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1

Introduction

Traditional finite element methods have limitations in treating weak and strong dis-
continuities due to the selections made in defining test and shape function bases. As
a result mesh design needs to be modified to accommodate the existence of such dis-
continuities (material interfaces, cracks etc.) which poses severe restrictions to the
modeling and evolution of discontinuities within an analysis.

A classic example is crack propagation, where standard displacement formulated
Galerkin finite element method (FEM) requires significant reworking and typically
introduction of adaptivity to be able to tackle the problem efficiently. Even with
such modifications, the resulting methodologies lack in accuracy and do not yield a
methodology suitable for complex constitutive models nor behavior in general three-
dimensions. Various solutions have been proposed: i) Variating mesh densities (h-
adaptivity) or shape function degree (p-adaptivity) (i.e. [1]), ii) augmented Lagrangian-
Eulerian meshes (i.e. [2]), iii) boundary element methods (i.e. [3]), iv) element-
free methods ( i.e. [4]) to name a few. Out of these examples, only the element-
free Galerkin (EFG) method is enough efficient to truly provide a generic partial-
differential equation (PDE) solving methodology which can successfully tackle with
discontinuities. EFG however, has a number of problems of its own, and as such, its
wide-scale application has so far been fairly limited.

To combat its deficiencies, a simpler methodology having a partition of unity like
background has been presented, the extended finite element method (XFEM). XFEM
utilizes a typical FEM scheme for computing the conservation integrals, thus avoiding
much of the problems of EFG, but rather that trying to get away from the crude
discretization process itself, it enhances (extends) the test and shape function space
to better suit modeling of weak and strong discontinuities.

The purpose of this work is to develop a XFEM code that is capable of handling
strong and weak discontinuities. The code produced during this work will work as
a foundation for more sophisticated and versatile code. The code is developed in
a Matlab environment using Getfem-library. The Getfem-library is under constant
development and new features are introduced in it from time to time. The library a
generic open source finite element library. It actually is a C++-language library, but
Matlab and Python interfaces are included in order to make it more easy to use. One
purpose of this work is also test the quality and usability of the Getfem-library.

The XFEM code is validated by calculating a simple edge crack test case. The
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geometry and boundary conditions of the specimen are intentionally kept simple to
hinder the error produced by them. A linear-elastic material model is used in all cases.
Although the code is tested only in two dimensional cases, in principle application for
three dimensional problems is not limited.

In case one two different mesh discretizations are tested to study the mesh depen-
dency of the methodology. Also the accuracy of the stress calculations are verified.

Codes capability for simulating crack propagation is tested with two different test
cases: the first one with three different set ups and the latter with two different set ups.
Specimen in these cases is similar as used in case one. In case two the variants are: A
force perpendicular to the upper boundary, a force parallel to the upper boundary and
a force tilted to 45◦ angle relative to upper boundary. The second and third variants
are mixed mode cases while the first variant is almost pure crack opening mode I.

The case three is similar to the first variant of the case two. Only difference is
that two precipitates are placed along the predicted crack propagation path. Material
model used in the precipitates is the same used in the rest of the material only the
Young’s modulus is greater. Two different sub-cases are modeled in this case: one
with precipitates three times stiffer and second with precipitates seven times stiffer
than the main material.

The main focus of this work is to develop a working code, which could be used
to analyze crack propagation. The actual analysis cases are simply model problems
and hence, the mesh is left fairly coarse in order to limit computer time and memory
capacity needed in this work. Though it is demonstrated to be dense enough for
convergent results.

The code is capable of producing valid results in analyzing the crack problems.
The error between computed stress intensity factor and the one calculated with Irwin’s
classical solutions is only about 12 % and it diminishes to - 4 % when the element
density is increased. Also in propagating crack analysis the code produces valid crack
paths (when comparing to ones found in literature). Altogether the code is working
and it can be used as a base for a more advanced analysis tool.

Theory of the fracture mechanics is treated in the next chapter to give background
of the phenomena. Chapter three and four treat the theory of FEM and the modifica-
tions made to it in XFEM. XFEM is treated in the extent to give tools to simple crack
propagation analysis. For a more extensive review reader could for example turn to
RWTH Aachen university’s Internet site [5]. After the theoretical aspects needed to
understand this work are dealt with, a short review of Getfem is followed by a chapter
about the code developed in this work. The following three chapters consist of the
results, discussion, and description of planned future work related to this master’s
thesis.
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2

Fracture Mechanics

The fundamental difference in fracture mechanics compared to conventional theory
of strength of materials can be explained with a simple example: An infinite plate
under tensile loading with and without a tiny flaw (a circular hole) (figure 2.1). In
the flawless plate the stress field is uniform and remains equal to the applied tensile
stress, σ0, while the elastic solution for an infinite plate with circular hole predicts a
biaxial stress field with an stress concentration of 3 (σy = 3 σ0 at θ = 0, π and σx =
-σ0 at θ = π/2, 3π/2 in figure 2.2) at the boundary of the hole.

Figure 2.1: An infinite plate with and without a flaw. [6]

Fracture mechanics was developed in order to prevent accidents. The usage of
metals, mainly steel and iron, for structural purposes increased enormously during
the 19th century industrial revolution. The revolution in structural materials also,
unfortunately, caused many accidents, some with loss of life. Large number of those
accidents involved steam boiler explosions and railway equipment. Gradually it was
found out the many of those accidents were due the material deficiencies in the form
of pre-existing flaws. Although better production methods were developed to reduce
the number of these type of failures, accidents still occurred. Even to structures in
nominally very low stress conditions. It was soon found out that these newly developed
steel types were brittle at low temperatures (figure 2.3). These accidents with the need
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Figure 2.2: Detailed figure of the infinite plate with hole. Geometry on the left and
stress distribution on the right. [6]

for lighter, high strength materials led to development of modern fracture mechanics.

Figure 2.3: Schematic of general effect of temperature on the fracture energy of struc-
tural metals. [7]

Cracks propagation often has an element of time. There are several mechanisms
for this subcritical crack propagation: Fatigue and creep to name a few.

Fatigue is caused by a repeated cyclic or otherwise varying loading and the am-
plitude of the loading is always below the level that is sufficient to cause failure in a
single application of load. Creep is the tendency of a solid material to slowly move or
deform permanently under long exposure to stress levels below the yield strength of
the material. Although, neither of the fracture mechanisms are yet fully understood.

4



Environmental conditions (temperature, atmosphere, etc.) and material composition
and behavior affects crack propagation.

On a microscopic level ductile structural materials often fail by microvoid coales-
cence. Microvoid formation and crack initiation is presented figure 2.4. Microvoids
(white area) form if the local stress field causes an intermetallic particle or a pre-
cipitate (black spots) to split. Alternatively, metallic matrix can break the particle
or grain boundaries can be separated, these lead to the same result: formation of a
microvoid.

Figure 2.4: Crack propagation by transgranular microvoid coalescence. [7]

Microvoids grow and coalescence during progressive loading, hence the name of
the phenomena, and eventually forms a continuous cracked surface, as the local stress
field increases.

Material orientation in different grains and phases affects the crack’s path (figure
2.5). Material orientation inside a grain affects the crack growth direction as described
next.

a) Cyclic slip begins in a surface grain and occurs mainly on one or few sets of crystal
planes.

b) This usually leads to slip plane cracking (mode II, fracture modes are explained
in the next section), which results in a faceted fracture surface, and spreading
of cyclic slip to an adjacent grain. Again the slip is mainly on one or a few sets
of crystal planes.

c) The second grain also cracks along the slip plane. Cyclic slip in the interior is now
activated on several sets of crystal planes. This enables mode I crack extension.

d) Cyclic slip on several sets of crystal planes results in a continuum mechanism of
crack propagation, often characterized by fatigue striations.

The object in fracture mechanics is to quatify the conditions of crack propagation,
the residual strength of the structure as a function of crack size and the maximum
allowable crack size. The rate of crack propagation in several failure mechanisms, is
a function of several variables, and it will usually increase progressively as the crack
grows (figure 2.6 a). As the crack propagates the residual strength, which is the failure
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Figure 2.5: Fatigue crack initiation and growth corresponding to a transition from
mode II to mode I. [7]

strength as a function of crack size, of the structure decreases (figure 2.6 b). After
enough time the residual stress reaches the limit where the structure fails.

Figure 2.6: The engineering problem of a crack in a structure. [7]

Theoretical concepts presented in this chapter are an adaptation of the one pre-
sented in [7] and [8].
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2.1 LEFM

Linear-elastic fracture mechanics (LEFM) describes the fracturing behavior of a ma-
terial that obey Hooke’s law (i.e. linear material behavior).

Characteristics of stress, strain, and displacement near the crack tip may be di-
vided into three basic types, figure 2.7. Three independent types of loading enable

Figure 2.7: The crack loading modes. [7]

crack initiation and propagations in: Mode I Opening mode (a tensile stress normal
to the plane of the crack), Mode II Sliding mode (a shear stress acting parallel to
the plane of the crack and perpendicular to the crack front), and Mode III Tearing
mode (a shear stress acting parallel to the plane of the crack and parallel to the crack
front).

The loading modes in LEFM are a decomposition of the stress tensor, hence,

σij = σIij + σIIij + σIIIij . (2.1)

Elastic Stress Field Equations

Stress field in a biaxially loaded infinite cracked plate can be obtained from Williams
([9]) and Westergaard ([10]) crack analysis (figure 2.8) This is done by substituting the
solution, a complex stress function φ(z), that Westergaard proposed the biharmonic
stress function 2.2 as a solution to Airy’s stress function 2.3

Φ = Re ¯̄φ(z) + Imφ̄(z), (2.2)

where φ̄(z) and ¯̄φ(z) are first and second order integrals of φ(z), respectively and
z = x+ i · y. The stress components then become:

σxx =
∂Φ

∂y
, σyy =

∂Φ

∂x
, σxy =

∂Φ

∂x∂y
. (2.3)
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Figure 2.8: An infinite plate subjected to uniform normal (a) and shear (b) traction.
[6]

This stress field always fulfills the equilibrium equations of stress 2.5. These equi-
librium equations are obtained from figure 2.9. Material element is in equilibrium of
forces in x-direction when

(σxx +
∂σxx
∂x

dx)dydz − σxxdydz +

(σxy +
∂σxy
∂y

dy)dzdx− σxydzdx + (2.4)

(σxz +
∂σxz
∂z

dz)dxdy − σxzdxdy = 0.

Equilibrium of forces in y- and z-directions is obtained in similar manner. This leads

Figure 2.9: The stress components acting in the x direction on an infinitesimal material
element [7]

to an equilibrium of stress

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0 (2.5a)

∂σyy
∂y

+
∂σyz
∂z

+
∂σyx
∂x

= 0 (2.5b)
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∂σzz
∂z

+
∂σzx
∂x

+
∂σzy
∂y

= 0. (2.5c)

In two dimensional case figure 2.8, where σzy = σzx = 0 and ∂
∂z

= 0 equilibrium
equations 2.5 reduced to

∂σxx
∂x

+
∂σxy
∂y

= 0 (2.6a)

∂σyy
∂y

+
∂σyx
∂x

= 0. (2.6b)

Stress components can be found by substituting 2.2 into 2.3:

σxx = Reφ(z)− y · Imφ′(z) (2.7a)

σyy = Reφ(z) + y · Imφ′(z) (2.7b)

σxy = −y · Imφ′(z). (2.7c)

The complex function φ(z) that satisfies the boundary conditions along the crack and
in infinity (figure 2.8a) is

φ(z) =
σ0√

1− a2

z2

(2.8)

Finally, by substituting 2.8 into 2.7, the near crack tip solutions are obtained (r << a)

σxx =
σ0

√
πa√

2πr
cos

θ

2
(1− sin

θ

2
sin

3θ

2
) (2.9a)

σyy =
σ0

√
πa√

2πr
cos

θ

2
(1 + sin

θ

2
sin

3θ

2
) (2.9b)

σxy =
σ0

√
πa√

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
. (2.9c)

Irwin introduced (late 1950s) [11] the stress intensity factor (SIF), K. He illustrated
that all elastic stress fields around the crack tip are distributed similarly, and Kk =
σij
√
πr (k is the displacement mode I ,II or III) controls the local stress quantity. Irwin

also argued that the stress field in uniaxially (y-direction) loaded plate is identical to
biaxially loaded one with the exception of σxx, which is reduced by the remote stress
field. Although, in near tip stress field the correction is usually omitted because near
the crack tip σxx is much larger than σ0. Equations above also shows that the stress
field tends to infinity at the crack tip, 1√

r
singularity. Substituting SIF into expressions

2.7 the elastic stress state around the crack can be presented by

σij = r−
1
2{KIf

I
ij(θ) +KIIf

II
ij (θ) +KIIIf

III
ij (θ)}+ higher order terms (2.10)

where σij is the near crack tip stress, fkij(θ) are functions of θ (equations 2.9), and
KI , KII and KIII are the SIFs, the parameters that LEFM lies on, associated with
crack opening modes

KI = limr→0,θ=0σyy
√

2πr (2.11a)

KII = limr→0,θ=0σxy
√

2πr (2.11b)
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KIII = limr→0,θ=0σyz
√

2πr. (2.11c)

Kk describes the magnitude of the elastic stress field. It can also be used to describe
fracture behavior and the crack growth assuming that the stress field near the crack
tip remains elastic.

