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Preface

The work described in this publication has been carried out in VTT Smart Machines, Machin-
ery  and  Environmental  Acoustics  Team.  The  results  were  obtained  through the  UNNO task
(Underwater Noise) of the SEEE project (Ship’s Energy Efficiency and Environment) in the
EFFIMA  programme  (Energy  and  Lifecycle  Efficient  Machines)  of  FIMECC  SHOK  with
funding from Tekes. The programme runs from 2009 to 2013. This report is based on a for-
mer  report  of  this  project  “Foundations  of  acoustic  analogies”  [1],  the  aim of  which  was  to
present the best-known acoustic analogies and derive their equations mathematically in detail.
The aim of this succeeding report is to continue that work to present the most important
commercial programs that use acoustic analogies.

Espoo 1.12.2011

Author
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1. Introduction

This report is based on a former report of this project “Foundations of acoustic
analogies” [1], the aim of which was to present the best-known acoustic analogies
and derive their equations mathematically in detail to clarify their applicability to
calculating acoustic fields generated by flow and motion in flow, and to allow
their applicability to be extended when necessary. The aim of this succeeding re-
port is to continue that work to present the most important commercial programs
that use acoustic analogies, and to present possible further assumptions and exten-
sions of the analogies used by the programs, compared to the original formula-
tions of the analogies.

The acoustic analogies are used to describe the connection between the flow and
the sound field due to the flow, i.e., the dependence of the flow-generated sound
on its causes (sources). In the acoustic analogies, the equations governing the
acoustic fields are rearranged in such a way that the field variable connections
(wave operator part) are on the left-hand side and that which is supposed to form
the source quantities to the acoustic field (source part) is on the right-hand side, as

gLf , (1)

where Lf is the wave operator part containing operator L and field f to be calculat-
ed, and g is the sources for field f. The right-hand side sources have to be known a
priori or the field equation should be solved iteratively the source part becoming
more accurate at every iteration loop. Apart from being based on different field
variables, the various analogies differ from each other also with respect to the
terms in the equations that are defined to form the right-hand side source quanti-
ties and the terms that are defined as belonging to the left-hand side, describing
the behaviour of the field variable. [1]

Lighthill’s analogy is developed for unbounded flows with no static flow outside
the  source  region  and  no  refraction  effects.  Powell’s  analogy  is  an  approximate
version of Lighthill’s analogy. The Ffowcs Williams–Hawkings analogy takes in-
to account moving boundaries and Curle’s analogy takes into account stationary
boundaries. In Phillips’ and Lilley’s analogies, the effects of a moving medium
and the refraction effects are included. In Howe’s and Doak’s analogies, the vorti-
city and the entropy gradients play an important role as sources. The four last
analogies assume that the medium is an ideal gas, so without modifications they
cannot be applied to acoustic fields in liquids. [1]

The aeroacoustic fields are typically calculated with a hybrid two-step approach.
The first step consists of the calculation of the turbulent flow field by some CFD
(Computational Fluid Dynamics) program. This flow field is then used as input
data for source definitions and this data has to be projected to the acoustic source
terms for the CAA (Computational AeroAcoustics) calculations, mapping from
the  fine  CFD to  the  coarser  CAA mesh.  The  acoustic  radiation  is  the  computed
with a CAA program, using as source for the noise generation the acoustic source
terms evaluated from the flow computation. In this kind of hybrid methodology,
no feedback from the acoustic field to the turbulent flow is considered [2].
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The aeroacoustic field can, in principle, be calculated with a direct method, too. In
the direct method, the turbulent flow and the sound generated by it are computed
simultaneously. This is possible because both the flow and the acoustic field obey
the same equations. The drawback of this method is that, because of very different
length scales, it is computationally difficult and expensive inasmuch as it requires
highly accurate numeric. It is feasible only in near-field calculations; the computa-
tional cost becomes prohitive for far-field calculations [3, 15.1.1]. Other draw-
backs of this approach causing numerical difficulties are the much larger extent of
the acoustic field compared with the flow field, the very small energy content of
the acoustic field compared with the flow field, the possibility that the numerical
discretization itself may act as a more significant source of sound than the flow
field that is simulated, and the difficulty of imposing free space boundary condi-
tions appropriate for the acoustics in far-field, at an artificial computational
boundary positioned at a finite distance away from the source region [4].

In the next, the most important commercial programs that use acoustic analogies
are presented. Most of them use the hybrid two-step method, so they need input
data for source definitions from calculations done beforehand by some CFD pro-
gram. The analogies used by the programs are presented. Further assumptions and
extensions of the analogies used by the programs, compared to the original formu-
lations of the analogies, are also presented.

The Möhring’s analogy is presented and its equations are derived in Appendix F
because it is not presented in [1] and it is used in Actran. Also in appendices are
presented the principles of strong and weak forms of solutions for differential
equations, and the principles of the variational and moment methods as weak
forms because they are widely used with FEM models.

In this stage it should be mentioned that there are also CFD programs that directly
generate proper source output for acoustic analogies, e.g., AcuSolve [5] produces
the source terms for Lighthill’s analogy and the Ffowcs Williams–Hawkings
analogy. These kinds of programs are not treated here.

