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Abstract – The topic of this paper is the computation of the matrix exponential in the context of burnup
equations. The established matrix exponential methods are introduced briefly. The eigenvalues of the
burnup matrix are important in choosing the matrix exponential method, and their characterization is
considered. Based on the characteristics of the burnup matrix, the Chebyshev rational approximation
method (CRAM) and its interpretation as a numeric contour integral are discussed in detail. The intro-
duced matrix exponential methods are applied to two test cases representing an infinite pressurized water
reactor pin-cell lattice, and the numerical results are presented. The results suggest that CRAM is capable
of providing a robust and accurate solution to the burnup equations with a very short computation time.

I. INTRODUCTION

The neutronic properties of a reactor fuel are strongly
dependent on the isotopic compositions of the fissile ma-
terials. The changes in the material compositions must
be taken into account in all reactor physics calculations.
This is in practice handled by burnup calculation codes.
An essential part of a burnup calculation is the solving
of the burnup equations that describe the rates by which
the concentrations of the various nuclides change. The
burnup equations form a system of first-order linear dif-
ferential equations that can be written

dNj

dt
� (

i�j

lij Ni � lj Nj , Nj ~0! � N0 , j � 1, . . . , n ,

~1!

where

Nj � concentration of nuclide j

n � total number of nuclides

lij � coefficients characterizing the rates of neutron-
induced reactions and spontaneous radioactive
decay.

In this paper we consider the burnup system under the
assumption that these coefficients are fixed constants.
The burnup equations can then be written in matrix no-
tation as

n ' � An , n~0! � n0 , ~2!

where

n~t ! � R
n � nuclide concentration vector

A � R
n�n � burnup matrix containing the decay and

transmutation coefficients of the nu-
clides under consideration.

Equation ~2! can be formally solved by the matrix expo-
nential method yielding the simple solution

n~t ! � eAtn0 , ~3!

where the exponential of the matrix At is defined as the
power series expression

eAt � (
k�0

` 1

k!
~At !k , ~4!

with the additional definition A0 � I.
There are numerous algorithms for computing the

matrix exponential, but many of them are computation-
ally expensive or of dubious numerical quality.1 Because
the decay constants and reaction rates of the nuclides
vary extensively, the burnup matrix has a wide spectrum*E-mail: Maria.Pusa@vtt.fi
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of eigenvalues, making the approximation of the matrix
exponential more difficult. Short-lived nuclides are es-
pecially problematic because they can induce eigen-
values of arbitrarily large magnitude. These difficulties
have traditionally been solved by using simplified burnup
chains or by treating the most short-lived nuclides sep-
arately when computing a matrix exponential solution.
The selection of a suitable matrix exponential method
depends substantially on the characteristics of the prob-
lem at hand. For example, the norm and eigenvalue spec-
trum of the burnup matrix as well as the length of the
time step are the key aspects that should be taken into
consideration when choosing the matrix exponential
method. However, notably little interest and research ef-
fort have been shown toward this topic.

The focus of our study was to examine if it is possi-
ble to solve a detailed burnup system containing thou-
sands of nuclides by a single matrix exponential method.
The motivation for this was the development of the burnup
calculation routines in the PSG20Serpent Monte Carlo
reactor physics code.2 The current burnup calculation
implementation in Serpent is based on the TTA method,3

in which the complicated transmutation chains are re-
solved into a set of linear subchains that can be solved
analytically. The main advantage of this method is that it
can handle the extensive variations in the transmutation
and decay coefficients and is relatively easy to imple-
ment in its basic form using a recursive loop. The most
significant problem with the TTA method is that the com-
putation time can easily become excessive if all chains
are followed until a stable nuclide is encountered, and
cutoffs have to be enforced to terminate insignificant
chains. In addition, the current implementation of the
method cannot treat chains that form a closed cycle, but
the trajectory is terminated if the same nuclide is encoun-
tered twice in a single chain.

II. EIGENVALUES OF THE BURNUP MATRIX

In solving the burnup equations with the matrix
exponential method, it is beneficial to estimate the char-
acter of the matrix eigenvalues, e.g., whether they are
real-valued or complex-valued, and, in the latter case,
the magnitude of the eigenvalues’ imaginary parts.