The SIF in mode I 2.11a can be simplified by substituting equation 2.9b into
equation 2.11a

KI = σ0

√
πa. (2.12)

The stress field similarly in the pure mode II loading

σxx = − KII√
2πr

sin
θ

2
(2 + cos

θ

2
cos

3θ

2
) (2.13a)

σyy =
KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(2.13b)

σxy =
KII√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
), (2.13c)

and in pure mode III loading

σxz =
KIII√

2πr
sin

θ

2
(2.14a)

σyz =
KIII√

2πr
cos

θ

2
. (2.14b)

The solutions for the SIF 2.11 are strictly valid only for an infinite plate. In real life
engineering problems specimen geometry has to be taking into account. It is done by
modifying (e.g. KI in equation 2.12) the SIF by introducing a geometrical correction,
f(a/W ), where a is the crack length and W is specimen width, the expression always
containing the characteristic geometric parameters of the geometry.

Examples of Stress Intensity Factors

Analytical solutions of mode I stress intensity factors to four classical fracture me-
chanics problems are presented in this section [7]. The problems are presented in
figure 2.10. In the first figure (2.10a) is a tensile plate problem with crack at the
center:

KI = [1 + 0.256(
a

W
)− 1.152(

a

W
)2 + 12.200(

a

W
)3]σ0

√
πa. (2.15)

Next in figure 2.10b is depicted a tensile plate with an edge crack:

KI = [1.122− 0.231(
a

W
) + 10.550(

a

W
)2 − 21.710(

a

W
)3 + 30.382(

a

W
)4]σ0

√
πa. (2.16)

Problem in figure 2.10c has an edge crack at both sides:

KI = [
1.122− 1.22( a

W
)− 0.820( a

W
)2 + 3.768( a

W
)3 − 3.040( a

W
)4√

1− 2a
W

]σ0

√
πa. (2.17)

The last problem 2.10d depicts a0 center crack grown into a small elliptical hole

KI = [
[sin2(θ) + b

a
cos2(θ)]

1
4

3π
8

+
π

8

b2

a2
]σ0

√
πa, (2.18)

where θ is defined in figure 2.11.
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Figure 2.10: Typical plate problems of fracture mechanics. [6]

Figure 2.11: Definition of theta for internal elliptical crack. [7]

Crack Tip Plasticity

Previous KK solutions, with infinite stress at the crack tip (owning to the infinitely
sharp crack tip), are not exactly physical viable for real materials. Real material,
with atomic structures, can only have the crack tip radius about the interatomic
distance. This sets some limits to the stress field. More importantly, inelastic material
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deformation (e.g. plasticity in metals and crazing in polymers) further relaxes the
stress field at the crack-tip. This inelastic material deformation at stress levels above
the yield stress leads to a plastic zone surrounding the crack tip. The accuracy of the
elastic stress analysis diminishes as the plastic zone grows. For moderate crack tip
yielding, two simple corrections to LEFM have been developed: The Irwin approach
and the strip yield model ([12] and [13]). Both of these models predicts that the
shape of the plastic zone to be circular, which is not exact. However, the shape of the
predictions is not that important since they both are valid only on the x-axis (θ = 0).

The Irwin model states that on the crack plane (θ = 0) near the crack tip plastic
zone size is

ry =
1

2π
(
KI

σys
)2, (2.19)

the equation for first order estimate for plastic zone size above is derived from the
equation for horizontal stress 2.9 by substituting yield strength, σys, for σxx. Shape of
the plastic zone is considered to be circular, although this is only an approximation,
and strain hardening is neglected. as figure 2.12 illustrates, the stress singularity is
truncated by yielding at the crack tip.

The analysis in equation 2.19 is based on an elastic crack tip solution, and thus, is
not strictly correct. Stresses are redistributed when yielding occurs in order to satisfy
equilibrium. The cross-hatched region in figure 2.12 represents forces that are present
in an elastic material but cannot be carried in the elastic-plastic material because the
stress cannot exceed the yield strength. Thus, the plastic zone must increase in size
in order to accommodate these forces. A simple force balance leads to a second order
estimate of the plastic zone size rp:

σysrp =

∫ rp

0

σxxdr ⇒ rp =
1

π
(
KI

σys
)2, (2.20)

which is twice as large as first order estimate. Furthermore, the result means that the
notational crack length is slightly longer than the actual crack size when considering
the effective crack driving force. The effective crack length is defined as the sum of
the actual crack size and a plastic zone correction

aeff = a+ ry, (2.21)

where ry is for plane stress. In plane strain, yielding is suppressed by the triaxial
stress state, and the Irwin plastic zone correction is smaller by a factor of 3

ry =
1

6π
(
KI

σys
)2. (2.22)

The effective stress intensity is obtained by inserting aeff into the K expression for
the geometry of interest

Keff = σ
√
πaefff(

aeff
W

). (2.23)

Since the effective crack size is taken into account in the geometry correction factor
f(

aeff

W
), an iterative solution is usually required to solve for Keff .
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Figure 2.12: First-order and second-order estimates of plastic zone size. [8]

Figure 2.13: The strip-yield model. The plastic zone is modeled by yield magnitude
compressive stresses at each crack tip (b). [8]

The strip yield model (figure 2.13) assumes that all the plastic yielding concen-
trates in a strip in front of the crack. This type of behavior does occur in some
materials. In this model the effective crack length is also longer than the physical
length(firgure 2.13).

In this model the material is assumed to be elastic-perfectly plastic as well and
the material to be plane stress state. Since the stresses are finite in the strip-yield
zone, there cannot be a stress singularity at the crack tip. The strip-yield plastic zone
is modeled by adding to the crack length 2a a plastic zone length 2ρ, with a closure
stress equal to σys applied at each crack tip (figure 2.13 (b)). The plastic zone length
ρ must be chosen such that the stress intensity factors from the remote tension and
closure stress cancel one another. The closing stress intensity at each crack tip may
be written as follows

Kclosure = −2σys

√
a+ ρ

π
cos−1(

a

a+ ρ
). (2.24)

The effective length of the crack can be evaluated by specifying the stress intensity
from the remote tensile stress, Kσ = σπ(a+ ρ) and Kclosure equal. Therefore,

a

a+ ρ
= cos(

πσ

2σys
) or 1 +

ρ

a
= sec

πσ

2σys
, (2.25)
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the ρ approaches infinity as σ → σys. ρ can be evaluated by using the Taylor series
expansion on equation 2.25

a

a+ ρ
= 1− 1

2!
(
πσ

2σys
)2 +

1

4!
(
πσ

2σys
)4 − 1

6!
(
πσ

2σys
)6 + . . . (2.26)

Neglecting all but the first two terms and solving for the plastic zone size gives for
σ � σys

ρ =
π2σ2a

8σ2
ys

=
π

8
(
KI

σys
)2. (2.27)

the Irwin 2.27 and strip yield 2.20 approaches predict similar plastic zone sizes; since
1/π = 0.318 and π/8 = 0.392. One way to estimate the effective stress intensity with
the strip yield model is to set aeff equal to a+ ρ

Keff = σ

√
πasec (

πσ

2σys
). (2.28)

Equation 2.28 tends to overestimate Keff since the actual aeff is somewhat less than
a+ ρ. This is due that the strip yield zone is loaded to σys, which is not exactly true
since the elastic stress distribution above σys is actually redistributed and retrans-
mitted. A more realistic estimate of Keff for the strip-yield model is proposed by
Burdekin and Stone

Keff = σys
√
πa[

8

π
ln sec(

πσ

2σys
)]. (2.29)

The shape of the plastic zone can be predicted by applying a proper yield criterion
(e.g. Von Mises or Tresca). A prediction for the plastic zone shape can be derived,
for example for a 2 dimensional mode I crack, by first defining principal stresses

σ1, σ2 =
σxx + σyy

2
± [(

σxx + σyy
2

)2 + σ2
xy]

1
2 (2.30a)

σ3 =

{
0 for plain stress

ν(σ1 + σ2) for plain strain
(2.30b)

from the appropriate equation for stresses (2.9). Substituting the derived principal
stresses into the Von Mises yield criterion

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2σys (2.31)

yields for the plastic zone radius as afunction of θ

ry(θ) =
1

4π
(
KI

σys
)2[1 + cosθ +

3

2
sin2θ] (2.32)

for plane stress, and

ry(θ) =
1

4π
(
KI

σys
)2[(1− 2ν)2(1 + cosθ) +

3

2
sin2θ] (2.33)

for plane strain. Plastic zones for all three modes are plotted in figure 2.14 The
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Figure 2.14: Crack-tip plastic zone shapes estimated with the Von Mises yield criterion
for modes I, II and III. [8]

Figure 2.15: Comparison of plane strain plastic zone size and shape estimates for an
elastic-perfectly plastic material. [7]

significant difference in the size and shape of the Mode I plastic zones for plane stress
and plane strain is due that the latter condition suppressing yielding, resulting in a
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smaller plastic zone for a given KI value.
The plastic zones in equations 2.32 and 2.33, and in figure 2.14 are also not exactly

correct since the redistribution of stress field above σys has not been taking into
account. Von mises yield criterion and a FEM estimate, in which the stress field
redistribution (due to strain hardening) has been taking into account, for plastic zone
size are compared in figure 2.15.

2.1.1 Critical Fracture Toughness

As discussed above, material behavior in cracked linear-elastic materials can be com-
pletely defined by one parameter, KK . Hence, because every material fails locally
at a certain combination of stresses and strains, a critical SIF, Kc, determines the
value when the crack extends. This material constant, Kc, can be often considered
independent of the size and geometry of the cracked body.

Although, Kc is independent of geometry the thickness has an effect to it. A
fracture toughness tests on very thin plates usually results in a 45◦ shear fracture.
At larger thicknesses, there is generally some mixture of shear and flat fracture. The
thickness effect to the apparent fracture toughness is due to the relative portions
of flat and shear fracture. In the limit of a very thick specimen, the flat fracture
mechanism dominates, and further increase in thickness have relatively little effect
on the measured toughness. This kind a material behavior usually correspond to
materials in which the crack propagation is ductile (microvoid coalescence). The
crack grows preferentially in the region of high triaxiality. Crack growth on the outer
regions of the specimen lags behind, and occurs at a 45◦ angle to the applied load.
The resulting fracture surface exhibits a flat region in the central region and 45◦ shear
lips on the edges (figure 2.16).

Figure 2.16: Effect of specimen thickness on fracture surface morphology for materials
that exhibit ductile crack growth. [8]

The trend in critical fracture toughness level does not indicate a transition from
a plane-stress-fracture to a plane-strain-fracture, as was attributed in the past. Al-
though, the behavior is related to the crack-tip stress state, the traditional plane
stress plane strain transition model is too simplistic. Rather, it reflects a two distinct
fracture mechanisms. In fact, there are no plane-stress-fractures except for example
in thin sheet like structures. There is almost always a state of plain strain in front of
the crack.
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In materials that fail by cleavage fracture usually do not form shear lips, so the
phenomena discussed above do not apply to them. Although cleavage fracture tough-
ness does exhibit a slight thickness dependence due to weakest link sampling effects.

2.2 EPFM

As discussed above LEFM describes crack growth and fracture in materials under
loading conditions, where only a small region around crack tip is plastically deformed.
However, very few materials in practice behave in this way. This leaves out many ma-
terials that are too ductile and the crack tip plasticity is too extensive. For predicting
fractures in these material, alternatively fracture mechanics methods are needed.

Elastic-plastic fracture mechanics applies to materials that exhibit time-independent,
nonlinear behavior (i.e. plastic deformation). Rice [4] provided the basis for extend-
ing fracture mechanics analysis beyond the validity limits of LEFM [14]. Rice also
introduced a material parameter for EPFM, the contour integral J , which describes
crack tip conditions in elastic-plastic materials, hence it can be used as a material
parameter. Critical values of J give nearly size-independent measures of fracture
toughness, even for relatively large amounts of crack-tip plasticity. There are limits
to the applicability of J (e.g. plastic collapse, where the whole body is plastically
deformed, which is yielding dominated failure mode), but these limits are much less
restrictive than the validity requirements of LEFM. Also other fracture parameters
are developed to describe nonlinear material behavior (e.g. CTOD), but the J integral
is most widely accepted.

2.2.1 The J Integral

Rice provided the basis for extending fracture mechanics methodology to nonlinear
material behavior by idealizing elastic-plastic deformation as nonlinear elastic defor-
mation. In figure 2.17 the uniaxial stress-strain behavior of both elastic-plastic and
nonlinear elastic materials is plotted . At seen the material behavior differs only in
the unloading part of the curves. As The elastic-plastic material follows a linear un-
loading path with the slope equal to Young’s modulus, the nonlinear elastic material
unloads along the loading path.

Deformation theory of plasticity, which relates total strains to stresses in a mate-
rial, is equivalent to nonlinear elasticity.

Rice also applied deformation plasticity (i.e. nonlinear elasticity) to the analysis
of a crack in a nonlinear material. He showed that the nonlinear energy release rate
J could be written as a path-independent line integral. Hutchinson [15] and Rice
and Rosengren [16] also showed that J uniquely characterizes crack-tip stresses and
strains in nonlinear materials. Thus the J integral can be viewed as both an energy
parameter and a stress intensity parameter.

