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Ontology-Driven Software Engineering: Beyond model checking and transformations

Artem Katasonov

VTIT Technical Research Center of Finland, 33101, Tampere, Finland

Abstract

This paper introduces a novel framework for Ontology-Driven Software Engineering. This framework is grounded on the prior
related work that studied the interplay between the model-driven engineering and the ontological modelling. Our framework
makes a contribution by incorporating a more flexible and means for ontological modelling that also has a higher performance
in processing, and by incorporating a wider range of ontology types into ODSE. In result, it extends the power and speed of
the classification and the model consistency checking ontological services enabled by the prior work, and brings new ontological
services: semantic search in model repositories, three kinds of semi-automated model composition services: task-based, result-
based, and opportunistic, and the policy enforcement service. The primary intended use for this framework is to be implemented
as part of model-driven engineering tools to support software engineers. We describe our reference implementation of such a tool

called Smart Modeller, and report on a performance evaluation of our framework carried out with the help of it.

Keywords: Ontology-driven software engineering, Model-driven engineering, Component metadata, Software composition,

Model checking

1. Introduction

Ontology-Driven Software Engineering (ODSE) has been
gaining a growing attention in recent years. ODSE, in a wide
sense, refers to various ways in which ontologies and other se-
mantic technologies can contribute to improving the software
engineering, both its processes and its artefacts. As ontologies
are formalized conceptual models of some domains, ODSE is
often seen as a kind, or an extension, of a more established trend
that is Model-Driven Engineering.

Model-Driven Engineering (MDE) [1] plays today a key role
in describing and building software systems [2]. The MDE ap-
proach is based on increasing the level of abstraction to cope
with complexity. In MDE, software models are used not only
for design and maintenance purposes, but also as a basis for
generating the final executable code. MDE attempts to insulate
business applications from technology evolution through in-
creased platform independence, portability and cross-platform
interoperability, encouraging developers to focus their efforts
on domain specificity [3]. The MDE approach finds support
also from the emergence and popularization of the open-source
development and the software-as-a-service paradigm. Both
these trends lead to a situation where software applications are
increasingly created with utilization of existing components,
while defining the control and data flows between such com-
ponents in a graphical modelling tool often appears to be an
intuitive way to proceed.

MDE suggests to develop some models describing a system
in an abstract way and then to transform them, in several steps,
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into real, executable systems (e.g. source code) [2]. The key
concepts of MDE are thus models, modelling languages, and
transformations. Modelling languages can be generic, such as
UML, or be Domain-Specific Languages (DSL); different lan-
guages can be used for different levels of models. Transforma-
tions may be performed along the model specification dimen-
sion [2] where an original coarse model, e.g. from a business
viewpoint, is progressively refined into more detailed models,
e.g. from an expert viewpoint, a developer viewpoint. One
standardized view on MDE, which is Model Driven Architec-
ture (MDA) [4] by the Object Management Group (OMG), sug-
gest also transformations along the platform specification di-
mension. MDA process, e.g. as in [5], involves the following
steps. First, a Computation-Independent Model (CIM) is cre-
ated, which could be e.g. a UML’s use case diagram. Then,
based on CIM, the Platform-Independent Model (PIM) is devel-
oped, which can include UML’s class diagram, state-transition
diagrams, and so on. In the next step, PIM combined with a
Platform Profile is transformed (at least some automation is as-
sumed) into the Platform-Specific Model (PSM), which is tai-
lored to and provides more information for a particular operat-
ing system, particular programming language, and so on. Fi-
nally, the programming code is generated from PSM.

There are several recognized issues with MDE. One issue is
that transformations between models, especially along the plat-
form specification dimension, is a hard problem which is dif-
ficult to automate or even provide support for. Another issue
is that in MDE the semantics of modelling languages, i.e. de-
notational, operational or axiomatic interpretation of their con-
structs, is usually not defined explicitly. This semantics is either
hidden within the modelling tools [2] or even left to the people
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that design and use the models. The consistency of models is
often analysed using procedural checks of the modelling tools,
providing mostly superficial verification. Absence of semantics
defined outside the tools further hinders automated transforma-
tion of the models, unless both the source and the target models
are managed within the same tool.

In response to these issues, the Ontology-Driven Software
Engineering approach was recently introduced, which includes
the use of ontologies and other semantic technologies as part
of the MDE process. Most existing ODSE approaches focus on
providing ontological services to support traditional MDE tasks
such as model transformations and model consistency check-
ing. We believe, however, that the great potential of ODSE goes
well beyond the improvement to traditional MDE tasks. ODSE
can provide support to software engineers with respect to new
tasks touched little by MDE, most notably semi-automated con-
struction of software models.

In this paper, we present a novel ODSE framework. It is
grounded in the viewpoint of e.g. [2] that studied the inter-
play between the model-driven engineering and the ontological
modelling and formalised some ontological services such as the
classification service and the model consistency checking ser-
vice. The contribution of our framework is then two-fold. First,
it incorporates a more flexible and means for ontological mod-
elling that also has a higher performance in processing, which
is a hybrid of Description Logic and SPARQL patterns. In re-
sult, the expressiveness as well as the speed of execution of e.g.
model checking is improved. Second, it incorporates a wider
range of ontology types into ODSE and enables new ontolog-
ical services: semantic search in model repositories, three ser-
vices for semi-automated construction of models: task-based,
result-based, and opportunistic, as well as the policy enforce-
ment service. An important fact is that this framework provides
a common uniform basis for both the traditional ontological ser-
vices and the new ones.

A brief presentation of an earlier version of our ODSE frame-
work was published in [6]. However, the framework has
evolved since that publication and, therefore, this paper re-
places rather than just extends it. Our framework was exploited
in an ODSE tool called Smart Modeller, which is one of the
products of the research project SOFIA [7]. We will refer to the
Smart Modeller several times in this paper. However, as this
paper focuses on the framework itself, technical details of this
tool and description of its modelling language are outside the
scope of this paper. More information on Smart Modeller can
be found in [8, 9].

The rest of the paper is structured as follows. Section 2 dis-
cusses ODSE, the advantages of ontologies it currently fails to
exploit, and argues for new ontological services to enable. Sec-
tions 3, 4, and 5 discuss the three topical areas that form the
background for our framework. Section 3 discusses the bridg-
ing of modelling languages with ontologies, as this is the cor-
nerstone of our framework the same way as it is the cornerstone
of most other ODSE approaches. Section 4 discusses SPARQL
patterns as an alternative approach to representing ontological
knowledge, and the advantages it brings. Section 5 discusses
different types of knowledge, for which ontological modelling

is of benefit in the context of ODSE. After that, Section 6 de-
scribes our ODSE framework in detail. Section 7 briefly de-
scribes our reference implementation of the framework in the
Smart Modeller tool. Section 8 reports on a performance evalu-
ation of the framework. Finally, Section 9 concludes the paper.

2. Ontology Driven Software Engineering

2.1. State of the art

One early work related to ODSE is [10], where the authors
discussed the similarities between model engineering and on-
tology engineering and introduced the concept of bridging the
two (see more on this in Section 3). Following this concept,
[11] provided a bridging between the Ecore metamodeling lan-
guage, which is a part of the Eclipse Modelling Framework
(EMF) [12], and the Web Ontology Language (OWL), which
is an ontology-definition language based on Description Togic
(DL). Then, the authors proposed semi-automatic creation of
OWL ontologies representing and extending Ecore-based meta-
models (i.e. modelling languages). Finally, the authors dis-
cussed that, after defining an explicit mapping between two
ontologies created for two different modelling languages, the
production can be facilitated of the code for automatic trans-
formation of a model in one language into the corresponding
model in the other language.

[13] also targeted generation of code for performing transfor-
mations between models in different modelling languages. In
contrast to [11], i.e. to creating different ontologies for differ-
ent languages and then mapping them, [13] relied on binding,
through semantic annotations, of each metamodel to a common
reference ontology.

Instead of model transformations, [2] focused on ontological
services that a designer of a single model can receive if an ontol-
ogy representing the modelling language metamodel is created.
These services include model consistency checking, i.e. check-
ing if the model contains any contradictory facts with regard to
the ontology, and model refining, where a generic element with
some particular properties or connections is substituted with a
more specific matching element. Both services are provided
through a reasoning process over the ontology and the model in
question. This work also introduced an approach where the on-
tology is not maintained as a complete and separate document,
but rather OWL annotations are embedded into the textual rep-
resentation of the modelling language metamodel. The full
OWL ontology is then automatically produced when needed.
A related work [14] provided a case study for this approach in
the network configuration software domain.

[15] discussed ontology-driven consistency checking in cases
where there are more than two modelling levels, i.e. model
has to conform to a metamodel while the metamodel has to
conform to a metametamodel. Such a checking process was
demonstrated based on the authors’ extension to OWL.

Although the ODSE term commonly refers to the use of De-
scription Logic based frameworks such as OWL, comparable
solutions exist also based on different formalisms, most notably
the Object Constraint Language (OCL). OCL-based solutions



target similar goals as DL-based ones, with recent work focus-
ing on verification of models [16], model transformations [17],
and checking of conformance between models at different lev-
els of abstraction [18]. A study [19] also attempted to integrate
OCL with OWL in a way that OCL constraints, pre and post
conditions can rely on OWL class definitions, to increase the
expressiveness and in so to improve model checking processes.

