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Abstract

Diagnosis of Alzheimer’s disease is based on the results of neuropsychological tests and available supporting biomarkers
such as the results of imaging studies. The results of the tests and the values of biomarkers are dependent on the nuisance
features, such as age and gender. In order to improve diagnostic power, the effects of the nuisance features have to be
removed from the data. In this paper, four types of interactions between classification features and nuisance features were
identified. Three methods were tested to remove these interactions from the classification data. In stratified analysis, a
homogeneous subgroup was generated from a training set. Data correction method utilized linear regression model to
remove the effects of nuisance features from data. The third method was a combination of these two methods. The
methods were tested using all the baseline data from the Alzheimer’s Disease Neuroimaging Initiative database in two
classification studies: classifying control subjects from Alzheimer’s disease patients and discriminating stable and
progressive mild cognitive impairment subjects. The results show that both stratified analysis and data correction are able
to statistically significantly improve the classification accuracy of several neuropsychological tests and imaging biomarkers.
The improvements were especially large for the classification of stable and progressive mild cognitive impairment subjects,
where the best improvements observed were 6% units. The data correction method gave better results for imaging
biomarkers, whereas stratified analysis worked well with the neuropsychological tests. In conclusion, the study shows that
the excess variability caused by nuisance features should be removed from the data to improve the classification accuracy,
and therefore, the reliability of diagnosis making.
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Introduction

Alzheimer’s disease (AD) is the most general type of dementia. It

is a neurodegenerative disease that causes atrophy in the cerebral

cortex and subcortical structures, such as the hippocampus and

amygdala. The latest research guidelines for the diagnosis of

probable Alzheimer’s disease require a presence of both

impairment in episodic memory and one supportive feature,

either medial temporal lobe atrophy, abnormal cerebrospinal fluid

biomarker, specific pattern in positron emission tomography or

proven AD autosomal dominant mutation [1–2]. Mild cognitive

impairment (MCI) is a condition in which a patient has memory

impairment but activities of daily living are preserved [3]. It is a

risk factor for AD, but not every MCI patient develops into AD.

Lots of interest has been recently focused on personalized

healthcare or medicine [4–6], where the population is divided into

sub-groups based on some personal factors, and the diagnosis and/

or treatment is decided using the information tailored specifically

to each sub-group. Typically, the sub-groups are determined based

on age, gender, or genome. Considering the diagnosis of AD,

demographic information of a patient, such as age, gender,

education, weight, and genome have been reported to interact

with the results of neuropsychological tests and biomarkers [7–10].

Consequently, personalized models are needed to improve the

diagnosis of AD.

In statistics, such variables that affect the analysis results but are

not of immediate interest are called as nuisance variables/

features/covariates. In this paper, methods to remove the effects

of nuisance features are studied. The methods studied benefit

personalized healthcare and medicine by producing optimally

personalized data that a clinician can utilize in the decision making

or that can produce more accurate classifications with automated

machine learning methods.

There are several ways to remove the data variability caused by

nuisance features. In clinical studies, the effects of personal factors

are often removed by using age- and gender-matched study

groups. A similar approach is to divide the data into more

homogeneous sub-groups (stratified analysis) [11]. For example,

one may make separate analyses for males and females, or divide

data into age groups, or do both. The nuisance data variability
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should be smaller in these sub-groups, and the disease-related

variability should be more pronounced. In this paper, the term data

stratification is used to refer to a method where a subset of samples is

selected for the analysis based on the values of one or many

nuisance features. This is the typical approach used in personal-

ized healthcare and medication.

In statistics, analysis of covariance (ANCOVA) can be used to

remove the effects of nuisance features from the independent

variables (classification features, i.e., features used to classify the

subjects) by means of multiple linear regressions [12]. In this study,

a method related to ANCOVA is used to remove the effects of

nuisance features from the classification features prior classification

using a linear regression model. The term data correction is used to

refer to this method. In some studies, the nuisance features are

given as ordinary variables to the classifier, such as support vector

machine, and it is assumed that the classifier is able to correct the

interactions between nuisance features and classification features

[13]. Other methods to eliminate the nuisance features are

presented in [14], from which the most generally used methods are

based on Bayesian models.

