

This document is downloaded from the
Digital Open Access Repository of VTT

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

By using VTT Digital Open Access Repository you are
bound by the following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

Title Experimental performance evaluation
of POBICOS middleware for wireless
sensor networks

Author(s) Hiltunen, Jouni; Ala-Louko, Mikko;
Taumberger, Markus

Citation ISRN Communications and
Networking, 10 p.

Date 2012
URL http://dx.doi.org/10.5402/2012/180369
Rights Copyright © 2012 Jouni Hiltunen et al.

This article may be downloaded for
personal use only

International Scholarly Research Network
ISRN Communications and Networking
Volume 2012, Article ID 180369, 10 pages
doi:10.5402/2012/180369

Research Article

Experimental Performance Evaluation of POBICOS Middleware
for Wireless Sensor Networks

Jouni Hiltunen, Mikko Ala-Louko, and Markus Taumberger

Converging Networks Laboratory, VTT Technical Research Centre of Finland, Kaitoväylä 1, 90590 Oulu, Finland

Correspondence should be addressed to Jouni Hiltunen, jouni.hiltunen@vtt.fi

Received 13 December 2011; Accepted 16 January 2012

Academic Editors: N. Abu-Ghazaleh, Y. Jiang, R. Montemanni, and S. Weller

Copyright © 2012 Jouni Hiltunen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The advances in the theory of wireless sensor networks have been remarkable during the past decades, but there is a lack of
extensive experimental evaluations. In this paper we present performance-evaluation methods and results for POBICOS (platform
for opportunistic behaviour in incompletely specified, heterogeneous object communities), which is an advanced middleware for
wireless sensor networks (WSNs). The measurements concern energy consumption, duty cycle, and OS task profiling as well as
communication characteristics such as round trip time (RTT) and throughput. In addition, a bandwidth analysis during a long-
term experiment of fully functional POBICOS network and application is studied. Based on the evaluation results, power mode
and data cache improvements are presented as well as CPU clock frequency optimizations.

1. Introduction

The research done in the field of WSNs has advanced a lot in
the past decades. The achieved performance of a WSN imple-
mentation is inevitably tied to the characteristics of the used
platform, and therefore, the performance evaluation cannot
rely solely on the theoretical background. Our study presents
an experimental performance evaluation of POBICOS which
is an advanced opportunistic WSN middleware implemented
on TinyOS operating system and Imote2 hardware platform.

The performance evaluation methods and results are
related to energy consumption, duty cycle, and OS task pro-
filing as well as communication characteristics such as round
trip time and throughput. In addition, a bandwidth analysis
during a long-term experiment of fully functional POBICOS
network and application is included. Based on the evaluation
results, power mode and data cache improvements are
presented as well as CPU clock frequency optimizations.

Energy consumption of battery-powered sensor motes is
a very crucial implementation issue which affects the opera-
tional costs of the WSN. The energy consumption is mainly
affected by the achieved duty cycle and power modes of the
motes. The overall operational energy consumption of the
motes may be obtained through online energy consumption
monitoring or through a hybrid method, in which the results

of offline energy consumption measurements and online
duty cycle monitoring are combined.

The duty cycle investigation is based on CPU usage mon-
itoring which, in case of the Imote2 platform, can be im-
plemented through performance monitoring unit (PMU)
events. The duty cycle optimization can be achieved through
monitoring the CPU usage of each running task with a task
profiler. This usually requires modifications to the OS source
code, but in the case of TinyOS the implementation of the
task profiler is straightforward because of TinyOS’s simple
concurrency model which is based on a single thread and
nonpreemptive tasks.

The communication performance of WSN middleware
depends on the underlying physical and media access control
layers. IEEE 802.15.4 is such a standard widely used in
WSNs. The current implementation of the POBICOS sup-
ports ZigBee which adds tree topology routing on top of
the 802.15.4. Since POBICOS implements services such as
reliable transport and packet fragmentation the RTT and
throughput measurements were conducted to find out
how much additional delay and overhead the POBICOS
middleware adds to those of ZigBee.

The middleware internal protocols perform tasks, such
as network management, that require control messages to

2 ISRN Communications and Networking

be sent amongst the nodes. Therefore, bandwidth analysis
is an important performance metric when comparing dif-
ferent middleware solutions. We have done a network-wide
bandwidth analysis to determine the bandwidth usage of the
middleware when running a typical application.