In some references of this report, the perturbation (fluctuating) fields are divided
into hydrodynamic and acoustic fields. In the former report [1] of this project, this
division has not been made and the perturbation fields have been defined to be
equivalent to the acoustic fields. This is due to the fact that they obey just the
same equations and this division is somehow confusing. Further, if sound is de-
fined as pressure fluctuations around the static pressure, as it is normally done, all
perturbation fields are in fact acoustic fields.

In this report it is assumed that the former report [1] is available for the reader so
that  references  to  its  definitions,  formulae  and  results  can  be  utilized  to  support
reading this report. As in the former report, the dyadic notation is used instead of
the  tensor  notation,  although  the  tensor  notation  is  generally  more  widely  used.
This choice was made because, with the dyadic notation, the formulae are, in most
cases, much simpler and more illustrative than with the tensor notation, at least for
the author.
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2. Programs using acoustic analogies

The programs studied and their versions are Actran 12, LMS Virtual.Lab Rev. 9
(LMS SYSNOISE Rev. 5.6), Ansys 13 Fluent and STAR CCM+ 6.02. Also with
Actran, the transforming of the CFD data to CAA program is treated in more de-
tail. Ansys Fluent and STAR CCM+ are actually CFD programs where an acous-
tic analogy has been implemented.

CFD data can be used to define loads to surfaces by some programs, e.g., Actran
[6].  This  is  treated  briefly  in  the  end  of  Section  1.1.  VaOne  has  an  aero-vibro-
acoustic module that can be used to add fluctuating surface pressure loads to
structural subsystems in FEM, hydrodynamic boundary conditions in BEM, and
data for fitting Corcos turbulent boundary layer model parameters, acoustic radia-
tion into fluid adjacent the surfaces included. Input data is based on time domain
CFD pressure  data  in  formats  of  CGNS (*.cgns),  Star-CD (*.ccm),  IDEAS Uni-
versal (*.unv), Ensight (*.encas) or Fluent CASE (*.case), and the data is trans-
formed into frequency domain before calculation [7, p. 8, 8, pp. 145–165]. These
facilities are not directly involved with the acoustic analogies.

1.1 Actran

1.1.1 Used analogies

Actran uses Lighthill’s analogy for calculating the aeroacoustic fields in a flow-
less  medium and the  Möhring’s  analogy  in  the  case  of  convectional  effects  pre-
sent. The acoustic volume source distributions have to be calculated beforehand
with some CFD program [6, pp. 320–321]. The calculations are based on the FEM
(Finite Element Method) formulation.

The input CFD data in time domain can be generated by Star-CD (*.ccmg,
*.ccmt), Star-CCM+ (*.ccm), Fluent (*.cas, *.dat, *.cdat), Ensight-Gold (*.case),
FINE/Turbo (*.cgns) or TRACE (*.cgns). All versions of the CFD codes do not
produce compatible files to Actran. The aeroacoustic source terms are then calcu-
lated, transformed on the coarser acoustic mesh and transformed into frequency
domain. Acoustic field calculation is then performed in frequency domain. [6, pp.
458–459, 464–465]

With Lighthill’s analogy, the viscous and entropy effects in the volume source
term LT  (Lighthill’s stress dyadic) [1, (5), (6)] are not taken into account, so only
the Reynold’s stress part RT  of  the  dyadic  is  included  in  the  source  term [6,  p.
461]

UUTT RL , (2)

where  is density and U  is the velocity. The Lighthill’s equation is used in the
weak moment method (weighted residual method) formulation (C.7) [6, p. 324].
The weak formulation used needs the density and the normal component of veloc-
ity at boundaries as extra source quantities. These are needed with interfaces be-
tween finite and infinite element domains, vibrating walls and permeable surfaces
(boundaries for the acoustic problem but not for the CFD simulation, e.g., inter-
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face between rotating and static CFD domains). With non-moving boundaries the-
se are not needed [6, p. 461]. The formulation does not use sound pressure as a
field quantity (as used in Appendix C) but a potential function related to the per-
turbation density [6, p. 323]. The weak formulation for the Lighthill’s equation
was first derived by Oberai et al. [9, 10].

With Möhring’s analogy, the entropy variation parts in the volume source term,
see Eq. (F.18), are not included [6, p. 463]. The Möhring’s equation is used in the
weak moment method formulation [6, p. 312]. Also with this weak formulation,
the density and the normal component of velocity at boundaries as extra source
quantities are needed. It is stated in Actran User’s Guide, that the viscous stresses
are accounted in the close vicinity of walls by the boundary integral of the weak
formulation (not in the volume integral) [6, p. 463]. This seems to be the case ac-
cording to Eqs. [6, (23.7), (23.26)]. The derivation of the first equation (23.7) is
not based on the original form of Möhring’s analogy as in Eq. (F.18) [11, 12], but
in the form of Eq. (F.17) which takes the viscous and thermal losses into account
(without entropy variations). However, part of the loss terms, namely fd, where

TKUfd , (3)

where  is the viscous part of the stress dyadic, K is the thermal conductivity
and T is the temperature, is omitted [6, p. 307]. So the viscous losses are not rig-
orously taken into account in the boundary integral.