Rice showed that the value of the J integral is independent of the path of integra-
tion around the crack. Therefore J is called a path-independent integral (figure 2.18).
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Figure 2.17: Schematic comparison of the stress-strain behavior of elastic-plastic and
nonlinear elastic materials. [8]

Figure 2.18: A contour around the tip of a crack. [8]

The J integral in figure 2.18 is given by

J =

∫
Γ

(wdy − Ti
∂ui
∂x

ds) (2.34)

where ds is length increment along the contour Γ, Ti are components of the traction
vector, ui are displacement vector components, and w is strain energy density defined
as

w =

∫ εkl

0

σijdεij (2.35)

where σij and εij are the stress and strain tensors, respectively, and εkl is the total
strain. The components of the traction vector are given by

Ti = σijnj (2.36)
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where nj are the components of the unit vector normal to Γ.
The crack tip stresses and strains can be expressed in terms of J according to the

HRR (after Hutchinson and Rice and Rosengren) solution

σij = σ0(
EJ

ασ2
0Inr

)
1

n+1σij(θ, n), (2.37a)

εij = α
σ0

E
(
EJ

ασ2
0Inr

)
1

n+1 εij(θ, n). (2.37b)

In which In is a dimensionless constant depending the strain hardening constant n
and stress and strain relationship is given by a Ramberg-Osgood relation

ε

εo
=

σ

σ0

+ α(
σ

σ0

)n. (2.38)

In equations 2.37 and 2.38 α is a dimensionless constant, and ε0 = σ0/E with σ0

usually equal to the yield stress. σij and εij are are dimensionless functions of n,
angle θ, and the stress state.

The J integral defines the amplitude of the HRR singularity, just as the stress
intensity factor characterizes the amplitude of the linear elastic singularity. Thus J
completely describes the conditions within the plastic zone. A structure in small-
scale yielding has two singularity-dominated zones: one in the elastic region, where
stress varies as 1/

√
r, and one in the plastic zone where stress varies as r1/(n+1). The

latter often persists long after the linear elastic singularity zone has been destroyed
by crack-tip plasticity. When n = 1 equations 2.37 show 1/

√
r singularity which is

consistent with LEFM and can be shown to become identical to equations 2.9.
The HRR singularity contains the same anomaly as the LEFM singularity, both

predict infinite stresses as r → 0. However, in reality the singular field does not
persist all the way to the crack tip. The large strains at the crack tip cause the crack
to blunt, which reduces the stress triaxiality locally. The blunted crack tip is a free
surface; thus σxx must vanish at r = 0.
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2.3 Crack growth criterion

Many different criteria have been developed to predict mixed mode crack propagation.
Most of them are based on LEFM and they are the form

f(KI , KIcrit, KII , KIIcrit) = 0, (2.39)

where KIcrit, KIIcrit are experimentally measured fracture toughnesses of the modes I
and II, respectively. Usually only mode I fracture toughness is measured, and hence
the criterion 2.39 is simplified to

f(KI , KIcrit, KII) = 0. (2.40)

Figure 2.19: Mixed mode crack propagation. [6]

Couple of the most widely used ones are:

• Zero KII criterion [17], where the angle (figure 2.19) of crack growth is calculated
by setting KII to zero.

• Maximum circumferential tensile stress criterion [18], where the angle (figure
2.19) of crack growth is calculated by

KI

KIcrit

cos3 θ

2
− 2

3

KII

KIcrit

cos
θ

2
sinθ = 1. (2.41)

The angle is calculated by modifying the equation 2.41 to

σθ =
1√
2πr

cos
θ

2
[KIcos2 θ

2
−KIIsinθ] (2.42)

θ can be solved by finding the root of the derivative of the equation 2.42 with
respect to θ. this yields

cos
θ

2
[KIsinθ +KII(3cosθ − 1)] (2.43)
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(a) Positive σxy. (b) Negative σxy.

Figure 2.20: Angles predicted by maximum circumferential tensile stress criterion
with varying KI/KII ratio.

Angles predicted by different KI

KII
-ratios according to equation 2.43 are plotted in

figure 2.20. The angles in figure 2.20 are presented as integers. Crack initiation angle
predicted by maximum circumferential tensile stress criterion for pure mode II crack
growth is 70.5◦, for pure mode I the angle is 0, and for mixed mode (when KI = KII)
is 53.1◦.
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3

FEM

Many phenomena in nature can be depicted with partial differential equations (PDEs).
PDEs are equations that consists of a relation involving a function (or functions) of
several independent variables and its (or their) partial derivatives with respect to those
variables. These PDEs are divided into three main types: elliptic, parabolic and hy-
perbolic equations. Common examples of the equations are: equation of equilibrium,
evolution problems and wave equations respectively.

Finding an exact, analytical, solution to a PDE is often impossible, thus many
numerical solution routines have been developed. Nowadays, the most popular and
efficient tool to solve PDEs, especially for elliptic problems, is FEM. FEM is based
on a weak form of the problem and it has a sound theoretical background.

Since the FEM is such a vast field, it can only be treated to a certain extent in
this work. For more comprehensive treatment of FEM can be found in [19],[20] and
[21]. Solving problems with FEM includes usually following four steps:

1. Variational formulation for the given problem

2. Discretization using FEM

3. Solution of the discrete problem

4. Implementation of the method on a computer problem

The following presentation follows the one presented in [19].

3.1 Variational Formulation

Strong form of a typical (stationary) boundary value problem (the Poisson equation
figure 3.1) in mechanics is

−4u = f in Ω, (3.1a)

u = u0 on Γ, (3.1b)

where

4u =
∂2u

∂x2
1

+
∂2u

∂x2
2

, (3.2)

uo = 0, Ω is bounded open domain in the plane, and Γ is the boundary.
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Figure 3.1: Displacement, u(x), of a membrane under a load intensity, f . [19]

Firstly, the given PDE is reformulated into equivalent variational problem in or-
der to form the weak form of the problem. In the case of elliptic problem it is a
minimization problem of the form

Find u ε V such thatF (u) ≤ F (v) ∀ v ∈ V, (3.3)

in which V is a given set of acceptable functions and F (v) ∈ R for all v ∈ V with R
denoting the set of real numbers. Functions v in V represents continuously varying
quantity e.g. a displacement in an elastic body. F (v) is the total potential energy
associated with v. The equation 3.3 states that the function u gives the absolute
minimum of the total energy when v represents all the functions in space V.

The linear functional F (v) is the total potential energy of the system and its
definition is

F (v) =
1

2
a(v, v)− (f, v), (3.4)

where

a(v, v) =

∫
Ω

∇v · ∇v dΩ, (3.5)

is the internal elastic energy and

(f, v) =

∫
Ω

f · v dΩ, (3.6)

is the load potential, f being the load intensity and v the displacement. ∇ operator
is

∇v = (
∂v

∂x1

,
∂v

∂x2

) (3.7)

It can be shown that if u satisfies 3.1, then u is the solution of the next variational
problem

Find u ∈ V such that a(u, v) = (f, v) ∀ v ∈ V, (3.8)

where

V = {v : v is continuous on Ω,
∂v

∂x1

and
∂v

∂x2

are piecewise continuous on Ω and v = 0 on Γ}.
(3.9)
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3.2 Discretization

In order to formulate the function, which gives the solution for the problem in hand,
the area needs to be divided into elements, this process is referred as discretization
or meshing. Elements shape can be any polygonal form, although, they usually are
either triangles or rectangles.

For simplicity the domain Ω in figure 3.1 is assumed to be polygonal and the
boundary Γ polygonal curve. Often the boundary of the domain of interest is curved,
hence Γ defined in this manner is only an approximation. Accuracy of the solution
can be increased by increasing element quantity - diminishing the size of the elements
along the boundary or using isoparametric elements. Finite dimensional subspace
Vh ∈ V is done by triangulating the domain Ω, by subdividing it into a set Th =
K1, ..., Km of non-overlapping triangles Ki,

Ω = ∪K∈Th
K = K1 ∪K2... ∪Km, (3.10)

such that no vertex of one triangle lies on the edge of another triangle (figure 3.2).
Vh is defined

Figure 3.2: Trangulation of the area in the figure 3.1 . [19]

Vh = v : v is continuous on Ω, v|k is linear ∀K ∈ Th , v = 0 on Γ, (3.11)

where v|k denotes the restriction of v to K, i.e.,the function defined on K agreeing
with v on K. The space Vh consists of all the continuous functions that are linear on
each triangle K and vanish on Γ. Values v(Ni) are chosen as parameters to describe
function v ∈ Vh at nodes Ni (i = 1, . . . ,M) of Th (figure 3.2), the nodes on Γ are
excluded since v = 0 on Γ. The corresponding shape functions φj ∈ Vh (J = 1, ...,M)
are defined by (figure 3.3)

φj(Ni) = δij ≡
{

1 if i = j
0 if i 6= j

(3.12)
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Points x for which φ(x) 6= 0 consists of the triangles with the common node Nj

Figure 3.3: The shape functions φj of the node Nj. [19]

(shaded area in figure 3.3). Shape functions φi satisfy a condition of partition of unity

n∑
i=1

φi(Nj) = 1, (3.13)

where n is the number of nodes for each element. A function v ∈ Vh is now

v(x) =
M∑
j=1

ηjφj(x), ηj = v(Nj), for x ∈ Ω ∪ Γ, (3.14)

Finite element method can now be formulated for equation 3.1 starting from the
variational formulation 3.8:

Find uh ∈ Vh such that a(uh, v) = (f, v) ∀ v ∈ Vh, (3.15)

The equation 3.15 is equivalent to the linear system of equations

Aξ = b, (3.16)

where A = (aij) is the (M ×M) stiffness matrix with elements aij = a(φi, φj), and
ξ = ξi and b = bi are M -vectors with elements ξi = uh(Ni), bi = (f, φi). Since A
is symmetric and can be shown to be positive defined, a unique solution ξ exists.
Furthermore, matrix A is sparse; if Ni and Nj are not nodes of the same triangle, aij
= 0.

3.3 Error Estimate

As a result of finite element problem formulation the result will be approximate, and
as such, some error u− uh, where u ∈ V , uh ∈ Vh, and Vh ⊂ V , will be caused. A
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quantitative estimate for the error ‖(u− uh)′‖ is obtained by estimating ‖(u− uh)′‖.
uh ∈ Vh interpolates u at the nodes xj (figure 3.4), i.e.

uh(xj) = u(xj)j = 0, ...,M + 1, (3.17)

where M is the number of nodes. When uh ∈ Vh is chosen this way, then for 0 ≤ y ≤ 1,

Figure 3.4: The interpolant uh. [19]

|u′(x)− u′h(x)| ≤ hmax0≤y≤1 |u′′(y)|, (3.18)

and

|u(x)− uh(x)| ≤ h2

8
max0≤y≤1 |u′′(y)|, (3.19)

the error estimate (u − uh) can be obtained from equation 3.18 by using Cauchy’s
inequality

|(v, w)| ≤ ‖v‖‖w‖ (3.20)

and the following theorem

‖(u− uh)′‖ ≤ |(u− v)‖. (3.21)

These lead to the error estimate

‖(u(x)− uh(x))‖ ≤ hmax0≤y≤1 |u′′(y)|. (3.22)

Since (u(x)− uh(x))(0) = 0 the error estimate for u(x)− uh(x) is obtained:

|u(x)− uh(x)| ≤ hmax0≤y≤1 |u′′(y)|, for 0 ≤ y ≤ 1. (3.23)

The error estimate is less sharp than the estimate 3.19, where a factor h2 persists.
With a more precise analysis the estimate for the error u− uh can be shown to have
also the factor h2. The Theorem 3.21 shows that ‖(u−uh)′‖ is as small as possible, and
equation 3.22 shows that the error tends to zero as the maximum length of subintervals
tends to zerpo, if u′′ is bounded on [0,1].

Since the triangles K ∈ Th are not allowed to be too thin the error estimate for
FEM problem 3.15 can be shown to be

‖∇u(x)−∇uh(x)‖ ≤ Ch, (3.24)
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where C is a positive constant, that might be different at different occurrences and
does not depend on the mesh parameter h. In this case (3.24) the constant C depends
on the size of the second partial derivatives of u and the smallest angle of triangles
K ∈ Th. It is also possible to prove that the error u(x)− uh(x) is as follows

‖u(x)− uh(x)‖ ≤ Ch2. (3.25)

In particular these estimates shows that if the exact solution u is regular enough, the
error and the gradient of the error u(x) − uh(x) in the norm ‖ · ‖ tend to zero as h
tends to zero.

3.4 The Hilbert Spaces L2 (Ω), H1 (Ω), H1
0 (Ω)

When a boundary value problem is formulated as a variational formulation, it is useful
to work with function spaces that contain slightly more functions than the spaces
of continuous functions with piecewise continuous derivatives used above (function
spaces V and Vh). It is also useful to enrich the spaces V with various scalar products
by adding scalar product which is related to the boundary value problem. Which
makes V a Hilbert space.