2. Middleware Description

Opportunistic applications are developed without knowl-
edge of the resources that will be present at deployment
environment. They use the resources that happen to be
available in an environment to achieve the application goals.
In POBICOS, such applications are built of collections of
microagents that work in an event-driven manner. Microa-
gents can be created and released dynamically, and they
can communicate with each other according to the appli-
cation logic. The microagents are arranged in a tree-based
hierarchy, where each microagent has a parent and optionally
one or more children. Microagents can only communicate
with their parent and children. In case a microagent becomes
orphan, for example when the network gets partitioned, it
releases itself to ensure a consistent state of the application.

The open-source POBICOS middleware [1] offers mech-
anisms to host microagents on different hardware platforms
by executing them in a virtual machine [2]. It automatically
handles the placement of microagents onto the actual hard-
ware according to their resource requirements. A resource
discovery is performed each time a microagent is created by
the application. The middleware can also migrate microa-
gents to other nodes depending on parameters, for example,
to reduce their communication distance [3]. A middleware-
level heartbeat protocol detects the disappearance of microa-
gents and propagates this event to its parent and children.
Other main features of the middleware are transparent inter-
agent communication, security mechanisms [4], and multi-
faceted resource access.

The middleware is fully decentralized and each node is
running its own instance of it, which makes performance
aspects very critical.

3. Performance Evaluation Methods

3.1. Energy Consumption Measurements. The measurement
setup for the energy consumption measurements is depicted
in Figure 1, and the used hardware is listed in Table 1. A
nonintrusive method for measuring the current is achieved
by using a probe that measures the current in a conductor
through inductive coupling with no electrical contact. The
output signal of the probe is amplified by the current
probe amplifier, and the amplified signal is displayed in
the oscilloscope. Power consumption is then calculated by
multiplying the measured current with the 3.3 V operating
voltage.

3.2. Task Profiler. The implemented task profiler enables
online monitoring of the middleware, see Figure 2. The
task profiler collects and stores the CPU PMU events for
each running task and timer interrupt. Each record contains

Oscilloscope

Current probe
amplifier

Probe

Imote2

DC

+ −

Figure 1: Energy measurement setup.

Table 1: List of the used hardware.

Imote2 battery board IBB2400

Imote2 processor board IPR2400

Imote2 radio board
CC2480 board based on TI’s Z-Accel
Demonstration Kit

Imote2 sensor board ITS400

Oscilloscope Tektronix TDS3052 500 MHz/ 5GS/s

Current probe amplifier Tektronix AM503B

Current probe Tektronix A6302

only the prevailing PMU counter values and the task/timer
IDs which are stored in sequential order. Most of the task
monitoring processing is done in the aggregator which is
connected to the mote through UART. The task profiler data
is requested from the mote on demand to the aggregator
which calculates absolute PMU values and converts the task
and timer IDs to descriptive names. The names are derived
from app.c file which is produced by the nesC compiler
from the application code. The presented system provides a
lightweight solution for performance monitoring.

3.3. Communication Measurements

3.3.1. RTT. RTTs were measured on two different levels of
the POBICOS communications stack:

(i) PoHWCommM—a low-level communication com-
ponent using the ZigBee subsystem that gives a
reference point for comparison.

(ii) PoCommM—the main POBICOS communication
component responsible of implementing the reliable
transport service with fragmentation of messages.

In both cases, RTT was measured over one hop using two
Imote2 motes with empty and full payload lengths. When
node A sends a message to node B a timestamp is taken.
Upon receiving the message, node B responds by sending
the exact same message back to node A. Another timestamp
is taken when node A receives the message from node B.
RTT is calculated by subtracting the two timestamps. The
time accuracy of the measurement was 1 ms so each payload
length was tested 10 times and the RTT’s averaged.

3.3.2. Throughput. Imote2 network of two nodes over one
hop is used in the measurements. Node A sends maximum

ISRN Communications and Networking 3

App.c

PC

Task and timer info Aggregator Results
UI

R
aw

 d
at

a

C
on

tr
olUART

UART

Task profiler

PMUs

Task IDs

Timer IDs

Mote

CPU PMU monitor

TinyOS task sched

TinyOS timer sched

Figure 2: Task profiler block diagram.

length packets of 51 B to node B. The throughput is then
calculated every 1 second for ZigBee and for the POBICOS
best-effort mode. For POBICOS reliable mode, which intro-
duces acknowledgments and retransmission in case of lost
packets, the throughput calculation was done every 1 minute.