In addition to approaches that are ontology-driven in the
sense that they use an ontology representing the modelling lan-
guage, some ODSE approaches attempt to exploit as a part
MDE the ontologies describing the software application do-
mains. Several works, e.g. [20], propose the transformation
of such a domain ontology directly into the software applica-
tion’s hierarchy of classes as represented, e.g., by a UML class
diagram. In terms of MDA (see Section 1), this means that
the domain ontology becomes a part of the Computation Inde-
pendent Model (CIM) level and is utilized for generating some
parts of the Platform Independent Model (PIM) [21], resulting
in some level of automation also in this transformation step.

As the above overview of ODSE research indicates, and to
our best knowledge, the work has been focused and restricted to
supporting traditional MDE tasks, i.e. model checking, model
transformation, and model refining, which is in turn a kind of
local transformation.

In fact, an earlier article [22] by the same authors as above
mentioned [13] discussed on a conceptual level the bridging
MDA and ontologies and introduced, in addition to model
transformations, also some other potential applications of on-
tologies in MDA. One is search and composition of compo-
nents: semantic descriptions of, e.g., commercial-off-the-shelf
components or services can be stored in a knowledge base
where ontological reasoning and matchmaking mechanisms can
be applied. The other one is automated composition of models:
semantic descriptions of components can be exploited for com-
posing models, for example, when creating a platform specific
model based on a platform independent one. To our knowledge,
the authors did not pursue these directions further.

The ontology applications like search and matchmaking are
discussed more often outside the MDE community. Generic re-
views of the relationship between ontologies and software de-
velopment [23, 24] discuss, similarly to [22] above, discovery
of appropriate software components based on semantic descrip-
tions of them. There are a number of practical studies using
ontologies in this way. [25] discussed online repositories of
software components, from which components are discovered
based on metadata. [26] studied the use of semantic metadata in
application servers for a variety of reasons, including search of
components and services and conflict resolution between them.
Several studies [27, 28] also suggest that semantic metadata can
provide a way of deciding on compatibility of software com-
ponents and thus give an input for the process of composing
applications from components.

These studies, however, do not follow a formal MDE ap-
proach and, therefore, their solutions do not enjoy modelling-
related ontology benefits such as consistency checking. In con-
trast, our work follows the MDE tradition but extends it. As
stated in Section 1, our ODSE framework is designed to pro-

vide a common uniform basis for both the traditional ontologi-
cal services, such as model checking, and new ontological ser-
vices such as search and composition of models.

2.2. New ontological services

Following the discussion started in the later part of Section
2.1, we argue here for new ontological services to become an
integral part of a formal ODSE framework.

Some of the issues, which these new ontological services
aim at addressing, are explained by the following simple ex-
ample, which we will use throughout the paper where appropri-
ate. Software development for the present Nokia smart phones,
both Symbian and Maemo/MeeGo, is commonly done using
Qt C++. The Qt environment includes the Qt Mobility library
that provides the applications access to phone’s common re-
sources, such as call service, messaging, contacts, media, GPS,
sensors, and so on. Qt Mobility is divided into a set of separate
Application Programming Interfaces (APIs), e.g. Messaging
API and Contacts API, which are designed not to have cross-
dependencies, i.e. they do not use the classes of each other.
The Contacts API has, among other functions, a function that
searches for contacts matching a given filter and retumns results
in the form of QContact objects. The Messaging API has, in
turn, a function that opens the phone’s standard dialog for com-
posing and sending a short message to a given contact. The
latter function does not expect a QContact object as the input,
but just a string representation of a phone number. Now con-
sider an application “find a contact, then compose and send a
message to him/her”. The above two functions can obviously
be used in a chain and jointly enable such an application. Let us
call them semantically compatible. However, on the syntactic
level, there is nothing indicating such compatibility: both the
data types and the names of the parameters are different for the
output of the former and the input of the latter. Therefore, it is
the application developer who has to possess the knowledge of
such semantic compatibility and also of the adapter that has to
be used. In this case, the adapter is a line of code that extracts
the string representation of the phone number from a QContact
object (“contact” object in the snippet):

((QContactPhoneNumber) contact.detail(
QContactPhoneNumber::DefinitionName)).number()

Note that the above example is about using together two parts
of substantially the same library. The problem becomes much
harder when attempting to use together different APIs from dif-
ferent vendors with different original purposes. Nowadays, pro-
grammers and developers who want to (re)use existing compo-
nents and services have to either search for those components
manually or perform lookups which are based on syntactical
descriptions [22]. In practice, a lot of effort goes into finding
appropriate components or API functions, reading documenta-
tion about them, searching for examples, understanding how to
use the components together, e.g. to adapt the output of one to
fit into the input of another.

Ontologies and ontology-based semantic data are one way
of representing knowledge. They allow some knowledge to be



explicitly captured and, in so, to remove the need for a human
to possess this knowledge and to allow a computer-based sys-
tem to automatically utilize this knowledge. With respect to
the problem above, an ontological approach can thus enable au-
tomatic discovery of compatible components / API functions
as well as automatic discovery and incorporation of adapters.
Roughly speaking, it is like software documentation that is
machine-processable and that can automatically be put into use.

When combined with MDE, this means in short the follow-
ing. Components and API functions are modelled using a DSL,
these models are extended with semantic metadata, and both
the models and the metadata are published into some reposi-
tories or to Web. Then, when designing a particular applica-
tion model, based on the designer input and the current model,
those components models are searched for, matched, and incor-
porated into the application model. In result, we have not just
machine-processable documentation of software components,
but documentation that is automatically analysable in the con-
text of the current model. Enabling this is an important goal of
our ODSE framework.

Based on these considerations, we identified the following
new ontological services to become a part of ODSE:

Semantic search in repositories. Models corresponding to
software components or their compositions are stored along
with semantic annotations in local or online repositories, and
are automatically discovered based on those annotations. The
main reason for this service is that it is needed as an enabler for
model composition services below. A designer can also use it
directly as a re-use mechanism.

Task-based model composition. Models of components are
discovered based on high-level tasks they realize and then in-
corporated into the model. This is the simplest application of
the semantic search service. As one option, it can be triggered
by a direct input from a designer. For example: a model de-
signer browses defined tasks, selects Search contact”, and re-
ceives the list of implementations including search in Outlook
contacts, search in mobile phone directory, and so on, also for
different target platforms and implementation languages. Alter-
natively, such a high-level task can be a part of a computation-
independent or a platform-independent model. Then, the task-
based composition service would be an enabler for the transfor-
mation of this model into a platform-specific model. The main
reason for such a service is to reduce the need for possessing
platform-specific knowledge.

Result-based model composition. Model designer specifies
what kind of resource he/she would like to be produced as a
part of the designed software. Then, models of components
annotated as producing this kind of resource are searched for.
After that, the current model is searched for possible suppli-
ers of the inputs required by those components. Adapters are
also discovered, if needed. It is a kind of a backward-chaining
reasoning. For example: locate all functions that produce a
QContact and analyse their required inputs. The main reason
for such a service is to reduce the need for possessing API- or
components-specific knowledge. This can be useful also simply
because, in our experience, the process of understanding how to
obtain a certain object is often painful in modern APIs as they

often utilise factories and other indirect means of creating ob-
jects rather than constructors.

Opportunistic-based model composition. The current model
is analysed with respect to what resources are being available,
and after that models of components that can utilize/consume
those resources are searched for. It is a kind of a forward-
chaining reasoning. For example: the current model includes
a ”’search contact” function and, therefore, has a Contact re-
source available, so the ”compose SMS” function is proposed.
The reasons are both to reduce the need for possessing API-
or components-specific knowledge and to support opportunis-
tic decision making. We use the term “opportunistic” in a sense
similar to [29, 30].

Policy enforcement. Policies defined in relation to the de-
signed software are checked, automatically or on-demand. This
service is in many aspects similar to the model checking service
but operates on a higher level: on policies about allowed model
compositions, not the modelling language as such. One option
is automatic checking after every change to the model. If the
change leads to a situation prohibited by a policy, one possible
response of the service is to cancel this last change while in-
forming the designer about the policy. For example: a policy
may state that applications are not allowed to persistently store
a user’s private data.

3. Bridging models and ontologies

This section discusses in more detail the bridging of mod-
elling languages with ontologies and benefits that steam directly
from this, as this is the cornerstone of our ODSE framework
the same way as it is the cornerstone of most other ODSE ap-
proaches.

Modelling can be conceptually described using the four-layer
architecture [31]. A model itself and a part of the world it rep-
resents are referred to as M1 and MO layers, respectively. An
M1 model is constructed using some kind of a modelling lan-
guage that consists of an abstract syntax, one or more concrete
syntax (graphic or textual), and semantics. The explicit def-
inition of the abstract syntax of a language is referred to as
its metamodel and placed at the M2 layer. Each metamodel
at the M2 layer determines how expressive its models can be.
Analogously, a metamodel is defined by using concepts given
in a metametamodel at the M3 layer. Although one could con-
tinue the analogy to even higher layers, in practice it is common
to use a standard M3-layer metametamodel, most commonly a
derivative of the Meta-Object Facility (MOF) defined by Ob-
ject Management Group (OMG). One popular MOF derivative
is the Ecore metamodeling language that is a part of the Eclipse
Modelling Framework (EMF) [12]. Henceforth, we will con-
sider Ecore for the M3 Layer.

Ecore defines a small set of constructs including EClass,
EAttribute, EReference, and EDataType. Using these con-
structs, a designer of a modelling language can define a M2-
layer metamodel, which, for example, could describe such
classes as ActionNode and ControlFlowEdge along with their
attributes and references. Using these M2-layer constructs, a



user of the modelling language can then create a M1-layer pro-
cess model consisting of a set of specific actions and control
flow connections between them. This process model would
then act as a representation of some MO-layer existing or
planned process.

