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Abstract

One of the largest and best characterized fracture toughness data sets is the so called Euro data set developed in a
European co-operation project some time ago. Probably the most objective analysis of the data set was made using a
distribution comparison method. Recently, an improvement of the method has been achieved by combining the Rank
probability estimates with Binomial probability estimates. The combination of Rank and Binomial probability
estimates double the number of independent individual point estimates, making the overall estimate more accurate
with respect to the true value. The strength in this statistical analysis method lies in the objectiveness of the result.
This new statistical assessment method is here applied to analyze the Euro fracture toughness data set once more. The
results form a new basis for micro-mechanistic modeling of cleavage fracture.

© 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
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1. Introduction

Cleavage fracture is controlled by a minute volume element of the order of one micrometer. This leads
to a pronounced scatter. The assessment of fracture toughness data requires thus a statistical assessment.
However, most statistical analysis methods like least-square fitting or maximum likelihood make some
assumption regarding the underlying distribution. If the underlying distribution is un-known the use of
some distribution free assessment method is preferable to standard fits. Here the combination of two
different distribution free assessment methods is shown to produce good descriptions of the data scatter.
The methods can be used to determine which kind of distribution is most appropriate for the data or they
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can be used directly to develop statistically defined lower and upper bound estimates without requiring
knowledge of the actual distribution. The two methods are the Rank probability and Binomial probability
methods. The Rank probability, shown in figure 1a, corresponds to the probability that, for a data set
ordered by rank, the ith value is equal to or less than xi. The Binomial probability, shown in figure 1b,
corresponds to the probability that, for a data set ordered by rank, the lowest i values are equal to or less
than xi. The definition may appear similar, but they do contain two significant differences. First, the Rank
probability is connected to a specific test result, whereas the Binomial probability is connected to some
freely chosen criterion xi.  Second,  the  Rank  probability  exists  for  the  values  i  =  1…n,  whereas  the
Binomial probability exists for the values i = 0…n. These differences makes the methods well suitable to
provide two independent descriptions of the data scatter as will be described in the following analysis.

Nomenclature

B0 normalisation thickness defined in standard ASTM E1921

i, j order numbers

KJC elastic plastic fracture toughness based on J-integral

Kmin theoretical lower bound fracture toughness defined in standard ASTM E1921

M specimen measuring capacity criterion defined in standard ASTM E1921

n total number of data values

nf number of fractured values

ns number of survived values

P cumulative probability

PB Binomial probability

PB0.5 median Binomial probability estimate

Pconf confidence level

Prank cumulative Rank probability corresponding to Pconf

Prank0.5 median Rank probability estimate

P{X=i} probability that number of fractures (X) is equal to i

T temperature

T0 transition temperature defined in standard ASTM E1921

xi parameter value corresponding to location i

j censoring parameter

n sum of ns and nf

nf total number of fractured values

ns total number of survived values
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Fig. 1. (a) Rank probability represents the probability that the ith rank ordered value is equal to or less than xi; (b) Binomial
probability represents the probability that the lowest i values are equal to or less than xi.

1.1. Rank probability

Rank probability is a popular way of analyzing intermediate size data sets visually. Since all test
results represent individual random probabilities, they follow the rules of order statistics (See e.g. [1]).
When test results are ordered by rank, they can be designated Rank probabilities, which describe the
cumulative probability distribution. Each data point corresponds to a certain cumulative failure
probability with a certain confidence. This can be expressed in a mathematical form based on the
binomial distribution as discussed e.g. in [2]. The estimation requires the solving of Prank for  a  specific
Pconf and this makes the estimation somewhat cumbersome. Due to the slight inconvenience in using the
exact solution, people usually prefer to use simple approximations of the median (Pconf = 0.5) or the mean
Rank probability estimate. One of the most accurate analytical simple median Rank probability estimates
has the form given in Eq. (1) (See e.g. [2]).

rank0.5
i 0.3P
n 0.4

(1)

Eq. (1) can only be used, as such, for data sets were all results correspond to failure. It can also be used
with data sets where all values above a certain value has been censored e.g. due to non-failure or
exceeding the measuring capacity limit, but in this case the data set size, n, must refer to the total data set
including the censored data.

If the data set contains non-censored failure results at higher values than the lowest censored value, a
method of random censoring (often called the suspended items concept) is needed. In this case the order
number, i, in the rank estimation do not remain an integer. The effective order number can be expressed
in the form of Eq. (2) [2]. The censoring parameter j is zero for censored data and one for non-censored
data. Even though Eq. (2) is used on all values, only the non-censored values may be used in the resulting
analysis.

j 1 j
j

j

n 1 j i n 1
i

n 1 j
(2)
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1.2. Binomial probability

The binomial distribution shown in Eq. (3) is often used in proof type testing, where a certain fraction
of results fail a certain value. It gives the probability that there are exactly i events in a set of size n, when
the discrete probability of the event is equal to PB.

n ii
B B

n
P X i P 1 P

i
(3)

The problem with Eq. (3) is that the probability of the event (PB)  is  assumed  to  be  known.  In  a
situation where n tests have been made and r events have been found, the question is reversed to what the
discrete probability (PB) may be with some confidence (Pconf). A cumulative probability expression for the
confidence can be written, similarly to the Rank probability expression.