II.A. Real Parts of Eigenvalues

It is known that the general solution of system ~2! is
a linear combination of functions of the form

t keat cos~vt !a , t leat sin~vt !b , a, b � R
n , ~5!

where l � a � iv runs through all the eigenvalues of A
with v � 0 and k, l � m~l! �1, where m~l! denotes the
algebraic multiplicity of eigenvalue l ~for proof, see
Ref. 4!. If all eigenvalues of the burnup matrix are real,

the concentration of each nuclide is a linear combination
of functions of the form f ~t ! � t keat . In this case the
eigenvalue determines the rate of exponential growth or
decay of the function f. On the other hand, an eigenvalue
with a nonzero imaginary part v indicates that the solu-
tion has an oscillating component with period T � 2p0v.

Some understanding of the burnup eigenvalues can
be gained by considering the physical constraints related
to system ~2!. For example, it is evident that the concen-
tration of each nuclide must remain bounded at all times.
The following theorem ~Ref. 4, p. 165! therefore gives a
useful characterization of the real parts of the burnup
eigenvalues.

Theorem: Every solution n of system ~2! remains
bounded as t r ` if and only if the following hold:

~i! Re~l! � 0 � l � L~A!;

~ii! Every l � L~A! with Re~l! � 0 is a semisimple
eigenvalue; i.e., the geometric and algebraic mul-
tiplicities agree.

Here, L~A! denotes the set of the eigenvalues of A.

The real parts of the eigenvalues of the burnup ma-
trix must therefore all be nonpositive. A purely imagi-
nary eigenvalue would correspond to a nondamped
oscillation, which is physically unrealistic in the context
of burnup calculation. It can thus be deduced that the
real parts of the nonzero eigenvalues of the burnup ma-
trix are always negative.

II.B. Imaginary Parts of Eigenvalues

The characterization of the imaginary parts of the
burnup eigenvalues is more difficult. If the burnup chain
does not contain any closed cycles—i.e., no paths from
any vertex back to itself exist in the burnup matrix—the
matrix can be permuted into a triangular form. In this
case the eigenvalues are the diagonal elements, and hence,
all are real-valued and negative. The nonreal eigen-
values result from closed transition cycles occurring in
the burnup chain. However, not all closed transition cy-
cles induce nonreal eigenvalues, and in practice only a
fraction of the eigenvalues of the burnup matrix have
nonzero imaginary parts.

A suitable mathematical method for establishing a
link between the structure and eigenvalues of a matrix is
the computation of the strongly connected components
of the graph of the matrix.5 A strongly connected com-
ponent is defined as a set of vertices such that there
exists a path from each vertex to every other vertex. If
all of the strongly connected components of a matrix are
sorted topologically, the corresponding systems of dif-
ferential equations can be solved independently in this
order. The different cyclic components of a burnup chain
can therefore be studied conveniently by calculating its
strongly connected components. If the burnup matrix does
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not contain any closed cycles, the size of every strongly
connected component is one, and the solution of system
~2! can be calculated by solving n ordinary linear differ-
ential equations. The nonreal eigenvalues can therefore
be identified with certain cyclic parts in the burnup tran-
sition chain.

We have computed the eigenvalues for a wide range
of burnup matrices, and based on our experiments, it
seems that they are generally confined to a region near
the negative real axis. Based on our observations it ap-
pears that a prerequisite for a nonreal eigenvalue is that
the majority of the reactions involved in a closed cycle
have transition rates that are of the same order. In this
scenario the slowest reactions appear to have the most
significance for the period of the oscillation. This seems
reasonable from a physical standpoint, as well. The cy-
cle that is most likely to induce oscillations appears to
consist of an alpha decay followed by successive ~n, g!
and b� reactions. An example of this kind of loop is the
transition cycle resulting from the alpha decay of 242Cm.
The decay constant of this reaction is of order 10�8 10s
~half-life 162 days!, and in a thermal reactor operating at
full power, the corresponding cycle typically induces three
pairs of complex eigenvalues with imaginary parts of
order �10�8.

The shortest half-lives encountered in reactor calcu-
lations are generally of the order of milliseconds, al-
though there are some even more short-lived nuclides.
The half-lives corresponding to neutron-induced reac-
tions are considerably longer. In a thermal reactor oper-
ating at full power, most of the transmutation coefficients
are of order �10�8 10s, and they are even smaller in a
fast reactor. Therefore, it can be expected that the imag-
inary parts of the burnup eigenvalues are at most of this
order. For every burnup matrix that we have considered,
this has also been the case. When the power level is
decreased, the transmutation coefficients become smaller.
In this case the absolute values of the imaginary parts of
the eigenvalues decrease as well. It seems that the oscil-
lations are most likely to occur for reduced power cases
where the greatest transmutation coefficients are of or-
der �10�12. In general, the eigenvalues of the burnup
matrix appear to remain bounded near the negative real
axis in all conceivable burnup calculation cases. This
observation is exploited in the construction of the matrix
exponential method, whose framework is considered in
Sec. IV.