If two different modelling languages are based on the same
metametamodel (e.g. Ecore), it is possible to formally define
the transformation operation between these languages. Then,
one is able to perform automated transformation of a model
based on one of the two languages into a model based on the
other one.

It can be noticed that the world of the semantic technology
follows the same four-layer architecture. Assume there is a part
of the real world (MO) and a semantic description of it (M1).
The M1-layer semantic description uses concepts from one or
more ontologies, which are M2-layer metamodels. Such on-
tologies are often explicitly defined using RDF-Schema (RDF-
S) and Web Ontology Language (OWL), which are therefore
M3-layer metametamodels.

One way to refer to M1 and M2 layers here, as e.g. in
[2], is ABox (assertions) and TBox (terms) of a knowledge
base. In this paper, we assume that M1 semantic description
is based, as it is common in practice, on the Resource Descrip-
tion Framework (RDF). Therefore, instead of speaking of ABox
and TBox, we prefer to speak of RDF and ontologies. Note also
that when speaking of "RDF” we mean narrowly a description
of a set of individuals and relationships between them, i.e. an
MIl-layer model. Unless explicitly specified, we do not mean
higher-layers uses of RDF, such as RDF serialization of OWL
ontologies.

M3: \ Ecore OWL |

M2: | Metamodel < massing > Ontology @

Model RO RDF_2
Mo:

Figure 1: Bridging modelling languages and ontologies.

Mi: |

Several studies [11, 2] note that although the metametamod-
els behind OWL and Ecore are not the same, there are suffi-
cient similarities, and, therefore, one can define a bridge be-
tween the two. Such a bridge treats Ecore concepts as special
cases of OWL concepts: EClass as a subclass of owl:Class,
EAttribute as a subclass of owl:DatatypeProperty, and ERef-
erence as a subclass of owl:ObjectProperty. Note that both
owl:DatatypeProperty and owl:ObjectProperty are in turn sub-
classes of rdf:Property. With such a bridge defined, one can
then define a transformation operation between an Ecore-based
modelling language and an OWL-based ontology. As a result,
one can perform automated transformation of a model based on
that modelling language into an RDF-based model following

the ontology. Figure 1 depicts this approach, which e.g. in [2]
is referred to as "OWLizing”.

The basic motivation for such a transformation is that on-
tology languages like OWL offer a greater expressiveness than
metamodeling tools like Ecore. An OWL ontology can define
not only the abstract syntax, but also at least a part of the ax-
iomatic semantics of a modelling language, using the frame-
work of Description Logic (DL).

One approach is to maintain the needed OWL ontology as
a complete and separate document. Another approach is to
embed OWL annotations into the textual representation of the
metamodel of the modelling language, and then to automati-
cally and on-demand transform this extended metamodel into
the full OWL ontology. For example, [14] used the latter ap-
proach.

The practical motivation then is to provide a model designer
with a set of ontological services. [2] discussed a few such
services:

o Consistency checking - to check automatically if the model
contains any contradictory facts with regard to the ontol-
ogy. Such contradiction would indicate that the model
does not fulfil a restriction set by the ontology and is there-
fore either erroneous or incomplete. A check can also re-
turn an explanation of the inconsistency facilitating debug-
ging of the model.

o Classification - to determine all the types, or the most spe-
cific type, a model element belongs to according to the
ontology. This service facilitates refinement of models, in-
cluding automated, by suggesting suitable concepts to be
used in a refined model.

e Querying - to provide the designer with an ability to query
the model more flexibly than normally provided by mod-
elling tools. For example, one can search for all the ele-
ments of a certain type that are connected to elements of
some other type in a certain way. This service does not
necessarily use the ontology definition but rather enjoys
the direct benefits of having the model represented in RDF.

[2] also discussed a couple of guidance services that apply
to the ontology itself: satisfiability checking to check the con-
sistency of the metamodel, and subsumption checking to com-
pute/refine the hierarchy of defined classes and as a result to
possibly refine the metamodel.

In Figure 1, we included Ontology_2 and the corresponding
RDF_2 model to stress the fact that more than one ontologi-
cal representation for a given modelling language is possible,
and also to point out that at least two such representations are
straightforward for Ecore-based languages. When using Ecore
to design a graph-based modelling language (that has nodes and
edges), it is common to define an edge as an EClass in its own
right with two EReference, usually called “source” and “’tar-
get”. The most direct OWL representation will map the edge
EClass into a corresponding owl:Class with the source and the
target as two owl:ObjectProperty. Another OWL representa-
tion, however, is possible that maps an edge directly into an



Table 1: Examples of OWL-expressible semantics

| Restriction type OWL | Meaning
Required attributes Action: SubClassOf: name some string An Action node should have a name defined.
Allowed values Action: SubClassOf: visibility ~ only | The visibility attribute of an Action node must

{’public’, private’, package’, protected’}

be one of defined four values.

Required connections

FinalNode: SubClassOf: incoming some Con-
trolFlowEdge

Final node must have some incoming control
edges.

Disallowed connections

FinalNode: SubClassOf: not outgoing some Edge

Final node must have no outgoing edges.

Cardinality of edges

ForkNode: SubClassOf: outgoing min 2

A fork node should have at least two outgoing
edges.

Interaction of edges

ForkNode: SubClassOf: incoming some
ControlFlowEdge and outgoing only Con-
trolFlowEdge or incoming some ObjectFlowEdge
and outgoing only ObjectFlowEdge

The edges of a fork node must be either all
control flows or all object flows.

Qualification of edges’

FollowupAction: SubClassOf: Action and incom-

FollowupAction is an Action node that di-

sources and targets ing some (source some Action)

rectly follows another action without any con-
trol nodes in between. This is not a basic UML
node type — included as an example of OWL
modelling capabilities.

owl:ObjectProperty, or a set of those in a case where edges carry
an attribute like "type” to specify more precisely the kind of an
edge. The OWL definitions will be shorter and reasoning some-
what faster in the latter approach. The drawback, however, is
that any additional attributes of the edges, if any, cannot then be
represented. Note that in the former approach, it is mandatory
for the ontology to include the inverse properties of “source”
and “target”, for instance called “outgoing” and “incoming”.

Table 1 provides some examples of OWL definitions aimed
for exposing the semantics of a modelling language. It uses
the UML Activity diagram as the subject language, presents
OWL declarations in the compact Manchester syntax, and as-
sumes that edges are modelled as OWL classes. The first six
definitions are directed mostly to the consistency checking ser-
vice that would treat them as constraints to the model. The last
definition is directed mostly to the classification service. This
service may use such a definition to refine generic elements into
more specific ones, or to locate elements for which some addi-
tional constraints must be checked.

‘We must comment, however, that using OWL for implement-
ing the model checking service is not as straightforward as it
may sound, and this issue is not discussed in [2]. OWL is meant
to infer new knowledge rather than to act as a schema language.
In particular, OWL makes an Open World Assumption (OWA),
which means that absence of a fact does not imply its false-
hood, and standard OWL reasoning engines follow OWA as
well. This means that while the second, the fourth, and the
sixth restriction in the Table 1 will trigger inconsistency errors
if the model does not satisfy them, the first, the third, and the
fifth will not. For checking those, an indirect approach has to
be used: one attaches a restriction to a separate class, say, Vali-
dAction, and then checks if the sets of Action and ValidAction
are the same. Such an approach would be in turn sufficient for
all the restrictions in Table 1 except of the fourth (the one with
not some), for which, again because of OWA, it would not work

and always give an empty set. In result, one has to always use
a combination of both verification means.

In the column “meaning” of Table 1, we used words “must”
and “’should” to distinguish between cases of definite error and
probable error. As OWL does not have means for specifying
this part of the constraint semantics, it still can only be embed-
ded and thus hidden inside the modelling tools.

4. Using SPARQL patterns

In present, OWL is a dominant framework for encoding on-
tological knowledge. For MDE, as we discussed in Section 3,
OWL provides some useful expressive power and, therefore,
enables realization of some ontological services. In 2009, OWL
2 specification was finalized that added some new useful fea-
tures to the language. Yet, being a closed framework, OWL has
its limitations. [32] puts it as that OWL is hard-coded against
specific design patterns, but anything that goes beyond those
patterns cannot be expressed.

In Section 3, we were defining an OWL ontology with the
purpose of reasoning over data encoded as RDF, in particular.
Also, the reasoning tasks were limited to pattern-based match-
ing: the consistency checking service basically checks if a cer-
tain data pattern occurs where it should, while the classification
service searches for all occurrences of a certain data pattern.
It can be noticed that at least as long as these two conditions
(RDF and reasoning as matching) hold, there is an alternative
way of encoding ontological knowledge — SPARQL-based pat-
terns. SPARQL is the W3C standard for querying RDF data.
As SPARQL 1.1 is now in works (currently a working draft
yet already supported by some tools), the whole set of OWL
2 features becomes expressible in SPARQL. Most importantly,
SPARQL 1.1 introduces the aggregate function COUNT that
enables expressing OWL cardinality constraints. For example,
[32] discussed this relationship between SPARQL and OWL



Table 2: Examples of SPARQL 1.1 patterns

| Restriction type | SPARQL

Required attributes

SELECT ?this WHERE {?this :name name}

Allowed values
|| ?7v = ’protected’) }

SELECT ?this WHERE {?this :visibility ?v. FILTER (?v =public’ || ?7v = private’ || 7v = ’package’

Required connections

SELECT ?this WHERE {?this :incoming [ a :ControlFlowEdge] }

Disallowed connections

SELECT ?this WHERE {?this a :Node. FILTER NOT EXISTS { ?this :outgoing ?edge} }

Cardinality of edges

SELECT ?this WHERE { ?this :outgoing ?edge } GROUP BY ?this HAVING (COUNT(?edge) >=2)

Interaction of edges

SELECT ?this WHERE { {?this :incoming [ a :ControlFlowEdge]. FILTER NOT EXISTS {?this
:outgoing [a :DataFlowEdge]} } UNION { ?this :incoming [a :DataFlowEdge]. FILTER NOT EX-
ISTS {?this :outgoing [a :ControlFlowEdge] } } }

Qualification of edges’
sources and targets

SELECT ?this WHERE {?this a :Action. ?this :incoming [:source [a :Action] }

and also commented on the strengths of SPARQL compared
to the limitations of OWL 2. Table 2 shows how the exam-
ple restrictions from Table 1 are represented as corresponding
SPARQL patterns. A resource belongs to the class defined with
a SPARQL pattern if it is (or would be) returned as a possible
value for ?this variable.