In this paper, the methods to remove the interactions of

nuisance features and classification features were compared using

a large dataset and a large number of classification features from

several neuropsychological tests and a number of imaging

biomarkers. Three methods were tested. First, in data stratification

the data were divided into subgroups based on one or several

nuisance features. Second, in data correction the interactions of

the nuisance features were removed from the classification features

using a linear regression model. Our goal was to remove the effects

of nuisance features but at the same time keep all the disease-

related data variability. Third method studied, which, to the best

of our knowledge has not been studied previously on medical data,

was the combination of these two methods. The evaluation of the

methods was based on classification results of an automatic

machine learning method (sequential stepwise feature selection

and regression classifier). In clinical decision support systems, the

knowledge obtained in this study can be used to generate data,

either in textual or graphical format, where the differences

between study groups are pronounced.

The objective of this paper was to study the methods for

removing the effects on nuisance features from the classification

data in order to get the optimal gain for the personalized

healthcare and medicine. The example application for which the

methods were validated was the diagnosis of AD. The results show

that significant improvements in the classification of AD data are

obtained using the methods studied.

Materials and Methods

Subjects
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging, positron emission

tomography, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression

of mild cognitive impairment and early Alzheimer’s disease.

Determination of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials. The Principal Investigator of

this initiative is Michael W. Weiner, MD, VA Medical Center and

University of California – San Francisco. ADNI is the result of

efforts of many co- investigators from a broad range of academic

institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The

initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to

participate in the research – approximately 200 cognitively normal

older individuals to be followed for 3 years, 400 people with MCI

to be followed for 3 years and 200 people with early AD to be

followed for 2 years.

In the ADNI database, the subjects are classified into three

groups: healthy controls, MCI subjects, and AD subjects. There is

also follow-up information on the conversion events (MCI to AD,

Control to MCI or AD). For this study, four groups were

established: controls (C), stable MCIs (SMCI), progressive MCIs

(PMCI), and subjects with Alzheimer’s disease (AD). The SMCI

group consisted of the subjects with MCI at baseline and no

known conversion to AD. The PMCI subjects had MCI at

baseline, and known conversion to AD during the study time. The

total number of subjects was 786. The demographics of the

subjects are shown in Table 1.

Features
There are about 3000 features in the ADNI database. These

features include, for example, demographic data, results of

neuropsychological tests, molecular tests, and imaging studies. In

this study, we selected nine feature groups for the analysis. A set of

neuropsychological tests (both raw scores of individual tests and

total scores) and biomarkers from imaging studies (original data,

not normalized for brain size), which were known to be among the

best ones for the classification of AD data, were selected. Also, the

APOE genotype (number of APOE a4 alleles) was used. The

feature groups are listed in Table 2. In order to focus on the most

interesting features and features for which there are not many

missing values, a pre-selection of the features was performed. A

feature was excluded, if there was more than 10% values missing,

and if the p-value of the t-test (data were assumed to be normally

distributed) for the two study groups was above a threshold. This

threshold was 0.00001 for C vs. AD comparison and 0.01 for

SMCI vs. PMCI comparison. The values were chosen so that

approximately as many classification features were used in both

Table 1. Demographic data (mean 6 standard deviation, or
%) of subjects.

C SMCI PMCI AD Total

N 217 222 156 191 786

Age (years) 76.065.1 75.167.6 74.666.9a 75.467.5 75.366.8

Females (%) 48.30% 33.3%a 40.40% 47.6%b 42.40%

Education
(years)

16.162.8 15.663.2 15.762.9 14.763.1a,b,c 15.663.1

MMSE 29.161.0 27.361.8a 26.761.7a,b 23.362.1a,b,c 26.762.7

Conversion time
(months)

18.269.0

astatistically significantly different from controls, p,0.05.
bstatistically significantly different from SMCI, p,0.05.
cstatistically significantly different from PMCI, p,0.05.
t-test for age, education and MMSE, chi-square test for percentage of females.
doi:10.1371/journal.pone.0031112.t001
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classification studies. The numbers of features in each feature

group after the pre-selections are shown in Table 2. The data used

in this study were the baseline features (either screening or baseline

measurements).

For the data correction and stratification, eight nuisance

features were selected. The features are listed in Table 3. They

are demographic data or clinical measures that can be easily

obtained and that are not by themselves good classification

features.