III. ESTABLISHED METHODS

III.A. Approximation near Origin

The most obvious approach is to calculate the ex-
ponential directly from the definition ~4! using a trun-
cated Taylor series. This approximation is naturally most
accurate near the origin, so it is ill-suited for burnup

calculations, where the matrix norm 7At 7 can become
arbitrarily large. In some cases even increasing the num-
ber of terms does not improve the approximation be-
cause of the accuracy limitations in the computer
arithmetics.1 The accuracy of the series method can be
improved by using the method of scaling and squaring,
which is based on the identity

eAt � ~eAt0m !m , ~6!

where m can be taken as a power of two, m � 2k , so that
the norm 7A0m7 becomes sufficiently small. The trun-
cated series is then calculated for the scaled matrix, and
the result is squared by repeated multiplications. The
accuracy of this technique may be compromised, if the
elements of eAt grow before they decay, as t increases.
Numerical problems are faced when this so-called “hump”
is located between t0m and t ~Ref. 1!. The series method
with scaling and squaring is implemented in the ORI-
GEN code6 by excluding short-lived nuclides from the
burnup matrix and treating them separately.

The most well-established method for calculating
the matrix exponential is probably the rational Padé ap-
proximation with scaling and squaring. For example, the
matrix exponential function expm in MATLAB is based
on this approach. Although this method generally out-
performs the truncated Taylor series approach, it shares
the requirement of 7At 7 remaining relatively small.1 Ac-
cordingly, numerical problems are faced when 7A7 �� 1
and t ; 106 s, both of which are plausible values in the
context of burnup calculation.

III.B. Krylov Subspace Approach

Various Krylov subspace algorithms are currently
very popular, and they have also been recently applied to
burnup calculations.7 In this framework, the original large
and sparse matrix A is projected to a lower-dimensional
Krylov subspace, and the matrix exponential is then
calculated using the series method or the Padé approxi-
mation. The projection can be carried out with the well-
known Arnoldi iteration, which results in m iteration steps
to the partial Hessenberg reduction

AQm � Qm Hm � hm�1, m qm�1 em
T , ~7!

where Qm � R
n�m is orthogonal, Hm � R

m�m is a Hes-
senberg matrix, and m � n. The matrix exponential so-
lution can then be approximated as

eAtn0 	 7n07Qm eHm te1 . ~8!

This approach appears to be suitable for burnup problems
because Krylov subspace methods tend to approximate bet-
ter the eigenvalues located in the outermost part of the spec-
trum. These eigenvalues related to the short-lived nuclides
are the ones that cause difficulties in most algorithms.
Yamamoto, Tatsumi, and Sugimura7 calculated the ma-
trix exponential using Krylov subspace techniques and
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diagonal Padé approximation with EXPOKIT ~Ref. 8!.
They reported promising results in the case where the short-
est half-life is ;30 s ~106Rh!. In this case the burnup ma-
trix norm was approximately 7A7	 2.3 �10�2 .

The m-dimensional Krylov subspace approximation
of the matrix exponential is mathematically equivalent
to approximating eAtn0 with a polynomial of degree
m � 1 that interpolates the exponential function in the
Hermite sense at the eigenvalues of the Hessenberg ma-
trix according to their multiplicities.9 Consequently, it is
evident that the approximation does not work well if
the eigenvalues lie far apart from each other, even if the
dimension of the subspace is increased. Therefore, the
burnup time step must usually be split into smaller sub-
steps in order to keep the eigenvalues located closer to
each other.

Selecting the time step is probably the most chal-
lenging issue in applying the Krylov subspace approach.
Most error estimates are derived from those of truncated
Taylor series,9,10 which leads to highly pessimistic esti-
mates and accordingly impractically short time steps when
7A7 �� 1 and t ;106 s. We found that in such cases error
estimation based on the concept of generalized residu-
al11 gave the most realistic results. However, even when
the time step is chosen to be as large as possible, the
computation time can easily become prohibitively long.
Based on our experiments, it seems that the Krylov sub-
space approximation alone is not practical for burnup
calculations when 7A7 �� 1. However, if the nuclides
with the shortest half-lives are excluded from the burnup
matrix, this approximation could be a viable replace-
ment for mere Padé approximation with scaling and squar-
ing, for example. Numerical examples are presented in
Sec. V.