Hilbert spaces L2 (Ω), H1 (Ω), H1
0 (Ω) are defined as follows (Ω is now a bounded

domain in Rn, d = 2 or 3):

L2(Ω) = {v : v is defined on Ω and

∫
Ω

v2 dx <∞}, (3.26a)

H1(Ω) = {v ∈ L2(Ω) :
∂v

∂xi
∈ L2(Ω), i = 1, ..., d}, (3.26b)

H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on Γ}, (3.26c)

the corresponding scalar products and norms are:

(v, w) =

∫
Ω

v w dx, (3.27a)

‖v‖L2(Ω) = (

∫
Ω

v2 dx)1/2, (3.27b)

(v, w)H(Ω) =

∫
Ω

[v w + ∇v · ∇w]dx, (3.27c)

‖v‖H(Ω) = (

∫
Ω

[v + |∇v|2] dx)1/2, (3.27d)

where H is either H1 or H1
0. The norm associated whit scalar product is defined by

‖v‖a = (a(v, v))1/2, ∀v ∈ V. (3.28)

The boundary value problem 3.1 can now be given the following variational formula-
tion:

Find u ∈ H1
0(Ω) such that a(u, v) = (f, v) ∀ v ∈ H1

0(Ω). (3.29)

It is meaningful to use the ”right” function space. This makes it easier to prove the
existence of solution to the continuous problem and also the error estimate for FEM
is an estimate of the norm used in variational formulation.
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3.5 Boundary Conditions

Two most common types of boundary conditions are a Neumann condition and the
one used above (u = u0 on Γ, where u0 is the value of u at the boundary Γ), which
is called Dirichlet condition. As example of a problem with a Neumann boundary
condition consider the following:

−4u+ u = f in Ω, (3.30a)

∂u

∂n
= g on Γ, (3.30b)

where ∂
∂n

denotes the outward normal derivative to Γ. The Neumann boundary con-
dition corresponds the force or flow g on Γ.

The variational form of equations 3.30 is

Find u ∈ H1(Ω) such that (u, v) = (f, v)+ < g, v > ∀v ∈ H(Ω), (3.31)

where < g, v >=
∫

Γ
gv ds. The Neumann condition is not explicitly in the variational

form, because the variational form’s solution, u, belongs only to H(Ω), and thus it
is necessary to satisfy equation 3.30b. Instead the boundary condition is implicitly
included equation 3.31, and such a boundary condition is called a natural boundary
condition. Where as boundary condition in equation 3.1 is an essential boundary
condition, which has to be explicitly satisfied in the variational formulation.

For formulating a FEM for the Neumann problem, 3.30, the triangulation, Th of
Γ is defined

Vh = v : v is continuous on Ω, v|k is linear ∀K ∈ Th. (3.32)

The nodal values that are the parameters describing the functions in Vh now also
includes the nodes on the boundary Γ. Hence, the FEM for equation 3.30 is

Find uh ∈ Vh such that (uh, v) = (f, v)+ < g, v > ∀v ∈ Vh. (3.33)

The error estimate for equation 3.33 is

‖u− uh‖H1(Ω) ≤ ‖u− v‖H1(Ω) (3.34)

and as above
‖u− uh‖H1(Ω) ≤ Ch, (3.35)

if u is enough regular, ∂uh

∂n
will be an approximation to g on Γ Other types of boundary

conditions exist, like a Robin type γu+ ∂u
∂n

= g on Γ, where γ is a constant, but they
are usually combinations of the first two and rarer.

3.6 The Elasticity Problem

A homogeneous isotropic elastic body (figure 3.5) is occupying a bounded domain
Ω ⊂ R3. Boundary Γ of the body is composed of two parts Γ1 and Γ2. The body is
acted upon by a volumetric load fi and a boundary load gi on Γ1, where indexes i are
the components in the xi direction (i = x, y, z). The body is fixed along boundary Γ2
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Figure 3.5: An elastic bounded body. [19]

To solve the elastic problem one has to determine the displacement ui and the
stress state σij (i,j = x, y, z), under the loads f and g. ui is the displacement in the
x, y or z-direction, σii is the normal stress, and the σij, i 6= j, are the shear stresses.
Further, ε(u) = εij(u), where

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (3.36)

is the deformation tensor associated with the displacement u. assuming small defor-
mations/displacements the following constitutive relations (Hooke’s law) hold

σij = λ∇ · u δij + µ εij(u), (3.37)

where λ and µ are Lamé coefficients

µ =
E

1 + ν
, (3.38a)

λ =
Eν

(1 + ν)(1− 2ν)
, (3.38b)

where E is the Young’s modulus and ν is Poisson’s ratio, and divergence and Dirac
delta are as follows

∇ · u =
3∑
i=1

∂ui
∂xi

, (3.39a)

δij =

{
1 if i = j
0 if i 6= j

(3.39b)

The equilibrium equations for problem in hand are

−
3∑
j=1

∂σij
σxj

= fi, in Ω, (3.40)
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and the boundary conditions are

3∑
j=1

σijnj = gi, (3.41a)

u = 0 on Γ2, (3.41b)

where nj is the outward normal to Γ.
The variational formulation for the elastic problem in hand is given by

Find u ∈ V such that a(u, v) = L(v) ∀ v ∈ V, (3.42)

where

a(u, v) =

∫
Ω

[λ∇ · u∇ · v + µεij(u)εij(v)]dx, (3.43a)

L(v) =

∫
Ω

fivi dx+

∫
Γ1

givi ds, (3.43b)

V = v ∈ [H1(Ω)]3 : v = 0 on Γ2. (3.43c)

The procedure to solve the FEM problem continues with discretization of the domain
as in section 3.2.

3.7 Isoparametric Elements

To achieve a higher order of approximation the boundary can be approximated with
piecewise polynomials of degree k ≥ 2. Hence, in the meshed region, Ω, the elements
close to the boundary will have one curved side (figure 3.6).

Figure 3.6: Triangular elements on a curved boundary. [19]

A curved element is obtained in principle the following way: F̂ is a one-to-one
mapping of the reference triangle, K̂, in the (x̂1,x̂2)-plane onto the curved triangle
K in the (x1,x2)-plane (figure 3.7). For simplicity elements degrees of freedom are of
Lagrange type (i.e. a set of shape functions values at certain points âi ∈ K̂, i =
1, ...,m.

The finite element space, PK is

PK = p : p(x) = p̂(F̂−1(x)), x ∈ K, p̂ ∈ PK̂ . (3.44)
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Figure 3.7: Triangular elements on a curved boundary. [19]

The functions p ∈ PK are defined through the inverse mapping F̂−1 : K → K̂ and
the polynomial functions p̂ : K̂ → R, p̂ ∈ PK . If the mapping F̂ = (F̂1, F̂2) is of the
same type as the functions inPk the element is isoparametric. The transformation F
is

F̂ (x̂) =
6∑
j=1

ajφ̂j(x̂), x̂ ∈ K̂, (3.45)

where aj are the node locations in figure 3.7 and the element K is

K = F̂ (K̂) = x ∈ R2 : x = F̂ (x̂), x̂ ∈ K̂. (3.46)

With equations 3.45 and 3.46 the points âj in the x̂-plane are mapped onto the points
aj in the x-plane.

The mapping F is locally one-to-one in small neighborhood of each point x̂ ∈ K̂
if

detJ(x̂) 6= 0, x̂ ∈ K̂, (3.47)

where

J =

[∂F1

∂x̂1

∂F1

∂x̂2
∂F2

∂x̂1

∂F2

∂x̂2

]
(3.48)

is the Jacobian of F and det J is the determinant of J .
The stiffness matrix is computed in the following way: The local shape functions

on K are given by
φj(x) = φ̂j(F

−1(x)),j = 1, . . . , 6, (3.49)

where φ̂j, j = 1, .., 6 is a usual shape function for PK̂ ≡ P2(K̂). For the Poisson
equation 3.1 the following integrals has to be calculated

aKij =

∫
K

∇φi · ∇φjdx,i ,j = 1, . . . , 6, (3.50)

where
∇φi = J−T∇φ̂i, (3.51)
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where

J−T =

[∂x̂1

∂x1

∂x̂2

∂x1
∂x̂1

∂x2

∂x̂2

∂x2
.

]
(3.52)

The transformation of the integral in equation 3.50 to an integral over K̂ using the
mapping F̂ : K̂ → K produces

aKij =

∫
K

(J−T∇φ̂i) · (J−T∇φ̂j)|detJ |dx̂. (3.53)

Further, by simple calculation

J−T = (J−1)T =
1

detJ
J0, (3.54)

where

J0 =

[
∂F̂2

∂x̂2
−∂F̂2

∂x̂1

−∂F̂1

∂x̂2
−∂F̂1

∂x̂1
,

]
(3.55)

so that finally

aKij =

∫
K̂

(J0∇φ̂i) · (J0∇φ̂j)
dx̂

|detJ |
. (3.56)

Thus the matrix element aKij can be computed by evaluating an integral over the

reference element K̂.

3.8 Quadrature

The integrand in the stiffness matrix elements in equation 3.56 is usually difficult to
evaluate exactly. The same difficulty arouses in nonlinear problems and differential
equations with variable coefficients. Numerical quadrature formulas are developed to
evaluate such integrals. Some quadratures are presented in figure 3.8. In figure 3.8
r indicates the maximal degree of the polynomials for which the formula is exact.
Furthermore, ai (i=1,2,3) are the vertices of the triangle K, bj(j=1,2,3) denote the
midpoint of the side K and a123 the center gravity of K. Q denote a rectangle with
sides parallel to the coordinate axis of lengths 2h1 and 2h2 and center at the origin.

3.9 Hierarchical elements

When refining elements of standard shape functions 3.14 all calculations need to be
repeated, since a set of totally new shape functions needs to be generated. A way
around this drawback is to consider the shape functions as a series in which the
shape function φi does not depend on the number of nodes Nj in the mesh. This is
achieved using hierarchic shape functions. The hierarchic concept is illustrated by the
one-dimensional problem in figure 3.9. In standard elements η is the ”height” of the
approximation while in hierarchical elements η? is the difference of ”heights” of the
parent shape function and hierarchical shape function.
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Figure 3.8: Some quadrature formulas. [19]

Figure 3.9: A one-dimensional problem of stretching of a uniform elastic bar by pre-
scribed body forces. (a) Standard approximation. (b) Hierarchic approximation. [20]
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4

XFEM

Fracture mechanics is one of the fields where FEM has been applied. Extensively one
of the biggest drawbacks in FEM is that discontinuities have to follow the elemental
boundaries. Especially when modeling crack growth ordinary FEM is very limited.
For every time step (crack length increment) the model has to be in general terms
for example remeshed, in order to handle the altered geometry. Hence, to combat
this ”flaw” the classical finite element approximation can be enriched, so that the
singularities and discontinuous fields around the crack can be treated with greater
precision. [6] is used as a general reference in this chapter.

4.1 Enrichment

Enrichment can be done by simply including information from the analytical solution
of the problem into the approximation. The choice of enriched functions depends on
the a priori solution of the problem. In analysis of cracks, analytical near crack tip
solutions can be included into the approximation, in order to increases the accuracy
of the solution. The enriching can be done in two ways: intrinsic and extrinsic en-
richment. They are done either by enriching the basis functions or by enriching the
approximation respectively.

4.1.1 Intrinsic enrichment

In this method new terms (shape functions) are included into the basic basis function

p = {pbas, penr}, (4.1)

in order to satisfy some condition of reproducing a complex field.
In analysis of cracks new terms are included into the basis function, φ. For exam-

ple, the near crack tip two dimensional displacement field can be written as

ux1 =
1

µ

√
r

2π
(KIcos

θ

2
(κ− cosθ) +KIIsin

θ

2
(κ+ cosθ + 2)), (4.2a)

ux2 =
1

µ

√
r

2π
(KIsin

θ

2
(κ− cosθ) +KIIcos

θ

2
(κ+ cosθ + 2)), (4.2b)
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where µ is shear modulus, κ is a material parameter r and θ are polar coordinates
originating at the crack tip (figure 4.1). It is possible to show the displacement field

Figure 4.1: Polar coordinates at the crack tip. [8]

(equation 4.2) near crack tip can be expressed by following basis function p

pT (N) = [
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sinθ sin

θ

2
,
√
r sinθ cos

θ

2
]. (4.3)

For the complete solution the basic basis function must be included into the total
basis function. For example, if the basic approximation is linear the basis function
would be

pT (N) = [1, x1, x2,
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sinθ sin

θ

2
,
√
r sinθ cos

θ

2
], (4.4)

where x is vector of the coordinates. Basis function 4.4 has been used by [22] for
fracture analysis with the meshless element-free Galerkin (EFG) method

uh(N) = pT (x)η(x), (4.5)

where η(x) is a vector of coefficients obtained from the one of the least squares tech-
niques for minimizing the overall error of approximation.

4.1.2 Extrinsic enrichment

The other type of enriching uses extrinsic base pE in order to increase the order of
completeness:

uh(N) =
M∑
j=1

φj(N)(ηj +
N∑
k=1

pek(N)ηek), ηl = u(Nl), (4.6)

where ηek are the additional unknowns or degrees of freedom associated to the enriched
solution. In general partition of unity enrichment, equation 4.6 is

uh(N) =
M∑
j=1

φj(N)(ηj +
N∑
k=1

fpuk (N)pek(N)ηek), ηl = u(Nl), (4.7)

where fpuk (x) are set of the partition of unity functions defined over the support
domain of partition of unity enrichment Ωpu, as illustrated in 4.2
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Figure 4.2: Support domain Ωpu. [6]

4.1.3 Partition of unity finite element method

Melenk and Babuska [23] presented mathematical foundation for similar methodology
(as extrinsic enrichment), called partition of unity finite element method (PUFEM).
They used classical shape functions φj(X) for general point x within finite element,

uh(N) =
n∑
j=1

φj(N)(ηj +
m∑
k=1

pek(N)ηejk). (4.8)

The approximation 4.8 is clearly a partition of unity and a compatible solution exists.
Examining equation 4.8 for a typical enriched node Nj leads to:

uh(Ni) =
n∑
j=1

φj(Ni)(ηj +
m∑
k=1

pek(Ni)η
e
jk), (4.9)

where the first part vanishes, expect for φi(Ni)ηi = ηi. Therefore,

uh(Ni) = ηi +
m∑
k=1

pek(Ni)η
e
jk, (4.10)

which is not an acceptable solution. To satisfy interpolation at nodal points equation
4.8 is altered to

uh(N) =
n∑
j=1

φj(N)(ηj +
m∑
k=1

(pek(N− pek(Nj))η
e
jk), (4.11)

which guarantees uh(Ni) = ui.