Data correction and stratification methods
The need for data correction or stratification methods to

remove the effects of a nuisance feature is demonstrated in

Figure 1, where the volume of left hippocampus is shown as a

function of age and separately for males and females. In this

example, there is a strong correlation between the nuisance and

classification features. The average hippocampus volume of 90-

years old healthy persons is close to the average volume of 55-years

old AD patients. On the other hand, if the comparison is

performed to the 90-years old AD subjects, the difference is

evident. Therefore, by removing the age-related effect, either using

data correction or data stratification, the separation of groups in

the classification data is enlarged and classification accuracy is

improved.

Data correction using regression model. As in the

ANCOVA, the data correction was implemented using a linear

regression model. The method was based on the data variability in

the healthy controls because in this group there should not be any

disease related variability, as proposed recently in [15]. The

normal data variability, for example as a function of age or gender,

was first modeled using regression model, and then this effect was

removed from all the data using the model obtained.

Based on initial studies, we made an assumption on the linearity

of the relations between the nuisance features and the classification

features (e.g., Figure 1). Let us denote the value of ith classification

feature as ci, and the value of jth nuisance feature as sj.

Classification features are the individual features of the feature

groups presented in Table 2, and the nuisance features are the

features listed in Table 3.

The linear relation between classification feature ci and nuisance

feature sj can be modeled using a linear regression model

ci~aijzbijsj ð1Þ

where regression parameters aij and bij are unique for each

classification–nuisance feature pair and determined as

min
aij ,bij

X
n

ci(n){ aijzbijsj(n)
� ��� �� !

, n [ control group: ð2Þ

Notations ci(n) and sj(n) denote the values of classification and

nuisance features, respectively, for a subject n. The corrected

values ~cci(n) of the classification feature ci corrected for the

nuisance feature sj are obtained from

~cci(n)~ci(n){ aijzbij
:sj(n)

� �
: ð3Þ

The corrected values of the control group have zero mean. To

produce values similar to the original values, for example, the

mean value of the control group could be added to the corrected

values. Alternatively, the training set used in the classification can

be corrected to correspond with the values of the patient. It is

straightforward to extend this method to include many nuisance

features.

Figure 2 demonstrates the method using left hippocampus

volume as the classification feature and age and gender as the

nuisance features. In the original data (Figure 2A), clear trend for

Table 2. Feature groups used in the analysis, and the number of features after pre-selections.

Feature Group Abbreviation C vs. AD SMCI vs. PMCI

ADAS Sub-Scores and Total Scores ADAS 24 9

Clinical Dementia Rating CDR 7 3

Functional Assessment Questionnaire FAQ 12 10

Mini Mental State Examination MMSE 16 2

Neuropsychological Battery NB 40 21

Cross-Sectional FreeSurfer FS 119 93

Derived Volumes DV 14 13

SPM voxel based morphometry analysis VBM 65 2

APOE e4 alleles APOE 1 1

doi:10.1371/journal.pone.0031112.t002

Table 3. Nuisance features and classification accuracies using each nuisance feature to classify all the data.

Gender Age Education Weight Alcohol Smoking BPsyst Cholesterol

C vs. AD 0.45 0.48 0.59 0.57 0.54 0.54 0.52 0.52

SMCI vs. PMCI 0.57 0.52 0.43 0.52 0.50 0.47 0.51 0.53

Education = Years of education, Alcohol = Alcohol abuse (yes/no), Smoking = Smoking (yes/no), BPsyst = Systolic blood pressure (mmHg), Cholesterol = Cholesterol (High
performance).
doi:10.1371/journal.pone.0031112.t003

Improved Classification of Alzheimer’s Disease
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decreased volume in aging is observed. Also, females have lower

volumes than males. First, a linear model is fit to the data of

control subjects (both male and female). Then the data are

corrected based on the linear model (Figure 2B), which removes

most of the age-related data variability (the lines are almost

horizontal). However, there are clear differences between males

and females. When the correction is done by utilizing both the

differences in age and gender (Figure 2C), there is no age- or

gender-related variability in the control group, and also in AD

group such variability has decreased notably. Consequently, the

control and AD groups are better separated and the probability

distributions (Figure 2D) are narrower and have higher peaks,

which improves the classification accuracy.