Using SPARQL in place of OWL has some advantages.
Some of these advantages are purely technical, but some are
related to a higher expressive power. Let us first comment on
the technical ones:

o Although SPARQL patterns may look longer than corre-
sponding OWL definitions, SPARQL is optimized for exe-
cution. As our evaluation in Section 8 indicates, the differ-
ence in performance is significant and also grows fast as
the complexity of the model or of the ontology increases.

e One does not need a separate reasoner, but just an
RDF data storage (persistent or in-memory) supporting
SPARQL querying (most do).

e [14] reported that one of the problems related to using
OWL for model consistency checking is that available rea-
soners stop upon discovery of the first inconsistency rather
than find and report all of them. This is not a problem
when using SPARQL patterns, as one execution always
returns all possible answers to the query.

e As already mentioned in Section 3, using OWL for imple-
menting the model checking service is somewhat tricky,
due to OWL’s Open Words Assumption.

Most importantly, however, SPARQL provides expressive
features that are very useful in the context of ODSE yet unavail-
able in OWL. First, consider the following SPARQL pattern:

SELECT ?this WHERE {
7this :visibility ?v. ?this :outgoing [:target 7next].
Tnext :visibility ?v

}

The meaning of this is: an action followed by another action
with the same visibility value. OWL 2 introduced the concept
“selt” to allow defining restrictions such that the subject and

the object of a property must be the same, e.g. self-regulating
process”. However, the pattern above cannot be expressed in
OWL — it is impossible to define a requirement that two differ-
ent properties, or property chains, have as their targets the same
object or literal.

Second, the OWL is all about putting restrictions on the
classes of RDF atoms, e.g. single model elements in case of
ODSE. In contrast, SPARQL can be used for describing and
putting restrictions on non-atomic RDF structures, e.g. com-
positions of model elements. Consider the following SPARQL
pattern:

SELECT ?this_1 ?this_-2 WHERE {

7this-1 a :Action. ?this_1 :outgoing [:target ?this_2].

?this_2 a :Action. ?this_2 :outgoing [:target [a :FinalNode]].
}

The meaning of this is: a sequence of two actions leading to the
final node, i.e. a kind of a finalizing sequence. In OWL, one
could refer to a member of such a sequence, but not the whole
sequence as a composition of two elements.

Third, when describing some resource through its relation-
ships to some other resources, OWL always hides those other
resources behind “some” or “only” definitions. While this
mechanism is also available in SPARQL as the blank-node []
syntax, one can also refer to those resources explicitly through
variables. This then has a double utility. The first use is that
one can add these variables into SELECT clause. Then, a con-
sistency check or a classification run will return not only the re-
sources in question but also the resources identified by those ad-
ditional variables (e.g. attributes, edges, connected elements).
This additional information can be used for providing better ex-
planation of the results or for a follow-up analysis. The second
use is that one can define a mechanism for extending the on-
tology itself, so that it would provide not only the restriction-
based definitions of classes, but also some interpretation rules
applicable to the instances of those classes. As in most rule-
representation formalisms, variables provide the value links be-
tween the head and the tail of a rule. Section 6 will later de-
scribe such a mechanism as a part of our ODSE framework.

Fourth advantage we already mentioned in the end of Sec-
tion 3. Not being constrained by the OWL framework, which



defines classes through restrictions, one can use a more flexible
way of linking patterns to classes. Then, one is able to distin-
guish between patterns describing the actual constraints to the
language (should raise errors) and patterns describing intended
use of the language (should raise warnings). Then, one can even
add patterns describing recommended modelling practices and
SO on.

One obvious inconvenience with using SPARQL in place of
OWL is the following. As OWL reasoning is an iterative pro-
cess, one can conveniently define a hierarchy of classes where
every class is defined through some additional restrictions on its
direct super-class (the rest of the restrictions is therefore inher-
ited from the chain of super-classes). In contrast, each SPARQL
pattern must be complete and defined in terms of the ground
data on which the query will be run.

To mitigate this issue, our framework (see Section 6) is de-
signed to be a hybrid of the straightforward SPARQL-patterns
approach and the Description Logic (DL). The framework al-
lows the ontology designer to define classes in terms of com-
mon DL operations such as intersection, union and comple-
ment, and to use some additional operations such as composi-
tion (see above on non-atomic structures). The framework then
assumes the existence of a patterns pre-processing engine. Such
an engine is a part of an ODSE modelling tool and is responsi-
ble for constructing the full pattern for a class before it is used
in a query. In this sense, we do not replace OWL as a whole, but
only its “ground” level, i.e. its mechanism for defining classes
as restrictions (owl:Restriction class).

5. Extending the range of ontologies

Using an alternative means for ontological modelling, which
utilizes SPARQL patterns as a part of it, is one novel feature of
our ODSE framework. Another novel feature is that our frame-
work relies on a wider range of knowledge being represented
with ontologies, not only the ontology that is a translation of a
modelling language itself (as in Section 3).

Based on the review of ontology classifications given in [23]
and putting it in the context of ODSE, we can identify the fol-
lowing four vocabulary types, for which ontological modelling
is of benefit in software engincering and which we attempt to
explicitly utilize in our framework. Where appropriate, we use
the concepts related to the example application introduced in
Section 1.

e Domain — concepts, usually nouns, that describe the appli-
cation domain of a software system, e.g. ”contact”, ’mes-
sage”, etc.

e Tasks — concepts, usually verbs, that refer to platform-
independent problem-solving tasks that exist in the do-
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main, e.g. ”search”, “compose”, ’send”, etc.

e Software — concepts used to refer to the software arte-
facts themselves, including the structural and the func-

tional perspectives, e.g. “component”, “function”, “’pa-

rameter”, ’transition”, etc.

e Interaction — concepts used to describe the interaction

9.

between software and its environment/domain, e.g. “re-
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source”, “produces”, ’precondition”, etc.

An ontological representation of a modelling language would
often be restricted as an ontology of software (third vocabu-
lary in the list above). In addition to UML and various DSLs
with their metamodels, several generic metamodels have been
developed for the purpose of describing the structure and be-
haviour (but not purpose) of software artefacts. The most elab-
orated among them is the Knowledge Discovery Meta-Model
(KDM) [33] by Object Management Group (OMG). An onto-
logical representation of KDM would be the best available ex-
ample of a generic ontology of software.

However, it depends on the modelling language in question,
especially if it is a DSL, whether and how much the correspond-
ing ontology will reach into the three other areas. A DSL can
possibly include some elements or connectors that belong to an
interaction vocabulary. A DSL for an information-processing
system could also possibly include some domain concepts like
“request”, “report” as modelling blocks when there is a wish
to embed into them some semantics different from that of a
generic “object”. Abstract tasks as a vocabulary is probably
covered the least by DSLs.

The domain ontologies are the most common kind of ontolo-
gies considered when developing an information-processing
system. Domain ontologies are ones sometimes explicitly de-
veloped for specific applications that are subject to interoper-
ability or extensibility requirements. As was mentioned in Sec-
tion 1, it is also often proposed to exploit domain ontologies
in the ODSE process through transforming a domain ontology
into the software application’s hierarchy of classes, e.g. [20].
Another possible application of domain ontologies in software
engineering is related to the idea of providing semantic annota-
tions for software components, often referred to as component
metadata (which, however, is a kind of word misuse since com-
ponents are not data). Such annotations can be used for compo-
nent search or for checking compatibility between components.
In present, in most practical cases where component metadata
is utilized, this metadata is restricted to the concepts of an on-
tology of software only, as surveyed e.g. in [34]. However,
some researchers [26, 28] suggest annotating the input and out-
put parameters of components with the concepts from a domain
ontology. For example, if one component has a string-type out-
put parameter while another component has a string-type input
parameter, this does not say much. On the other hand, if these
both parameters are annotated with the “contact” concept from
the same ontology, one can reasonably assume that they can be
connected by a data flow.

The importance of defining task ontologies is argued in [24].
Also [26] advocated for service taxonomies, which follow a
similar idea. The main goal is to be able to search for software
components (for a certain platform) implementing a certain ab-
stract task. It can also be noticed that parameterization of tasks
with domain concepts, e.g. ’search contact”, ”send message”,
is useful for further facilitation of the component search.