With Actran it is also possible to use wall pressure fluctuations to load mechani-
cally a structure and to use mean aerodynamic fields in a convected propagation
analysis,  both computed by a CFD code. The same input data formats than with
the acoustic analogies are compatible, and with the convected propagation analy-
sis input CFD data can be generated by I-deas (*.unv), Tecplot (*.tecplot) and
Actran (*.nff, *.dat). [6 , pp. 457–458, 464–465, 482]

Actran DGM is designed for predicting the propagation of tonal engine noise
components in a moving fluid with shear layers and in the presence of acoustical-
ly  lined  ducts,  typically  engine  nacelle  exhausts.  It  has  a  FWH  Utility  after  the
names of Ffowcs Williams and Hawkings. This utility is not involved with the
Ffowcs Williams–Hawkings analogy but only the same notation in frequency do-
main is used to present the sound field by equivalent moving Huygens’ source
surface enclosing a source volume. The physical sources inside the surface can be
monopoles or coupling with acoustic duct modes. Aerodynamic CFD data cannot
be used as sources. [13, pp. 19, 302–304, 321–322, 283]

1.1.2 Transforming CFD results to Actran

Actran has a utility named iCFD that allows, e.g.,  the computation of the aeroa-
coustic sources from CFD data of formely defined CFD codes, for the application
of Lighthill’s or Möhring’s analogies. ICFD can read time domain pressure, den-
sity, velocity and temperature field output of a CFD solver. The same utility is
used for the computation of wall pressure fluctuations and mean aerodynamic
fields. For aeroacoustic calculations, the CFD source data should consist of densi-
ty and velocity for compressible CFD computation and velocity for incompressi-
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ble CFD computation. The aeroacoustic source terms are then calculated in time
domain using oversampling by default at every half CFD time steps to avoid alias-
ing effects during the Fourier transform, and saved in a NFF database. The time
step for oversampling can be defined and should be done, e.g., as one third CFD
time step for compressible CFD computation. The starting and ending times for
iFCD calculation can be defined. The calculated aeroacoustic source terms are the
transformed on the (typically) coarser acoustic mesh by sampling (iCFD identifies
the closest CFD cell to each acoustic node) or by integrating over the CFD mesh
using the shape functions of the acoustic mesh, the latter being the default ap-
proach. Finally the time data in CAA model is transformed into frequency do-
main. Acoustic field calculation is then performed in frequency domain. The pro-
cedure above holds also to wall pressure fluctuation calculations, the CFD pres-
sure data being the starting point in that case. [6, pp. 457–468, 480]

With the convected propagation analysis, the mean velocity, density, pressure,
temperature and speed-of- sound fields from the steady CFD results can be inter-
polated to the acoustic mesh. Also the unsteady CFD results can be used in which
case an average of the mean aerodynamic fields over the available time steps is
first performed. With the regularization process, unmapped points (see definition
a little below) and flow boundary conditions can be accounted. The regularization
process enables to set values at unmapped points based on the mean flow values
in their vicinity. The projected mean flow at selected surfaces is corrected based
on the mean flow in their neighbourhood and the mean flow velocity normal to
the boundary is set to zero by the regularization process, to ensure a correct usage
of the Myers boundary condition. With the regularization process, the quality of
the mapping can be improved when the CFD mesh is coarser than the CAA mesh
by smoothing the mean flow. [6, pp. 480–485]

ICFD can also automatically rotate or translate the CAA model in order to put it
in  the  same  coordinate  system  than  the  CFD  model  [6,  p.  469].  In  the  case  of
coarse CFD surface mesh, it can be artificially refined to improve the quality of
the integration of the surface sources [6, p. 467].

During the projection process, the nodes of the Actran model are localized in the
CFD mesh. For a given node, this involves the identification of the element of the
CFD mesh containing the node and the computation of its local coordinates within
the CFD element. If the node does not belong to any finite element, it is said to be
unmapped. The unmapped nodes can be handled by successive in-plane toleranc-
es. The localization process is first launched using the first planar tolerance. If
unmapped points are detected, the projection process is launched a second time,
on this set of unmapped point, with the second planar tolerance, which should
therefore be less strict than the first one. The tolerance is interpreted as the relative
amount by which the point may be located outside of a CFD element. This itera-
tive  refinement  continues  until  there  are  no  more  unmapped points  or  the  list  of
planar tolerances has been completely used. [6, p. 488]

1.2 LMS Virtual.Lab

LMS Virtual.Lab Aero-Acoustics Modeling uses Lighthill’s analogy for calculat-
ing the aeroacoustic fields of volume distributed quadrupoles, Curle’s analogy for
calculating the fields of surface distributed dipoles, and the Ffowcs Williams–
Hawkings analogy for calculating the fields of distributed fan sources (rotating
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fan). The aero-acoustic volume and boundary source quantities have to be calcu-
lated beforehand with some CFD program. LMS Virtual.Lab then calculates the
resulting radiated field using FEM or BEM technology, including scattering ef-
fects (reflection and diffraction). [14]

The input CFD data can be generated by leading CFD codes (FLUENT, STAR-
CD, STAR-CCM, CFX, Powerflow, CFD++, SkryuTetra, FineTurbo, etc.). The
input data can be either in time domain or in frequency domain and the time do-
main data is first transformed to frequency domain. Data is mapped typically from
the  fine  CFD  to  the  coarser  acoustic  mesh.  The  CFD  and  CAA  meshes  can  be
compatible, have same geometry and different densities, or have different geome-
tries and different densities [14, 15, pp. 5–146, 150–153]. In the present version,
the input data for fan sources has to be specified [15, p. 5–155].