Data stratification. In data stratification, a subset of the

subjects is selected so that they establish a more uniform population

than all the subjects together. In this study, a subset of the dataset

subjects was selected for a target subject n based on the rule

sj(n){sj(m)
�� ��vthj , m [ training set, ð4Þ

where thj is a user-defined threshold for the nuisance feature sj. If

multiple nuisance features are used, they all have to fulfill the rule

Figure 1. Mean left hippocampus volumes and standard errors as a function of age (males and females) and gender (for all ages).
doi:10.1371/journal.pone.0031112.g001

Figure 2. Example of data correction. Left hippocampus volume is used as the classification feature and age and gender as nuisance features. A:
Original data (zero mean for visualization). B: Data corrected for age. C: Data corrected for age and gender. D: Probability distributions (Parzen
widowing) for all three data. Lines visualize the linear fits for each group.
doi:10.1371/journal.pone.0031112.g002

Improved Classification of Alzheimer’s Disease
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above. The threshold thj was determined as a?std(sj), i.e., as a

multiple of the standard deviation of the nuisance feature in the

whole dataset. Different values for a were tested, and the results are

presented for a = 1 which gave on average the best results.

The data stratification strategy is demonstrated in Figure 3. The

example is the same as above for the data correction. In this

example, it was assumed that the target subject was an 85 years old

female. The subjects selected in the training set for the particular

target subject are shown in black markers in Figure 3A. The

probability density functions in Figure 3B show that when the

stratification is done using only age, the volumes of the training sets

are smaller and the probability density functions are sharper as

compared to the original dataset. When the stratification is done

using both age and gender the distributions are even more localized.

The differences between data stratification and data correction

can be seen in the probability density functions in Figures 2D and

3B. Data stratification is able to make much larger changes in the

probability distributions of the training sets. Consequently, if the

target subject data match with the new distributions the data

stratification should give better results. However, the number of

training set samples is much smaller in the data stratification (e.g.,

N = 61 for data stratification in Figure 3 and N = 408 for data

correction in Figure 2). This can be seen as smoother distributions

in Figure 2D as compared to distributions in Figure 3B. When

multiple stratification features are used, the number of training set

subjects selected may be so small that a classifier, especially if high-

dimensional classifiers are used, cannot be efficiently trained. One

option to handle this problem would be to always use at least N

closest samples in data stratification. However, for binary and

ordinal features, such as sex, genotypes etc., such an approach is

not straightforward. In this study, all the subjects were used if the

number of subjects in both study groups after the data

stratification was less than 10, i.e., no data stratification was

performed in those cases.

Combination of data correction and stratification. Data

correction and data stratification can be easily combined: first,

data stratification is performed, and then the data selected are

corrected. The data correction could be done using the stratified

data only. However, as the number of samples after the

stratification may be very small the estimation of the regression

parameters may become inaccurate. Also, as the relationships

between nuisance and classification features were assumed to be

linear, the same regression parameters should be applicable for

each stratified subset. Consequently, in this study we decided to

make the data correction from the whole dataset in order to

guarantee large enough number of samples.

Types of interactions of nuisance and classification
features

Four kinds of possible interactions between nuisance features

and classification features were discovered as a result of general

reasoning. These are demonstrated using synthetic examples in

Figure 4 and real-world examples in Figure 5.
Type 0. In Type 0, there is no relation between nuisance and

classification features. Therefore, neither data correction nor

stratification is needed for this pair of nuisance and classification

features (Figure 5A).
Type 1. In Type 1, there is no relation between nuisance

feature and classification feature. However, the probability of

belonging to a specific group is related to the value of the nuisance

feature. In Figure 4, if a subject has a large value for nuisance

feature, it is very likely that the subject is from the red group. In

this case, the nuisance feature actually works as a classification

feature, and should not be used in data correction or data

stratification. No real-world example is shown for this type as the

nuisance features were selected so that they cannot be used as a

classification feature.
Type 2. If there is a direct functional relationship between the

classification feature ci and the nuisance feature sj so that it can be

modelled as ci = f(sj), it is possible to use either data correction or

stratification to remove the effect of nuisance feature.

Theoretically, the underlying (unknown) distribution for the

classification feature can be defined best by modelling the

functional relationship and removing its effect from the classifica-

tion feature values as in Eq 3. This way, all control subjects are

used to estimate the classifier. However, in practice the underlying

model can rarely be perfectly modelled and some error is

introduced to the classifier. On the other hand, if stratification is

used instead of modelling and a portion of the training data is left

out, the expected classifier estimate would be erroneous due to the

smaller sample size. Thus, it depends on the case which method is

better suitable to nuisance effect correction.

