x12), 32x11

32 4, 9

It turns out that a slight breaking up of the symmetry in the decision table has

dramatic effects on computational effort and the number of prime implicants. Also the
number of prime implicants, and the maximum number of variables in them, doesn’t
grow steadily.

Finding an analytic expression for the total number of elements in transition tables in
Table 15 is not an easy task. However, it is easy to see that the number of elements
grows very rapidly as a function of the number of time steps: the XN for N=1,…,4 are
117, 465, 897, and 2345, respectively.

4.6.3 Conclusions from the experiment
It is surprising the perfectly symmetric decision table helps produce a situation in which
the number of prime implicants, or the effort of computing them, are constant with
respect to the number of time steps. It is as of yet unclear why this is so. It might be that

RESEARCH REPORT VTT-R-00831-10

26 (44)

the deductive analysis algorithm of DYMONDA makes use of the symmetry in the
decision table.

Even more surprising is the dramatic effect that changing one 2 to 1 in the decision
Table 12 has on the computational effort. Further analysis is needed to find out why
such an effect takes place.

An initial guess for the reasons lies in the structure of the decision table. In the
perfectly symmetric decision table, no branching can occur; when the symmetry is
broken, branching takes place.

When compared with the results in section 4.5, it would seem that increasing the
length of a feedback loop will contribute more to computational effort than just adding a
new (parallel) variable to it.

4.7 Adding a dependent failure variable to the model
In this experiment, the baseline model is appended by a condition node that connects to
both process variable nodes.

4.7.1 Experiment setup
A new fault variable D was added to the model and connected to both A and B. The
effect of D is exactly as that of C, except that it affects both continuous nodes at the
same time. The model looks as follows:

Figure 7. The simple feedback model of section 2.1 with a new dependent fault variable
D

The logic in the decision table for A is that if either C or D is true, then A is inverted. In
the decision table for B, D inverts A if true.

RESEARCH REPORT VTT-R-00831-10

27 (44)

Table 16. Decision table of A for the model in Figure 7.

B C D A

1 F F 1

1 F T 2

1 T F 2

1 T T 2

2 F F 2

2 F T 1

2 T F 1

2 T T 1

Table 17. Decision table of B for the model inFigure 7. There is a 1 step delay between
the inputs and B.

A D B

1 F 1

2 F 2

1 T 2

2 T 1

RESEARCH REPORT VTT-R-00831-10

28 (44)

4.7.2 Results

Table 18. Computational effort of the model of section 4.7.1 as a function of time steps

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 1x2, 3x4, 4x4(4x5), 4x5(6x5) 4 3, 5

2 1x2, 3x4, 4x4(4x5), 3x4(3x5),
4x5(6x6)

12 4, 7

3 1x2, 3x4, 3x4(3x5), 4x5(6x6),
8x6, 12x7(16x8), 16x8, 24x8,
36x9(48x10)

36 5, 9

4 largest 108x11 108 6, 11

It turns out that the number of prime implicants with n time steps is three times the

number of prime implicants with n-1 time steps.
The number of elements in decision tables follows a complex pattern. It is remarkable

here that, whereas previously the sequence of sizes of transition tables, XN, has followed
the pattern that each sequence (with N time steps) is a prefix to the sequence with N+1
time steps, here the pattern breaks down. Therefore it is more difficult to analyze XN
here.

However, it is easy to see that the number of elements grows very rapidly as a
function of the number of time steps: the XN for N = 1, 2, 3 are 50, 62 and 822,
respectively.

4.7.3 Conclusions from the experiment
The number of prime implicants increases exponentially as the function of time steps.
However, the basis of the exponent is 3. This shows remarkable symmetry: when there
was only one condition node (section 4.1), the basis of the exponent was 2, and when
there were two independent condition nodes (section 4.4), the basis was 4.

The number of elements in transition tables seems to grow very rapidly.

RESEARCH REPORT VTT-R-00831-10

29 (44)

4.8 Replacing the condition node with a dependent node

4.8.1 Experiment setup
In this model, the discrete variable C is the input of both A and B. It also has the same
kind of effect on both variables as it had on A in the baseline model.