With Lighthill’s analogy, the viscous and entropy effects in the quadrupole source
term LT  (Lighthill’s stress dyadic) in [1, (4), (5), (6)] are not taken into account,
so only the Reynold’s stress part RT  of the dyadic is included in the volume
source term [15, p. 5–124], as with Actran, see Eq. (2). The incident (free) field is
calculated using Green’s functions [1, (F1), last expression] in frequency domain
[15, pp. 5–124, 5–151] and scattered fields due to boundaries are separately in-
cluded in the calculation. Lighthill’s analogy is available in FEM and BEM.

With Curle’s analogy, the Lighthill’s stress dyadic is used as with Lighthill’s
analogy stated above. The viscous effects in the equivalent dipole distribution WSf
in [1, (31), (18)] are not taken into account, so this surface source term, due to
flow, is used as [15, p. 5–125]

nWS epf , (4)

where p is the pressure on the dipole surface, due to flow and calculated by com-
pressible CFD, and ne  is a unit normal vector on the surface pointing towards the
space under consideration. Also incompressible CFD calculations can be used as a
starting point in which case acoustic pressure can be included in the dipole surface
term (4) to take acoustic scattering at the surface into account [16]. The field due
to Lighthill’s stress dyadic is calculated as with Lighthill’s analogy using Green’s
functions in frequency domain. The field of the surface dipole distribution is also
calculated using Green’s functions [1, (F1), second expression] in frequency do-
main [15, pp. 5–125, 5–144]. Curle’s analogy is available in BEM.

With the Ffowcs Williams–Hawkings analogy, the Lighthill’s stress dyadic LT
and the equivalent surface monopole distribution qWS in [1, (13)] are omitted, see
[15, p. 5–137], and the equivalent surface dipole distribution WSf , due to flow, is
as in Eq. (4). So it is assumed that the dipole source part on the impermeable sur-
face [1, (18)] dominates the sound radiation and its viscous part can be omitted.
The analogy can be used for equivalent “rotating dipoles” for predicting the fan
radiated noise at the blade passing frequency and its harmonics [14]. The broad-
band noise is not calculated. The analogy is available in FEM and BEM.
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1.3 Ansys Fluent

Ansys Fluent offers three approaches to computing aerodynamically generated
noise; a direct method, an integral method based on acoustic analogy and a meth-
od that utilizes broadband noise source models [3, 15.1]. With the acoustic analo-
gy, Ansys Fluent calculates the CFD data needed by itself, because it is actually a
CFD program where the acoustic analogy has been implemented.

Ansys Fluent offers a method based on the Ffowcs Williams–Hawkings analogy
[1,  (13)]  with  the  last  term  in  the  right-hand  side  of  the  equation  (effect  of
Lighthill’s stress dyadic) omitted [3, 15.2.1], taking into account only equivalent
surface monopole and dipole sources as in Eqs. [1, (15) & (16)]. The acoustic
field calculations are done in time domain, based on time-accurate solutions of the
flow-field variables. The results can be processed into frequency domain. The cal-
culations can be done only to free space, no external boundaries can be present [3,
15.1.2]. The calculations are based on direct surface integrals based on Farassat’s
formulation 1A of the integral presentation of the Ffowcs Williams–Hawkings
equation using the free space Green’s function [18, 19]. That formulation is based
on equations [1, (24) & (27)] and in the method used the spatial derivatives have
been transformed to temporal ones and the latter are inserted into the surface inte-
grals. The calculation process is essentially a boundary element method (BEM).
The surfaces of integration need not to be physical source surfaces, they can be
any  surfaces  enclosing  source  distributions.  The  effects  of  the  Lighthill’s  stress
dyadic can be taken into account if this distribution is enclosed by the surfaces of
integration [3, 15.1.2].

1.4 STAR-CCM+

STAR-CCM+ offers a method based on the Ffowcs Williams–Hawkings analogy
[17]. With the acoustic analogy, STAR-CCM+ calculates the CFD data needed by
itself, because it is actually a CFD program where the acoustic analogy has been
implemented.

The Ffowcs Williams–Hawkings analogy [1, (13)] is used similarly as with Ansys
Fluent [4].

3. Conclusions

In  this  report  the  most  important  commercial  programs  that  use  acoustic  analo-
gies, and further assumptions and extensions of the analogies used by the pro-
grams, compared to the original formulations of the analogies, are presented. With
Actran and LMS Virtual.Lab, the acoustic source distributions have to be calcu-
lated beforehand with some CFD program. With Ansys Fluent and STAR-CCM+,
the CFD data needed is calculated by the programs themselves, because they are
actually CFD programs where the acoustic analogy has been implemented. All the
programs, presented here, can, in principle, be applied also to acoustic fields in
liquids. The author is not aware about any applications of propeller noise in water.