As a rule of thumb, if there are a ‘‘large’’ number of subjects in

the stratified control group or the functional relationship between

the feature and the nuisance parameter is unclear, stratification

should work better. With a smaller number of subjects and with an

obvious functional relationship, the correction through regression

modelling should be preferred. In the example in Figure 5B both

the data correction and data stratification improved the classifi-

cation accuracy as compared to the original feature values.
Type 3. In the last type of interaction, the separation of the

two groups differs depending on the value of a nuisance feature.

However, there is no relationship between the classification feature

Figure 3. Example of data stratification. Only the subjects marked with black markers are used to train a classifier for a target subject (85 years
old female).
doi:10.1371/journal.pone.0031112.g003

Improved Classification of Alzheimer’s Disease
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and the nuisance feature, so the data correction method does not

work. On the other hand, data stratification can improve the

classification accuracy for those nuisance feature values for which

the groups are well separated. This behaviour is demonstrated in

Figure 5C where especially in the classification of SMCI and

PMCI subjects data stratification outperforms data correction.

When real-world data are analyzed, it is unlikely that any of the

single types of interactions would be able to model all the

interactions in the data. This motivates the use of the combination

of data correction and stratification methods.

Classification methods
The main objectives of this study were to compare data

correction and data stratification methods, and to compare

potential nuisance features to be used in data correction or

stratification in the area of AD diagnosis. In order to keep the

results easily interpretable, we chose to use a simple and well-

known classification method, linear regression classifier. Each

feature group was used separately to classify the data. Conse-

quently, the number of features in the classification varied between

one and 119 (see Table 2). Therefore, feature selection was used to

avoid over-learning of classifiers.

Feature selection. In multi-dimensional classification, the

performance of classifiers suffers if many features with little value

for classification are included. The classifier tries to explain the

variations in these features, and the real important information

cannot be modeled accurately. Therefore, feature selection was

utilized to find the optimal set of features. We used here sequential

step-wise selection (Matlab’s ‘‘stepwisefit’’ function, Matlab

R2010b, The MathWorks Inc.). In the beginning, no features

are in the model, and the features are added or removed one by

one. The feature with the smallest p-value (if p,0.05, F-statistics)

is added to the model, and if there is a feature with a p-value larger

than 0.1 it is removed.

Regression classifier. We selected as a classifier a linear

regression classifier because it is generally used and simple

classifier. It is well suitable for both single-and multi-feature

classification, and does not require optimization of any

parameters.

There is a misbalance in the sizes of the study groups, especially

between SMCI and PMCI groups (Table 1). In order to guarantee

that the classifier actually classifies the data based on the

classification features, not just assign the class of the largest study

group to all the subjects, synthetic samples were generated from

the smaller group using the SMOTE method [16] so that equal

number of samples were used from both study groups.

Evaluation procedure
In this paper, two classification studies were performed. In the

first study, control subjects and AD patients were classified. This

reveals basic information on the changes that take place due to

the disease. However, because some feature groups, such as

Mini Mental State Exam (MMSE) and Clinical Dementia

Rating (CDR), are utilized in making the diagnosis, the

classification results using these neuropsychological tests are

biased. The second classification study was performed between

stable and progressive MCI subjects. This is clinically a much

more relevant study for the early detection of the disease. If the

MCI subjects that will develop AD are detected early,

treatments will be more effective and the costs of the disease

are reduced.

The evaluation was performed using leave-N-out cross-valida-

tion: 90% of subjects were randomly selected to a training set and

the remaining 10% established the test set. In data correction, the

linear model was first learned from the training set, and the

classifier was trained using the corrected values of the training set.

Then, the classifier was applied to the corrected values of the test

set subjects. In data stratification, each test set subject was

individually classified by performing the stratification from the

training set and training the classifier with the selected subset of

the training set. This was repeated 100 times each time randomly

selecting the training and test sets, and the classification results

were averaged. The random training and test sets were the same

for all the studies performed. Therefore, the results obtained can

be pair-wise compared.

First, the classifications were performed without data correction

or data stratification to establish reference results. Then all the

combinations of nuisance features were studied. In other words,

Figure 4. Types of relations between nuisance features and classification features.
doi:10.1371/journal.pone.0031112.g004

Improved Classification of Alzheimer’s Disease
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each nuisance feature was used first individually. Then, all the

combinations of two features were studied etc. For each

combination of nuisance features, the data correction, data

stratification, and their combination were tested.