IV. QUADRATURE FORMULAS AND
RATIONAL APPROXIMATION

As mentioned in Sec. II, the eigenvalues of the burnup
matrix appear to be generally confined to the vicinity of
the negative real axis R

�. This observation is exploited
in the matrix exponential method that is described in
detail in this section.

IV.A. Relation to Contour Integrals

By the Cauchy integral formula, the solution of sys-
tem ~2! can be represented as a contour integral,

n~t ! � eAtn0 �
1

2pi
�

G

ez~zI � At !�1n0 dz , ~9!

where G is a closed contour winding once around the
spectrum of At. The resolvent of the matrix At can be
written in the form

~zI � At !�1 �
B~z!

det~zI � At !
, ~10!

where

B~z! � z n�1B0 � z n�2B1 � {{{ � zBn�2 � Bn�1 ~11!

with B0, B1, . . . , Bn�1 matrices with constant elements.12

It follows that every element of the resolvent is a proper
rational function of z with the same denominator poly-
nomial det~zI � At !. Hence, the poles of these rational
functions are the eigenvalues of the matrix At, and cal-
culating n~t ! is essentially equivalent to evaluating con-
tour integrals of the form

I �
1

2pi
�

G

ez f ~z! dz , ~12!

where f � O~1! when z r �`, and the singularities of f
are the eigenvalues of At.

Integrals of this type are also encountered in the
context of Laplace transforms, where they are usually
written in the form

G~t ! �
1

2pi
�

G

estg~s! ds �
1

2pi
�

G

ezg~zt�1 !t�1 dz .

~13!

It should be noted that the solution of system ~2! can also
be written as an inverse Laplace transform of the form

n~t ! �
1

2pi
�

B
est~sI � A!�1n0 ds

�
1

2pi
�

B
ez~zt�1I � A!�1t�1n0 dz , ~14!

where B denotes the Bromwich contour running from
�i` to �i`.

IV.B. Rational Approximation

When the contour G lies in the region of analyticity
of f, integral ~12! is independent of G under mild assump-
tions. When all of the singularities of function f are con-
fined to a region near the negative real axis, G can be
widened out to a parabolic or hyperbolic shape in the left
complex plane. Because the integrand will decrease ex-
ponentially, these contour integrals can be efficiently ap-
proximated using numerical methods. These quadrature
formulas can be associated with rational functions whose
poles are the nodes and residues are the weights of the
numerical integration formula. The proof can be found,
e.g., in Ref. 13 and is repeated here.

Let f~u! be an analytic function that maps the real
line R onto the contour G that encloses the eigenvalues
of matrix At. Integral ~12! can then be written
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I �
1

2pi
�

�`

`

ef~u! f ~f~u!!f '~u! du . ~15!

This integral can be approximated by the trapezoid rule
with N points uk spaced regularly on the interval @�p, p#
~chosen here for simplicity! yielding the approximation

IN � ~iN !�1 (
k�1

N

ezk f ~zk !wk � �(
k�1

N

ck f ~zk ! , ~16!

where

zk � f~uk ! ,

wk � f '~uk ! ,

and

ck � �~iN !�1ezkwk � iN�1ezkwk .

By the Cauchy integral formula, this sum can be written

IN �
1

2pi
�

C
r~z! f ~z! dz , ~17!

where r~z! is a rational function of the form

r~z! � (
k�1

N ck

z � zk

~18!

and C is a negatively oriented closed contour that lies
in the region of analyticity of f and encloses all the
poles zk .

Let G ' denote the contour that has the same shape as
G but lies between the contours C and G. Here, f ~z! �
O~1! so that r~z! f ~z! � O~6z 6�1 ! as 6z 6r `. It follows
that the contour C can be deformed to a contour consist-
ing of the union of G ' and a large circular arc with radius
R so that

lim
Rr`

�
CR

r~z! f ~z! dz � 0 . ~19!

This gives the quadrature rule error estimate

I � IN �
1

2pi
�

G '
~ez � r~z!! f ~z! dz , ~20!

which implies that r~z! is a good approximation to ez

near R
�. Therefore, any quadrature formula can be in-

terpreted as a rational approximation. In the same way,
every rational approximation can be viewed as a quad-
rature formula for a contour in the complex plane.

The selection of the contour and quadrature formula
has been studied extensively in the context of inverse
Laplace transforms. For the case where all of the singu-
larities of f lie on the negative real axis, quite impressive
convergence rates have been recently derived.14 For ex-
ample, for a cotangent contour originally suggested by

Talbot,15 a convergence rate O~3.89�N ! can be achieved
by using a trapezoid rule. Of course, it should be kept in
mind that the selection of optimal contour and quadra-
ture formula are related to the singularities of the func-
tion f.