Actran uses Lighthill’s analogy for calculating the aeroacoustic fields in a flow-
less  medium and the  Möhring’s  analogy  in  the  case  of  convectional  effects  pre-
sent. The calculations are based on the FEM formulation. With Lighthill’s analo-
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gy,  the  viscous  and  entropy  effects  in  the  volume source  term (Lighthill’s  stress
dyadic) are not taken into account, so only the Reynold’s stress part of the dyadic
is included in the source term. With Möhring’s analogy, the entropy variation
parts and the viscous and thermal losses in the volume source term are not includ-
ed.

LMS Virtual.Lab Aero-Acoustics Modeling uses Lighthill’s analogy for calculat-
ing the aeroacoustic fields of volume distributed quadrupoles, Curle’s analogy for
calculating the fields of surface distributed dipoles, and the Ffowcs Williams–
Hawkings analogy for calculating the fields of distributed fan sources (rotating
fan). LMS Virtual.Lab calculates the radiated field using FEM or BEM technolo-
gy. With Lighthill’s analogy, the viscous and entropy effects in the volume source
term (Lighthill’s stress dyadic) are not taken into account, as with Actran. With
Curle’s analogy, the Lighthill’s stress dyadic is used similarly, and the viscous ef-
fects in the equivalent dipole distribution are not taken into account. With the
Ffowcs Williams–Hawkings analogy, the Lighthill’s stress dyadic and the equiva-
lent surface monopole distribution are omitted, and the equivalent surface dipole
distribution is used as in Curle’s analogy.

Ansys  Fluent  and  STAR-CCM+ offer  a  method based  on  the  Ffowcs  Williams–
Hawkings analogy. The analogy is used with the effect of Lighthill’s stress dyadic
omitted, taking into account only equivalent surface monopole and dipole sources.
The calculations are based on free space Green’s function, so the calculation pro-
cess is essentially a boundary element method. The calculations can be done only
to free space, no external boundaries can be present.

4. Summary

Actran uses Lighthill’s analogy for calculating the aeroacoustic fields in a flow-
less  medium and the  Möhring’s  analogy  in  the  case  of  convectional  effects  pre-
sent. The calculations are based on the FEM formulation. LMS Virtual.Lab Aero-
Acoustics Modeling uses Lighthill’s analogy for calculating the aeroacoustic
fields of volume distributed quadrupoles, Curle’s analogy for calculating the
fields of surface distributed dipoles, and the Ffowcs Williams–Hawkings analogy
for calculating the fields of distributed fan sources (rotating fan). The radiated
field is calculated using FEM or BEM technology. With Actran and LMS Virtu-
al.Lab, the entropy variation parts and the viscous and thermal losses in the source
terms are not included. Ansys Fluent and STAR-CCM+ offer a method based on
the Ffowcs Williams–Hawkings analogy. The calculation process is essentially a
boundary element method, only applicable in free space. With all programs using
the Ffowcs Williams–Hawkings analogy, the Lighthill’s stress dyadic, forming
the volume distributed quadrupoles, is omitted. All the programs, presented here,
can, in principle, be applied also to acoustic fields in liquids.
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Appendix A: Principles of strong and weak forms

Strong form

Consider a deterministic problem where field f is governed by a differential equa-
tion

gLf , (A.1)

where L is  the  wave  operator  and g is  the  sources  for  field f. Let the boundary
conditions be presented as

sBf  at boundary, (A.2)

where B is the boundary condition operator
.
The equations above state the field problem in a “strong form” because they have
to be fulfilled in every point in the medium and its boundary.

Weak form

The problem can be defined in a “weak form” if the field equation and the bound-
ary condition are met only in an average sense by considering an integral expres-
sion of a function that implicitly contains the field equation and the boundary
condition [20]. That can be done, e.g., with the variational methods or the moment
methods (weighted residual methods).

The earliest mathematical formulations for finite element models were based on
variational techniques. Variational techniques still are very important in develop-
ing elements and in solving practical problems. This is especially true in the areas
of structural mechanics and stress analysis. The generation of finite element mod-
els by the utilization of weighted residual techniques is a relatively recent devel-
opment (citation from 1986). However, these methods are increasingly important
in the solution of differential equations and other non-structural applications. [21]

In the next, a symmetric inner product of u and v in a volume V is utilized and in a
3-D space it is defined as a volume integral

V

Vuvvu d, . (A.3)

Also an inner product at the boundary surface S of the space is defined as a sur-
face integral

S
S Suvvu d, . (A.4)
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Variational methods

In  the  variational  methods  one  tries  to  form  a  proper  functional J of  the  field
quantities in such a way that the functional is stationary. A functional is a map-
ping from a function to a scalar. A functional is stationary with a function f0 if the
change in the value of the functional, caused by a small change f in the function,
is of the second order. Setting the variation of a stationary functional to zero gives
the field function.

