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1 Introduction 

Load prediction has been one of the main themes in electric power systems and continues to 
be in the future Smart Grid concept. Load prediction is needed by network operators and by 
competitive electricity market actors. Accurate load prediction enables 1) network operators 
to manage voltage quality and network loading and 2) electricity retailers to reduce their 
imbalance costs and market risks. Knowing the energy consumed in place and time also helps 
to attack the problem of spatio-temporal mismatch, thus increasing the efficiency of the power 
system. Being able to estimate future loads also helps to predict when and where consumption 
peaks may occur. This in turn makes it easier for the supply side to prepare for the peaks 
making the energy delivery more reliable [1] and for the demand side to know when and how 
to apply demand response. 
Static time of use control is being upgraded to dynamic load control [2,3] that controls the 
loads based on the variations in market prices and network state instead of a clock. Accurate 
predictions of daily energy demand form a necessary basis for scheduling the dynamic load 
control actions.    
Loads are usually affected by many dynamic and stochastic variables, making the load 
behaviour a function of these variables. Load prediction becomes difficult when the behaviour 
in time of the dynamic variables is not well known. In this report we focus on one load-
dynamic variable pair, the namely outdoor temperature and the electric power consumed by 
an electrically heated house. Outdoor temperature is an example of a highly stochastic 
dynamic variable. As is long known in meteorology, forecasting the weather exactly is 
impossible and this applies to outdoor temperature as well. Temperature can even exhibit 
strong fluctuations within a day and, for example in Finland, the outdoor temperature can 
change 20 degrees during a day in certain seasons. This makes electric heating a highly 
variable load [4]. 
There are two ways to approach the problem of load prediction: model-based approach and 
measurement-based approach. In model-based approach we construct a physical model of the 
load system from first principles. This usually means a system of differential equations 
comprising the known physical laws governing the behaviour of load components. Such 
systems have been constructed, see for example [5]. Load prediction is then based on 
obtaining a solution for the system of differential equations. But physical modelling can be 
complicated. In the case of modelling the indoor temperature behaviour of a house, the 
difficulty arises due to myriad of different heat capacities and pathways for heat conduction, 
especially in the case of direct or partially storing heating. In the case of fully storing heating, 
the required heating is retrieved from the storage tank. Thus the heat storage acts as a buffer 
decoupling the outdoor and indoor temperatures and simplifying the impact of the heat 
dynamics of the house [5] to the power consumption. 
In measurement-based approach the modelling goes to the opposite direction. We start with 
measurement data and try to identify the best model to replicate the data most accurately. That 
usually means a curve fitting problem. Measurement-based approach is suitable when the 
studied system is too complex or impossible to model with physical laws. Or we may only be 
interested in studying if a relationship exists between some dynamic variables as is the case in 
this report. Often measurement-based approach is used in connection with model-based 
approach in which case measurements are used to tune the model parameters to match the 
actual system [6]. This approach of combining measurements with physical model was used 
in [5]. In a full storage heated house the heat storage tank and temperature control system 
decouple the detailed dynamics of the house and measurement-based approach is adequate for 
the prediction of the daily energy consumption. Thus the analysis here is measurement-based 
and not based on physical models. 
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2 The aim and method of study 