IV.C. Best Rational Approximation

Another approach to rational approximation is to cal-
culate the best approximation on some subset of the com-
plex plane. This approach was made famous by Cody,
Meinardus, and Varga16 in 1969 in the context of ratio-
nal approximation of e�x in @0,`!. Let pk, l denote the
collection of all real rational functions rk, l ~x! of the form

rk, l �
pk~x!

pl ~x!
, ~21!

where pj is a polynomial of degree j or less.
It is known from approximation theory that there

exists a unique [rk, l � pk, l such that

sup
�`�x�0

6 [rk, l ~�x! � ex 6

� inf
rk, l�pk, l

� sup
�`�x�0

6rk, l ~�x! � ex 6� , k � l .

~22!

Establishing this approximation for given k and l is not
easy, but it can be done with the Remes algorithm or the
Carathéodory-Fejér method. It has been shown that this
Chebyshev rational approximation [rk,k converges approx-
imately at the rate 9.3�k ~Ref. 17!. The contour plot of
6ez � [r14,14~�z!6 is shown in Fig. 1, from which it can be
seen that this approximation is remarkably accurate in a
wide region in the left complex plane. From a computa-
tional point of view, it is advantageous that the poles
$u1, . . . , uk % of the rational function [rk,k are distinct, so
that it can be computed as a partial fraction expansion10

[rk, k~z! � a0 � (
i�1

k ai

z � ui

, ~23!

where a0 is the limit of the function at infinity and the
scalars ai are the residues at the poles ui . Therefore, the
values of ai and ui depend on k. Equation ~23! can be
derived by noting that ~ [rk,k � a0 ! � pk�1,k for which the
result readily follows from the residue theorem. It should
be noted that the poles of [rk,k come in conjugate pairs, so
that for a real-valued variable x � R, the computational
cost can be reduced to half:

[rk, k~x! � a0 � Re�(
i�1

k02 ai

x � ui
� . ~24!
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The sets of coefficients for the Chebyshev rational
function [rk,k have been reported for various approxima-
tion orders k, so the implementation of this method is
relatively straightforward. For example, in Ref. 18 the
polynomial coefficients are provided for k � 30. The
partial fraction coefficients ai and ui for each value of k
can then be calculated from these polynomial coeffi-
cients with the help of a polynomial root finder. The
partial fraction coefficients for the cases k � 10 and k �
14 have been directly given in Ref. 10. They can also be
computed with the Carathéodory-Fejér method for k �
14 with good accuracy, and there is a MATLAB script
provided for this purpose in Ref. 13.

Interestingly, the Chebyshev rational approximation
[rk,k can also be interpreted as a quadrature formula for a

contour integral of type ~12!, so the error estimate ~20!
remains valid.13 This suggests that the rational approxi-
mation could be used for computing the matrix exponen-
tial eAt when the eigenvalues of At are located near the
negative real axis. This has also been experimentally
verified.9 From this point of view, the accuracy of the
approximation is affected by the magnitudes of the imag-
inary parts of the eigenvalues of A as long as the eigen-
values remain within the integration contour. However, if
the eigenvalues fall outside the contour, Eq. ~20! is no lon-
ger valid, and this method may yield poor results.

The Chebyshev rational approximation has previ-
ously been only occasionally used in scientific applica-
tions involving self-adjoint and negative semidefinite

matrices.8,16,19 Equation ~20! implies, however, that this
approximation is also applicable to non-Hermitian ma-
trices with eigenvalues near R

�. The formal conver-
gence analysis of this special case forms an interesting
future research topic.

For the burnup system ~2!, the matrix exponential
solution based on the Chebyshev rational approximation
[rk,k can be computed as

n~t ! � eAtn0 	 [rk, k~�At !n0

� a0 n0 � Re�(
i�1

k02

~ui I � At !�1ai n0� , ~25!

where the last form follows directly from Eq. ~24! by
replacing x with �At. Using this formula, the concentra-
tion vector can be calculated simply by solving k02 sparse
linear systems. When the burnup matrix is formed by
indexing the nuclides in ascending order with respect to
their mass number, these systems can be solved effi-
ciently by first calculating the symbolic lower-upper ~LU!
factorization of A ~Ref. 20! and then performing a Gauss-
ian elimination on this factorization.21 The structure of a
typical large burnup matrix generated in this manner is
shown in Fig. 2.