One general functional, the “energy functional”, is suitable for deterministic self-
adjoint problems. It can be presented as [22, 23]

SS BfCfsCfLffgffJ ,),(2,,2)( . (A.5)

Operator C above can be identified from the Green’s second identity

S
aaa

S hBfChLfChBfhLf ,,,, , (A.6)

where h is an other field function and operators with a superscript a are corre-
sponding field operators of the adjoint problem. With self-adjoint problems

CCBBLL aaa . (A.7)

In practice, Eq. (A.6) is obtained and the corresponding operators can be found by
partial integration of term (Lf,h).

In the frequency domain the energy functional is better expressed as

SS BfCfsCfLffgffJ ,),(2,,2)(  , (A.8)

where the asterisk means complex conjugate.

The weak formulation can be further developed by using Green’s identities. By
their  help  the  orders  of  the  spatial  derivatives  can  be  lowered.  This  is  beneficial
because the trial functions need not to have so many continuous derivatives. This
is illustrated in Appendix B for the Lighthill’s equation.

In Appendix B is presented the energy functional in time harmonic field of the
Lighthill’s equation when the boundary is taken into account by velocity bounda-
ry  condition.  In  that  case  the  energy  functional  is  deduced  to  a  form  which  is
composed  of  the  effect  of  the  source  distribution  (Lighthill’s  stress  dyadic),  La-
grangian energy of the field and the work done to the fluid by the boundary vibra-
tion. That is one version of the Hamilton’s principle where the Lagrangian energy
EL plays an important role [24]

UTEL , (A.9)
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where T and U denote, respectively, the kinetic and potential energies of the sys-
tem. According to the Hamilton’s principle among all displacements which satisfy
the prescribed conditions at times t = t1 and t = t2, the actual solution satisfies the
equation

0d
2

1

t

t
ncL tWEJ  , (A.10)

where Wnc is the virtual work done by the non-conservative forces (external
sources, forces and moments, dissipation forces and moments) [20]. The energies
and the virtual work are associated to the whole medium in consideration, so vol-
ume integrations are needed in the Hamilton’s principle. If the equation of the
Hamilton’s principle can be solved analytically, the exact solution of the problem
can be obtained. If this is not the case, e.g., when predetermined functions are
used to seek the solution, only an approximate solution is generally achieved.

In Rayleigh-Ritz method, the field f is approximated with a predetermined set of
shape functions i which are dependent of spatial coordinates

f

N

i
ii Rrtf )()(

1

, (A.11)

where Rf is the error of f, being orthogonal to the set of shape functions. The time
dependent factors i (generalized coordinates) can be calculated from equations
[25]

NjJ
N

i
ii

j

1,0
1

. (A.12)

In order to guarantee convergence to the exact solution, the shape functions must
be linearly independent, be differentiable sufficiently times to be inserted into the
Hamilton’s principle or into another stationary functional, and form a complete set
(the exact solution is approached arbitrarily close by increasing the number of
shape functions) [20].

Moment methods

In the moment methods (method of moments, weighted residual methods) [26] the
weak formulation is done without forming any functionals. Despite of that, some
categorize these methods to the variational methods.

In the moment methods, the differential (or integral) field equation is directly
treated. The field f is approximated with a predetermined set of basis functions
(expansion functions, trial functions) i so that

N

i
iiff

1

. (A.13)
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The residual for the field equation is thus

N

i
ii LgLfLfR

1

. (A.14)

Also a residual for the boundary condition is obtained

N

i
iis BsBfBfR

1

at boundary. (A.15)

Let volume V be the medium under consideration. In the moment methods, a set
of weight functions (test functions) wj (j = 1…N) is selected and the inner product
of the residual with each of the weight functions is demanded to disappear

.1,0,

,,

1

1

NjLwgw

LgwRw

N

i
iijj

N

i
iijj

(A.16)

This gives N equations to solve the unknown factors i. The residual is orthogonal
to the set of the weight functions. Part of the weight functions can be selected to
weight the residual of the boundary condition also. The inner product for the
boundary condition is a surface integral.

The weak formulation can be further developed by using Green’s identities. By
their  help  the  orders  of  the  spatial  derivatives  can  be  lowered.  This  is  beneficial
because the basis functions need not to have so many continuous derivatives. This
is illustrated in Appendix C for the Lighthill’s equation.

The moment methods can further be divided into submethods, based on the selec-
tion of the weight function set. Some of them are presented below.

In the Galerkin method [25, 26, 27, 21], the weight functions are selected to be the
same as the basis functions

jjw . (A.17)

With self-adjoint problems this leads to the same results than the Rayleigh–Ritz
variational formulation [23, 27].

In the least squares method [25, 23], the weight function are selected so that

jj Lw  , (A.18)

and the norm of the residual (R*,R) will be minimized.
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In the collocation method (point-matching method) [25, 26, 21], the weight func-
tions are selected as Dirac delta functions

)( jj rrw , (A.19)

and the residual is thus set to zero at N points.

In the subdomain method [25, 21], the medium under consideration is divided into
subdomains Vj and the weight functions are selected to be pulse functions

j

j
j V

V
w

outside0
inside1

(A.20)

to get the residual to vanish in each subdomain.
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Appendix B: Energy functional of Lighthill’s analogy in frequency
domain

The equation of Lighthill’s analogy is [1, (4) & (3)]

LTp
t
p

c
:1 2

2

2

2 , (B.1)

where p is the sound pressure, c is the local speed of sound in constant entropy, t
is time, and LT is the Lighthill’s turbulence stress dyadic (or traditionally tensor).