3.3.3. Bandwidth Analysis. The bandwidth analysis data was
obtained directly from the main communication component
(PoCommM) of the middleware through which all the traffic
of the higher-level protocols of the middleware traverses.
PoCommM provides a parameterized TinyOS interface to
the higher-level protocols which means that each protocol
is assigned a unique ID that can be used to identify the
active protocol for each message sent. PoCommM logs the
message lengths, interface IDs, and the transmission mode
(unreliable versus reliable) with timestamps. This log can
then be used to derive the perprotocol bandwidth usage. The
time interval for the bandwidth calculation was chosen to
be one minute. The layered architecture of the POBICOS
communication components is illustrated in Figure 3. The
middleware internal protocols wire to PoCommM which uti-
lizes PoHWCommM to gain access to the ZigBee subsystem.
PoCommM logs the communication service usage statistics.

4. Measurement Results

4.1. Energy Consumption Measurements. The energy con-
sumption measurements were conducted with and without
the middleware, using different power modes and CPU
clock frequencies. To investigate the energy consumption of
different power modes extensively, support for the standby
power mode was implemented since the used TinyOS plat-
form supported only active and idle power modes. Figure 4
presents the power consumption measurements with Imote2
battery, processor, and sensor boards as well as additional
ZigBee radio board included.

In the power consumption measurements presented
above, the active mode means running a processor-bound
TinyOS task (an empty for-loop). The memory-bound
task is an exception where the Imote2 internal memory is
continuously accessed. Both the active and nonactive modes
were measured within the same test run using periodic duty
cycle where 1 s activity was followed by 1 s of inactivity.
The measured current consumption multiplied with the
operating voltage equals the momentary power consumption
of the mote. The total energy consumption is then obtained
by integrating the measured power-consumption curve over
time.

The comparison of 13 MHz and 104 MHz CPU clock
frequency modes shows that energy efficiency is better with
104 MHz mode if the standby mode is in use. Although the
13 MHz mode consumes ∼100 mW less in the active mode,
the same processor-bound task takes eight-times longer to
complete. In the standby mode, the power consumption does
not depend on the operating frequency. Without the standby
mode, the 13 MHz should be preferred since the middleware
is expected to be in idle state most of the time and the idle
mode energy efficiency is poorer at the higher CPU clock
frequency. However, the implementation of standby mode is
essential since it saves 55 mW in 13 MHz mode and 110 mW
in 104 MHz mode compared to the idle mode.

For the middleware energy efficiency it is important
that the mote remains in nonactive mode most of the time
since all middleware tasks consume ∼180 mW more than in
the standby mode. The radio reception, radio transmission,
LEDs and light sensor reading consume additional ∼16 mW
compared to the processor-bound task. The memory-bound
task consumes 13 mW less than the processor bound task.

The ZigBee radio board is a significant energy sink of
the POBICOS node since it constitutes over 20% of the total
energy consumption. The middleware initializes the ZigBee
radio to the active mode, but without the middleware the
radio remains in the idle state. The radio consumes 33 mW

4 ISRN Communications and Networking

Time
synchronization

Binary transfer Agent manager
System

inspection
Network
manager

Multicasting

ID TS ID BT ID AM ID SI ID NM ID MC

Best-effort messaging

Best-effort messaging

Reliable messaging Fragmentation Logging

PoCommM

PoHWCommM

POBICOS middleware

ZigBee subsystem

Figure 3: POBICOS communication components.

0 50 100 150 200 250 300

Power consumption (mW)

Active mode
Idle mode
Standby mode

Radio reception

Radio transmission

Three leds on

Read light sensor

Memory-bound task

Processor-bound task

Processor-bound task
w/13 MHz w/o POBICOS

Processor-bound task
w/o POBICOS

Figure 4: Power consumption with middleware, CPU clock frequency 104 MHz.

when not initialized, 100 mW in listening state, and 110 mW
in transmitting and reception states.