It should be noted that this approximation is ideally
suited for decay transmutation calculations, where the
absence of closed cycles in the transition chains confines
all eigenvalues of the decay matrix to lie strictly on the

Fig. 1. Contour plot of 6ez � [r14,14~�z!6.
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negative real axis. Another fact worth noticing in Eq. ~25!
is that the order of the approximation can be adjusted
according to needs for accuracy without significant im-
pact on the computational cost as the amount k02 of
sparse matrix inversions is directly proportional to the
order k of the approximation. However, it should be kept
in mind that a rigorous mathematical analysis concern-
ing the convergence properties of this approximation for
other than self-adjoint negative semidefinite matrices has
not been performed.

V. NUMERICAL RESULTS

The different matrix exponential methods and the
TTA method were compared to each other by applying
them to several burnup matrices. The two cases pre-
sented here can be thought to represent the extreme
cases—in terms of matrix size and norm—that were en-
countered, and they were chosen for evaluating the per-
formance of the different matrix exponential methods.

Both test cases represent an infinite pressurized wa-
ter reactor ~PWR! pin-cell lattice in which the fuel has
been irradiated to 25 MWd0kg U burnup. Test case 1
was formed by selecting only the most important acti-
nides and fission products in the calculation, totaling
219 nuclides ~41 actinides, 178 fission products and light
nuclides!. For this case the matrix norm is sufficiently

small, 7A7	 7.3 � 10�4 , so that 7At 7	 7.9 � 103. This
case is a simplification of test case 2, which contains
1532 nuclides ~75 actinides, 1457 fission products and
light nuclides!. The burnup matrix norm for this case is
approximately 7A7	 2.8 �1021 so that the norm of At is
of order 1028. The time step in both test cases was 125 days
corresponding to 5 MWd0kg U burnup.

The TTA results were obtained directly from the Ser-
pent code, and the Chebyshev rational approximation
method ~CRAM! of order k � 14 was implemented as a
separate C code that was later added to Serpent. This
order for the Chebyshev approximation was chosen be-
cause it is generally considered sufficiently accurate22

and because the partial fraction coefficients for this case
are conveniently listed in Ref. 10. The Krylov subspace
approximation with adaptive time step and subspace di-
mension selection was implemented as a MATLAB script.
Finally, the standard MATLAB function expm was used
for the Padé approximation with scaling and squaring.

The numerical results for test case 1 are shown in
Fig. 3, from which it can be seen that all results are in
good accordance with each other. In particular, the Padé
approximation, the Krylov subspace method, and CRAM
give almost identical results for this case, as can be seen
from Fig. 4, where the absolute values of the relative
differences are plotted. For example, the largest relative
difference between the Chebyshev and Padé approxima-
tion solutions is ;0.00068% for the concentration of
252Cf, for which N ' 2.17 � 10�19 ~b cm!�1.

The nuclide concentrations in test case 2 are shown
in Fig. 5. The Krylov subspace method could not be
applied to this case because the time step selection based
on local error estimation became practically impossible.
The Padé approximation also faced severe numerical prob-
lems producing completely unrealistic results, as can be
seen from Fig. 5. On the other hand, the solutions calcu-
lated with the TTA method and CRAM are consistent to
the same degree as in test case 1. The comparison be-
tween these numerical results for the most important nu-
clides is presented in Table I.

The small differences between the TTA and the
CRAM solutions can be attributed to the fact that the
closed cycles are terminated in the current implementa-
tion of the TTA method. This is supported by the fact
that all the concentrations calculated with CRAM are
slightly greater, as can be physically expected consider-
ing that the feedback transitions are ignored in the TTA
calculation. Also, the largest differences occur for nu-
clides for which the closed transition cycles are signifi-
cant. In test case 1, for example, the largest relative
difference, 0.84%, occurs for the hydrogen isotope 3H,
which forms one strongly connected component with the
nuclides 1H, 2H, and 3He.

As is pointed out in Sec. IV, the accuracy of CRAM
depends on the magnitudes of the imaginary parts of the
eigenvalues of At. In this test case the power density in
the fuel was 40 kW0kg U, which results in a neutron flux

Fig. 2. The structure of the burnup matrix in test case 2
described in Sec. V. The nuclides have been indexed in ascend-
ing order with respect to their mass number. The result is that
the nonzero elements are concentrated around the diagonal
with fission product distributions on the right side.