Figure 8. The simple feedback model of section 2.1 with the discrete variable C being a
dependent fault variable

4.8.2 Results

Table 19. Computational effort of the model of section 4.8.1 as a function of time steps

n = #
time
steps

Sizes of transition tables
at each intermediary
stage (# rows, #
columns)

elements
in transition
tables

prime
implicants

Minimum and
maximum number of
variables in the prime
implicants

1 2x1, 2x3, 2x3(2x4),
2x3(2x4)

24 2 3, 3

2 2x1, 2x3, 2x3(2x4),
2x3(2x4), 4x4, 4x4(4x5),
2x3

66 2 3, 3

3 2x1, 2x3, 2x3(2x4),
2x3(2x4), 4x4, 4x4(4x5),
4x4(8x5), 4x4(4x5), 2x3

126 2 3, 3

4 2x1, 2x3, 2x3(2x4),
2x3(2x4), 4x4, 4x4(4x5),
4x4(8x5), 4x4(4x5),
4x4(8x5), 4x4(4x5), 2x3

186 2 3, 3

The same two prime implicants occur no matter what the number of time steps.

RESEARCH REPORT VTT-R-00831-10

30 (44)

There are too few steps taken here to analyze the growth in the number of elements in
transition tables XN. However, it seems that after an initial transient XN+1 = XN + 60.
Such a linear growth would be the simplest growth pattern observed so far (except in
Table 14 where the number of elements remained constant after an initial transient).

4.8.3 Conclusions from the experiment
The number of prime implicants stays constant as a function of time steps. However, the
number of operations to yield these prime implicants, as measured by the number and
size of transition tables, grows. After an initial transient, this growth seems to be linear.

4.9 Adding a new triplet to the top event

4.9.1 Experiment setup
The new triplet was chosen to be A=2@-2. Thus the top event is now A=2@T=0 &
A=2@T=-1 & A=2@T=-2.

4.9.2 Results

Table 20. Computational effort of the model as a function of time steps

n = #
time
steps

Sizes of transition tables at
each intermediary stage (#
rows, # columns)

prime
implicants

Minimum and maximum
number of variables in the
prime implicants

1 The number of time steps is
too small for the top event

2 1x3, 2x4, 1x3(1x4), 2x4,
1x3(1x4), 2x4

2 4, 4

3 1x3, 2x4, 1x3(1x4), 2x4,
1x3(1x4), 2x4, 2x4, 4x5

4 5, 5

4 1x3, 2x4, 1x3(1x4), 2x4,
1x3(1x4), 2x4, 2x4, 4x5, 4x5,
8x6

8 6, 6

4.9.3 Conclusions from the experiment
The complexity behaviour in this experiment was essentially similar to the baseline
model with the original top event. This seems to indicate that the top event doesn’t have

RESEARCH REPORT VTT-R-00831-10

31 (44)

as much impact on computational effort as the model. However, more experimentation
is needed to affirm this hypothesis.

4.10 Increasing the time lag in the transition box

4.10.1 Experiment setup
The time lag in the transition box of the baseline model was increased 1 3.

4.10.2 Results

Table 21. Computational effort of the model as a function of time steps and the lag in
the transition box

n = #
time
steps

Length of lag
in transition
box

Sizes of transition tables
at each intermediary
stage (# rows, # columns)

prime
implicants

Minimum and
maximum number
of variables in the
prime implicants

1 2 1x2, 2x3, 4x4 4 4, 4

1 3 1x2, 2x3, 4x4 4 4, 4

1 4 1x2, 2x3, 4x4 4 4, 4

2 2 1x2, 2x3, 4x4, 8x5 8 5, 5

Increasing the lag beyond 2 didn’t have any effect on the prime implicants in the first
three cases. Indeed, the same prime implicants were obtained in each case.

4.10.3 Conclusions from the experiment
When compared to the baseline (section 4.1), the results for the first three cases seem
intuitive. With the lag being 2 or more and the number of time steps only 1, variable A
doesn’t have any influence on itself. Thus it is the initial values of B and C for the two
time instances that determine the values of A for those time instances.

When the number of time steps is increased (and the lag is kept at 2), the familiar
exponential growth in the number of prime implicants ensues.

RESEARCH REPORT VTT-R-00831-10

32 (44)

5 Other computational effort considerations

5.1 Influence of choosing the top event on deductive effort
We illustrate how branching in the deductive analysis may depend on the chosen top
event. By branching we mean here the number of preimages, or solutions, for a given
variable value. For example, if the value of variable X depends on variables Y and Z,
we are interested in the number of value combinations of Y and Z that result to some
given value of X. We call this branching, and each value combination is a preimage.
Decision tables describe how values of a given variable depend on the values of other
variables and they determine the amount of branching as deductive analysis proceeds.

Case 1: Normal events occur in many ways

Here we analyze a setting in which normal events occur is many ways, alarming events
in a few ways and failures are rare. Assume that all variables are discretized into three
values: normal, alarm, and failure. The top variable depends on k new variables, where
each variable in turn again depend on k other new variables and so on. See illustration
in Figure 9.