36



4.1.4 Generalized finite element method

Generalized finite element method (GFEM) differs from PUFEM in that different
shape functions are used in classical and enriched part of the approximation. From
equation 4.8

uh(N) =
n∑
j=1

φj(Nj)ηj +
n∑
j=1

φj(Nj)(
m∑
k=1

pek(N)ηejk). (4.12)

The generalized form is written

uh(N) =
n∑
j=1

φj(Nj)ηj +
n∑
j=1

φej(Nj)(
m∑
k=1

pek(N)ηejk), (4.13)

where φej are new shape functions associated with the enriched part of the approxi-
mation.

4.1.5 Extended Finite Method

in Extended Finite Element Method (XFEM) the enrichment is done in a local level,
in contrast to PUFEM and GFEM, where the enrichment is usually done in a global
level. The assumption of equation 4.13 generates a compatible solution even if par-
tition of unity is used on a local level. This generates considerable computational
advantages, since only nodes close to crack are enriched. Enriching only nodes that
are close the crack tip can create solution compatibility and interior discontinuities
in displacement or strain field approximations. The reason for this is the different
order of approximation in adjacent elements while each element follows different basis
function. This results in, different values for the common nodes (an internal discon-
tinuity).

4.1.6 Blending Zone

Discontinuities in solution approximation fields can be handled by placing a blending
zone around the enriched crack tip elements. In blending zone a ramp function is
inserted into the domain that connects elements with and without enrichment (figure
4.3):

uh(N) = (1−R)uclassical(N) +Ruenriched(N), (4.14)

where R is a blending ramp

R =

{
1 ∈ Γe

0 ∈ Γc
(4.15)

where Γe and Γc are enriched and classical boundary respectively. Discontinuity can
occur in both intrinsic and extrinsic enrichments.

Ramp function can be of any order; a linear R guarantees the continuity of the
unknown (e.g. displacement field) and a quadratic R gives smooth approximation of
the first derivative of the unknown (e.g. strain field) etc. Hence, finite elements used
for the whole domain fall into three categories: classical elements, enriched elements,
and partially enriched elements (figure 4.4).
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Figure 4.3: Transition between enriched and standard approximations. [6]

Figure 4.4: Standard, enriched and blending elements. [6]

Figure 4.4 shows the distribution of the three linear element types: classical el-
ements governed by FEM, blank squares; enriched elements governed by XFEM,
blank squares with circles in the corners; and blending elements partially governed
by XFEM, gray elements. Blending elements are, in addition, dived into three types:
type A has three enriched and one classical nodes, type B has two enriched and two
classical nodes, and type C that has only one enriched node.

The displacement field for a blending element can be expressed as a sum of classical
approximation (for all nodes) and enriched approximation (for two nodes adjacent of
a fully enriched element)

uh(N) =
4∑
j=1

φj(N)ηj +
2∑

k=1

φk(N)Ψ(N)ηek, (4.16)
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where Ψ(N) is enrichment function. The fact that the second part of equation 4.16 is
not a partition of unity has little effect on the approximation, since blending element
does not contain a singularity.

4.2 XFEM for Isotropic Problems

The XFEM approximation is constructed by producing a normal FEM mesh and
adding some degrees of freedom to selected nodes close to the discontinuities to achieve
better approximation, in order to have better accuracy.

4.2.1 Basic XFEM Approximation

The following XFEM approximation was used to calculate displacement for node N
in [24]

uh(N) = uFE(N) + uenr(N) =
n∑
j=1

φj(N)ηj +
m∑
k=1

φk(N)Ψ(N)ηek, (4.17)

where ηj is the vector of regular degrees of freedom in FEM, ηek is the additional set
of degrees of freedom and Ψ(N) is the discontinuous enrichment defined for the nodes
that are in the influence domain of the discontinuity. The first term in equation 4.17
is the classical finite element approximation and the second term is the enrichment
approximation that describes the discontinuity.

The influence domain of a node, illustrated in figure 4.5, consists of the elements
that contain that particular node. The analytical solutions of the type of discontinuity

Figure 4.5: Unfluence domains od an edge node J and an internal node J . [6]

can be the basis for the enrichment function Ψ(N) that is chosen. The main function
of different enrichment functions in XFEM is to add following features: depict the
singular field around the crack tip, continuous displacement in adjacent elements,
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independent strain fields in opposite sides of the discontinuity, and maybe some other
features according the type of discontinuity problem.

An arbitrary number, np, of discontinuities can be taken into account with XFEM
by modifying the approximation 4.17

uh(N) = uFE(N) + uenr(N) =
n∑
j=1

φj(N)ηj +

np∑
l=1

m∑
k=1

φk(N)Ψl(N)ηek,l. (4.18)

4.2.2 Signed Distance Function

Signed distance function is one of the tools needed in forming XFEM approximation
of a problem as seen later. The distance d from a point x to an interface X is defined
as

d = ‖x−Xx‖, (4.19)

where X − x is the normal projection of x on X. The signed distance function ξ(x)
is defined as

ξk(x) = min |x− xX |︸ ︷︷ ︸
xX∈X

sign(n · (x− xX)), (4.20)

where n is the unit normal vector.

4.2.3 Strong Discontinuity

A strong discontinuity can be modeled several ways. One dimensional example of a
XFEM enrichment is shown in figure 4.6 to illustrate different types of enrichment
Ψ(N) in equation 4.17. In figure 4.6 only nodes 2 and 3 requires enrichment, since

Figure 4.6: one dimensional crack problem: standard linear shape functions. [6]

nodes 1 and 4 are not affected by the discontinuity. The discontinuity is in an arbi-
trary location within the middle of the element. The simplest way is to approximate
discontinuity with a jump function

φhi =

{
φi − 1 φ ∈ Ωi

φi φ not included in Ωi
(4.21)

where Ωi is the domain between a discontinuity and the node i. A one dimensional
representation of the jump function is illustrated in figure 4.7. A drawback in this
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Figure 4.7: one dimensional crack problem: discontinuity described by a jump func-
tion. [6]

approach is the the approximation produces similar fields of the first derivative of the
unknown for both sides of the discontinuity. This is not enough for crack simulations
which requires independent strain fields.

The strong discontinuity can also be approximated by the Heaviside function H.
Different definitions of H have been adopted. The first type of H is defined by a step
function

H(ξ) =

{
1 ∀ ξ > 0
0 ∀ ξ < 0

(4.22)

Applying equation 4.22 to the approximation 4.17 gives

uh(N) =
n∑
j=1

φj(N)ηj +
m∑
k=1

φk(N)H(ξ)ηek, (4.23)

figure 4.8a shows how this enrichment affects the shape functions. Approximation
4.23 must be altered to ensure it is an interpolation

uh(N) =
n∑
j=1

φj(N)ηj +
m∑
k=1

φk(N)(H(ξ)−H(ξ)k)η
e
k, (4.24)

which is illustrated in 4.8b. This type of an approximation may lead to a discontin-
uous field when applied on a quadrilateral element. Fields of the unknown and the
derivative of the unknown remains independent on both sides of the discontinuity.
In order to avoid numerical instabilities, a smoothed Heaviside function can be used.
Some Smoothed Heaviside function are presented in [25]

An alternative type of a Heaviside function is the sign function

H(ξ) = sign(ξ) =

{
1 ∀ ξ > 0
−1 ∀ ξ < 0

(4.25)

The way the sign function simulates the discontinuity is illustrated in figure 4.9a.
Also in this case the approximation 4.17 needs to be modified by a simple shifting
procedure to ensure the interpolation

uh(N) =
n∑
j=1

φj(N)ηj +
m∑
k=1

φk(N(H(ξ)−H(ξ)k)η
e
k, (4.26)

presented in figure 4.9b.
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Figure 4.8: one dimensional crack problem: enriched shape functions and shifting
Heaviside function. [6]

4.2.4 Weak Discontinuity

The same one dimensional problem, figure 4.6, as in section 4.2.3 is considered. The
XFEM approximation 4.17 can now be defined by replacing the Heaviside function
with an appropriate function Ξ(N) [25]:

uh(N) = uFE(N) + uenr(N) =
n∑
j=1

φj(N)ηj +
m∑
k=1

φk(N)Ξ(x)ηek, (4.27)

where weak discontinuity function is defined in terms of the signed distance function
ξ

Ξk(x) = |ξ(x)| − |ξ(xk)|. (4.28)

Figure 4.10a illustrates these signed distance functions
Figure 4.10b shows the transformation of the original shape functions by the weak

discontinuous enrichment functions. A kink in the unknown is introduced. Hence, a
jump in its derivative is anticipated.

4.2.5 Plastic Enrichment

The concept of plastic enrichment that includes effects of crack tip plasticity is pro-
posed in [26]. This model is based on a Ramberg-Osgood plasticity model discussed
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Figure 4.9: one dimensional crack problem: enriched shape functions and shifting
Heaviside function. [6]

in section 2.2.1. The model gives for pure opening modes I and II the following basis
function

r
1

n+1{(cos
kθ

2
, sin

kθ

2
); k ∈ [1, 3, 5, 7]}, (4.29)

where r and θ are defined in figure 4.1.

4.2.6 Selection of Nodes for Discontinuity Enrichment

Many different approaches for selecting the nodes that are enriched have been pro-
posed along the years. For example, the Heaviside function enrichment can be sepa-
rately applied to all the nodes that contain the crack tip by the following ways.

First, only nodes and edges that are crossed by the discontinuity are affected by
enrichment while value of the modified shape function remains zero at all other nodes
and edges, even if the crack tip is just on the edge, as illustrated in figure 4.11. This
procedure satisfies the inter-element continuity requirements, but instabilities may
occur when crack passes element edges.

Second, a classical jump function can be used to model the discontinuity. In this
method all the nodes in an element containing the discontinuity are affected by the
enrichment function as shown in figure 4.12 External forces affects the enrichment
degrees of freedom.
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Figure 4.10: Weak discontinuous enrichment functions, and final enriched shape func-
tions. [6]

Figure 4.11: Enrichment nodes at different stages of crack propagation. [6]

Third, different enrichment functions can be applied to the elements that contains
a crack tip and to the elements that are intersected by the discontinuity but do not
contain its tip. This kind of a mesh is depicted in figure 4.13.

These kinds of procedures combined with blending zones ensure smooth field de-
scription for the unknowns.
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Figure 4.12: Enrichment nodes at different stages of crack propagation. [6]

Figure 4.13: Node selection for enrichment at different stages of crack propagation;
nodes marked by squares are enriched by crack tip functions and the circled nodes
are enriched by the Heaviside function. [6]

4.2.7 Enrichment for Crack modeling

The following modification to approximation 4.17 is proposed in [27].

uh(N) =
n∑
j=1

φj(N)ηj +
m∑
h=1

φk(N)H(ξ(x))ηeh

+
mt1∑
k=1

φk(N)(

mf∑
l=1

F 1
l (x)Ψ(N)ηl1k ) (4.30)

+
mt2∑
k=1

φk(N)(

mf∑
l=1

F 2
l (x)Ψ(N)ηl2k ),

where m is the set of nodes in the support domain of the crack, but not the crack
tip, while mt1 and mt2 are associated with crack tips 1 and 2, respectively. ηeh, η

l1
k

and ηl2k are additional degrees of freedom for modeling crack faces and two crack tips,
respectively, and F 1

l and F 2
l represent mf crack tip enrichment functions.
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To include corrections related to interpolation term H(ξ(x)) is replaced with
H(ξ(x))−H(ξ(xh)) and F i

l (x) with F i
l (x)−F i

l (xk), where i = 1, 2. The equation 4.30
is frequently used in XFEM analysis although it lacks the interpolation property.

4.3 XFEM discretization and quadrature

The procedure to build an extended finite element mesh follows the one presented in
chapter 3 enhanced with the methods discussed in this chapter, beginning from the
formulation of weak form the problem, followed by the discretization, and choosing
appropriate quadrature etc. The enrichment functions complicate the procedure. The
widely used Gauss quadrature, which is proven to be exact for polynomial integrands,
in nonpolynomial cases may not be accurate.

Adding discontinuities to a mesh turns the displacement and stress fields into
highly nonlinear fields and ordinary Gauss rules do not calculate them accurately.
Two method to overcome this problem are introduce in [28].