The worst case energy profile concerning the initial-
ization sequence of a node in an empty network is pre-
sented in Figure 5. The initialization energy consumption
is dominated by the radio board especially when the node
is a ZigBee coordinator since it consumes 17 s while the
total initialization duration is 21 s. However, the radio
initialization sequence is faster if there are other nodes

in network. The TinyOS initialization lasts 2 seconds and
POBICOS initialization duration is < 0.5 second.

Real-world data regarding the duty cycle of a POBICOS
node was gathered from an experiment of running a
POBICOS system in an office building continuously for four
days. In the experiment, temperature and light sensing nodes
were used that periodically poll the sensor values and send
them via the radio channel to be processed. The CPU loads
of the nodes were obtained using the methods presented in

ISRN Communications and Networking 5

0 4000 8000 12000 16000 20000

Time (ms)

0

100

200

300

400

Po
w

er
 c

on
su

m
pt

io
n

 (
m

W
)

Power on

TinyOS init

POBICOS init

Radio poll

Standby

Radio
HW reset

Figure 5: Worst case initialization sequence energy profile of a ZigBee coordinator.

Section 3. The locally measured load values of each node
were sent every 10 seconds over the air to a monitoring
node that was connected to a POBICOS administration and
monitoring tool (PAM). PAM was used to create a log file of
the reported load values.

Analysis of the log file of one node revealed that the
CPU load during the experiment was close to constant
except for the first load report that includes the execution
of the initialization sequence of the middleware. The CPU
load value of the first report was 44.100% after which, it
stabilized to 0.040%. The average CPU load during the whole
experiment was 0.057%. The results obtained from other
nodes were observed to be similar.

We are now able to estimate the energy consumption of
a POBICOS node during the experiment when we combine
the online measurements of the duty cycle of a node with the
offline measurements of the power consumption presented
in Figure 4. If we assume the respective power consumptions
during active and standby modes to be constant, the total
energy consumption can be calculated with the following
equation:

E(t) =
∫
P(t) · dt = (DC · PA + (1−DC) · PS) · t, (1)

where E(t) is the energy consumption at time t, P(t) is the
power consumption at time t, DC is the duty cycle, PA is the
constant power consumption in active mode, and PS is the
constant power consumption in standby mode.

From the measurement data (Figure 4) we can obtain a
PA of 310.2 mW and a PS of 125.4 mW. Furthermore, we use
the abovementioned value of 0.00057 for DC. This yields us
a daily energy consumption of 10.844 kJ per one POBICOS
node. In one year this adds up to a consumption of 3.958 MJ
which corresponds to 1.099 kWh.

4.2. Task Profiler. The results obtained with the task profiler
in a two-node network without an application running are

0

10

20

30

40

50

60

70
R

T
T

 (
m

s)

ZigBee

Empty
Full

POBICOS
reliable

POBICOS
best effort

Figure 6: Results of the RTT measurements.

presented in Table 2 and the task descriptions in Table 3. In
this case the duty cycle is less than 1%. The results indicate
that a significant number of the used CPU cycles are wasted
by dependency stalls because the data cache is not supported
by the TinyOS platform. The support for the data cache
was implemented later, and the results of the data cache
measurements with TinyOS Blink application are presented
in Table 4. The data cache was observed to save a significant
number of CPU clock cycles.

4.3. Communication Measurements

4.3.1. RTT. The results of the RTT measurements are
presented in Figure 6. It depicts the RTT values for the ZigBee
subsystem and for the POBICOS best-effort and reliable
modes. Whereas in the first two tests the RTT constitutes
solely of two messages, the reliable mode includes also
the acknowledgment messages sent automatically for each
received message.

6 ISRN Communications and Networking

Table 2: 1.5 second Task Profiler sample run in a two-node network without an application running.

Task name
Data cache

accesses
Dependency
stall (cycles)