The evaluation was performed by measuring classification

accuracy (Acc):

Acc~
total number of correct classifications

total number of test set subjects
: ð5Þ

Acc = 1 if all the test set subjects have been correctly classified and

Acc = 0 if all have been misclassified. Statistical comparisons of

Figure 5. Real-world examples of the three types of interactions between a nuisance feature and a classification feature. A: Type 0. B:
Type 2. C: Type 3. In the figures, the local average values and mean errors of the classification features are shown as a function of a nuisance feature.
In addition, the classification accuracy for each classification feature is shown for the original data (Orig), corrected feature values (Corr), stratified
analysis (Strat), and combination of data correction and stratification (Comb).
doi:10.1371/journal.pone.0031112.g005

Improved Classification of Alzheimer’s Disease
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classification accuracies were performed using pairwise t-test. The

threshold for significance was set at p,0.05.

Results

The classification results without data correction or stratification

for each feature group are presented in Table 4 (column original).

As assumed, the neuropsychological tests gave clearly the best

results for the C vs. AD classification, with accuracy close to 100%.

The best MRI-based feature group (DV) reached classification

accuracy of 87%. For the classification of stable and progressive

MCIs, the best results (67%) were obtained using neuropsycho-

logical test NB and the best imaging feature group was DV (65%).

The best results for the data correction, stratification, and their

combination for single nuisance features are also shown in Table 4.

In the C vs. AD classification, statistically significant improvements

were observedfor all the MRI-based feature groups, in which the

classification accuracy improved 1–2% units. Data stratification

gave statistically significant improvement when using CDR and

MMSE tests. Data stratification gave on average slightly worse

results than data correction. Both methods were able to always

give at least as good accuracy as the original data. The

combination of data correction and data stratification did not

give any statistically significant improvement, as compared to the

better one of the data correction and data stratification methods

alone. In the SMCI vs. PMCI classification, data correction

improved the classification accuracy statistically significantly for all

the MRI-based feature groups, and the improvement was 2–5%

units. Data stratification improved the results of several neuro-

psychological tests (CDR 5% units, FAQ 2% units, and MMSE

4% units). The improvements of the MRI feature groups in data

stratification were between 1–3% units. Combination of the two

methods was not able to further improve classification accuracy.

Table 5 summarizes the results for the optimal combinations of

nuisance features. The results for C vs. AD classification were

similar to the result using only one nuisance feature. Data

correction was able to improve the results of MRI-based feature

groups. The improvement was 2–3% units, i.e., slightly better than

with a single feature. The results of data stratification were almost

similar to the results with a single nuisance feature, and the

combination did not improve the results of data correction and

data stratification alone. For the SMCI vs. PMCI classification, the

utilization of many nuisance features improved the results more.

For the MRI feature groups the improvement using data

correction was 4–6% units, and for the neuropsychological tests

using data stratification 2–6% units. The combination of data

correction and stratification was able to give a small, but

statistically non-significant, improvement to some feature groups.

Figure 6 shows how classification accuracy changed when more

nuisance features were added: it increased at first, but after

reaching the optimum it began to decrease. Therefore, all the

nuisance features should not be used.

The results in Tables 4 and 5 give the results for the optimal

combination of nuisance features, but as these results are usually

obtained with different sets of nuisance features additional

guidelines are needed for future studies. Various sets of nuisance

features produce results that are close to the optimal results.

Consequently, it is useful to define one set of nuisance features that

can be used in all the studies. However, the behaviour of

neuropsychological tests and MRI biomarkers are different.

Therefore, different future guidelines are needed for neuropsy-

chological tests and imaging biomarkers. When performing

Table 4. Classification accuracies with single nuisance feature.