In frequency domain the equation is

LTpkp :22 , (B.2)

where k = /c.

The general energy functional (A.8) can be presented for the Lighthill’s equation
by the help of Appendix D as

.ddj2

d)(d:2)( 22

SpepSpv

VpkpVTppJ

n
SS

VV

L

(B.3)

The energy functional can be further developed by the Green’s first identity. By
its  help  the  second  order  spatial  derivatives  can  be  changed  to  first  order  ones.
This is beneficial because the trial functions need not to have so many continuous
derivatives. By the help of Eq. (E.2) we obtain

V

L

S

Ln
V

L VTpSTepVTp d2d2d:2 . (B.4)

Similarly, by the help of Eq. (E.1) we obtain

VS
n

V

VppSpepVpp ddd2 . (B.5)

The energy functional (B.3) can be presented by the help of Eqs. (B.4) and (B.5)
in the following alternative formulae
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,2d2d2

d
j

d
2

1d
2

2

d2d2

dj2dd

d2d2)(

2

2

2

2
2

222

WESTepVTp

SvpVp
c

Vp

STepVTp

SpvVpVpk

STepVTppJ

L
V S

LnL

SVV

V S

LnL

SVV

V S

LnL

 (B.6)

where EL is the Lagrangian energy (difference between kinetic and potential ener-
gies) and W is the work done by the boundary

,
j

j

d

d
2

1

d
2

2
2

2

v

pu

SpW

Vp
c

V

VuT

VTE

S

V

V

L

(B.7)

where T is the kinetic energy, V is the potential energy, u  is the acoustic particle
velocity and  is the normal component of the displacement of the boundary.

The  energy  functional  is  thus  composed  of  the  effect  of  the  source  distribution
(Lighthill’s  stress  dyadic),  Lagrangian  energy  of  the  field  and  the  work  done  to
the fluid by the boundary vibration.
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Appendix C: Weak moment method formulation of Lighthill’s
analogy

The equation of Lighthill’s analogy is [1, (4) & (3)]

LTp
t
p

c
:1 2

2

2

2 , (C.1)

where p is the sound pressure, c is the local speed of sound in constant entropy, t
is time, and LT is the Lighthill’s turbulence stress dyadic (or traditionally tensor).

According to Appendix A, Eqs. (A.16), (A.3) and (A.13), the weak formulation
with the moment method for the Lighthill’s equation is

.

1,0d1:

1

2
2

2

2

N

i
ii

V
j

V

Lj

p

NjVp
t
p

c
wdVTw

(C.2)

This can be presented in a more convenient form by utilizing the Green’s first
identity, Appendix E. By its help the second order spatial derivatives can be
changed to first order ones. This is beneficial because the basis functions need not
to have so many continuous derivatives.

According to Eq. (E.1) one can write

V
j

S
nj

V
j VpwSpewVpw ddd2 . (C.3)

Similarly according to Eq. (E.2)

V

Lj
S

Lnj
V

Lj VTwSTewVTw ddd: . (C.4)

Utilizing Eqs. [1, (5)] and [1, (6)] we have

,I

I
2

2

cpUU

pcpUUpT L
(C.5)

where ´ is the perturbation component of the density , U  is the particle veloci-

ty, I  is the identic dyadic,  is the perturbation component of the viscous part

of the stress dyadic . When there are no mass, force or momentum source dis-
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tributions, and when the sound speed and the static parts of the pressure and the
viscous stress dyadic change not very much as functions of the spatial coordi-
nates, this can be further written according to Eq. [1, (B.4)] as

t
UUU

t
UUUpT L . (C.6)

Inserting Eq. (C.6) into the surface integrals of Eqs. (C.3) and (C.4), and inserting
them into (C.2) we obtain for the final weak formulation with the moment method
for the Lighthill’s equation

.1,dd

dd1
2

2

2

NjS
t
UewVTw

VpwV
t
p

c
w

S
nj

V

Lj

V
j

V
j

(C.7)

All assumptions made in arriving to the equation above are also included in the
derivation of the basic equation of Lighthill’s analogy [1].
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Appendix D: Adjoint Lighthill’s equation in frequency domain

From Eq. (B.2) the Lighthill’s equation can be written in frequency domain as

LTpkp :22 , (D.1)

where k = /c. Now it can be seen that the terms in the general differential equa-
tion (A.1) in the Lighthill’s analogy are

.:

22

LTg

kL
pf

(D.2)

From the second Green’s identity (E.4) we obtain (u = h)

S
n

VS
n

V

ShepVhpSpehVph dddd 22 . (D.3)

Substituting the Laplace operator above by operator L we obtain further

.dd

d

dd

dd

22

22

22

22

S
n

V

V

S
n

V

S
n

V

ShepVhkhp

Vhpkphk

ShepVhkhp

SpehVpkph

(D.4)

If the boundary condition is presented by the normal component of the boundary
velocity v, one obtains from Eq. [1, (B.1)] in frequency domain

vpen j  at boundary S. (D.5)

Now the terms in the general boundary condition are

.vjs
eB n (D.6)

Comparing Eq. (A.6) with definitions (D.2) and (D.6), and Eq. (D.4), one can no-
tice that in this case operator B = 1 and the problem is self-adjoint

1CCBBLL aaa . (D.7)
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Appendix E: Green’s identities in integral forms

Green’s first identity

Consider two scalar functions u and v. Let V be a volume, S its boundary and ne  a
unit normal vector at the boundary pointing outwards the surface, see Figure E1.
By utilizing partial integration and the Gauss’ theorem one can readily write

.dd

ddd2

VS
n

VVV

VvuSveu

VvuVvuVvu
(E.1)

ne

V

S
Figure E1. Volume V, its boundary S and unit normal vector at boundary.