 We assume that each variable appears only once in this chain. As we are interested
in the ratios in which the three possible values occur, we define for variable X,
R(X=normal)=rn, R(X=alarm) = ra, R(X=failure)=rf, where rn+ra+rf=1. Thus the above
ratios describe how the decision table for X looks like, for the purposes of deductive
analysis. Note that there is no randomness in this definition, but these ratios behave like
probabilities.

RESEARCH REPORT VTT-R-00831-10

33 (44)

Figure 9: Illustration of chain in defining variables.

We assume that the ratios will be backpropagated from top variable to variables that
define it and further on. From level i to level i+1, we assume that R(Xi+1=normal | Xi =
normal) = Rnn, which is the ratio of normal values at level i+1, given that the variable at
level i has value normal. We denote the top level by 0. Also R(Xi+1=alarm | Xi =
normal) = Rna and similarly for other combinations of normal, alarm and failure values.
This ratio definition can be written in the matrix form

where row sums equal to 1. Although the top event X at level 0, depend on k other
variables at level 1, we consider that only the value of previous level variable defines
values at the next level, i.e., there is no cross dependence between values of variables at
a given level. The above ratio propagation matrix is similar to a state transition matrix
of Markov chains, see e.g. [6].

ffaffn

afaaan

nfnann

RRR
RRR
RRR

R

RESEARCH REPORT VTT-R-00831-10

34 (44)

The branching of the deductive analysis starting from the top event proceeds as
follows: Branching after the first step is r3k, where r= rn, ra or rf depending on weather
the top event is “X=normal”, “X=alarm” or “X=failure”, respectively. This is because
there are 3k rows in the decision table of X (because of k variables defining X and each
variable having 3 possible values). As the ratio of normal, alarm and failure states are
rn, ra and rf, there are 3k rn normal rows, etc. The first deductive step will produce event

1 OR 2 OR … OR d”, where d= r3k. Each statement i is of the form “X1
1 = v1

AND … AND X1
k = vk”, where vi= normal, alarm or failure. The deductive analysis

proceeds on each level 1 variable in turn in a similar fashion.
When analysis is continued to mth level the average branching will be

where T denotes transpose and 0 = (1 0 0) for top event “X=normal” or (0 1 0) for top
event “X= alarm” or (0 0 1) for top event “X=failure”. Note that m is exactly the state
probability vector after m state transitions in a Markov chain with initial state
probabilities given by 0.

The average branching can be plotted as a function of the level of deductive analysis.
Here it is easy to see how branching depends on the top event chosen. Initial ratios rn, ra
and rf together with the ratio transition matrix R needs to be defined for each scenario.

m
mm

T
fan

k Rrrr 0,)(3

RESEARCH REPORT VTT-R-00831-10

35 (44)

Figure 10: Average branching depending on the top event, N=normal, A=alarm and
F=failure. N,k refers to top event “X=normal”, where each variable depends on k other
variables, where k= 3 or 4. Parameters are rn=0.9, ra=0.07, Rnn=0.9,
Rna=0.05,Ran=0.25, Raa=0.5, R

Figure 10 illustrates how asking about normal events will produce a lot of variation

on how they can occur. Curves corresponding to asking about normal events, (N,4 and
N,3) have the highest number of branching. These are also the only decreasing curves.
Asking about failure events (curves F,4 and F,3) will produce less branching (and
diversity), but variable values gradually start to obtain values “alarm” or “normal” the
more frequently when the depth of definition chain increases.

In the second example illustrated in Figure 11 the failure state is absorbing, i.e., once
the variable at the higher level fails, then the variables at a lower level will obtain value
“failure” too. Normal and alarm states gradually develop into the failure state.

Cases illustrated in Figure 10 and Figure 11 are compared in Figure 12, when each
variable depends on 3 other new variables. We can see that ability to recover from a
failure state, i.e., whether failure state is absorbing or not, affects on branching most, if
the top event concerns about failure and there is minor impact on branching for top
events concerning alarm states. The influence on normal states is not considered
relevant.

RESEARCH REPORT VTT-R-00831-10

36 (44)

Figure 11: Average branching depending on the top event, N=normal, A=alarm and
F=failure. Failure state is absorbing. N,k refers to top event “X=normal”, where each
variable depends on k other variables, where k= 3 or 4. Parameters are rn=0.9,
ra=0.07, Rnn=0.9, Rna=0.05,Ran=0.25, Raa=0.5, Rfn =0, Rfa=0.

RESEARCH REPORT VTT-R-00831-10

37 (44)

Figure 12: Comparison of branching when k= 3. “N, F no abs” refers to normal top
event and failure state is not absorbing. Other curves are denoted accordingly.