Run time (ms)
CPU

instructions
CPU clock

cycles

McuSleep.sleep 0 0 458.4375 0 0

PoPerfInspM$CpuUsageMilliTimer$fired N/A N/A 0.1250 N/A N/A

McuSleep.sleep 0 0 0.0312 0 0

VirtualizeTimerC0updateFromTimer 68 3492 0.1250 943 11557

McuSleep.sleep 0 0 15.0938 0 0

PoCommTimersM$BaseTimer$fired 176 6239 0.2188 1647 22157

McuSleep.sleep 0 0 0.0312 0 0

VirtualizeTimerC0updateFromTimer 68 3492 0.1250 943 11481

McuSleep.sleep 0 0 69.2500 0 0

PoReliableTransportIstub$Timer$fired 11005 234337 6.0312 78984 610469

VirtualizeTimerC0updateFromTimer 68 3493 0.1250 943 11665

McuSleep.sleep 0 0 8.1875 0 0

CC2480P$sendDoneTask 22 1674 0.0938 594 8577

McuSleep.sleep 0 0 13.0312 0 0

CC2480P$receiveTask 10794 222670 4.3750 65291 443417

McuSleep.sleep 0 0 8.4688 0 0

CC2480P$sendDoneTask 23 1646 0.0938 599 8525

McuSleep.sleep 0 0 13.0312 0 0

CC2480P$receiveTask 3175 65010 1.8750 20568 190225

McuSleep.sleep 0 0 126.9688 0 0

PoNetworkMngrM$MilliTimer$fired 126 5162 0.1875 1281 19181

McuSleep.sleep 0 0 0.0312 0 0

VirtualizeTimerC0updateFromTimer 68 3493 0.1250 943 11549

McuSleep.sleep 0 0 846.4688 0 0

Table 3: Middleware and TinyOS task descriptions from the sample run.

Task name Source Description

McuSleep.sleep TinyOS Command called in task scheduler when there is no tasks to be run.

PoPerfInspM$CpuUsageMilliTimer$fired POBICOS
Timer task to measure CPU load periodically. Default measurement
period is 3 seconds. Because this task resets the performance counters
details of the profiler cannot measure all metrics.

VirtualizeTimerC0updateFromTimer TinyOS Task to manage TinyOS timers.

PoCommTimersM$BaseTimer$fired POBICOS Task to manage reliable transport timers. Default period is 4 seconds.

PoReliableTransportIstub$Timer$fired POBICOS Timer task to manage reliable transport transmissions.

CC2480P$sendDoneTask POBICOS Radio transmission task.

CC2480P$receiveTask POBICOS Radio reception task.

PoNetworkMngrM$MilliTimer$fired POBICOS Task for network management. Default period is 1 second.

We can see that the RTTs of ZigBee and POBICOS best-
effort mode are very closely equal with a minor increase
observable in the POBICOS best-effort mode. The overhead
introduced by the POBICOS reliable mode can be mainly
explained by the acknowledgment mechanism of the reliable
transport service. The transmissions of the acknowledg-
ments from node B to node A precede the transmission of
the response message, therefore increasing the RTT.

4.3.2. Throughput. The results of the throughput tests are
presented in Figure 7. Again, we compare ZigBee with the
two POBICOS transport modes.

From the figure we immediately observe that the POBI-
COS best-effort mode seemingly outperforms ZigBee, while
both achieve a throughput around 42 kbps. Obviously, this
must be considered as measurement inaccuracy, and we can
conclude that the overhead introduced by the POBICOS

ISRN Communications and Networking 7

Table 4: Data cache measurement results with TinyOS Blink
application.

Data cache
off

Data cache
on

Improvement
(%)

Data cache accesses 58062 58062 N/A

Total CPU cycles 536046 137423 74.364

Data dependency stall
cycles

395451 36 99.991

Data cache miss cycles 58054 2 99.997

ZigBee POBICOS
reliable

POBICOS
best effort

0

5

10

15

20

25

30

35

40

45

T
h

ro
u

gh
pu

t
(k

bp
s)

Figure 7: Results of the throughput tests.

best-effort mode is negligible. The POBICOS reliable mode
achieves a noticeably lower throughput of 23.2 kbps which
can be explained by the occasional packet loss during the
measurements and the relatively long resending timeout of
7 seconds.

4.3.3. Bandwidth Analysis. Similarly as the duty-cycle mea-
surements, the results presented in this section are extracted
from the real-world experiment. In the experiment, a total of
61 POBICOS nodes were used to run an example application.
This bandwidth analysis is performed at the network level,
that is, we present the bandwidth usage of the whole network
instead of individual nodes. The node bandwidth usages
were calculated with one minute intervals and summed
together to form the network-level bandwidth usage. It must
be noted that the results do not include the automatic
retransmissions of the POBICOS reliable transport protocol.
Figure 8 presents the bandwidth usage during the whole
experiment which lasted four days.