The concepts belonging to the last vocabulary type, interac-



tion, are more often embedded into larger ontologies than yield
an ontology of their own. The WSMO ontology of Web Ser-
vices includes such concepts as “’precondition” and “effect” for
describing capabilities of services [35]. [27] suggested using
the same concepts for providing an abstract specification of the
behaviour of any software component in order to improve the
accuracy of component matching. One example of a separate
interaction ontology is one of [36], which is an ontology for
describing consumption, usage and production of resources by
software, as well as properties of those resources. Among the
goals is resource-based reasoning. Something produced in one
software process, if it is shareable, can be used in another pro-
cess. Also, if two software processes use the same resource, and
that resource is known to be non-shareable, these two processes
cannot be executed simultaneously. As to ODSE, component
metadata using this ontology can facilitate the design of an ap-
plication’s control flow and can help in avoiding resource-based
conflicts.

6. ODSE Framework

‘ Tasks Ontology ‘

%

pait-of
ﬂ Modelling Ontology ‘

define constrain

annotate

[ SPARQL patterns

L

‘ DSL Ontology | ‘

| SPARQL entailing |

Interaction Ontology ‘

‘ Ontology of Software ‘ ‘ Domain Ontology ‘

Figure 2: Ontological framework: Constituents.

Building on the background set in Sections 3, 4, and 5, this
section presents our framework for Ontology-Driven Software
Engineering.

6.1. Overview

Figures 2 and 3 provide a generic overview of our ODSE
framework. Figure 2 depicts how various constituent ontolo-
gies are used and integrated in it. The arrow from DSL ontology
to Modelling ontology represents the part-of relationship. The
arrows from DSL ontology to Ontology of software and from
Tasks ontology to Modelling ontology represent the special-
case-of relationship. The wide arrows are used to provide in-
dications how our framework combines ontologies. The arrow
from Modelling ontology to DSL ontology represents the use
of SPARQL patterns-based approach for defining and impos-
ing constraints on modelling concepts. The arrow from Tasks
ontology through Interaction ontology to Domain ontology rep-
resents the use of SPARQL entailing to annotate the tasks with
interaction and domain concepts.

The starting point is an ontology of the modelling language,
referred in the Figure 2 as the DSL ontology. As discussed in
Section 3, such an ontology is basically a translation of the (e.g.
Ecore) metamodel of the modelling language. As pointed out in
Section 5, such a DSL ontology is a kind of an Ontology of soft-
ware, i.e. it includes the concepts used to refer to the software
artefacts themselves. In Smart Modeller that contains a refer-
ence implementation of the framework, the metamodel of the
modelling language, and thus the DSL ontology, includes such
concepts as Action, Parameter, Condition, Variable, Connector,
and others. A DSL ontology may also include some concepts
borrowed from a domain ontology, an interaction ontology, etc.
In such a case, the ontologies will not be as clearly separated as
in Figure 2. Such a separation, however, is neither required nor
assumed in our framework.

The DSL ontology is then just a part of a bigger Modelling
ontology. In addition to the concepts from the modelling lan-
guage’s metamodel, the Modelling ontology contains also more
abstract concepts not explicitly represented in the metamodel.
A straightforward usage is defining some specific subclasses of
the generic DSL concepts. In Smart Modeller for example, the
Modelling ontology contains such concepts as Input Parameter
and Output Parameter (subclasses of Parameter), Constant (sub-
class of Variable), and others. The concepts from the Modelling
ontology are defined in terms of DSL concepts using SPARQL.-
based patterns. Section 4 presented the background of this ap-
proach while Section 6.2 below will describe it in more detail.
SPARQL-based patterns are used also for describing the valid-
ity constraints imposed on the Modelling concepts, both the
DSL ones and more abstract ones (see below in Section 6.3).
In contrast to prior work, e.g. [2], our framework separates
between the definition of a class and the validity constraints
imposed on this class.

Tasks CIM
PIM
OO O PSM

Figure 3: Ontological framework: A Tasks ontology and model levels.

A Tasks ontology is then treated in our framework as a spe-
cial case of a Modelling ontology. Instead of drawing a clear
line between the tasks (domain entities) and their implementa-
tions (software entities), we use an approach depicted in Fig-
ure 3. We assume that a hicrarchy of tasks is defined that



stretches over the abstraction levels, such as MDA’s CIM-PIM-
PSM levels. In terms of our example from Section 1, there
will be a computation-independent task like “search contact”,
then a more specific platform-independent task “search con-
tact in mobile phone’s contacts book”, and a platform-specific
”search contact with Qt Mobility Contacts API”. Task ontolo-
gies act therefore in our framework as important facilitators for
model transformations along the platform specification dimen-
sion. More specifically, our framework supports such transfor-
mation through the provision of the task-based model composi-
tion service (see Section 6.4).

The tasks are linked to the DSL concepts via SPARQL-based
patterns the same way as any other modelling concepts. They
can also have validity constraints defined, if needed. If differ-
ent model levels use different modelling languages, the tasks at
different levels of abstraction will be defined in terms of dif-
ferent DSL ontologies. Yet, the links between the tasks in the
Tasks ontology will support transformations. In cases where
the same modelling language is used for models at different lev-
els, e.g. platform-independent and platform-specific, the frame-
work allows for more abstract tasks not to have pattern-based
definitions of their own. Then, they are treated as unions of all
their known specific subclasses. Section 6.4 below will provide
mode details on this.

Tasks can also be annotated with various properties from In-
teraction ontologies and through that can be linked to concepts
from Domain ontologies. A mechanism for entailing used in
such annotations is similar to that of the CONSTRUCT query-
type of SPARQL. Sections 6.5 and 6.6 below will describe the
parts of the framework related to such annotations. Finally, the
framework also allows tasks to be referred to in the policy defi-
nitions. Section 6.7 will discuss this topic.

As can be noticed, our ODSE framework puts Tasks ontolo-
gies in the focus as a place where all kinds of ontological knowl-
edge are integrated. This is principally different from any other
ODSE approach we are aware of. Our framework can also
be compared to existing frameworks for semantic component
metadata (see Section 5). All such frameworks, we are aware
of, follow a bottom-up approach. This means that physical soft-
ware components are in the focus. These components, through
some unique identifiers of them, are annotated using various
properties, both low-level, e.g., parameters and more abstract,
e.g., provided services, preconditions. In contrast, our approach
can be seen as fop-down. An abstract entity, namely a task, is in
the focus. Specific physical software entities are then attached
to tasks using a pattern-based approach. This implies that the
unique identifiers of those entities do not have to be known or
even exist. In other words, our approach follows closer the se-
mantic technology view where it is assumed that specific re-
sources can be pointed at through semantic properties of them,
not only through their unique identifiers. We believe that this
approach is both more flexible and powerful.

Following this overview, the following subsections will fo-
cus on notational aspects of the framework and describe onto-
logical services enabled. As the primary intended use for this
framework is to be implemented as part of model-driven engi-
neering tools, the summary after each subsection is presented
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in the form of functional requirements to such MDE tools.

6.2. Defining modelling concepts

As mentioned several times above, our ODSE framework re-
lies on SPARQL-based patterns as ontological definitions of
the modelling concepts. The RDF representation for a Mod-
elling ontology (and thus a Tasks ontology as well) is defined,
however, to the extent possible to follow the Description Logic
(DL) and to resemble the RDF serialization of OWL. The on-
tology designer is able to define modelling concepts in terms of
common DL operations such as intersection, union and com-
plement. A pre-processing engine, which has to exist as a part
of an ODSE modelling tool, is then responsible for constructing
the full pattern for a concept before it is used in a query.

An example definition is provided below. Here and hence-
forth, the notation for RDF is N3/Turtle [37]. The empty
namespace is used for the Modelling ontology, model: for the
DSL ontology, and meta: for the properties defined by the
ODSE framework itself. Namespaces owl: and rdfs: are used
for the standard properties of OWL and RDF-S, correspond-
ingly. This definition describes an input parameter as a Param-
eter DSL element that has an outgoing Connector (a DSL ele-
ment as well) towards an Action DSL element.

:InputParameter rdfs:subClassOf model:Parameter;
owl:equivalentClass [
owl:intersectionOf (
model:Parameter
[ meta:pattern
”?¢ a model:Connector; model:source ?this;
model:target [a model: Action]”

1.

Table 3 describes all the defined properties for use in mod-
elling concepts’ definitions. The most straightforward way of
defining a concept is by using the meta:pattern property with a
literal value giving the concept’s full SPARQL pattern. For the
concepts from the DSL ontology, a tautological meta:pattern
definition is assumed:

model:Parameter owl:equivalentClass
[ meta:pattern ”?this a model:Parameter” ]

The owl:intersectionOf property takes as the object an or-
dered list of classes (this is defined in the RDF serialization of
OWL). The SPARQL pattern corresponding to the intersection
of classes is constructed as the concatenation of those classes’
patterns. However, it must be first assured that the constituent
patterns do not use the same names for variables, with the ex-
ception of ?this. Any detected variable conflict must be re-
solved by renaming variables. Since the predictability of vari-
ables naming is required for the entailing, this resolution pro-
cess must follow a well-defined algorithm known to the ontol-
ogy designers. An algorithm we use in Smart Modeller is given
below. For example, if a variable x appears in the patterns of
two classes, the second one will be renamed as x2; if x2 was
already taken as well, x3 will be tried, and so on.



Table 3: Properties for defining modelling concepts
| Property | Meaning |

owl:equivalentClass | States that two classes are equiva-
lent. Used for connecting a class to
its definition.

Defines a class with an explicit
SPARQL pattern. Must use ?this
variable.

Defines a class to be the intersection
of several classes.

Defines a class to be the union of
several classes.

Defines a class to be the comple-
ment of another class.

Defines a class to be another class
(base) with one or more restrictions
imposed.