C vs. AD original correction stratification combination

ADAS 0.96 0.96 (Gender) 0.96 (Smoking) 0.96 (Smoking)

CDR 0.97 0.97 (Weight) 0.98* (Gender) 0.98* (Gender)

FAQ 0.96 0.96 (Cholesterol) 0.96 (Alcohol) 0.96 (Alcohol)

MMSE 0.95 0.95 (Smoking) 0.95* (Weight) 0.95* (Weight)

NB 0.99 0.99 (Cholesterol) 0.99 (Cholesterol) 0.99* (Age)

FS 0.85 0.87* (Age) 0.85 (Alcohol) 0.85 (Alcohol)

DV 0.87 0.88* (Age) 0.87 (Alcohol) 0.87 (Age)

VBM 0.75 0.76* (Age) 0.75 (Education) 0.76 (Education)

APOE 0.69 0.69 (Gender) 0.69 (Gender) 0.69 (Gender)

SMCI vs. PMCI original correction stratification combination

ADAS 0.64 0.64 (Education) 0.65 (Weight) 0.65 (Weight)

CDR 0.58 0.58 (Gender) 0.63* (Gender) 0.63* (Gender)

FAQ 0.63 0.64 (Cholesterol) 0.65* (Education) 0.65* (Education)

MMSE 0.60 0.61* (Education) 0.64* (Gender) 0.64* (Gender)

NB 0.67 0.68 (Cholesterol) 0.66 (Alcohol) 0.66 (Smoking)

FS 0.60 0.62* (Age) 0.61* (Smoking) 0.62* (Age)

DV 0.65 0.69* (Age) 0.67* (Age) 0.68* (Age)

VBM 0.51 0.56* (Age) 0.54* (Age) 0.56* (Age)

APOE 0.61 0.61 (Gender) 0.61 (Age) 0.61 (Age)

Classification accuracies without data correction or stratification (original) and the best accuracies when using a single nuisance feature. The feature producing the best
result is shown in parenthesis.
*statistically significantly better (p,0.05, t-test) as compared to the results with the original data.
doi:10.1371/journal.pone.0031112.t004
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classifications using imaging biomarkers, the combination of age,

gender, and education in data correction gave good results for all

the MRI feature groups (C vs. AD: 0.88 for FS, 0.89 for DV, 0.76

for VBM, SMCI vs. PMCI: 0.63 for FS, 0.69 for DV, 0.55 for

VBM). In all these cases the results were statistically significantly

improved from the classification without data correction or

stratification. For the neuropsychological tests such single

guideline could not be determined, but it is suggested to use the

best single nuisance features reported in Table 4, i.e., gender for

CDR and MMSE and education for FAQ using the combination

of data correction and stratification.

To give some idea on the effect of data correction for the

performance of single features, Table 6 shows the results for each

feature from the DV feature group for data correction using

gender, age, and education as nuisance features. Almost all the

features improved the results in data correction. In the SMCI vs.

PMCI classification there is a trend that the improvement is larger

for the structures that give the worst results using the original data.

Discussion

In this paper, data correction and data stratification were tested

for the classification of Alzheimer’s disease data. Eight features

were used as nuisance features, and the classifications were

performed using data obtained from the ADNI database. The

classification data included neuropsychological tests, MRI analy-

ses, and APOE genotype values.

The results show that in the best case up to 6% units

improvement in the classification accuracy can be achieved with

data correction and stratification. The biggest improvements were

obtained in the classification of stable and progressive MCI

subjects, which is the most challenging and interesting classifica-

Figure 6. Classification accuracies and mean errors for optimal sets of n nuisance features. A: Data correction method applied to DV for C
vs. AD classification, B: Data stratification method applied to CDR for SMCI vs. PMCI classification.
doi:10.1371/journal.pone.0031112.g006
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tion problem in the analysis of Alzheimer’s disease. The

classification accuracy was improved in all imaging and neuro-

psychological feature groups studied. In the classification of

controls from AD patients, the largest improvements were

obtained for the MRI-based feature groups. However, neuropsy-

chological tests are biased in this comparison as they are already

used in the clinical diagnosis, so their results are not very

interesting. The data correction method gave better results for

imaging biomarkers, whereas data stratification worked well with

the neuropsychological tests. The combination of data correction

and stratification was not able to further improve the results.

Guidelines for the future studies were presented based on the

results obtained in this study.

The weakness of data stratification, especially when numerous

nuisance features are used, is that the number of training samples

decreases which affects the performance of the classifier. This can

be seen in Figure 5A, where data stratification gives worse results

than the original data. On the other hand, data correction always

utilizes the full data set, and, therefore, it is guaranteed that the

maximum amount of data is available for the training of a

classifier. In addition, data stratification requires one parameter to

be chosen. The threshold th for the inclusion criteria was selected

in this study as the standard deviation of the feature values.

However, the threshold used here may not be optimal, and further

studies are needed to find out how this value should be defined.