First of the two methods is, where elements on both sides of the crack are sub-
divided into triangles, is illustrated in figure 4.14. Figure 4.15a shows the influence

Figure 4.14: Sub-triangles in cracked element. [6]

domains of a node J above A+ and belove the crack A− which determines the nodes
that are enriched. The node is enriched if values of A−/(A+ +A−) and A+/(A+ +A−)
are smaller than an allowable tolerance. A tolerance value of 0.01% is used in [28],
although the value must be set according to each problem. In second method the
elements are subdivided into sub-quads otherwise the method are similar. In 4.15b
the node J must not be enriched because there is no Gaussian point above the crack.
In figure 4.15a the node J is enriched because each side of the crack in its influence
domain includes at least one Gauss point.

The sub-triangulation process may not be accurate enough if Gauss points in sub-
triangles are too close to the stress singularity, which is produced at the crack tip.
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Figure 4.15: Criteria for node enrichment: a) based on definitions of A+ and A− in its
support domain, b) based on the existence of Gauss points within its support domain.
[6]

4.4 Level Set Method

The level set method (LSM), introduced in [29] is a capable tool to track boundaries.
The method builds a surface from a curve. In two dimensional cases this cone shaped
curve intersects the plane exactly where the curve sits. In other words, LSM generates
a height (level) of a point in the plane as presented in figure 4.16.

Figure 4.16: A simple description of LSM and FMM presented later, including the
original front projected on the xy-plane and the level set function as the intersection
of surface and xy-plane. [6]

In LSM the interface of interest is presented as a zero level set of a function L(x),
which is one dimension higher than the interface’s dimension. This may cause larger
needs for computational time and storage space.
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Figure 4.17: Definition of a level set function. [6]

The level set function L(x), depicted in figure 4.17, is defined as

L(x) = ξ(x) =


> 0 x ∈ Ω1

= 0 x ∈ Γ
< 0 x ∈ Ω2

(4.31)

where Ω1 and Ω2 are non-overlapping subdomains of Ω sharing an interface Γ. In
equation 4.31 the interface Γ can be interpreted as zero level contour of the level set
L(x). The level set can simply be defined as signed distance function

L(x) =

{
d x ∈ Ω1

−d x ∈ Ω2
(4.32)

where d is the normal distance function from a point x to the interface Γ. The domains
Ω1 and Ω2 can be defined with the Heaviside function of equation 4.22

Ω1 = {x ∈ Ω, H(φ(x)) = 1}, (4.33a)

Ω2 = {x ∈ Ω, H(−φ(x)) = 1}. (4.33b)

The normal vector x to the interface Γ at a point x ∈ Γ is defined as

n =
∇L(x)

‖∇L(x)‖
. (4.34)

Discretization of the levels set allows the evaluation of the level set at the ele-
ment level, based on the nodal level set values Li = L(φi) and known element shape
functions φi(Nj)

L(x) =
n∑
i=1

φi(x)Li, (4.35)

where Nj are the nodes. The other advantage of this approximation is that it avoids
the necessity for computation of derivatives of the level set functions at nodal points
by expressing it in the terms of shape function derivatives.

L(x),j =
n∑
i=1

φi,j(x)Li, (4.36)

where ,j is derivative along j direction.
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4.4.1 Level sets for a crack

A major difficulty arises if the level set method is used in crack problems. The signed
distance function is required to be constrained as the crack propagates, in order to
keep the existing crack surface frozen. Since level set are usually updated by the
integration of Hamilton-Jacobi equation, special techniques are needed so that the
level sets describing existing crack remain unmodified [30]. Another reason for a new
approach is the fact that level set functions are not updated with the speed of an
interface in the direction normal to itself but with the speed of the crack fronts.

In [30] an approach based on the vector level set formulation is proposed, which
avoids the level set update difficulty. In this method the level set is defined only on
the narrow band around the crack and the evolution of the level set function does not
alter the time history of the crack.

The definition of level sets needs to be adjusted in order to be used in open curves
such as a crack. Generally two level sets are needed: one for the crack surface Lp and
other for a crack tip Ls. A one dimensional crack propagation in a level set framework
is modeled by representing the crack as the zero level set of function Lp(x, t). A crack
tip is represented as the intersection of the zero level set of Lp(x, t) with zero level set
of Ls,k(x, t), where k is the number of tips of a given crack. The crack tip level set is
usually assumed to be orthogonal to the crack surface level set

Lp,iL
s
.i = 0. (4.37)

The values of the level set functions are stored only at the nodes. The functions
can be interpolated over the mesh by shape functions [31]

Lp,k(x, t) =
n∑
j=1

φj(x)(Lp,k(x, t))j, (4.38a)

Ls(x, t) =
∑

φj(x)Ls(x, t). (4.38b)

An important consideration is that although the actual crack is embedded inside a
domain, the zero level set of Ls cuts through the entire domain. It is also assumed
that once a part of a crack has formed, that part will no longer change shape or move.

Crack growth is modeled by appropriately updating the Lp,k and Ls functions, then
reconstructing the updated L function. The evolution of Lp,k and Ls is determined
by the crack propagation direction θ. In each, step the displacement of the crack tip
is given by the prescribed velocity vector v = (vx1, vx2), which is always normal to
the interface. The following steps describe the simple procedure of evolution of the
level set function Lp,kn and Lsn at the step n [31]. In the first step the rotated level
set of Lp,kn : Lp,k,r is determined. In step 2 Lsn+1 is determined. The updated location
of the crack tip is computed in step 3. Lpn+1 is updated, if more than one crack tip
exists, in step 4. The location of the new crack tip is determined by the intersection
of zero level sets Lp,kn+1 and Lsn+1.
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4.5 Fast Marching Method

The fast marching methods (FMM) ([32], [33] and [34]) are desingned to track a
propagating interface and to find the first arrival of the interface as it passes a point.
They are limited to problems where the speed function does not change sign.That
speed can change from point to point, but there are no preferred directions.

FMM can also be transformed into a non-moving problem. In figure 4.18 the
procedure is represented. t(x) is the time when the front crosses the point x. Function
t(x) gives a cone shaped surface that has the property to intersect xy-plane exactly
where the curve was initially placed.

Figure 4.18: Classidication of nodes into accepted, neighbour and distant nodes. [35]

The starting point is placed in a set of accepted nodes. Mesh nodes which are one
link away are considered as neighboring nodes. Then the cost of reaching each of these
neighbor nodes is computed and the node with smallest cost is removed from the set
of neighboring nodes and added the set of accepted nodes. The procedure continues
by repeating the cost computing and additioning until all nodes are accepted. FMMs
do not require any iterative procedure, which shortens the computing time.
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5

Getfem

Getfem is a free open source C++ library for the finite element method as described
in the quotation below:

”The Getfem project focuses on the development of a generic and ef-
ficient C++ library for finite element methods elementary computations.
The goal is to provide a library allowing the computation of any elemen-
tary matrix (even for mixed finite element methods) on the largest class
of methods and elements, and for arbitrary dimension (i.e. not only 2D
and 3D problems).”[36]

Project is still a work in progress: some functionalities are missing from the Matlab
interface and also some methods for discontinuity handling are not yet fully finished.
It is also, at the moment, restricted to two dimensional cases. Although much of its
functionalities have been developed to the stage in which they can be used. In fact it
has been used in several studies (e.g. [37], [38], and [39]).

Getfem’s structure is presented in figure 5.1. Quadrature is cubature in Getfem’s
jargon. Getfem is based on a so called bricks framework, where every component in
weak form of the problem is presented by a brick (e.g. if one dimensional problem
consist of linear elastic specimen with a tied boundary and a force affecting other
boundary, one simply adds one brick to describe the linear-elastic material response
and two bricks to describe the boundary conditions and then solves the problem).

5.1 Structure of the code

Next a simple example of Getfem code is presented. The first step is to introduce a
mesh, Getfem’s own mesher can only produce simple meshes, more complex meshes
can be imported from an external mesher. Simple Cartesian mesh is constructed with
following command:

m = gfMesh(’cartesian’,[0:.1:1],[0:.1:1]);

which produces a square mesh with side lengths 1 and 10 nodes to each direction.
Next step is to link the FEM to the mesh:

mf = gfMeshFem(m,1);
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Figure 5.1: Diagram of Getfem. [40]

which builds a one dimensional FEM object to the mesh. Dimension of the FEM
object depends on the dimension of the unknown (1D for scalar fields, 2D for vectorial
fields, etc.). Several FEM objects can be introduced to a mesh, one for each unknown
or if the mesh has areas that differ from one another. Next the FEM type must be
specified:

set(mf,’fem’,gfFem(’FEM_QK(2,2)’));
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this assigns the Q2 FEM (2D element with quadratic shape functions) to every convex.
Type of FEM must be in an agreement with mesh (Q FEM if the mesh contains square
elements and P FEM if elements are triangular). In figure 5.2 two different element

Figure 5.2: Two elements used by Getfem: left P 2
3 element and right Q2

3 element. [36]

types that Getfem uses are presented.
Level sets are used to describe cracks and other discontinuities. In getfem, a

levelset is one or two scalar functions, defined on a lagrange polynomial mesh fem.
The (optional) second function is a way to limit the level-set to handle cracks for
example. Mesh level set object is created with following commands

ls=gfLevelSet(mesh, ls_degree,’with_secondary’);

set(ls, ’values’,function1,function2);

mls = gfMeshLevelSet(mesh);

set(mls,’add’,ls);

set(mls,’adapt’);

where the first command creates the level set object, and second command assigns
functions that describes level set (function1 describes first level set etc.), third com-
mand prepares the mesh to have level sets by creating mesh level set object, fourth
command assigns the level set to mesh level set object, and finally the last command
adapts the mesh so that the level set cuts it. The modifications (that take disconti-
nuities into account) to shape functions are made with the following commands:

ck0 = gf_global_function(’crack’,0);

coff = gf_global_function(’cutoff’,0,r,r1,r0);

ckoff0 = gf_global_function(’product’, ck0, coff);

where the first and second commands use modifications that are provided by the
Getfem: ”crack” has 11 different modifications which one can use depending on the
case in hand. ”cutoff” has four different options for cut off functions which can be used
depending on the case: no cut off, exponential cut off and two different polynomial
cut offs. Variables r, r1, and r0 are chosen for each problem ([37], [41]). r is the
radius of the cut off function and r0 and r1 (r1 and r2 in [41]) are the limits of cut
off function and they are chosen as follows 0 < r0 < r1. The last command binds
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the crack and the cut off modification together. To actually insert the modification
to the FEM one has to use following commands:

mfls = gfMeshFem(’levelset’,mls,mf);

mf_sing = gfMeshFem(’global function’,mesh,ls, {ckoff0},1);

mf_u = gfMeshFem(’sum’,mf_sing,mfls);

set(mf_u,’qdim’,2);

where mesh level sets are added to the FEM, and modification to shape functions are
added to the FEM, the last command is the dimension of the FEM. In order to solve
the problem a numerical integration method is needed:

mim=gf_mesh_im(m, gf_integ(’IM_QUAD(5)’));

IM QUAD(5) quadrature has 7 integration points (figure 5.3). For meshes with level

Figure 5.3: Integration points in ”IM QUAD(5)” quadrature. [36]

sets a bit different command is needed:

mim = gfMeshIm(’levelset’, mls, ’all’, ...

gfInteg(’IM_STRUCTURED_COMPOSITE(IM_QUAD(7),3)’), ...

gfInteg(’IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2,2),9)’), ...

gfInteg(’IM_STRUCTURED_COMPOSITE(IM_QUAD(7),6)’));

where composite integration methods are used. Second number in the integration
method is the number of subdivisions that the element is divided to. The command
consists of three different integration methods: one for crack tip, one for the other
part of the crack, and one for the rest of the material.

After these steps the actual model can be created:

md = gfModel(’real’);

set(md,’add_fem_variable’, ’u’, mf_u);

set(md,’add_initialized_data’,’lambda’, "Lame coefficient");

set(md,’add_initialized_data’,’mu’, "Lame coefficient");

set(md, ’add multiplier’, ’lower_boudary’, mf_u, ’u’);

set(md, ’add Dirichlet condition with multipliers’, mim, ’u’, ...

’lower_boudary’, "boundary for which the condition is set");

set(md, ’add initialized data’, ’F’, "magnitude of the loading");

set(md, ’add source term brick’, mim, ’u’, ’F’, ...

"boundary for which the condition is set");
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and then the model can be solved and plotted:

get(md,’solve’,’very_noisy’);

U = get(md,’variable’,’u’);

gf_plot(mf_u, U, ’norm’, ’on’);

5.2 advantages of Getfem

Getfem is relatively simple to use and it can be adapted to several different problems.
It is capable handling all kinds of partial differential problems (elliptic, parabolic, and
hyperbolic) and new material models are relatively simple to build into the library,
i.e. the user can write new bricks to be used in calculations. Also different solvers are
available or one can use one’s own or a third party solver.

The mesher in Getfem can only cope very simple geometries, fortunately third
party meshers are supported. The biggest drawback in Getfem is the lack of doc-
umentation: only a part of its functionalities are covered in the user manuals at
present day. Also the Matlab interface is still not finished and some of the XFEM
functionalities are not included yet.
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6

XFEM code

The studied specimen is fixed at the lower boundary (Dirichlet condition) and the
loading is set to the upper boundary. The specimen has an edge crack at {x,y} =
{-0.5,0}. The initial crack is along the x-axis. Length of the initial crack is a and the
width (and height) of the specimen, W. W is set to be 1 m in this work. In case one
the crack length, a, is 0.3 W and in cases two and three the initial crack length, a, is
0.1 W. Specimen is discretized in 59 elements in each direction (total of 3481 elements)
in all but one case. In case one a second problem with a mesh having 225 elements
in each direction is utilized (totaling 50625 elements). A linear elastic material model
is used and the material properties are: Young’s modulus 200 X 109 Pa and Poisson
ratio 0.3. The specimen is presented in figure 6.1. Boundary condition in the upper
boundary varies in case two: one variation as in figure 6.1, in second the force, F, is
in 45◦ angle relative to upper boundary, and in third the force, F, is parallel to the
upper boundary.