As seen from the figure, the bandwidth usage is close to
constant with the exception of the peak at the application
start-up phase where most of the microagent creations and
resource probings take place. The reduction in the bandwidth
usage at approximately 5 : 30 on the second night is merely a
statistical anomaly. It is caused by resource probing multi-
casts distributing over two measurement periods whereas in
the start of the experiment all the multicast messages are sent
within one measurement period.

Next, we will take a closer look at the bandwidth
usage in the system start-up phase, which is depicted in
Figure 9. The figure shows the individual bandwidth usages
of the middleware’s internal protocols with different colours

stacked on top of each other while the envelope of the curve
corresponds to the total bandwidth usage.

The small system inspection and multicasting load
between 15 : 24 and 15 : 27 is caused by the PAM tool upon its
start-up phase where it collects information from the nodes
of the network. After that, we can see that the middleware
idles as there is no application running. The application is
started at 16 : 08 which introduces a bandwidth peak that
reaches its peak around 850 Bps. The peak is mostly caused
by the microagent host probing messages, sent via the
multicasting protocol, and microagent binary transfers from
the application pill to the host nodes. The application
deployment finishes at 16 : 33 after which we see small
agent-manager traffic that encompasses the application-level
messages.

The bandwidth usage during one hour of normal op-
eration is plotted in Figure 10. Again, the plot is stacked so
the envelope of the curve corresponds to the total bandwidth
usage.

The bandwidth during normal operation comprises
agent manager messages that originate from the application.
The multicast peaks are also caused by the application logic,
which polls for new temperature and brightness sensor
microagent-candidate hosts every 10 minutes.

The results of the experiment startup and the normal
operation suggest that there would be room for optimization
in the multicast-based host-probing protocol as it dominates
the bandwidth usage compared to the application traffic
which averages below 10 Bps. Another major bandwidth user
is the microagent binary transfer protocol. This is expected as
all the microagent binaries are transmitted at runtime over
the air from the application pill.

5. Related Work

The research done in overall performance evaluation of WSN
middleware implementations is rather limited. The most
relevant scientific overall study to our best knowledge is
the work by Ribeiro et al. [5] in which the performance
of SensorBus is studied. SensorBus is a message-oriented
adaptive middleware running on Crossbow’s MICAz motes
with TinyOS. The measured metrics include throughput,
packet delivery fraction, motes’ energy consumption, and
policy initialization response time in case of an external
service request. The throughput and packet delivery fraction
results can be used to compare the performances of different
multihop routing protocols while response time and energy
consumption results provide comparable results with our
study.

Santos et al. and Bertocco et al. [6, 7] provide measure-
ment results from simple WSN experiments without a
middleware layer. The setup in [6] consists of Crossbow’s
TelosB motes with Contiki OS. The results obtained in the
study provide basic reference to one-hop data-gathering
WSN application without advanced self-adaptation func-
tionalities. The experimental evaluation conducted in [7]
is based on Moteiv’s Tmote Sky motes running custom
high-layer, single-hop, master-slave, industrial-monitoring

8 ISRN Communications and Networking

0

100

200

300

400

500

600

700

800

900

B
an

dw
id

th
 (

B
ps

)

15
 : 2

1
18

 : 4
1

22
 : 0

1
1

: 2
1

4
: 4

1
8

: 0
1

11
 : 2

1
14

 : 4
1

18
 : 0

1
21

 : 2
1

4
: 0

1
0

: 4
1

7
: 2

1
10

 : 4
1

14
 : 0

1
17

 : 2
1

20
 : 4

1
0

: 0
1

3
: 2

1
6

: 4
1

10
 : 0

1
13

 : 2
1

16
 : 4

1
20

 : 0
1

23
 : 2

1
2

: 4
1

6
: 0

1
9

: 2
1

12
 : 4

1
16

 : 0
1

Time

Figure 8: Bandwidth usage during the whole experiment.