The data correction method used in this paper was based on

linear regression model. We have tested also regression model with

the cross-terms, but the results were worse than the results

presented in this paper. The method can be easily extended to any

higher order polynomials, or other basic functions. However, the

more complex the model used the larger training set is required in

order to reliable estimate the values for the parameters.

In this paper, we identified four types of interactions between

nuisance features and classification features. Different interactions

and their combinations need different correction and stratification

methods. In this study, the interactions were not detected from the

data, but in an optimal situation, the types of interactions are

detected for each classification-nuisance feature pair, and the

method used is determined based on the type detected. The types

could be detected, for example, by studying the results of line

fitting and statistical tests, performed either for the whole space of

nuisance feature values or for a specific range of values.

The results presented in this study were obtained using linear

regression classifier. All the studies were performed also using

naı̈ve Bayesian classifier, linear discriminant analysis, and support

vector machines (SVM). These methods produced results similar

to the ones presented in this paper. A regression classifier was

selected because it is the simplest one from the classifiers studied

and does not require optimization of any parameters. For

example, SVM could give slightly better classification results but

the choice of kernel type and parameter values should be

optimized separately for each feature group used. The failure of

using optimal kernels and parameters could decrease the results

dramatically.

One weakness of the study may be the feature selection used. In

some feature groups there were tens of features, and therefore,

efficient feature selection is required. Only one standard method

was tested for the feature selection in this study. A state-of-the art

feature selection might give some extra improvement in the results.

There are many kinds of features in the ADNI database

(continuous, binary, ordinal, nominal etc…). The methods

presented here can be used for all the features that are ordered.

Data stratification can be used also for non-ordered data if the

thresholds are reasonably selected. The data correction method is

best suitable for continuous classification features. In the case of

binary or ordinal features large corrections are required to change

the classification feature value so that it would affect the

classification result. In this study, it was shown that data correction

suits for continuous imaging biomarkers, whereas data stratifica-

tion works well for neuropsychological tests where there are many

binary variables. Consequently, different methods for different

feature types should be further studied.

The benefit of the methods studied here is that in the clinical

decision making, for example using the tool presented in [17], a

clinician can visually compare the patient values to either

corrected values in a dataset or to the values of a stratified

dataset. In the stratified/corrected feature values the group

differences are better visible and, consequently, the diagnosis can

be performed more reliably. Most of the methods presented in the

literature, such as ANCOVA, handle the patient values in a black

Table 6. Classification results for single features from the DV feature group.

C vs. AD, original C vs. AD, corrected SMCI vs. PMCI, original SMCI vs. PMCI, corrected

Whole Brain 0.60 0.63 0.55 0.60

Ventricles 0.65 0.67

Right Inferior Lateral Ventricle 0.70 0.74 0.60 0.62

Left Middle Temporal 0.75 0.79 0.63 0.63

Left Inferior Lateral Ventricle 0.73 0.75 0.57 0.59

Left Hippocampus 0.79 0.82 0.61 0.64

Right Hippocampus 0.76 0.79 0.61 0.63

Left Fusiform 0.76 0.77 0.59 0.62

Right Fusiform 0.74 0.75 0.62 0.63

Right Inferior Temporal 0.74 0.75 0.64 0.65

Right Middle Temporal 0.74 0.76 0.65 0.64

Left Inferior Temporal 0.79 0.79 0.61 0.64

Left Entorhinal 0.82 0.84 0.60 0.61

Right Entorhinal 0.80 0.80 0.63 0.63

doi:10.1371/journal.pone.0031112.t006
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box and only output a classification result that is not very

informative in clinical decision making.

In this paper, the evaluation of the methods was performed

using automatic classification methods in order to be able to use

large dataset. An alternative approach would have been to give the

original and corrected or stratified data to a clinician and asked

him/her to make the diagnosis using the data available. Only a

small dataset could have been evaluated using this approach, and

all the combinations of nuisance features could not have been

analyzed. Nevertheless, this study gave valuable information how

the personalized diagnostics in AD could be performed. As the

next step, this knowledge should be validated in clinical

environment.

The methods proposed here can be used as a pre-processing

step to improve the classification accuracy of any combination of

feature selection and classification methods. In addition, the

methods studied in this paper are not specific to Alzheimer’s

disease, but can be applied to any medical application, and also

outside the medical field.
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