In this report we present the results of a research task that focused on predicting the energy 
consumption of electrically heated fully storing houses based on outdoor temperature data. 
One motivation of the research was to study the effect of using newer temperature data when 
predicting the energy consumption. Today, the distribution network operator uses the average 
temperature of the previous day to predict the energy demand of the next day. More 
accurately there is a time shift of 45 hours between the input data and the output data of the 
prediction. Therefore there is a gap between the data collection interval and the interval for 
which  we want  to  predict  the  energy  consumption.  During  this  gap  temperature  can  change  
considerably and the energy use of electrical heating is not estimated as accurately as 
possible. This is more of a problem when the time reserved for heating is based on too small 
an estimated energy and as a result not enough heating energy is supplied to maintain the 
desired temperatures of indoor air and domestic hot water. On the other hand, too large an 
energy consumption estimation reduces the efficiency of the power system. 
First  we  used  available  measurement  data  from  two  houses.  The  data  consisted  of  outdoor  
temperature and power delivered to the houses. Figure 1 shows the time series for one house 
to give an idea what the data sets look like and Figure 2 shows two first weeks of the data to 
give more accurate picture of the variations of outdoor temperature and power. 
Time span of the measurements was 1.1.2011-31.5.2011 and time interval between 
consecutive  measurements  was  one  hour.  We  also  had  a  small  data  set  for  the  other  house  
from 15.11.2010 to 8.12.2010. This data was used to compare prediction models for the house 
made from fall and spring measurements. Later during the research we also received 
measurement data for a large group of houses. After analysis acceptable data was found for 
185 houses. This data was used to study the prediction of total energy consumption of a large 
number of houses. Presumably, in a large group of houses the stochastic variations of energy 
consumptions in single houses even out and better prediction capability was expected. 
The aim was to determine how we should observe the outdoor temperatures of some previous 
time interval in order to predict the energy consumption of the houses for the following 24 
hour time interval between 21 o’clock-21 o’clock. This time interval was chosen to take with 
minimum delay into account the full night period, when electricity price is typically lower and 
the heat is stored, and consequently most of the energy consumption of a house with fully 
storing electric heating takes place. These consumption peaks are clearly shown in Figure 2. 
The research was made using MATLAB software. Energy consumptions of time intervals 21 
o’clock-21 o’clock were simply integrated from power measurements. Basically the idea was 
to find the best way to calculate some characteristic of the outdoor temperature of some 
previous time interval with the help of which we could achieve best correlation to energy 
consumption. In other words we were looking for a function 
 
(1)    21-21 , 
 
where  is  the characteristic of the outdoor temperature for some time interval and 21-21 is 
the energy consumption of the following 24 hour time interval 21 o’clock-21 o’clock. When 
calculating the characteristic from outdoor temperature, we focused on to investigate the 24 
hour time intervals prior to the 24 hour time interval 21 o’clock-21 o’clock during which the 
energy consumption was predicted. Different ways to calculate some characteristics from 
temperature data were tried, for example standard deviation, variance and some other ways. 
However,  the  best  way turned  out  to  be  the  mean of  the  temperatures  and  this  was  used  in  
obtaining the results presented in this report. Mean temperature and energy consumption 
calculated from measurement data provided us with data points. Prediction model was 
obtained by fitting a curve to these data points in a least-squares sense. In this report 
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temperature interval means the interval from which the mean temperature is calculated. 
Likewise prediction interval means the interval 21-21 for which energy consumption is 
predicted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 Results 

3.1 House 1 

Mean temperatures of several 24 hour time intervals were calculated and 24 hour energy 
consumption of the following time interval 21-21 was plotted against the mean temperatures. 

Figure 2: First two weeks of the time series measurement data of house 1. 

Figure 1: Time series measurement data used in the analysis of house 1 



 

RESEARCH REPORT VTT-R-02882-12

7 (20)
 

 

 

Prediction model was obtained for the house with linear curve fitted to the data points. Figure 
3 shows this for two representative time intervals. The middle line is the fitted model. The 
lines above and below the model are 95% confidence bounds for the model. This means that 
95% of predictions made by the fitted model fall between these confidence bounds. This is 
mainly of practical interest in the prediction of energy consumption. Because exact prediction 
of consumption is impossible due to the random behaviour of consumers, retailers are 
interested to know with what certainty the predicted consumption matches the actual use. 
We also investigated the possibility of using 48 hour time intervals to calculate the mean 
temperature to see the effect of longer history on the dynamics. The results are shown in 
Figure 4 for two time intervals. Comparing the pictures shows little variation between 
different methods used to calculate the mean temperature. Actual comparison with some 
numerical key figures is made in Tables 1 and 2 later in this section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Energy consumption in kWh for House 1 plotted against average temperatures 
of 24 hour time intervals 00-00 with 45 hour time shift and 21-21 with 24 hour time shift. 

Figure 4: Energy consumption in kWh for House 1 plotted against average temperatures 
of 48 hour time intervals 00-00 with 69 hour time shift and 21-21 with 48 hour time shift. 
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The effect of using 2 days weighted mean temperature was also investigated for some 
temperature intervals. Based on previous results, linear correlation was assumed. Thus 
following function was used with Matlab-function that tries to find the minimizing parameters 

using least-squares method: 
 

(2) . 
 