146 PUSA and LEPPÄNEN

NUCLEAR SCIENCE AND ENGINEERING VOL. 164 FEB. 2010



Fig. 3. Nuclide number densities for test case 1. Number densities smaller than 10�30 ~b cm!�1 have been omitted. ZA �
1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.

Fig. 4. Absolute values of the relative differences between the results calculated by CRAM, Padé approximation, and the
Krylov subspace method. ZA � 1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.
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of 1.5 � 1014 10~cm2 s! producing transmutation coeffi-
cients, most of which are of order �10�8 10s. The imag-
inary parts of the eigenvalues were correspondingly of
the same order. The time steps in the burnup calculation
generally vary from a few days at the beginning of the
irradiation cycle to a few hundred days at the end. The
time step used here was 125 days, which is of the same
order as the practical maximum time step. Time steps
greater than this would significantly violate the assump-
tion of constant transmutation coefficients during each
step. Therefore, even better convergence can be ex-
pected for shorter time steps.

Based on these observations, it seems that the CRAM
method is capable of providing robust and accurate so-
lutions regardless of the burnup matrix size or norm. The
method is also computationally remarkably effective. The
computation time for test case 2 involving a 1532 �
1532 matrix was only 0.1 s on a 2.6-GHz AMD Opteron
CPU. The corresponding computation time for the TTA
calculation was ;26 s. To further illustrate the effi-
ciency of the CRAM method, it was compared to the
TTA solution method using Serpent in a burnup calcula-
tion for a PWR fuel assembly with burnable absorber.
The total number of depleted materials was 65, the ir-
radiation history was divided into 42 steps with predictor-
corrector calculation, and a total of 3 million neutron
histories were run for each Monte Carlo simulation. The
overall running time with TTA was 18.5 h, and using

CRAM this was reduced to just over 13 h, which can be
considered a significant improvement.

When computing the CRAM solution, most of the
computation time is spent inverting the sparse matrices
of Eq. ~25!. As pointed out in Sec. IV, the structure of the
burnup matrix is crucial to the effectiveness of the solu-
tion scheme. In comparison to a random nuclide order,
indexing the nuclides according to their mass number
led to a computational speedup factor of 40 in test case 2.
The corresponding ordered matrix is illustrated in Fig. 2.
In this case, the sparse systems can be solved accurately
and effectively by first calculating the symbolic LU fac-
torization and then performing a Gaussian elimination
on this factorization.

VI. CONCLUSIONS

The magnitude of the transmutation and decay con-
stants of different nuclides vary extensively, which makes
calculating the matrix exponential challenging in the con-
text of burnup calculations. Short-lived nuclides are es-
pecially problematic because they can increase the matrix
norm and induce eigenvalues with absolute values up to
order 1021.

We approached this problem by examining the char-
acteristics of the eigenvalues of the burnup matrix. Based

Fig. 5. Nuclide number densities in test case 2. Number densities smaller than 10�30 b�1 cm�1 have been omitted. ZA �
1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.
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on our experiments and physical reasoning, it seems that
these eigenvalues are generally confined to a region near
the negative real axis. The somewhat obscure fact that
the CRAM technique can be interpreted as a numerical
contour integral in the left complex plane led us to con-
duct further experiments with very promising results.
We compared this approach with more established ma-
trix exponential methods and the TTA method in solving
the burnup equations. Our results imply that the CRAM
solution scheme is well-suited for burnup calculation,
where it outperformed the more conventional matrix ex-
ponential methods in terms of computational accuracy

and efficiency. Unlike the previously applied matrix ex-
ponential methods, CRAM can readily treat the short-
lived nuclides simultaneously with the long-lived nuclides.
In addition, the practical maximum time step value can
be used in CRAM without compromising the computa-
tional accuracy.

For evaluating the matrix exponential methods, we
constructed two representative test cases. Test case 1 was
designed to be well-behaved in terms of the burnup ma-
trix size and norm ~ @A# 	 200 � 200, 7A7; 10�4 !, and
test case 2 was designed to be pathologically difficult
~ @A# 	 1500 � 1500, 7A7; 1021 !. In test case 1, which

TABLE I

A Comparison of the Numerical Results Computed Using CRAM and the TTA Method for the Most Important Nuclides

Case 1 Case 2

Nuclide

Concentration,
CRAM

~b�1 cm�1 !

Relative Difference
to TTA

~%!

Concentration,
CRAM

~b�1 cm�1 !

Relative Difference
to TTA

~%!