The median Binomial probability estimate PB0.5 can also be expressed in a simple analytical form
analogous to the median Rank probability estimate in the form of Eq. (4).

B0.5
i 0.684P
n 1.368

(4)

Censored data values can be used as un-censored when the censored value is higher than the criterion
used for PB, otherwise the value is disregarded. This is described in more detail in the following analysis.

2. The Euro fracture toughness data set

One of the best documented cleavage fracture toughness data sets is the so called Euro fracture
toughness data set [3]. The data, excluding the inhomogeneous sub-plate X9, is shown in figure 2.
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Fig. 2. The Euro fracture toughness data set excluding specimens from sub-plate 9X [6].
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The Rank probability analysis is straightforward. The data for each separate temperature is simply
ordered by rank and the Rank probability is obtained from Eq. (1). The resulting Rank probability
description is shown for the 12.5 mm specimens in figure 3a. For each temperature it  is from the figure
simple to determine KJC values corresponding to desired probabilities. This way one obtains T - KJC data
pairs corresponding to a specific probability, without having to make any assumptions regarding the
underlying distribution. It is of course also possible to fit a specific distribution to the whole data set
shown in figure 2 or to find a relation that would collapse the different probability traces into one curve.
An exercise like this has been previously done for the EURO data set [4]. In this work only three different
probability levels are considered (5 %, 50 % and 95 %).

The estimation of the Binomial probability is more complicated than of the Rank probability. For the
estimation it is best to write the data in the form of ns including all results above the selected fracture
toughness level for the specific temperature or temperatures below, nf including all values corresponding
to fracture toughness below the selected fracture toughness level for the specific temperature or
temperatures above and n as the sum of ns and nf. nf represents i and n represents n in Eq. (4). The
treatment of censored values is simple. The censored value may contribute to ns but not to nf. The
resulting probability diagram for the 12.5 mm specimens is presented in figure 3b. Similarly as for the
Rank probability diagram, it is possible to fit a specific distribution to the data or to try to collapse the
data into a single trend. Here, only three different probability levels are considered (5 %, 50 % and 95 %).
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Fig. 3. Rank (a) and Binomial (b) analysis of the 12.5 mm C(T) data.

3. Discussion

Figure 4 shows the combined estimates for the 5 % 50 % and 95 % probabilities for all specimen sizes.
As seen from the figure, the two different estimates complement each other very well. Free hand fits to
the three probability estimates are compared with the result of a standard ASTM E1921 Master Curve fit
to  the  data  shown in  figure  2.  Within  the  validity  window of  the  Master  Curve,  the  Rank and Binomial
probability based estimates have nearly perfect correspondence with the Master Curve fit. The 100 mm
specimens indicate a smaller scatter than predicted by the Master Curve. This may be partly due to the
scarce number of data values in the Master Curve temperature validity region. Above the measuring
capacity limit the Rank and Binomial probability based estimates for 50 % and 95 % probability begin to
rise above the Master Curve. This is due to a loss of constraint in the specimens. The 5 % estimates rise
above the Master Curve at a lower fracture toughness level. This is indicative that in this region, the
simple assumption of a constant lower bound fracture toughness, close to 20 MPa m, is no longer valid.



6 Kim Wallin/ Procedia Engineering 00 (2011) 000–000

-160 -140 -120 -100 -80 -60 -40 -20 0 20
0

100

200

300

400

500

600

ASTM E1921 Master Curve

estimates for T
0
 = -93

o
C

Open point = Rank estimate
Filled point = Binomial estimate

95 %

50 %

5 %

C(T) 12.5 mmK JC
 [M

Pa
m

]

T [oC]

M = 30

-160 -140 -120 -100 -80 -60 -40 -20 0 20
0

100

200

300

400

500

600

M = 30

C(T) 25 mm

Open point = Rank estimate
Filled point = Binomial estimate

50 %

95 %

K JC
 [

M
Pa

m
]

T [oC]

5 %

ASTM E1921 Master Curve

estimates for T
0
 = -93

o
C

E1921 validity range

-160 -140 -120 -100 -80 -60 -40 -20 0 20
0

100

200

300

400

500

600

700

800

900

M = 30

5 %

50 %

95 %

ASTM E1921 Master Curve

estimates for T
0
 = -93oC

Open point = Rank estimate
Filled point = Binomial estimate

C(T) 50 mm

K JC
 [

M
Pa

m
]

T [oC]

-100 -80 -60 -40 -20 0 20
0

100

200

300

400

500

600
M = 30

ASTM E1921 Master Curve

estimates for T
0
 = -93oC

95 %

50 % 5 %

Open point = Rank estimate
Filled point = Binomial estimate

C(T) 100 mm

K JC
 [M

Pa
m

]

T [
o
C]

Fig. 4. Resulting combined estimates for the 12.5 mm (a), 25 mm (b), 50 mm (c) and 100 mm (d) C(T) data.

The results can be used for a direct comparison of different size/type specimens similarly to what was
done using distribution comparison (Q-Q plots) for the same data set [5]. The method is not restricted to
fracture toughness data. It can be applied to any data expressed in the form of two parameters.
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