Equation of a line can be recognized in the sense of equation (1) from which energy 
consumption data is subtracted. Used Matlab-function generated the least squares sum to find 
the parameters . Overbars represent mean values and and 

are the mean temperatures of intervals 1 intervals 2, respectively. We were 
interested in finding the weight coefficients  and . Instead of using the parameters of line, 

 and , we only used the weight coefficients to calculate the 2 days weighted mean 
temperature and then used the same curve fitting tool as with other results to achieve better 
comparability. Results showed very little variation among each other.  
This method was rather unstable and suffered from convergence failures. The used Matlab-
function was not able to find a solution with all initial guesses of the minimizing parameters 
and results were very sensitive to initial guess. Furthermore, using weighted mean brings no 
improvement to the correlation. These aspects can be seen in Table 1. Thus, the more simple 
methods using only mean temperatures seem preferable. 
Table 1 summarizes the residuals, or the minimum sums of squares, at the best fit for different 
temperature intervals. Time shift is the time in hours from beginning of the temperature 
interval to the beginning of the prediction interval. Overlap means that the last hours of the 
temperature interval overlap the first hours of the prediction interval. Table shows that better 
correlation between mean temperature and energy consumption is achieved by reducing the 
time shift, or in other words, using temperature data closer to the prediction interval. Table 1 
also shows that the best method to calculate the mean temperatures is to use only 24 hour 
temperature intervals. 
 

Table 1: Minimums of sums of squares at the best fit for different methods 
 
 
 
 
 
 

temperature 
interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean  
temperature 

2 days weighted 
mean temperature 

00-00 45 4,04·104 69 4,44·104  
13-13 32 3,66·104 56 3,90·104 4,07·104 
17-17 28 3,55·104 52 3,75·104 4,13·104 
20-20 25 3,48·104 49 3,63·104  
21-21 24 3,46·104 48 3,60·104 3,53·104 
22-22 

(overlap) 
23 3,44·104 47 3,57·104  

00-00 
(overlap) 

21 3,43·104 45 3,53·104  
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Table 2 shows dispersions, or the differences between upper and lower confidence bounds, in 
prediction of energy consumption for different temperature intervals. Confidence bound is 
symmetric with respect to the model. For example for temperature interval 21-21, consider 
that the model predicts energy consumption of 120 kWh for mean temperature of -10 degrees 
Celsius. Then with 95% certainty the observed energy consumption lies somewhere between 
(120-30,52)kWh and (120+30,52)kWh. Table 2 confirms the results of Table 1 that the better 
the prediction the newer the temperature data. There are two reasons why shorter time shifts 
than 21 hours are not considered. Firstly reducing time shift further from 21 hours starts to 
worsen the prediction for houses that have enough heat storage. This is due to the dynamics of 
the heat storage and associated temperature control. Secondly the decision for heating periods 
is made several hours before the start of the heating period to allow data communication 
latencies when sending the control signals.  Thus not only for the overlap time but also for 
some more hours before it the temperature is based on short term weather forecasts instead of 
measurements. Tables 1 and 2 assume perfect temperature forecasts. 
 

Table 2: Dispersions in prediction of energy consumption (in kWh) for different methods. 
 

3.2 Comparison House 2 

We also had measurement data from another house. This data had a few days period when the 
power measurement had been offline. Nevertheless, the data was used for comparison. This 
section  gathers  the  same results  as  in  the  previous  section.  Figures  5  and  6  present  the  data  
points together with the fitted model and confidence bounds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

temperature  
interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean  
temperature 

00-00 45 65,95 69 69,43 
13-13 32 62,78 56 64,96 
17-17 28 61,83 52 63,74 
20-20 25 61,18 49 62,78 
21-21 24 61,03 48 62,50 
22-22 

(overlap) 
23 60,89 47 62,22 

00-00 
(overlap) 

21 60,55 45 61,62 
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Figures  already  show  that  for  House  2  better  correlation  between  the  model  and  data  is  
achieved. This is also confirmed with numerical key figures in Tables 3 and 4. Interestingly, 
the correlation is not so different from House 1 with longer time shifts but gets increasingly 
better with decreasing time shift. With 48 hours mean temperatures the correlation is even 
worse with longer time shifts and the difference doesn’t become so noticeable with decreasing 
time shift than in the case of only 24 hours mean temperatures. This raises interesting 
questions  about  the  heat  dynamics  of  House  2  and  the  role  of  history  in  the  dynamics.  
Potential for further investigation in properties of a house affecting the prediction and more 
thorough modelling and study of the heat dynamics is noticed. 
 