Figure 6.1: Position of the crack and boundary conditions.

The XFEM-solver calculates the two normal stress components in each direction
and the shear stress from the darker elements in figures 6.2 and 6.3. The area is
chosen such that the disturbances caused by mesh irregularities in close proximity
of the crack tip are minimized. Stresses given by the solver are averages over the
(darker) elements, this is also done to smoothen the possible irregularities. The effec-
tive distance (distance between crack tip and the area where stresses are computed,
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r) is 3.125 ∗ 1
Ktot,x

, where Ktot,x is the number of elements in vertical direction. 3.125

is amount of elements between the crack tip and the center location of the stress
computing area. The place of the center point is calculated as a the weighted average
of the element (inside the area) distances. The stresses used to calculate the crack
propagation angle are computed in this area. The area is chosen such that the stress
values are low enough (i.e. not at the infinite stress peak at crack tip) but still the
effect of the crack tip is clearly visible.

Crack growth is implemented as follows: a straight line (black line, primary level
set, in figure 6.2), the initial crack, is added. The crack is restricted with a half circle
(black circle, secondary level set, in figures 6.2 and 6.3). Small circles in figure 6.3b are
level set for used in define the precipitates in case 3. The angle of crack propagation
for the next step is calculated with equation 2.43. Next the radius of second level
set is increased by the crack growth increment and the line, the primary level set, is
tilted from the end of the previous step. The following steps uses an identical this
procedure. The line after the secondary level set is not included in the crack.

(a) 59 elements to each direction. (b) 225 elements to each direction.

Figure 6.2: Level sets and the area from which stresses are computed in case 1.

The mesh is left somewhat coarse in purpose to hinder the computing time and
memory requirements, as well as test the numerical abilities of the XFEM implemen-
tation. This results in some inaccuracies in the results, also the boundary conditions
causes some error since they are tied into the nodes of the boundary. Subsequently,
nodes are quite far apart of each other and thus the conditions are not enough continu-
ous to give smooth displacement field on the specimen corners (figure 6.4). The center
point of precipitates in figure 6.3b are at {-0.028,-0.059} and second at {-0.018,0.059}.
Radius of the precipitates is 3.4

100
of the whole specimen.

In figure 6.4 mode I loading with two different discretization is shown. Displace-
ment field changes at {x,y} = {-0.2,0} this is due to the crack. The crack causes the
upper boundary of the specimen to be ”more free” in x = -0.5...-0.2 than after the
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(a) Case2. (b) Case3; Precipitates are presented by the
small circles.

Figure 6.3: Level sets, initial crack, and the area from which stresses are computed
in cases 2 and 3.

crack tip where it is fixed.

(a) 59 elements. (b) 225 elements.

Figure 6.4: Displacement fields with two different discretization in the upper left
corner of the specimen.
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In each case 30 steps are taken. Initial crack length is 1
10

of the whole specimen
and crack increment on each step is 89

10000
of the whole specimen so the final crack

length is 367
1000

of the whole specimen.
In case 1 two runs are made to compare different discretizations. In cases 2 and

3 non rectilinear crack propagation paths are analyzed. The area from which the
stresses are computed moves along with the crack tip (figure 6.5).

(a) Step 1. (b) Step 15. (c) Step 30.

Figure 6.5: Movement of the area from which stresses are computed.
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7

Results

Results of the three cases are presented in the following sections. In the first case the
vertical stress component is plotted to verify that the code is working properly (i.e.
the shape of the stress field is correct and the magnitude of the stress at the crack tip
is in agreement with the theoretical estimates).

In the second case the crack path at steps 15 and 30, displacement and von Mises
stress fields at the final step, and finally deformed mesh at step 30 are plotted. A
table in which KI/KII-ratios and crack growth angles are collected is also presented.

Crack paths in steps 15 and 30, and deformed meshes at step 30 are plotted for
the two further variants (with precipitates 3 times and 7 times stiffer than the base
material) in case 3. Also in this case the KI/KII-ratios and crack growth angles are
compiled into a table.

7.1 Case 1

This case deals with a stationary crack with initial length 3
10

of the side of the whole
specimen. Vertical stress components are plotted in figures 7.1 and 7.2. In figure 7.2
the colors and contrast of the picture are modified to enhance the stress field area.
Crack mouth opening is 5× 10−5 in both 59 X 59 and 225 X 225 elements cases, and
computed KI is 12.77 X 106 and 10.995 X 106 respective.

60



(a) 59 elements in each direction. (b) 225 elements in each direction.

Figure 7.1: Vertical stress components.

(a) 59 elements in
each direction.

(b) 225 elements in
each direction.

Figure 7.2: Shape of the vertical stress field around the crack tip.
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7.2 Case 2

Three different variants in terms of crack growth calculation are presented in this
section. First with a vertical force , second with a horizontal force, and third with
a force tilted 45◦ relative to upper boundary. Initial crack length is 1

10
of the whole

specimen width in this case.

7.2.1 Vertical Force

(a) Step 15. (b) Step 30.

Figure 7.3: Crack path at steps 15 and 30.

Crack path in specimen with vertical force (upwards) is shown in figure 7.3. Stress
and displacement vectors are plotted in figure 7.4 and deformed mesh is plotted in
figure 7.5. Table 7.1 shows the crack growth KI

KII
ratio and the angles at each step.

Table 7.1: KI

KII
ratios and crack growth angles (degrees) at different steps.

Step 1 2 3 4 5 6 7 8 9 10
KI

KII
ratio -38.9 -23.4 -21.8 -15.5 -16.5 -19.9 -14.3 -19.8 -17.6 -28.1

Angle 2.9 4.9 5.2 7.3 6.9 5.7 7.9 5.8 6.5 4.1

Step 11 12 13 14 15 16 17 18 19 20
KI

KII
ratio -20.4 -17.5 -15.0 -18.1 -28.8 -14.0 -6.3 -9.6 45.7 29.4

Angle 5.6 6.5 7.6 6.3 4.0 8.1 17.1 11.7 -2.5 -3.9

Step 21 22 23 24 25 26 27 28 29 30
KI

KII
ratio 7.2 70.7 -10.0 74.3 2.5 -3.8 -3.4 1.4 -3.5 -7.6

Angle -15.2 -1.6 11.2 -1.5 -35.5 26.6 28.8 -47.9 28.4 14.5
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(a) displacement vectors. Crack mouth open-
ing is 1.8× 10−5

(b) Von Mises stress.

Figure 7.4: Stress and displacement vectors at step 30.

Figure 7.5: Mesh and deformation at step 30.
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7.2.2 Horizontal Force

Crack path in specimen with horizontal force (to left) is shown in figure 7.6. In figure
7.7 stress and displacement vectors are plotted. Deformed mesh is plotted in figure
7.8. Table 7.2 shows the crack growth KI

KII
ratio and angles at each step.

(a) Step 15. (b) Step 30.

Figure 7.6: Crack path at steps 15 and 30.

(a) displacement vectors. Crack mouth open-
ing is 3.5× 10−5

(b) Von Mises stress.

Figure 7.7: Stress and displacement vectors at step 30.
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Figure 7.8: Mesh and deformation at step 30.

Table 7.2: KI

KII
ratios and crack growth angles (degrees) at different step.

Step 1 2 3 4 5 6 7 8 9 10
KI

KII
ratio 1.1 2.6 1.1 2.8 2.4 1.3 3.2 0.9 9.4 304.9

Angle -51.19 -34.7 -51.6 -33.1 -35.9 -48.8 -30.2 -55.2 -11.9 -0.4

Step 11 12 13 14 15 16 17 18 19 20
KI

KII
ratio 31.8 8.5 2.7 2.0 2.2 2.3 11.5 5.0 204.8 5.9

Angle -3.6 -13.1 -34.0 -40.1 -38.6 -37.2 -9.8 -21.2 -0.6 -18.2

Step 21 22 23 24 25 26 27 28 29 30
KI

KII
ratio 75.3 40.2 3.0 9.5 4.6 4.5 2.8 3.8 55.6 9.0

Angle -1.5 -2.9 -31.2 -11.8 -22.6 -23.0 -33.1 -26.4 -2.1 -12.4
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7.2.3 Tilted Force

Crack paths in specimen with tilted force (components to left and upwards) are shown
in figure 7.9. In figure 7.10 stress and displacement vectors are plotted. Deformed
mesh is plotted in figure 7.11. Table 7.3 shows the crack growth KI

KII
ratio and the

angles at each step.

(a) Step 15. (b) Step 30.

Figure 7.9: Crack path at steps 15 and 30.

(a) displacement vectors. Crack mouth open-
ing is 6× 10−5

(b) Von Mises stress.

Figure 7.10: Stress and displacement vectors at step 30.
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Figure 7.11: Mesh and deformation at step 30.

Table 7.3: KI

KII
ratios and crack growth angles (degrees) at different step.

Step 1 2 3 4 5 6 7 8 9 10
KI

KII
ratio 2.7 4.4 31.5 4.3 4 7.2 530.0 13.4 6.0 7.1

Angle -33.4 -23.7 -3.6 -24.0 -25.4 -15.2 -0.2 -8.4 -18.0 -15.5

Step 11 12 13 14 15 16 17 18 19 20
KI

KII
ratio 4.1 15.0 5.8 8.3 8.6 4.0 7.3 8.7 9.1 9.2

Angle -24.7 -7.6 -18.5 -13.4 -13.0 -25.4 -15.1 -12.8 -12.2 -12.2

Step 21 22 23 24 25 26 27 28 29 30
KI

KII
ratio 10.2 9.9 31.0 20.0 29.7 25.4 21.2 35.6 33.8 11.6

Angle -11.0 -11.4 -3.7 -5.7 -3.9 -4.5 -5.4 -3.2 -3.4 -9.7
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7.3 Case 3

This case is similar to the vertical force analysis. Only difference is that it has two
precipitates at −0.028;−0.059 and −0.018; 0.059.Crack paths in specimen with pre-
cipitates are shown in figure 7.12 and 7.13. In figure 7.14 displacement vectors are
plotted. Deformed mesh is plotted in figure 7.15. Tables 7.4 and 7.5 shows the crack
growth KI

KII
ratio and the angles at each step.

(a) Precipitates 3 times stiffer. (b) Precipitates 7 times stiffer.

Figure 7.12: Crack path at step 15.

Table 7.4: KI

KII
ratios and crack growth angles (degrees) at different step (3 times

stiffer precipitates).

Step 1 2 3 4 5 6 7 8 9 10
KI

KII
ratio 20.3 -54.0 36.2 149.3 67.4 19.4 14.4 9.1 9.1 20.0

Angle -5.6 2.1 -3.2 -0.8 -1.7 -5.9 -7.9 -12.3 -12.2 -5.7

Step 11 12 13 14 15 16 17 18 19 20
KI

KII
ratio 20.5 10.6 -8.0 9.2 14.4 -13.1 5.9 -5.6 14.8 -17.2

Angle -5.6 -10.6 13.8 -12.1 -7.9 8.6 -18.4 19.1 -7.7 6.6

Step 21 22 23 24 25 26 27 28 29 30
KI

KII
ratio -31.6 -8.0 -4.1 -5.1 6.6 5.9 -1.3 3.6 4.2 38.4

Angle 3.6 13.9 24.9 20.9 -16.6 -18.2 49.1 -27.3 -24.2 -3.0
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(a) Precipitates 3 times stiffer. (b) Precipitates 7 times stiffer.

Figure 7.13: Crack path at step 30.

(a) Precipitates 3 times stiffer. (b) Precipitates 7 times stiffer.

Figure 7.14: Displacement vectors at step 30. Crack mouth opening is 4× 10−5
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(a) Precipitates 3 times stiffer. (b) Precipitates 7 times stiffer.

Figure 7.15: Displacement vectors at step 30.

Table 7.5: KI

KII
ratios and crack growth angles (degrees) at different step (7 times

stiffer precipitates).

Step 1 2 3 4 5 6 7 8 9 10
KI

KII
ratio 22.5 -49.0 34.8 126.5 65.5 19.2 13.7 9.3 9.8 31.4

Angle -5.1 2.3 -3.3 -0.9 -1.8 -5.9 -8.2 -12.0 -11.5 -3.6

Step 11 12 13 14 15 16 17 18 19 20
KI

KII
ratio 35.1 10.6 -11.3 7.9 10.9 -44.7 3.8 -16.1 -14.7 10.7

Angle -3.23 -10.6 9.9 -14.0 -10.4 2.6 -26.5 7.1 7.7 -10.5

Step 21 22 23 24 25 26 27 28 29 30
KI

KII
ratio -27.7 -4.0 -3.4 -2.4 924.2 8.9 -7.0 -19.9 -8.7 -7.0

Angle 4.1 25.1 28.9 35.9 -0.1 -12.5 15.7 5.7 12.8 15.6
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8

Discussion

Results of the three cases are discussed in the following sections. The ”cut off”-
function (exponential/polynomial) used in the gf global function-function did not
have significant effect in the results. In this work a polynomial cutoff-function was
used.