Actinides
234U 4.5718 � 10�6 5.4633 � 10�5 4.5632 � 10�6 5.5873 � 10�5

235U 3.0456 � 10�4 7.3299 � 10�5 3.0738 � 10�4 8.0322 � 10�5

236U 6.7457 � 10�5 2.4295 � 10�5 6.7627 � 10�5 2.6525 � 10�5

238U 2.1423 � 10�2 2.5090 � 10�5 2.1413 � 10�2 2.7600 � 10�5

239U 1.2933 � 10�8 2.5083 � 10�5 1.3510 � 10�8 2.7595 � 10�5

237Np 4.3857 � 10�6 3.2838 � 10�5 4.4366 � 10�6 4.2891 � 10�5

239Np 1.8656 � 10�6 2.4399 � 10�5 1.9488 � 10�6 2.6853 � 10�5

238Pu 7.5350 � 10�7 2.8311 � 10�5 7.8289 � 10�7 4.7964 � 10�5

239Pu 9.1938 � 10�5 6.6197 � 10�5 9.5985 � 10�5 7.0639 � 10�5

240Pu 2.9316 � 10�5 3.9718 � 10�4 2.9007 � 10�5 4.6375 � 10�4

241Pu 1.5002 � 10�5 3.9580 � 10�4 1.6400 � 10�5 4.5646 � 10�4

242Pu 3.2839 � 10�6 1.3219 � 10�4 3.5014 � 10�6 1.5190 � 10�4

241Am 2.3450 � 10�7 1.2989 � 10�4 2.5499 � 10�7 1.6080 � 10�4

242Am 7.9173 � 10�10 1.3073 � 10�4 8.6280 � 10�10 1.6164 � 10�4

243Am 3.1046 � 10�7 4.7632 � 10�5 3.4995 � 10�7 5.4590 � 10�5

242Cm 6.2763 � 10�8 4.7059 � 10�5 6.8238 � 10�8 6.1609 � 10�5

244Cm 3.9601 � 10�8 9.7363 � 10�5 4.8298 � 10�8 1.0704 � 10�4

Fission products
and light nuclides

3H 5.2271 � 10�8 8.4335 � 10�1 5.2535 � 10�8 8.2818 � 10�1

95Mo 1.6225 � 10�7 7.4205 � 10�6 1.9623 � 10�5 8.6482 � 10�6

99Tc 2.9344 � 10�9 1.0370 � 10�5 2.5379 � 10�5 2.1573 � 10�5

103Ru 6.2905 � 10�11 5.7469 � 10�5 2.3941 � 10�6 8.4875 � 10�5

109Ag 7.7335 � 10�13 1.1614 � 10�3 1.8199 � 10�6 1.3940 � 10�4

135Xe 2.7013 � 10�9 4.9536 � 10�4 7.2419 � 10�9 5.6080 � 10�4

133Cs 8.2702 � 10�9 3.2331 � 10�5 2.6399 � 10�5 6.5866 � 10�5

143Nd 3.4130 � 10�8 4.3039 � 10�5 1.9255 � 10�5 6.6319 � 10�5

145Nd 1.7186 � 10�11 2.3102 � 10�4 1.6098 � 10�5 1.2200 � 10�4

147Sm 1.7783 � 10�10 1.6831 � 10�5 1.0618 � 10�6 1.3204 � 10�5

149Sm 5.2676 � 10�12 2.0827 � 10�4 6.6335 � 10�8 4.3958 � 10�3

150Sm 3.2992 � 10�10 8.6619 � 10�5 5.3727 � 10�6 3.4225 � 10�4

151Sm 2.0391 � 10�9 4.2694 � 10�4 3.1044 � 10�7 5.6033 � 10�3

152Sm 9.3582 � 10�9 3.3607 � 10�4 2.5405 � 10�6 8.8872 � 10�4

153Eu 4.3027 � 10�9 1.2505 � 10�4 1.8654 � 10�6 3.8255 � 10�3

155Gd 1.0272 � 10�12 1.0841 � 10�1 6.4533 � 10�10 1.4526 � 10�2
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was well within the applicability domain of each tested
method, the Padé approximation and CRAM gave virtu-
ally identical results. The results obtained with the Kry-
lov subspace matrix exponential method were close, as
well. The system was also solved using the TTA method,
which gave coherent results. In test case 2, however, all
other matrix exponential methods suffered a breakdown,
but the results obtained with CRAM remained consistent
with those given by the TTA method to the same degree
as in the first test case.

Our motivation for the research was the prospect of
incorporating a matrix exponential method in the burnup
calculation routine of the Serpent code. Based on our
positive results, CRAM was added to the code with com-
putational speedup as one of the key improvements.
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