Figure 5: Energy consumption in kWh for House 2 plotted against average temperatures 
of 24 hour time intervals 00-00 with 45 hour time shift and 21-21 with 24 hour time shift. 

Figure 6: Energy consumption in kWh for House 2 plotted against average temperatures 
of 48 hour time intervals 00-00 with 69 hour time shift and 21-21 with 48 hour time shift. 
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time 
 interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean 
 temperature 

2 days weighted  
mean temperature 

00-00 45 5,28·104 69 6,23·104  
13-13 32 3,16·104 56 4,23·104 3,21·104 
17-17 28 2,75·104 52 3,79·104 3,66·104 
20-20 25 2,44·104 49 3,42·104  
21-21 24 2,35·104 48 3,30·104 3,26·104 
22-22  

(overlap) 
23 2,25·104 47 3,17·104  

00-00  
(overlap) 

21 2,10·104 45 2,92·104  

Table 3: Minimums of sums of squares at the best fit for different methods. 
 

 
 

temperature 
interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean  
temperature 

00-00 45 77,06 69 84,32 
13-13 32 59,34 56 69,23 
17-17 28 55,36 52 65,48 
20-20 25 52,18 49 62,24 
21-21 24 51,18 48 61,10 
22-22 

(overlap) 
23 50,07 47 59,89 

00-00 
(overlap) 

21 48,22 45 57,28 

Table 4: Dispersions in prediction of energy consumption (in kWh) for different methods. 
 
 

3.3 Comparison of models for Houses 1 and 2 

We also compared the models of the two houses in order to see if  the model for one house 
could be used to predict the heating demand of the other. For this the energy consumptions of 
prediction intervals were normalized with peak powers of the intervals. With this practice we 
obtained the heating times in hours with the assumption that heating is done with the 
maximum power. Figure 7 shows the predicted heating times for the two houses for 24 hours 
temperature intervals 17-17 and 21-21. Models give very different predictions. For example, 
when the average temperature is -20 degrees Celsius, model for House 1 gives too small a 
heating time for House 2. Structural properties of single houses, such as insulation and sizing 
of the heating capacity, are very different so the result is not very surprising. Also additional 
factors that change from house to house such as extra heating systems (fireplace for example) 
and differences in the occupancy affect prediction accuracy (prediction of an almost empty 
house is more accurate than that of a house where the residents use appliances much and 
otherwise affect the energy consumption). But predictions of the required heating times are 
very practical pieces of information from the point of view of an electricity retailer.  
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3.4 Comparison with older data for House 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Model for House 1 was also compared with a model obtained from different measurements 
made in fall 2010. Again the energy consumptions were normalized and we compared the 
predicted heating times. Figure 8 shows the comparison. Even though made for the same 
house,  the  models  give  rather  different  predictions.  This  can  be  due  to  variation  in  the  
sunlight, for example. In spring sun usually provides more natural heating than in fall, so 
heating times are expected to be smaller in spring. This may be amplified by the fact that low 

Figure 7: Comparison of predicted heating times in hours for the two houses for temperature intervals  
a) 17-17 with 28 hour time shift and b) 21-21 with 24 hour time shift. 

a)              b) 

Figure 8: Comparison of predicted heating times for temperature interval 21-21  
with 24 hour time shift for House 1 obtained from fall and spring measurements 
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temperatures typically occur when the sky is clear. The occupancy of the house also varied, 
which may complicate the analysis.    