7.1 Case 1

The shape of the vertical normal stress component field (figure 7.2) is similar to the
predicted in figure 2.15 ([7]). In table 7.1 stress intensity factor given by the code
and Irwin’s analytical solution (equation 2.16) are compared. Kref (= σ0

√
πa) is used

in KIrwing calculation. a and W are crack length and specimen width respectively.
Accuracy of the stresses, form where the error is calculated, is 8 decimals (only 6 is
presented).

Table 7.1: Normalized values of SIF for two different discretization

Elements (horizontal X vertical) 59 X 59 225 X 225
Distance 0.053 0.0139
Crack tip stress 22.1301 ∗ 106 37.0845 ∗ 106

Loading pressure 5.0 ∗ 106 5.0 ∗ 106

W 1 1
a 0.3 0.3
Kref 6.8647 ∗ 106 6.8647 ∗ 106

KIrwing 11.4010 ∗ 106 11.4010 ∗ 106

KCalc 12.7665 ∗ 106 10.9551 ∗ 106

Error % 11.89 - 3.99

As seen in table 7.1, the error between computed solution and analytical solution
diminish significantly as the amount of elements is increased. Also, the fact that
loading is not exactly pure mode I, as seen in figure 6.4, has an affect to the computed
value. The ”non purity” is a result of the loading condition: the loading force is tied
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to the nodes and the distance between nodes affects the accuracy of the outcome.
This change in the boundary condition as the mesh turns denser is seen in figure 6.4.

The accuracy could probably be increased by adapting the area from which the
crack tip stress field is calculated. In this work it was kept unchanged between since
the error produced by the meshes in terms of accuracy was kept unchanged between
every case. Accuracy could also be further tuned by adjusting variables r, r0, and r1
in the global function command used in the code since they affect the displacement
field around the discontinuity.

7.2 Case 2

Results in all three cases are in good agreement with expected behavior on a fracture
mechanical basis: vertical force produces (approximately) a horizontal crack, a hori-
zontal force produces a descending crack, and a tilted force produces also a descending
crack but the slope is not a steep as with the horizontal force.

The angles with horizontal and tilted forces are not as steep as they should be in
pure mode II and mixed mode (when the magnitude of both modes is equal) about
70◦ and about 53◦ respectful. This error is due to the fact that the stress state in
close proximity of the crack tip is not exactly in accordance with the pure mode II
and mixed mode cases. The behavior between the boundary and the crack tip affects
the resulting displacement field so that it is not exactly similar compared to analytical
ones. Also the type of the boundary condition causes some error: Force controlled
boundary condition produces slightly differing displacement field to the boundary
than displacement controlled. This has direct effect to the displacement field at crack
tip. Force controlled boundary condition tilts as the crack opens. And subsequently
the specimen bending is greater in the ”free” part (the part above the crack) of the
specimen than in displacement controlled case.

Some error is due to the way how the boundary condition is tied to the specimen
as discussed earlier (chapter 6), this error would diminish with element size. Also
the fact that values of crack tip stresses are computed as a mean value of an area,
produces some differences in calculated and predicted crack paths.

The fluctuation of the crack growth angle is caused by the fluctuation in dis-
placement fields around the crack tip: Crack tip moves in respect to the specimens
boundary which produces alterations to the stress field and hence also the displace-
ment field changes from step to step. As discussed above force controlled boundary
condition bends the specimen more than displacement controlled especially when the
force is not perpendicular to the specimen’s boundary. Especially if the displacement
controlled boundary condition is parallel to the specimen boundary (and it is not
allowed to tilt) the specimen’s ”free” surface would not bend at all. Also some of the
fluctuation in KI

KII
ratios is due to the changing of place of the crack tip within an

element as a result of the XFEM interpolation (crack growth increment differs from
the element length).
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7.2.1 Vertical Force

Crack angles and KI/KII-ratios in 7.2.1 are in good agreement with the analytical
ones (chapter 2: Crack growth criterion). The crack grows almost perpendicularly to
the applied force, the overall (from the end of initial crack to the end of crack growth)
crack growth angle is 3.4 degrees.

Boundary conditions and the coarseness of the mesh explain the trend in crack
growth angle, which is few degrees. Although boundary condition has only a vertical
component the specimens upper left corner moves to up and right since the horizontal
direction is not restricted. This bends the specimen, as discussed above, and creates
a minor mode II component to crack propagation and hence the crack is not exactly
straight. Also the angle of growth from step to step is due to this bending (the
quantity of mode II increases as crack propagates). As a certain point is passed in
crack propagation the propagation turns to be more horizontal. At this point the
specimen is so fractured and the left boundary does not have that much of an effect
to the stress field any more.

The fluctuation as seen e.g. in steps 23, 24, and 25 where the crack growth angle is
11.2◦, −1.5◦, and −35.5◦ is due to the previously discussed crack tip place regarding
element edges.

7.2.2 Horizontal Force

This sub-case is as pure mode II crack propagation as can be achieved with force con-
trolled boundary condition and without binding the vertical displacement component.
The initial crack propagation angle from the straight part of the initial crack propaga-
tion curve (x = -0.4...-0.3 figure 7.6: steps 1...10) is about −41.5◦ which corresponds
a KI

KII
-ratio of 2 (figure 2.20). The angle at step 1 is 51.2◦ which in turn corresponds

a KI

KII
-ratio of 1. As the crack propagates and the specimen bends the crack turns to

propagate more horizontally and the overall crack angle is −27.6◦ and it corresponds
to KI

KII
-ratio of 4. This tilting as crack propagates is due to the same phenomena as

above: as crack propagates the KI

KII
-ratio alternates.

The Von Mises stress field in figure 7.7b is similar to the one shown in figure 7.2
only the one in 7.7b is tilted to an angle. The angle in which the stress field is tilted is
12.4◦ the angle of the last crack propagation angle. The direction of crack propagation
is in good agreement with the mixed mode crack propagation presented in [8].

7.2.3 Tilted Force

In this analysis the loading force is tilted to 45◦ angle and thus a greater mode II
component than with horizontal force.

Initial crack growth angle in this case is −33.4◦ ( KI

KII
-ratio of 3) which is signifi-

cantly smaller than in the previous case. Comparing figures 7.6 and 7.9 the effect of
the force vector tilting can been seen. The overall crack propagation trend is steeper
in the first than in the latter figure.

The trend crack propagation of the first ten steps is −17.5◦ and overall angle is
−13.2◦, which corresponds to KI

KII
-ratios of greater than 4 (figure 2.20).
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7.3 Case 3

As seen in figures 7.15 the precipitates affect the crack propagation path, and the
more stiffer the precipitate is the more it affects the cracks path (figures 7.12 and
7.13). The effect of the stiffer regions is clear. When comparing to the vertical force
analysis results (7.2.1 with the tables in case three (7.3 and 7.3), it is seen that the
crack starts to grow towards the first precipitate. After the crack tip has passed the
center point of the first precipitate (step 10) it slowly starts to tilt upwards, but it
remains closer to the first precipitate and hence it does not turn horizontal until the
step 18 when the second precipitate is the closest one. Between steps 22 and 26 crack
path tilts upwards as a result of the second precipitate’s effect to the stress field. After
step 26 the trend in crack growth is similar to the one in vertical force analyses in
case two. The crack paths are similar in both cases, but the effect of the precipitate
is stronger with stiffer precipitates, as it is expected.

The set-up on the crack trajectory in the precipitate analysis and the vertical
loading case is similar, an as such the resulting crack paths differ only around the
them.
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Future Work

At present the code is suited only to analyze crack propagation in very simple geome-
tries and material models in two dimension. The most important step to enable real
analysis with the code is to implement further material models to the Getfem-library.
Fortunately new material models can be introduced into the library by modifying
the existing model files, and also the addition process is quit simple due to the Get-
fem’s open structure. The difficulties arise primarily in the actual numerical XFEM
implementation of realistic material models.

The fact that code supports only two dimensional cases prevents usage of the
code in a complex cases. Though most common specimens used in research purposes
are usually relatively simple (most common being compact tension- and Single-Edge
Notched Bending-specimens), and their behavior can be modeled quite accurately with
two dimensional models. When analyzing real complex objects a three dimensional
model is usually needed especially if details of the cracking behavior at the crack tip
are important. Also, if a comparison in cracking behavior between a real part and
test specimen is desired, only a three dimensional model can give accurate enough
results. At present stage of Getfem’s development only two dimensional level sets are
supported in the Matlab interface.

Code written in C++-language would be more efficient and lighter than the same
code in Matlab-script, and thus less computer time is needed in a single analysis, is
a good reason to rewrite the XFEM-code in C++-language. Also matters discussed
above are powerful arguments for the rewriting proses.

Meshing capabilities of the Getfem-library are not very efficient and limited only
to simple geometries, as mentioned in chapter 5. Fortunately, the Getfem-library
supports some third party meshers. Incorporating a capable mesher to a XFEM-
analyzing procedure is essential in expanding the code’s capabilities.

The actual accuracy of the code can be increased by specifying the variables used
in global function command. The exact values of the variables depend on the specimen
geometry and boundary and initial conditions as well as the meshes quality. Also,
determining the actual effective distance between crack tip and the area from which
the crack tip stress is calculated better is proposed. Meshes quality and density have
a big affect on the distance.

As discussed, a lot of work still remains in the development of a truly capable and
versatile XFEM-code, but many of the elementaries of the work are already done.
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Summary

The purpose of this work was to develop a code that is capable of modeling crack
propagation. The code is based on the XFEM theory since conventional FEM is not
typically efficient enough in fracture mechanical problems. A linear elastic material
model was chosen to keep the work simple enough and the main focus was directed
in developing a working analysis tool. Complex functionalities, such as nonlinear
material models, will be introduced later. The code was programmed using the Matlab
environment. Getfem finite element library was tested and found to provide many of
the necessary functionalities. Especially Getfem’s Matlab interface was utilized.

Getfem-library is a open source research code developed in France at INSA (Insti-
tut National des Sciences Appliques) in Toulouse and Lyon. It is a generic C++ finite
element library with Matlab and Python interfaces. Getfem is still under development
and especially the interfaces do not yet provide all of its functionalities. At present
it provides tools for programming to analyze two dimensional fracture mechanical
problems. The library was found to be versatile and adaptable.

The code developed during this work was found to be efficient and accurate for
analyzing crack propagation in simple cases. The accuracy of the code can be increased
in the future by altering the cutoff-function type used. In this work much time was
not spent in valuing the best possible function, since the goal of this work was to
develop a working code and the absolutely exact results were not a priority. At this
point the code is restricted to linear elastic problems with a quite coarse mesh. As
was seen in this work when a more detailed analysis (denser mesh) or a analysis of a
more complex problem (specimen containing different materials or several cracks) is
needed the computing cost increases dramatically.

Three different cases were analyzed. The first case was used to verify that the
code is generally viable and yielded accurate enough results. The accuracy of the code
was found to be adequate for this purpose although it could have been increased by
increasing the quantity of elements, but this was not pursued due to a desire to manage
the problem in a workstation environment. In the second case crack propagation was
analyzed. An initial crack was introduced into the specimen and it was grown about
to the middle (in horizontal direction) of the specimen.

The code was run with three different set up in the second case. First a force
perpendicular to the crack was introduced. The crack propagated to perpendicular
direction relative to the applied force, which is in good agreement with the expected
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results (crack opening mode I). In second and third analysis the applied force was
parallel and in 45◦ angle relative to the crack. The crack propagation angle is more
steeper the more greater the angle of the applied force relative to the initial crack
plane.

In the last case, crack behavior in a specimen containing stiffer sections (precipi-
tates) was analyzed, or rather the how the code copes with such a case. The case was
identical, besides the precipitates, to the first analysis in case 2. The crack was sup-
posed to turn towards the stiffer areas and indeed it did it. After the first precipitate
the crack path started to turn towards the second precipitate.

Overall the code was found to be effective in relatively simple cases. In the future
other more complex and thus more realistic material models are planned to be intro-
duced. This would allow the analysis far more realistic fracture mechanical problems.
Also a better mesher will be incorporated and as the Getfem-library develops a pos-
sibility to analyze three dimensional, more accurate models is planned. Rewrites in
C++-language are considered. Matlab was only used to ease the programming and
usage (adaptation to different set-ups) of the code.

XFEM is very efficient in handling crack propagation, since it does not require
remeshing in every crack growth increment and crack geometry tracing can be attained
generally in three dimensions. Although due to the simplicity of the specimen treated
in this work, traditional FEM might have been even faster to compute than XFEM.
The integrand, produced by XFEM, needs considerably more computer time than an
integrand of the ordinary FEM analysis, and the meshing of the specimen is quite
straight forward (since the specimen is simple square with a relatively straight crack
path). Though the accuracy of the calculations would have probably suffered, since
the shape of some of the elements (the ones near crack) would have been corrupted.
This shortcoming is rapidly overcome in XFEM as the complexity of the specimen
and/or the crack path is increased. The computer time consumed by the XFEM’s
more complex integrations remains about the same regardless of the complexity of the
specimen, but the time needed to remesh the specimen, in the case of ordinary FEM,
increases significantly and the analysis approach itself can become unbearable.
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