Defines a class to be a composition
of several classes. Describes a non-
atomic structure of more than one
DSL element.

meta:pattern

owl:intersectionOf

owl:unionOf

owl:complementOf

meta:base +

meta:restriction

meta:compositionOf

Let allVars be an empty list
For each pattern to intersect:
Let vars be the list of all variable names in pattern
For each var in vars:
If var does not start with ”’?this”:
If allVars does not contain var: add var to allVars
Else:
Letibe 2
While allVars contains var+i: i=i+1
Substitute var with var+i in pattern
Add var+i to allVars

The owl:unionOf property takes as the object an ordered
list of classes as well. The SPARQL pattern correspond-
ing to the union is constructed simply as {patternl} UNION
{pattern2} UNION ({pattern3}, etc. No variable names res-
olution is needed. The SPARQL pattern resulting from
owl:complementOfis also constructed without a need to do any
variable renaming, simply as FILTER NOT EXISTS {pattern}.

Use of the meta:base property along with the
meta:restriction property can be seen as “syntactic sugar”
to allow more concise definitions. The base pattern is simply
concatenated with all the restrictions without any variable
naming checks. Restrictions will not normally be full class
patterns. They do not have to refer to ?this, they may just refer
to some other variable existing in the base pattern.

The meta:compositionOf property is a special new operation
in our framework, which logically corresponds to the Cartesian
product operation on sets. The composition of two concepts is a
concept all instances of which are pairs with one member being
an instance of the first class and the other being an instance of
the second class (e.g. a couple is a composition of a man and
a woman). For example, the SPARQL pattern for a "finalizing
sequence” example from Section 4 can be defined as (note that
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itis for UML Activity diagram, not for Smart Modeller DSL):

owl:intersectionOf (
[ meta:compositionOf (
:Action
[ owl:intersectionOf (
:Action
[ meta:pattern
”?this :outgoing [:target [a :FinalNode]” ]
)]
)]

[ meta:pattern ”?this_1 :outgoing [:target ?this_2]" ]

)

The second class in the composition list could, of course,
have been defined separately as, e.g., FinalAction and then
referred to by name. The SPARQL pattern corresponding to
the composition of classes is constructed as a concatenation of
those classes’ patterns with renaming all the variables, includ-
ing ?this. In Smart Modeller, the algorithm followed is given
below. It is very simple is a sense that it just appends to the
names of all the variables in the first class pattern _/, the sec-
ond _2, and so on.

For each pattern to compose:
Let i be the index of pattern in compositionOf
Let vars be the list of all variable names in pattern
For each var in vars:

Substitute var with var+”_"+i in pattern

The part of our ODSE framework described in this subsec-
tion poses the following requirements to ODSE tools imple-
menting the framework:

o Requirement 1. Ability to transform the software model
into an RDF representation that follows a defined DSL on-
tology.

e Requirement 2. Ability to process Modelling ontologies,
to apply pattern operations defined, and to perform vari-
able name resolution in order to construct full SPARQL
patterns for the modelling concepts.

e Requirement 3. Ability to execute a resulting SPARQL
pattern as a query against the RDF representation of the
model to locate matching elements or composites of ele-
ments. This results in the provision of the classification
service (see Section 3).

6.3. Adding validity constraints

As discussed in Section 3, one commonly considered onto-
logical service is consistency checking (or validation) service.
As also mentioned above, in contrast to prior work, e.g. [2], our
framework distinguishes between the definition of a modelling
concept and the validity constraints imposed on this concept.

The validity constraints are attached to the modelling con-
cepts using meta:constraint property. For example, below we
define that a Parameter DSL element should be used in a model
as either an input parameter to an action, or an output parame-
ter of an action. As noted in Section 6.2, in this example DSL,



the classification as an InputParameter requires presence of an
outgoing connector to an Action DSL element. Similarly, the
classification as an QutputParameter requires presence of an in-
coming connector from an Action element.

model:Parameter meta:constraint [
a meta:WellformednessConstraint;
owl:equivalentClass [
owl:unionOf (
InputParameter
:OutputParameter

)
I
rdfs:comment A Parameter should act
as either an input or an output of an Action”

1.

The definitions of constraints can use all the pattern op-
erations available, see Section 6.2. The constraints of
two types are distinguished: meta:ModelConstraint and
meta: WellformednessConstraint. Model constraints are hard
constraints that should yield validation errors.  Alterna-
tively, the ODSE modelling tool may even attempt to pre-
vent such errors from being committed.  This can be
done is the form of ontology-driven disabling of some ele-
ments/attributes/connectors or informing the model designer of
the error as soon as it is introduced into a model. Wellformed-
ness constraints, on the other hand, should only yield warnings
in validation and should not be attempted to be enforced. As
discussed in Section 4, a wish to be capable of separating be-
tween different kinds of constraints is one reason why OWL as
such was not considered sufficient for our framework. More
constraint types can be defined if needed.

Realization of the model checking service according to our
framework requires satisfaction of the requirements 1-3 from
Section 6.2 and poses the following new requirement to ODSE
tools:

e Requirement 4. Ability to perform the following process:
(1) execute the concept definition pattern against the RDF
representation of the model to obtain the set of elements to
which the constraint applies; (2) in the same way, execute
the constraint pattern to obtain the set of elements fulfill-
ing the constraint; (3) report errors or warnings for those
elements that are in the first set but not in the second set.

0.4. Defining tasks hierarchy

As mentioned above, instead of drawing a clear line between
the tasks (domain entities) and their implementations (software
entities), our framework rather suggest definition of a hierarchy
of tasks that stretches from abstract computation-independent
tasks till very platform-specific tasks that have one-to-one cor-
respondence with particular implementations.

For a platform-specific task, a SPARQL-based pattern that
corresponds to the task’s realization (a model element or a
set of elements that realize the task) is treated as the defini-
tion of the task. The classification service can therefore be
used for checking if (the realization of) a certain task is a part
of the current model and to locate all the occurrences of the
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task in the model. For platform-independent and computation-
independent abstract tasks, the framework allows not to have
pattern-based definitions of their own. Then, they are treated as
unions of all their known subclasses. Then, the classification
service can be used as well.

A simple example of a task hierarchy follows. The names-
pace abstract: is used here and henceforth for important mod-
elling concepts which are, however, abstract and do not belong
to a DSL ontology.

abstract: Task owl:equivalentClass model: Action.

abstract: TaskWithInput rdfs:subClassOf abstract: Task.

abstract: TaskWithOutput rdfs:subClassOf abstract:Task.

:SearchContact rdfs:subClassOf abstract:Task WithInput,
abstract: TaskWithOutput.

:SearchContactOutlook rdfs:subClassOf :SearchContact.

:SearchContactPhone rdfs:subClassOf :SearchContact.

:SearchContactPhoneQt rdfs:subClassOf :SearchContactPhone.

The first definition is as in the Smart Modeller: a Task there
is equivalent to the Action DSL element. TaskWithinput is a
subclass of Task and is defined (not shown here) as an Action
with at least on¢ input Parameter connected to it, identified with
?input variable. TaskWithOutput is defined analogously. There-
fore, while being abstract, Task, TaskWithInput, and TaskWith-
Output have proper pattern-based definitions. Assume then that
:SearchContact, :SearchContactOutlook and :SearchContact-
Phone do not have such definitions of their own, and the on-
tology only states their place in the tasks hierarchy. Finally,
assume that :SearchContactPhoneQt is specific enough to have
a proper pattern again, for example as follows.

:SearchContactPhoneQt owl:equivalentClass [
owl:intersectionOf (
:TaskWithInput
:TaskWithOutput
[ meta:pattern ”’?this model:implementation
\”ContactsActions::findContact\” ]

1.

Note that platform-specific tasks like :SearchContact-
PhoneQt can nevertheless be further specialized, e.g., by re-
quiring a specific value of an input parameter. It is also possible
to define tasks that are sequences of two or more specific tasks
using the meta:compositionOf operation, see Section 6.2.

The ability to locate tasks in the current model gains a prac-
tical value when combined with other features described below
in Sections 6.5, 6.6, and 6.7. Our framework suggest, however,
also the existence of a Repository mechanism. A repository
means here an RDF data storage (document or database, local
or online) where partial models are stored in an RDF represen-
tation that follows a defined DSL ontology. For example, Smart
Modeller has such a mechanism and allows model designers to
export partial models (any combination of elements and con-
nectors) to repositories and then import then back into a model.
Being in the first place a re-use mechanism, repositories also
enable semantic search service through simple application of
the classification service on a repository. If a repository con-
tains partial models corresponding to implementations of some



specific tasks, executing a SPARQL pattern corresponding to a
task as a query against the repository will locate all the match-
ing implementations defined there. This enables task-based
composition of models. For example, a model designer can
browse a task ontology and select :SearchContact task. Then,
he can receive a list of all matching implementations includ-
ing one for :SearchContactPhoneQt and others if defined, se-
lect one and import it into the model.

The part of our ODSE framework described in this subsec-
tion poses the following additional requirements on ODSE tools
implementing the framework:

e Requirement 5. Ability to construct the SPARQL pattern
for a task, for which no explicit definition is given, as the
union of all its known subclasses.

e Requirement 6. Existence of a repository mechanism that
enables storing partial models in a defined RDF represen-
tation, as well as importing them into a model. This also
requires the ability to transform RDF representation into
the modelling language used (opposite direction as in Re-
quirement 1).

e Requirement 7. Ability to apply the classification service
(Requirement 3) not only to the model currently edited in
the tool, but also to a repository.

6.5. Annotating task parameters

As mentioned in Section 5, some studies [26, 28] suggest
annotating the input and output parameters of software com-
ponents with the concepts from a domain ontology. Such an-
notations can be used for component search or for checking
compatibility between components.