Case 2: A water tank with a valve

An example of a water tank with a valve has been discussed in [4]. The system has three
components: a water tank, a water level measurement device and a water level control
valve. A constant flow of water into the tank is assumed. When the high level limit is
reached, the water level measurement device sends an open command to the control
valve, causing discharge of the tank. When the low level limit is reached, the water level
measurement device sends a close command to the control valve. Unwanted situations
are too high level of the tank (overfilling or overpressurisation) or too low level of the
tank. These may happen due to failure of the components.

The DFM decision tables for the system are given in [4]. The decision tables indicate
symmetries in the system and all states have equally many preimages. Therefore the
selection of the variable value in the top event does not have any influence on the
branching of the deductive analysis, when probabilities of states are not considered.

RESEARCH REPORT VTT-R-00831-10

38 (44)

In the original model the water level was discretized into three levels: high, middle

and low, coded by values 1,0,-1, respectively. Assume next that water levels high and
middle are equally interesting and there is no need to make a distinction between those.
Then we can make a coarser discretization and cope with smaller decision tables. Let us
code water level, WL, and water level measurement, WLM, as binary valued: 1
indicates OK value (previously middle or high) and -1 indicates low value. Presumably
the ratios of water level values would change, making value 1 more frequent than -1.
First, the new coarser scale leads to conflicting rules in the decision tables for water
level, WL and valve, V. Original rules that lead to confliction in coarser scale are shown
in Table 22.

#Output
ID Time
WL 0 -1 0
#Inputs
V -1 1 1
WL -1 0 1
#End
#Output
ID Time
V 0 0 1
#Inputs
V -1 0 1
VF 0 0 0
WLM 0 1 1
#End

Table 22: Rules that lead to confliction in coarse scaling.

Depending on the selection of the winning rule in rule conflict, the number of columns
(i.e., preimages of certain water level values or valve values) resulting to different states
may change. Here the selection can be done so that each state has equally many
preimages. Then the deductive analysis branches equally much regardless of the value
of the variable in the top event. If selection is done so that states have unequal number
of preimages, then deductive analysis branches differently depending on the values of
the variables in the top event. In this case only a minor change in ratios occurs.

5.2 Computational effort depends on how the model is built
The aim of this section is to illustrate some model building aspects. In general, the
computational effort of solving a fault tree (or top event) depends on the breadth and

RESEARCH REPORT VTT-R-00831-10

39 (44)

width of the tree. However, when the shape of the tree can be detected in advance, the
computational effort may be improved. We illustrate this by writing a top event in
various logically equivalent forms. However, different forms may behave
computationally differently and in some cases the computational performance may
depend on how some computer software treats the model internally.

Let us consider a top event, called TOP, concerning six Boolean variables A, B, C, D,
E and F. We denote logical operators AND, OR and NOT by ·, + and ¬, respectively.
We can write

The last from is obtained by using ¬V · G + V · H = (V + G) · (¬V · H). The second

expression is in the prime implicant form. The first expression clearly expresses the fact
that the top event concerns A AND some more complicated event. While the prime
implicant form can be seen as a completely balanced from, the first form is quite the
opposite. Note that the prime implicant form is actually the problem solved. In reality,
the top event is unlikely to be expressed in the prime implicant form. The last form
consists of two somewhat complicated events connected by OR operator. This could
represent a more typical case of the top event.

Fault trees in all cases are built by reading the top event from left to right. The fault
tree corresponding to the first form of the top event is illustrated in Figure 13. In the
first form the unbalance is easy to see. Computational effort of the evaluation can be
very low – if evaluation is started from A and this happens to be false – or high, if
computation is started from the right-hand branch of the fault tree. Now the
computational time may depend on how software starts to solve the problem and
whether the software can detect asymmetries in the problem and utilize it in the
solution.

)())()((

))((

BFEADCBCA
BEAFEADCACBA

BFEDCCBATOP

RESEARCH REPORT VTT-R-00831-10

40 (44)

Figure 13: Fault tree of top event, and gate at highest level.

The fault tree of the top event in prime implicant from is illustrated in Figure 14. This
form is likely to be computed with similar computational effort is various software
implementations. All branches in OR gate need to be computed and all sub-problems
are of equal size and complexity.

RESEARCH REPORT VTT-R-00831-10

41 (44)

Figure 14: Fault tree of the top event in prime implicant form.