3.5 Group of 185 houses 

Investigations similar to the ones made in Sections 3.1 and 3.2 were also made for a house 
mass consisting of 185 individual houses. As discussed before, the behaviour of a single 
house as a load in a power system is normally highly stochastic. But in an aggregate of houses 
the random behaviour is expected to smooth out. Figures 9 and 10 and Tables 5 and 6 show 
this along with the already established result that better predictions are achieved with newer 
temperature data. Especially narrowing of confidence bound is clearly visible when 
temperature interval changes from 00-00 to 21-21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Energy consumption in MWh for a group of houses plotted against average temperatures 
of 24 hour time intervals 00-00 with 45 hour time shift and 21-21 with 24 hour time shift. 

Figure 10: Energy consumption in MWh for a group of houses plotted against average temperatures 
of 48 hour time intervals 00-00 with 69 hour time shift and 21-21 with 48 hour time shift. 



 

RESEARCH REPORT VTT-R-02882-12

14 (20)
 

 

 

 
time 

 interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean 
 temperature 

00-00 45 2,47·108 69 2,63·108 
13-13 32 1,33·108 56 1,67·108 
17-17 28 1,04·108 52 1,42·108 
20-20 25 8,55·107 49 1,22·108 
21-21 24 8,00·107 48 1,15·108 
22-22  

(overlap) 
23 7,53·107 47 1,09·108 

00-00  
(overlap) 

21 6,79·107 45 9,64·107 

Table 5: Minimums of sums of squares at the best fit for different methods. 
 
 

time 
interval 

time shift 
in hours 

1 day mean  
temperature 

time shift 
in hours 

2 days mean  
temperature 

00-00 45 6,61 69 6,86 
13-13 32 4,85 56 5,48 
17-17 28 4,30 52 5,04 
20-20 25 3,89 49 4,67 
21-21 24 3,77 48 4,54 
22-22 

(overlap) 
23 3,65 47 4,41 

00-00 
(overlap) 

21 3,45 45 4,13 

Table 6: Dispersions in prediction of energy consumption (in MWh) for different methods. 
 

3.5.1 Variation in the behaviour of single houses in the group 

We investigated how different a behaviour can occur among houses of the group. This we did 
by comparing the dispersions in the energy consumptions. We used temperature interval 21-
21 with 24 hour time shift. First we calculated the average dispersion for the whole group. 
Then we used simple algorithm to search for the houses whose dispersion was 25% smaller or 
bigger than the average. From the results we picked up two extreme cases which are shown in 
Figure 11.  
From the electricity retailer’s point of view it is valuable information to know which houses 
from a larger group have poor predictability such as that shown in Figure 11 b). This 
information makes it possible to pay attention to houses for which load prediction doesn’t 
work well and need some other methods of prediction. Or houses can be divided into groups 
with similar predictability. 
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Figure 12 shows dispersions in energy consumption for all the houses of the group. 
Predictability for around twenty houses seems to be rather poor. With information like this 
retailers could drop out these houses from the load predictions and increase further the 
prediction capability for the rest of the group. The house whose behaviour is shown in Figure 
11 b) might not even be a normal residential house due to the drastically different behaviour 
which is shown as a peak in the graph of Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Two extreme cases from the group of 185 houses.  
Dispersions in energy consumption are a) 12,61 kWh and b) 314,71 kWh. 

                                               a)                                                                                          b) 

Figure 12: Dispersions in energy consumption for houses of the group. 
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We also investigated the predicted heating time for the group of 185 houses. Figure 13 shows 
the result. For comparison, the house with the longest predicted heating time on average was 
searched from the group. This was done by first calculating the average heating time for each 
of the houses. Then the maximum of the average heating times and the house corresponding 
to this was looked for. Figure 14 shows the prediction model for the house. Interestingly, the 
house was not the same as in Figure 11 b). The heating time of this house clearly exceeds the 
length of the night time low tariff. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Predicted heating time for a group of 185 houses, 
temperature interval used was 21-21 with 24 hour time shift. 