Our ODSE framework exploits such annotations, which are,
however, attached to tasks, not directly to software entities (see
Section 6.1). For example:

:SearchContactPhoneQt inter:produces

[ inter:type nco:Contact;

inter:format qtm:Contact; inter:maps ~?output” ].
:ComposeSMSQt inter:requires

[ inter:type nco:MessagingNumber;

inter:format qtm:PhoneNumberString; inter:maps ~?input” |].

The namespace nco: is used here for the concepts from
NEPOMUK Contact Ontology [38], and gtm. for Qt Mobility
concepts.

Please note that a task definition combined with an annota-
tion of that task forms an entailing rule. Such a rule can be rep-
resented explicitly using e.g. CONSTRUCT form of SPARQL.
The rule corresponding to the annotation of :SearchContact-
PhoneQt above would look like:

CONSTRUCT { ?this inter:produces [ inter:type nco:Contact;
inter:format qtm:Contact; inter:maps ?output | }
WHERE { pattern of :SearchContactPhoneQt
introducing ?this, ?output }

We do not use this particular syntax for connecting rule’s head
and tail. One reason is because, with this syntax, rules would
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be just strings, not RDF fragments. Another reason is to sepa-
rate tasks’ definitions from annotations and to avoid repetition
of definition patterns. Except for this, there is no difference
between our representation and SPARQL, and that is why we
generalized it in Figure 2 as "SPARQL entailing”.

Table 4: Interaction-vocabulary properties

Property | Meaning |

inter:produces States that a task produces a shareable
resource, e.g. a data item.

States that a task requires a resource,
e.g. a data item, as one of its inputs.
Defines the most specific semantic
class of a resource.

Defines the syntactic representation
format of a data item.

Links a produced or required resource
to an output or an input parameter of a
task.

States that a resource class is a part of
another composite resource class.
States the source format for an adapter.
States the target format for an adapter.
Defines a precondition of a task execu-
tion.

Defines an effect of a task execution.
Defines a policy prohibiting a task for a
certain class of actors.

Defines a policy permitting a task for a
certain class of actors.

inter:requires

inter:type

inter:format

inter:maps

inter:partOf

inter:adaptFrom
inter:adaptTo
inter:precondition

inter:effect
inter:prohibited

inter:permitted

Table 3 lists the interaction properties defined in our frame-
work. Some of them are used already in the example above.
The :SearchContactPhoneQt task, the pattern for which was
provided in Section 6.4, corresponds to the Qt Mobility Con-
tacts API function mentioned in Section 1. It searches for con-
tacts matching a given filter and returns results in the form of
QContact objects. The annotation above states that :Search-
ContactPhoneQt produces a data item that semantically corre-
sponds to the nco:Contact concept. Then, it also stated that
this data item is produced in a syntactic format identified as
gtm:Contact, which means a QContact object. Finally, the pro-
duced data item is linked to the task’s only output parameter
through ?output variable.

:ComposeSMSQt task corresponds to the Qt Mobility Mes-
saging API function mentioned in Section 1. It opens the
phone’s standard dialog for composing and sending a short
message to a given contact. It does not expect a QContact
object as the input, but just a string representation of a phone
number. Its annotation above states that the required input data
item is semantically nco:MessagingNumber and syntactically
qtm:PhoneNumberString.

A task producing a resource and a task requiring a resource
are semantically compatible if these two resources belong to the
same semantic class, or if the class of the produced resource is a
subclass of the required resource, or if the required resource, or



a subclass or it, is a part of the produced resource. Syntactically,
these two resources have to either use the same representation
format, or there has to exist an adapter from the produced for-
mat to the required format.

Assume that a model contains an instance of :SearchContact-
PhoneQt. Assume also that we have the following definitions
available as part of a tasks ontology:

nco:CellPhoneNumber rdfs:subClassOf nco:MessagingNumber.
nco:CellPhoneNumber inter:partOf nco:Contact.
ex:ExtractPhoneNumber rdfs:subClassOf abstract: Adapter;
owl:equivalentClass [
owl:intersectionOf (
abstract: Adapter
[ meta:pattern ”?this model:mapping Adapter
\”” ContactsActions::getPhoneNumber\” ”’ ]
)
I5
inter:adaptFrom qtm:Contact;
inter:adaptTo qtm:PhoneNumberString

The first two lines above give us a reason to conclude
the semantic compatibility of :SearchContactPhoneQt task
with :ComposeSMSQt task. The adapter definition then
indicates that there exists a way to transform a QOb-
ject into a simple string representation of the contact’s
phone number. The above example assumes that the
adapter was wrapped as a single method. Smart Mod-
eller, however, also provides an option of giving a free-
form line of code as the value of model:mappingAdapter.
In this case, it would be ( (QContactPhoneNumber) ?.de-
tail(QContactPhoneNumber:: DefinitionName) ).number(), i.e.
as was given in Section 1 only with a question mark to indicate
the place of the input resource.

Due to availability of an adapter, we can conclude that, in
addition to the semantic compatibility, syntactic compatibility
is achievable as well. In result, we have all the inputs needed
for automated opportunistic composition of models.

While opportunistic composition is forward-chaining,
backward-chaining composition is possible as well. We refer
to it as result-based composition of models. In it, a model
designer specifies what kind of resource he/she would like to
be produced. Then, tasks annotated as producing this kind of
resource are searched for, and after that, the current model is
searched for tasks that can supply required inputs.

This part of our ODSE framework poses the following new
requirement to ODSE tools:

e Requirement 8. Ability to perform the following process:
(1) find in a Tasks ontology a task that is annotated as pro-
ducing a resource, (2) locate the task in the model, (3) find
in a Tasks ontology semantically-compatible consuming
tasks, (4) if the producing and the consuming tasks use
different syntactic formats, find proper adapters, (5) locate
consuming tasks’ implementations in repositories, (6) list
to the designer as propositions semantically-compatible
tasks that do not need or have proper adapters and have
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implementations, (7) upon a selection, import the imple-
mentation of the new task into the model and automatically
connect with proper control and data flows. This provides
the opportunistic composition.

e Requirement 9. Ability to perform the following process:
(1) find in a Tasks ontology tasks producing some re-
sources and present the list of those resource types to the
designer, (2) upon selection of a resource type, list tasks
that can produce it, (3) upon selection of a task, search the
current model for included tasks that can provide resources
that the new task requires, and find adapters if needed, (4)
list options for each input to the designer, (5) upon selec-
tions, import the implementation of the new task into the
model, and add data flow connections based on selections.
This provides the result-based composition.

6.6. Using other interaction properties

In many cases, an action enables another action not directly
through a resource produced but indirectly through changing
the state of the software system or its environment. For this
reason, our ODSE framework suggest use at least two other
interaction properties for tasks’ annotation: inter:precondition
and inter:effect. As objects, both take SPARQL-based patterns
referring to concepts from some domain ontology. Variables in
these patterns can refer to variables defined in the task definition
pattern, as well as introduce new ones. For example:

:Voicelnform inter:precondition
”FILTER NOT EXISTS { ?x ex:volumeLevel ?vol.
FILTER (?vol > 30) }”.
:Mute inter:effect ”?device ex:volumeLevel 0”.

Above, the precondition for : Voicelnform task is that any de-
vice in the environment has to have the volume level below or
equal to 30. The effect of :Mute task is that the device identified
by ?device variable, which is most likely an input parameter to
the task, has the volume level at zero.

Our framework does not mandate how exactly such precondi-
tions and effects annotations are to be processed in ODSE tools.
The purpose is, however, clear: to match preconditions against
effects for improved opportunistic design and/or compatibility
checking.

6.7. Defining policies

Semantic Web based approaches to policies, especially for
access control, have been developed in recent years [39]. Usu-
ally, such approaches, e.g. [40, 39], define policies in terms of
prohibitions or permissions for certain actors to perform certain
operations.

In our ODSE framework, the policies are included as prohi-
bitions and permissions for a certain task to appear as a part of
a software model. The policy definitions are as simple as:

owl:Thing inter:prohibited :StorePrivateData.
ex:PersonalDevice inter:permitted :StorePrivateData.



These definitions assume that a policy defined for a more spe-
cific class, ex:PersonalDevice, overrides a policy defined for a
more general class, owl:Thing (that means anything or anyone).
Therefore, the implied policy is that only devices belonging to
the class of personal devices are allowed to persistently store
the user’s private data.

Enforcement of such policies in our framework is straightfor-
ward. Because a task has a detectable SPARQL-based pattern,
running this pattern as a query against the RDF representation
of the model will result in detecting all instances of the task.
This can be done, for example, after every change made to the
model. If a task is prohibited by a policy and is detected after a
change to the model, one possible response from the ODSE tool
is to cancel this last change while informing the designer about
the policy. An issue is the need to know the behaviour of what
actor the software model in question describes. This question is
dependent on the modelling language used and is therefore, out
of the scope of the ODSE framework.

In many practical cases, the policies would apply not to exe-
cution of a single software component but rather to several com-
ponents connected with some particular control and data flows.
Recall that our framework allows defining composite tasks with
meta:compositionOf property (see Section 6.2) and, therefore,
easily enables defining such policies.

This part of our ODSE framework poses the following new
requirement to ODSE tools:

e Requirement 10. Ability to check and enforce task-based
policies defined in the form of prohibitions and permis-
sions.