0

100

200

300

400

500

600

700

800

900

B
an

dw
id

th
 (

B
ps

)

15
 : 2

1

15
 : 2

4

15
 : 2

7

15
 : 3

0

15
 : 3

3

15
 : 3

6

15
 : 3

9

15
 : 4

2

15
 : 4

5

15
 : 4

8

15
 : 5

1

15
 : 5

4

15
 : 5

7

16
 : 0

0

16
 : 0

3

16
 : 0

6

16
 : 0

9

16
 : 1

2

16
 : 1

5

16
 : 1

8

16
 : 2

1

16
 : 2

4

16
 : 2

7

16
 : 3

0

16
 : 3

3

16
 : 3

6

Time

Time synchronization
Binary transfer
Agent manager

System inspection
Network manager
Multicasting

Figure 9: Bandwidth usage during the experiment start-up phase.

protocol which performs two types of tasks: periodical slave
polling for receiving sensor data and asynchronous alarm
transmissions. The results can be used to estimate the effect
of radio interference on both types of tasks.

The performance of the underlying physical and MAC
layers under real-world conditions has a dramatic effect
on the WSN overall performance. Therefore, the studies
performed in [8, 9] provide valuable resources to analyze
our measurements. The testbed used in [8] consists of
MICAz motes with TinyOS. It was shown that applying
the testbed to practical environments is feasible, and the
guidelines for the placement of the motes were given. Woon
and Wan [9] present realistic experiments on both one-hop

and multihop topologies with Freescale MC13193 Evaluation
Kit. It presents comparable performance metrics such as
throughput, packet delivery ratio, and delay, and it also
shows that experimental results are valuable compared to
normal simulated environments.

There are some published WSN performance measure-
ment and verification tools such as [10–12]. Rost and
Balakrishnan and Ramanathan et al. [10, 11] introduce
online network management tools but their main focus
is on failure detection. On the other hand, Zheng [12]
proposes to apply formal verification techniques to ensure
the correctness of the implementation using model checking
techniques. These techniques provide valuable knowledge

ISRN Communications and Networking 9

0

10

20

30

40

50

60

70

80

90

B
an

dw
id

th
 (

B
ps

)

12
 : 0

0

12
 : 0

3

12
 : 0

6

12
 : 0

9

12
 : 1

2

12
 : 1

5

12
 : 1

8

12
 : 2

1

12
 : 2

4

12
 : 2

7

12
 : 3

0

12
 : 3

3

12
 : 3

6

12
 : 3

9

12
 : 4

2

12
 : 4

5

12
 : 4

8

12
 : 5

1

12
 : 5

4

12
 : 5

7

13
 : 0

0

Time

Agent manager
Multicasting

Figure 10: Bandwidth usage during 1 hour of normal operation.

on real-time behavior details of the system, but we are
more interested in performance of the distributed WSN ap-
plication as a whole.

The duty cycle of the motes is an important aspect
of the WSN performance. Profilers can be used to obtain
the details of the processor usage such as in [13] where
the OS is interrupted frequently to collect the currently
running task and in [14] where activity tracking across the
network is monitored. The perceived duty cycle combined
with offline energy measurements can be used to estimate
the overall WSN energy consumption. Also real-time energy
measurements can be achieved by utilizing hardware built-
in switching regulators as in [15] and by using XScale
PMU events as in [16]. The reference results for offline
measurement with Mica2 motes can be obtained from [17].

6. Conclusions

The full performance evaluation of a WSN middleware im-
plementation requires an extensive set of methods and tools
which are able to measure low-level operations such as PMU
events and high-level effects such as communication over-
heads. In addition, the measurements should not interfere
with the operation of the running middleware. Distributed
methods were found to be efficient when combined with
offline measurements such as the presented energy measure-
ments.

The preferred CPU clock frequency in terms of energy
efficiency was found to be dependent on the available power
modes. The influence of the data cache to the CPU usage

performance was found to be dramatic. Our implementation
shows also some deficiencies in terms of energy efficiency
and initialization sequence duration that can be caused by
the usage of separate ZigBee radio board.

The communication measurements suggest that the most
crucial target for optimization would be the multicasting
protocol which is used by the binary transfer and host
object probing services of the middleware. In addition, it was
observed that the underlying ZigBee network may induce
heavy packet loss which severely affects the throughput of
the reliable transport mode of POBICOS due to a long re-
sending timeout.

The future work includes improvements in energy
efficiency. For energy-efficient operation of POBICOS the
radio board power-saving modes should be taken into use.
Currently, all the motes are acting as ZigBee routers and for
the routing purposes they are in continuous listening state.
Energy savings would be achieved if some of the motes were
ZigBee end devices or if the ZigBee routers had their power-
saving modes enabled with synchronized sleeping periods.