Figure 14: Predicted heating time for a house with the longest average 
heating time, temperature interval used was 21-21 with 24 hour time shift. 
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Figure 15 is from the same house as Figure 14. From Figure 15 it can be seen that when the 
temperature is above about -12 degrees Celsius the load in the house depends less on the 
temperature than in the whole group, but for cold outdoor temperatures the load is high. This 
suggests that the house may have an air-to-air heat pump or there are much loads that depend 
on something else than temperature. Figure 16 shows the time series data of that house and 
Figure 17 shows first five days of the time series. For this house the daytime loads are higher 
and night time loads lower than in houses with full storage heating. The heating is clearly not 
based on nigh time tariffs and the maximum heating power cannot be seen from the data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: The temperature dependency of the energy consumption for the house 
of Figure 14, temperature interval used was 21-21 with 24 hour time shift 

 

Figure 16: Time series data of power for the house of Figure 14. 
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4 Possibilities for further study 

Load prediction studied in this report can be enhanced by research on many aspects. As 
already noted, structural properties of houses affect the predictability. Question is how the 
prediction of energy consumption is dependent on these different properties such as age, 
insulation level, the heated volume of the house, heating systems and usage of the house. 
Occupancy of the house also largely affects the prediction capabilities as the behaviour of the 
residents  and  the  use  of  appliances  can  be  very  random.  But  for  an  empty  house  prediction  
can be rather accurate as desired indoor temperature level, power of the heating system to 
achieve this and heat losses are known or can be determined quite accurately. Houses are 
usually empty for many hours during daytime. And during holidays, for example, house can 
be devoid of residents for many days. Thus a system could be thought of that makes it 
possible for the residents to inform if the house is left empty for some longer period of time or 
if the house is uncommonly not empty during some day (in contrast to normal daytime when 
residents usually work or go to school). Pre-programmed in the system could be a control that 
lowers the indoor temperature level during the day if no information from the residents is 
received indicating that the house is not empty during the day. So for normal daytimes (when 
the house is left empty) retailers could predict the energy consumption based on the model for 
the house. If the house is going to be empty for a longer time, for example one week during 
holidays, residents could use the system to provide information about this. Providing 
information in advance about when the house is left empty again enhances the predictability, 
because at least during these times the energy consumption could be known quite accurately 
as noted above. System could also automatically lower the indoor temperature level for the 
duration of the “empty” time. Described system would require lot of research and field tests 
of the functionality and interface. Residents would also need some form of stimulus to use the 

Figure 17: Time series data of power from the first five days of 
measurement for the house of Figure 14. 
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system, most likely money saving due to reduced electricity bill. Reference [6] describes 
smart metering based system that can be used to control loads and field tests of the system. 
Similar bi-directional approach could possibly be used to implement the system described in 
this section. 
Also the following aspects need further studies: 

 The impact of heat pumps on the load predictions.  
 Clustering and removal of outlier houses to improve predictability. 
 Prediction of heating needs and responses for dynamic load control. 
 Prediction of loads for other types of houses, such as partially storing houses. 
 The seasonal variations in the temperature dependency and the reasons for that. 

5 Conclusions 

The aim of this research was to study the effect of using temperature data for predicting 
energy consumption in electrically heated fully storing houses. The approach was kept as a 
simple data fitting task. The presented results clearly confirm two main conclusions. First, the 
prediction capability is improved by decreasing the time shift between temperature and 
prediction  intervals  to  about  21  hours.  As  explained  before  this  reduces  the  time  when  
temperature variations can occur that we don’t take into account. Secondly, making 
predictions for a larger group of houses results in better prediction capability. This is in part 
due to the smoothing out of randomness in the behaviour of single houses and in part due to 
the possibility to detect differently behaving houses and remove them from the group 
predicted.  
From the methods considered the 24 hours temperature interval gave the best correlation 
between mean temperature and energy consumption. Taking into account 48 hours mean or 
weighted mean temperatures brings no improvement to the predictions. Finding the weight 
coefficients for 2 days weighted mean temperature was also not an easy task for the Matlab-
algorithm used and the results were sensitive to initial guess of the minimizing parameters. 
Better correlation could likely be achieved with real, precise modelling based on physical 
principles, especially for houses that do not have full storage heating with adequate 
dimensioning. This of course presents itself as a challenging task because heat dynamics of a 
house is very complicated due to myriad of different heat capacities, nonlinearities and 
pathways for heat conduction. This is especially the case for partially storing or direct heating 
houses that lack the heat storage buffer. Multiple floors and unknown state of the doors add 
complexity. Also large amount of randomness is present in the heat dynamics of a house 
because of the changing behaviour of the residents and weather conditions, making 
construction of exactly accurate prediction models practically impossible. 
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