Similarly if the scalar v is replaced by a dyadic V

.dd

dddd:

VS
n

VVVV

VVuSVeu

VVuVVuVVuVVu
(E.2)

Green’s second identity

When u and v are interchanged in Eq. (E.1) we obtain

VS
n

V

VuvSuevVuv ddd2 . (E.3)

Whe Eqs. (E.1) and (E.3) are combined, we obtain the Green’s second identity

S
n

S
n

VV

SuevSveuVuvVvu dddd 22 (E.4)
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Appendix F: Möhring’s analogy

Möhring’s analogy is an enthalpy-based analogy where the stagnation enthalpy B
is used as the basic field quantity. It is here derived mathematically in detail to
clarify what must be assumed and at what stage, to obtain the required equation,
to allow its applicability to be extended when necessary.

To derive the equation for the analogy, we can first manipulate the total time de-
rivative of the stagnation enthalpy according to Eq. [1, (A.8)]

t
UU

t
ST

t
P

t
B

d
d

d
d

d
d1

d
d

, (F.1)

where P is the pressure,  is the density, T is the temperature, S is the entropy, U
is the particle velocity and t is the time variable.

The first term in the right hand side of Eq. (F.1) can be presented by the help of
Eqs. [1, (2)] and [1, (B.1)] as

TFU
t

UU
t
PPU

t
P

t
P 1

d
d11

d
d1

, (F.2)

where U  is the particle velocity,  is the viscous part of the stress dyadic, F  is
the strength of the force source distribution (dipole distribution + gravitation), and
T  is the strength of the momentum source distribution (quadrupole distribution),
see [1].

The second term in the right hand side of Eq. (F.1) can be presented by the help of
the entropy version of the energy equation [1, (D.1)] as

t
TKE

t
ST

d
d:1

d
d , (F.3)

where S is the entropy, E  is the rate-of-strain dyadic, K is the thermal conductivi-
ty of the fluid and  is the energy per unit volume delivered by the heat source dis-
tribution, see [1].

The first term in the parenthesis of the right hand side of Eq. (F.3) can be further
presented by the help of Eqs. [1, (B.3)] and [1, (R.16)] as

UUUUUE ::: T2
1 , (F.4)

where also the symmetry of the dyadic  has been utilized, in which case
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TTT ::: UUU , (F.5)

where subscript T outside the brackets ( ) means that the dyadic inside the brack-
ets is transposed.

Inserting Eq. (F.4) into Eq. (F.3) and then inserting Eqs. (F.3) and (F.2) into Eq.
(F.1) multiplied by  one obtains

,

d
d

d
d

d
d

d
d

dsf
t
P

t
UU

t
TKUU

TFU
t

UU
t
P

t
B

 (F.6)

where

.
d
d

t
TFUf

TKUf

fff

s

d

sdds

(F.7)

The general state equation [1, (C.1)] with [1, (C.2)] when applied to (P,S) can be
written as

S
S

P
c

S
S

P
P PPS

dd1ddd 2 , (F.8)

where also the definition of the local speed of sound c in constant entropy [1,
(A.4)] has been used. The subscript S or P outside the brackets ( ) means that re-
spectively the entropy or the pressure is held constant during the operation inside
the brackets.

Now the continuity equation [1, (A.1)]

qU
t

, (F.9)

where q is the strength of the mass source distribution (monopole distribution,
volume velocity distribution), can be written as

qU
t
S

St
P

c P
2

1
. (F.10)
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Taking term P/ t from Eq. (F.6) as

dsf
t
B

t
P

d
d (F.11)

and inserting it to Eq. (F.10) one obtains

qf
ct

S
S

U
t
B

c ds
P

22

1
d
d

. (F.12)

The enthalpy version of the Navier-Stokes equation [1, (B.13)] with [1, (B.12)]

TFSTUB
t

U 1
, (F.13)

where  is the vorticity distribution

U . (F.14)

Multiplying the Navier-Stokes equation (F.13) with density we obtain utilizing
Eqs. (F.8) and (F.11)

.

d
d

22

TFSTUB

t
S

S
Uf

c
U

t
B

c
U

TFSTUB
t

U
t
U

P
ds (F.15)

Taking the time derivative of Eq. (F.12) and the divergence of Eq. (F.15) we ob-
tain

.:

:

d
d

d
d
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ct
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PP  (F.16)

In the case of no mass, heat, force or momentum source distributions this leads to
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 (F.17)

If further there are no viscous or thermal losses, we arrive to the equation of
Möhring’s analogy

.
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