Acknowledgments

The authors would like to thank the POBICOS consortium
partners involved in the middleware design and implementa-
tion, Warsaw University of Technology (Poland), and Center
for Research and Technology Thessaly (Greece). This work
was done in the framework of the EU FP7 Project POBICOS
supported by European Commission and VTT Technical
Research Centre of Finland.

10 ISRN Communications and Networking

References

[1] http://www.ict-pobicos.eu/.
[2] A. Pruszkowski, T. Paczesny, and J. Domaszewicz, “From

C to VM-targeted executables: techniques for heterogeneous
sensor/actuator networks,” in 8th IEEE Workshop on Intelligent
Solutions in Embedded Systems (WISES ’10), pp. 61–66, July
2010.

[3] N. Tziritas, T. Loukopoulos, S. Lalis, and P. Lampsas, “Agent
placement in wireless embedded systems: memory space and
energy optimizations,” in IEEE International Symposium on
Parallel and Distributed Processing, Workshops and Phd Forum
(IPDPSW ’10), 2010.

[4] P. Tarvainen, M. Ala-Louko, M. Jaakola et al., “Towards a
lightweight security solution for user-friendly management of
distributed sensor networks,” in 9th International Conference
on Next Generation Wired/Wireless Networking, and 2nd
Conference on Smart Spaces, S. Balandin, D. Moltchnov, and
Y. Koucheryavy, Eds., vol. 5764 of Lecture Notes in Computer
Science, pp. 97–109, September 2009.

[5] A. R. L. Ribeiro, L. C. Freitas, C. R. L. Francês, and J. C. W. A.
Costa, “Middleware performance evaluation in wireless sensor
networks,” in International Telecommunications Symposium
(ITS ’06), pp. 207–212, September 2006.

[6] A. Santos, A. Cardoso, and P. Gil, “Poster abstract: a case study
on performance enhancement in WSN using Contiki OS,” in
European Conference on Wireless Sensor Networks (EWSN ’10),
2010.

[7] M. Bertocco, G. Gamba, A. Sona, and S. Vitturi, “Exper-
imental characterization of wireless sensor networks for
industrial applications,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 8, pp. 1537–1546, 2008.

[8] K. E. Tepe, P. R. Casey, and N. Kar, “Design and implemen-
tation of a testbed for IEEE 802.15.4 (Zigbee) performance
measurements,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2010, Article ID 103406, 2010.

[9] W. T. H. Woon and T.-C. Wan, “Performance evaluation
of IEEE 802.15.4 wireless multi-hop networks,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 3, no. 1, pp.
57–66, 2008.

[10] S. Rost and H. Balakrishnan, “Memento: a health monitoring
system for wireless sensor networks,” in 3rd Annual IEEE Com-
munications Society on Sensor and Ad hoc Communications and
Networks (SECON ’06), pp. 575–584, September 2006.

[11] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin, “Sympathy for the Sensor Network Debugger,” in
3rd International Conference on Embedded Networked Sensor
Systems (SenSys ’05), 2005.

[12] M. C. Zheng, “An automatic approach to verify sensor network
systems,” in 4th IEEE International Conference on Secure
Software Integration and Reliability Improvement Companion
(SSIRI-C ’10), pp. 7–12, June 2010.

[13] M. K. Watfa and M. Moubarak, “Building performance meas-
urement tools for wireless sensor network operating systems,”
in 7th International Conference on Advances in Mobile Com-
puting and Multimedia (MoMM ’09), pp. 599–604, December
2009.

[14] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: tracking
energy in networked embedded systems,” in 8th USENIX
conference on Operating systems design and implementation
(OSDI ’08), 2008.

[15] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy
metering for free: augmenting switching regulators for real-
time monitoring,” in International Conference on Information

Processing in Sensor Networks (IPSN ’08), pp. 283–294, April
2008.

[16] G. Contreras and M. Martonosi, “Power prediction for in-
tel XScale� processors using performance monitoring unit
events,” in International Symposium on Low Power Electronics
and Design (ISLPED ’05), pp. 221–226, August 2005.

[17] M. Calle and J. Kabara, “Measuring energy consumption in
wireless sensor networks using GSP,” in 17th International
Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC ’06), September 2006.

	OA-kansipohja1
	180369