A compromise between the two above formulations and fault trees is illustrated in
Figure 15. There the tree is balanced by braches of almost equal complexity, but the
topmost gate is OR. Some fault tree solver softwares examine the shape of the fault tree
in advance to optimize the computational effort. However, it is not clear if Dymonda is
taking advantage of examining the top event for reducing the computational effort. This
last fault tree would be beneficial to convert to the first presented form in order to utilize
the asymmetry and speed the solving.

Figure 15: Fault tree of the top event, balanced branches.

RESEARCH REPORT VTT-R-00831-10

42 (44)

6 Conclusions
A common theme that emerges from the experiments in section 4 and considerations in
section 5 is that it is the branching occurring in decision tables that determines
computational complexity of a DFM model. Here branching is to be understood as the
number of rows that match a given state of the result variable. The role of the top event
is more subsidiary, mainly relating to whether the variables in it can be linked with a
chain of variables to a variable whose decision table contains a lot of branching.

It yet remains a research issue to define this branching in more precise terms, and find
the principles that govern its relations to computational complexity in model structures
that are typically used. Another research topic, only tangentially touched in this report,
is the dependence of the sizes of the transition tables on model structure.

RESEARCH REPORT VTT-R-00831-10

43 (44)

References
[1] T. Aldemir, M.P. Stovsky, J. Kirschenbaum, D. Mandelli, P. Bucci, L.A. Mangan, D.W. Miller,

X. Sun, E. Ekici, S. Guarro, M. Yau, B. Johnson, C. Elks, and S.A. Arndt. Dynamic reliability
modeling of digital instrumentation and control systems for nuclear reactor probabilistic risk
assessments. NUREG report NUREG/CR-6942. United States Nuclear Regulatory
Commission, October 2007.

[2] T. Aldemir, S. Guarro, J. Kirschenbaum, D. Mandelli, L.A. Mangan, P. Bucci, M. Yau, B.
Johnson, C. Elks, E. Ekici, M.P. Stovsky, D.W. Miller, X. Sun, S.A. Arndt , Q. Nguyen, J,
Dion. A Benchmark Implementation of Two Dynamic Methodologies for the Reliability
Modeling of Digital Instrumentation and Control Systems. NUREG/CR-6985, United States
Nuclear Regulatory Commission, February 2009.

[3] Sanjeev Arora and Boaz Barak. Computational complexity – a modern approach. Cambridge
University Press 2009.

[4] K. Björkman and J-E Holmberg, Comparison of two dynamic reliability analysis tools to solve
dynamic flowgraph method models, VTT Research Report VTT-R-00775-10, 2010.

[5] Chris J. Garrett, Sergio B. Guarro and George E. Apostolakis. The dynamic flowgraph
methodology for assessing the dependability of embedded software systems. IEEE
Transactions on Systems, Man , and Cybernetics 25 (May 2005), No. 5, 824-840.

[6] D.Gross and C.M. Harris, Fundamentals of Queueing Theory (3rd ed.), New York: Wiley,
1998, ISBN 0-471-17083-6, xi + 459 pp.

[7] Houtermans, M., G. Apostolakis, A. Brombacher and D. Karydas. Programmable electronic
system design & verification utilizing DFM. In SAFECOMP 2000 (F. Koornneef and M. van
der Meulen, eds.), Lecture Notes in Computer Science 1943 (2000), 275-285.

[8] Houtermans, M., G. Apostolakis, A. Brombacher, and D. Karydsas. The dynamic flowgraph
methodology as a safety analysis tool: programmable electronic system design and
verification. Safety Science 40 (2002), 813-833.

[9] Karanta, I., Maskuniitty, M. Reliability of digital control systems in nuclear power plants -
Modelling the feedwater system. VTT Research Report VTT-R-01749-08, 2009.

[10] D.E. O'Leary, The relationship between errors and size in knowledge-based systems.
International Journal of Human–Computer Studies 44 (1996), pp. 171–185.

 [11] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl, Fault tree handbook. NUREG-0492,
Nuclear Regulatory Commission, January 1981.

RESEARCH REPORT VTT-R-00831-10

44 (44)

[12] Kar-Fai Michael Yau, Dynamic flowgraph methodology for the analysis of software based
controlled system. PhD Dissertation, University of California, Los Angeles, June 1997
(unpublished).

[13] Yau, M., S. Guarro and G. Apostolakis. Demonstration of the dynamic flowgraph
methodology using the Titan II space launch vehicle digital flight control system. Reliability
Engineering and System Safety, Vol. 49 (1995), 335-353.

[14] Zeidler, E. (ed.). Oxford user’s guide to mathematics. Oxford: Oxford University Press, 1996,
ISBN 0 19 850763 1, xxii+1285 pp.