7. Smart Modeller

The ODSE framework presented in Section 6 was imple-
mented and exploited in a ODSE tool called Smart Modeller,
which is one of the products of the research project SOFIA [7].
A description of the modelling language used in Smart Mod-
eller and some technical details of this tool can be found in
[8, 9] but are outside the scope of this paper.

Smart Modeller is a central tool in the ontology-driven Ap-
plication Development Kit of SOFIA. Smart Modeller defines
a domain-specific modelling language tailored to SOFIA needs
and provides a graphical editor for that language realized with
the Eclipse Graphical Modelling Framework (GMF) [41]. This
editor enables the developer to create a model of an applica-
tion (presented as a directed graph consisting of elements and
connectors) and then to automatically generate executable pro-
gramming code for it.

Additionally, an extension interface is provided so that vari-
ous extensions (plug-ins) can be developed for Smart Modeller.
Such extensions aim at further automation of the process, con-
tributing to the ease and speed of application development. One
set of extensions that was developed consists of extensions that
jointly implement our ODSE framework, i.¢. fulfil the Require-
ments 1 through 10 set in Section 6. These extensions provide
the classification and model consistency checking services, the
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repository mechanism, the task-based, result-based, and oppor-
tunistic model composition services, as well as the policy en-
forcement service. Processing of RDF, SPARQL querying, and
RDF-S reasoning are handled in Smart Modeller by exploiting
OpenRDF Sesame [42].

Below, we demonstrate a few features brought into Smart
Modeller through the implementation of the ODSE framework.
The depicted models belong to a simple application, of which
our example from Section 1 is a part. This application moni-
tors incoming short messages (”Subscribe To and Get Last Mes-
sage”), searches for a contact mentioned by name in the mes-
sage text ("Find Contact Reference”), and then opens the dialog
for composing a message to that contact ("Compose Message”).

Figure 4 depicts an example of the Model Checking exten-
sion run. The identified model issues are presented as a dialog
window with a list of errors and warnings. When one of the
rows is selected, the corresponding model element, as well as
its containers, is emphasized in the model with a red bounding
rectangle. The dialog window is non-modal and always-on-top,
which enables fixing the problems in the model without a need
to close the dialog first. This is our recommendation for im-
plementing such a model checking guidance service in ODSE
tools.

Figure 5 depicts an example of the performance of the Op-
portunistic Composition extension. The starting model (left
subfigure) includes a “Find Contact Reference” block which
corresponds to :SearchContactPhoneQt task that we used in
Section 6. After the designer engages the opportunistic com-
position function, it analyses the model and proposes, among
other things, to add "Compose Message” task (:ComposeSM-
SQr from Section 6). After ”Select” is clicked, the model is
automatically extended to one shown in the right subfigure —
graph is exported from the repository (a composite with Ac-
tion and Parameter elements, shown collapsed), proper connec-
tors are automatically added, and even the adapter extracting
the phone number from a QContact object (see Section 6.5) is
incorporated as an attribute of the connector from out:contact
port to in:number port (not represented graphically).

8. Evaluation

In this section, we report on a performance evaluation of our
ODSE framework. This evaluation was carried out based on
the framework implementation in the Smart Modeller, which
was briefly described in Section 7. The experiments were per-
formed on a Windows XP laptop with Intel Core 2 Duo 2.4 Hz
processor. All reported numbers are obtained as averages of 10
runs.

In the first series of experiments presented in Tables 5 and
6 as well as Figures 6 and 7, we evaluated the performance
of the framework with respect to the model consistency check-
ing service. We also compared it to the performance of OWL
reasoning as a more traditional means for implementing such
a service. To do such a comparison, the Smart Modeller was
extended with OWL-based model checking that utilized as the
reasoning engine Pellet [43, 44] version 2.2.2 with OWL-API
access interface. To deal with OWL’s Open World Assumption
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to be able to represent a wider range of constraints, we used the
approach mentioned in the end of Section 3, where a validity re-
striction is attached to a separate classe, say, ValidAction, and
then a check is performed if the sets of Action and ValidAction
are the same.

Table 5 and the corresponding Figure 6 show the dependency
between the processing time measured in milliseconds and the
complexity of the ontology measured as the number of classes
with validity constraints in it. The complexity of the model,
measured as the number of contained individuals: elements and
connectors, was held at 50 individuals. As can be seen, our
framework achieves a noticeably better performance even with
2 classes in the ontology, and the difference in performance
grows fast as the complexity of the ontology increases. Our
framework is performing very fast, always under 0.05 second
in these experiments, and the processing time grows relatively
slow as the complexity increases. OWL reasoning also seemed
to process certain constraints slower than others, resulting in
non-linearity in Figure 6.

Table 5: Performance in model checking vs. ontology complexity

| Nofclasses | 2 [ 4 | 6 | 8 [ 10 |
OWL/Pellet | 162.4 | 335.9 | 370.3 | 799.9 | 853.2
Our 35.9 37.2 43.6 46.8 47.0
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Table 6 and the corresponding Figure 7 show the dependency
between the processing time the complexity of the checked
model. The complexity of the ontology was held at 10 classes.
The difference in performance is even more significant in these
experiments. OWL reasoning demonstrates a performance that
degrades fast in a fashion of a square function, and with 100
individuals in the model it almost reaches 6 seconds. Note that
a model of 100 individuals and an ontology of 10 classes is a
case of a rather moderate complexity. Given the obtained pro-
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cessing times and the shape of the dependency, one may even
question the practical usability of OWL for checking more com-
plex models. In contract, the performance of our framework de-
graded linearly in our experiments and stayed under 0.1 second
in all cases. Therefore, one can expect it to perform very fast
also on more complex models.

Table 6: Performance in model checking vs. model complexity

| Nofindividuals [ 25 | 50 | 75 | 100 |
OWL/Pellet 265.8 | 853.2 | 2661.2 | 5571.8
Our 40.7 47.0 57.8 73.6
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In the second series of experiments, we evaluated the per-
formance of the framework with respect to the opportunistic

17

model composition service. This service was selected because
it involves, compared to other ontological services, the most
extensive multi-step reasoning. Figure 8 shows the processing
times for the cases of different complexity. The complexity is
measured here as the number of tasks in a Tasks ontology that
have implementations and therefore found in the current model.

We report separately the time of the actual reasoning and the
time that it takes to load all the relevant data into a Sesame RDF
repository. In our experiments, the data loading times were
comparable to the reasoning times and therefore not negligible,
at around 0.5 seconds. It is because five different documents
have to be loaded: the current model, the model repository, the
Tasks ontology, as well as two domain ontologies: NEPOMUK
Contact and Message ontologies. We report the loading time
separately as most of the loaded data is static and it is easy to
avoid re-loading it every time the service is engaged.

As can be seen, the reasoning time grows with the complex-
ity but still remains quite fast, under 1 second. Note that the
case of 20 tasks involved around 300 individuals in the model,
i.e. is somewhat more complex than those in the first series of
experiments.

9. Conclusions

In this paper, we proposed a framework for Ontology-Driven
Software Engineering. This framework is grounded on the
prior related work [2, 14] that studied the interplay between
the model-driven engineering and the ontological modelling.
The contribution of our framework is then two-fold. First, it
incorporates a more flexible and means for ontological mod-
elling that also has a higher performance in processing, which
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is a hybrid of Description Logic with SPARQL patterns. In re-
sult, the expressiveness as well as the speed of execution of e.g.
model checking service is improved. Second, it incorporates a
wider range of ontology types into ODSE and enables new on-
tological services: semantic search in model repositories, three
kinds of semi-automated model composition services: task-
based, result-based, and opportunistic, and policy enforcement
service.

The primary intended use for this framework is to be im-
plemented as part of model-driven engineering tools to support
software engineers. We described our reference implementa-
tion of such a tool called Smart Modeller, and reported on a
performance evaluation of our framework carried out with the
help of it.

Our performance evaluation indicates that the framework en-
ables not only the delivery of above mentioned services, but
their delivery in a very timely manner. In particular, the model
checking takes less than 0.1 sec. This basically means that there
is no visible delay between clicking on the ”Check Model”
and appearance of the window with the results. Therefore, the
model designer can engage this service as often as he/she wants,
even as a way to clarify for him/herself the specifics of the mod-
elling language. As can be seen from our evaluation in Section
8, our framework reaches up to 75 times improvement over an
OWL-based implementation of model checking even on mod-
erately complex models.

The performance of more complex services, such as oppor-
tunistic model composition, is also quite fast, at around 1 sec-
ond for even more or less complex models. Therefore, the
model designer does not have to think twice before engaging
this service. Even if such semi-automatic composition of mod-
els is not used as the primary means of work, the lightweight
nature and speed of this function makes it a reasonable addition
to MDE tools. Nowadays, programmers and developers who
want to (re)use existing components and services have to ei-
ther search for those components manually or perform lookups
which are based on syntactical descriptions. In practice, a lot
of effort goes into finding appropriate components or API func-
tions, reading documentation about them, searching for exam-
ples, understanding how to use the components together, e.g. to
adapt the output of one to fit into the input of another. Semi-

automated composition services provided by our framework
can act as software documentation that can automatically be
analysed in the context of the current model. A designer can
engage these services just to obtain some information and sup-
port own decision making, or to actually speed up the process
of a model composition. For example, the composition from
scratch of a 3-step application as in Figure 5 takes around 14
mouse clicks and 20 seconds.

Although it is not difficult or expensive to implement our
ODSE framework into MDE tools, the actual cost of enabling
the composition services is obviously related to preparing the
machine-processable documentation, i.e. modelling software
components and API functions as well as extending these mod-
els with semantic annotations. A study of the trade-off between
this cost and the value added is an important direction of future
work.
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