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Abstract 

It has been argued for sixty years that there exists a relation between surface tension and 

surface energy on an unstrained solid as given by the Shuttleworth equation. It is shown 

here that the Shuttleworth equation reduces to the definition of surface tension derived 

from mechanics. Therefore, it provides no additional relation to the physics of surfaces. 

This derivation also reveals precisely how the misinterpretation of the Shuttleworth 

equation has arisen, and should thus close the discussion on its applicability. 
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Understanding of the state of a solid surface is becoming more important in the rapidly 

developing fields of nanotechnology, microsensors and electrochemical wetting. 

Accordingly, the stress state of a solid surface has been widely discussed in the scientific 

literature. In this connection, the Shuttleworth equation is frequently referred to. Using the 

original notations by Shuttleworth [1], this equation reads 

A
FAF

                                                                                           (1) 

Here A is surface area,  is surface tension and F is surface free energy per unit area. 

Shuttleworth [1] defined  as the tangential stress (force per unit length) in the surface 

layer and F as the total Helmholtz free energy H per unit area of a surface, i.e. F = H/A.  

Equation (1) has subsequently been re-derived in various ways, for example in some recent 

review papers [2-5]. Equation (1) has sometimes been considered as the second most 

important equation in surface physics, e.g. [6]. Commonly, the Shuttleworth equation is 

considered to be a thermodynamic equation that provides the excess surface stress at a 

solid surface. In particular, F has been widely interpreted as the thermodynamic energy 

required in forming unit area of new unstrained surface by cleaving and the second right 

hand side term in Eq. (1) as a term which separates the surface tension on liquid from that 

on a solid. 

Claims have been made that the derivations of the Shuttleworth equation are flawed [e.g. 

7-14]. The issue is conceptually difficult and prone to controversy [15-20]. In several 

recent reviews, the criticism of applying the Shuttleworth equation has been dismissed as 

incorrect, e.g. [3,15,21] and the statements, supporting its use [2-5,15,22-33] have been 

firm.   



 3

In this paper, it is shown that the interpretation of the Shuttleworth equation as a relation 

between surface tension and surface energy on an unstrained crystal is inappropriate. It is 

also revealed, by precise mathematical derivation, how the misunderstanding has arisen.  

In order to avoid confusion between mathematics and the physical interpretation we first 

outline the mathematical background of the problem without any reference to physics. 

Any function y(x) can be presented as a sum of a constant term and a variable term as 

xhyxy 0                                                                                            (2) 

for which y(x0) = y0 is a constant that is not a function of x.   

Dividing Eq. (2) by x yields   

hzzz 0                                                                                                 (3) 

where z = y/x;  z0 = y0/x;  zh = h/x. The derivative  of y with respect to x is 

x
y

                                                                                                      (4) 

which, because y0 x = 0, reduces to 

x
h

                                                                                                      (5) 

Inserting y = xz into Eq. (4) yields 

x
zxz

x
zx

                                                                              (6)                               

Equations (5) and (6) are alternative and equally valid equations for the derivative . 



 4

For clarity, the original definitions and notations of Shuttleworth [1] are used in the 

following. Shuttleworth based his derivation on that the work done in straining a crystal 

equals the increase in the total surface Helmholtz free energy, so that 

A
H

                                                                                                     (7) 

Shuttleworth’s [1] explanation for his derivation reads as follows. 

“Consider a crystal in which the surface tension is balanced entirely by external forces. If 

these are the only external forces that are applied to the crystal there will be neither 

stress nor strain in the volume of the crystal and any infinitesimal distortion will cause no 

change in the volume energy of the crystal; the work done by the external forces will be 

equal to the increase in surface energy. Suppose the crystal is deformed so that a square, 

of area A, in the crystal face is deformed into a rectangle whose sides are parallel to the 

square. An amount of work 1dA1 + 2dA2 must be done against the surface stress, where 

1 and 2 are the components of the surface stress perpendicular to the sides of the 

square, and dA1 and dA2 are the increases in area in these two directions (for this kind of 

deformation no work is done against any shear component of the surface stress). 

Provided the deformation is reversible and occurs at constant temperature, the additional 

work is equal to the increase in surface free energy of the square, 1dA1 + 2dA2 = d(AF); 

eq. (S2). For an isotropic substance, or for a crystal face with a three- (or greater) fold 

axis of symmetry, all normal components of the surface stress equal the surface tension 

and equation (S2) reduces to 

A
FAF

A
FA

                                                                          (8) 

where dA is the total increase in area.” 
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As noted in Section 1, Eq. (8) has been derived, not only as originally done by 

Shuttleworth, but by many alternative approaches. For example, a derivation by the 

fundamental equations of thermodynamics has been used by many [2-4,21,23-25]. Our aim 

here is not to reveal problems in each of these derivations separately. Instead, we submit a 

general and compelling argument by showing that the interpretation of Eq. (8) as a relation 

between surface tension and the surface energy on an unstrained solid is meaningless 

regardless of how it is derived.   

As outlined in Section 2, the Helmholtz free energy H = AF can be presented as 

AHHAH h0                                                                                      (9)  

Note that no assumptions are made in Eq. (9) of the physical origins or interdependence of 

H0 and Hh. The term H0 is simply the total Helmholtz free energy in the unstrained state 

and the term Hh is the total Helmholtz free energy stored in straining, regardless of the 

physical processes involved.  

Here, analogously with the derivation of Eq. (5), H0 A = 0. Differentiating Eq. (9) with 

respect to A thus yields 

A
H h

                                                                                                  (10) 

In mechanics, stress is defined as the strain derivative of the free energy stored in straining. 

Thus, Eq. (10) is the definition of the tangential surface stress, i.e. surface tension, as it 

was called by Shuttleworth [1].  

We have thus shown that Eqs. (8) and (10) are the same. In other words, by applying 

mathematics, Eq. (8) reduces to Eq. (10). With this in mind it is now easy to see how the 



 6

Shuttleworth equation should be interpreted. Shuttleworth equation equals the 

mechanical definition of surface tension.  

By the derivation above it also becomes clear how the Shuttleworth equation should not 

be interpreted. Because it reduces to a basic definition, it does not provide an additional 

law of surface physics. By a mere definition, one cannot prove that a non-zero excess 

surface tension exists or tell anything of the origins of it. In particular, the common 

interpretation of F in Eq. (8) as the energy per unit surface area spent in forming new 

unstrained surface is false, since the mechanical definition of surface tension relates to 

straining a surface at constant number of atoms and not to forming new surface by 

cleaving or accretion of atoms at constant strain. 

Consequently, evaluation of the surface stress should be based on its mechanical definition 

as outlined by Gurtin and Murdoch [34] and Wolfer [35].  
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