

Title	Crystallinity of inorganic films grown by atomic layer
Author(s)	Miikkulainen, V.; Leskelä, M.; Ritala, M.;
	Puurunen, Riikka L.
Citation	Journal of Applied Physics. Vol. 113 (2013) No: 2,
	101 p.
Date	2013
URL	http://dx.doi.org/10.1063/1.4757907
Rights	Reprinted Journal of Applied Physics.
5	This article may be downloaded for personal use only.

VTT	By using VTT Digital Open Access Repository you are
http://www.vtt.fi	bound by the following Terms & Conditions.
P.O. box 1000 FI-02044 VTT	I have read and I understand the following statement:
Finland	This document is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of this document is not permitted, except duplication for research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered for sale.

AP Journal of Applied Physics

Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

Ville Miikkulainen, Markku Leskelä, Mikko Ritala, and Riikka L. Puurunen

Citation: J. Appl. Phys. **113**, 021301 (2013); doi: 10.1063/1.4757907 View online: http://dx.doi.org/10.1063/1.4757907 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v113/i2 Published by the American Institute of Physics.

Related Articles

Thermal annealing effect on material characterizations of β -Ga2O3 epilayer grown by metal organic chemical vapor deposition Appl. Phys. Lett. 102, 011119 (2013)

Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends App. Phys. Rev. 2013, 2 (2013)

Reflectance anisotropies of compressively strained Si grown on vicinal Si1-xCx(001) Appl. Phys. Lett. 102, 011902 (2013)

Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy J. Appl. Phys. 112, 123527 (2012)

Photoluminescence studies in CuInS2 thin films grown by sulfurization using ditertiarybutylsulfide J. Appl. Phys. 112, 123521 (2012)

Additional information on J. Appl. Phys.

Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT

Explore AIP's open access journal:

- Rapid publication
- Article-level metrics
- Post-publication rating and commenting

APPLIED PHYSICS REVIEWS

Crystallinity of inorganic films grown by atomic layer deposition: **Overview and general trends**

Ville Miikkulainen,^{1,a)} Markku Leskelä,^{1,b)} Mikko Ritala,^{1,c)} and Riikka L. Puurunen^{2,d)} ¹Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen Aukio 1), FI-00014 Helsinki, Finland

²VTT Technical Research Centre of Finland, P.O. Box 1000 (Tietotie 3), FI-02044 Espoo, Finland

(Received 10 November 2011; accepted 29 August 2012; published online 8 January 2013)

Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and selfterminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757907]

TABLE OF CONTENTS

I. INTRODUCTION	2
II. ALD PROCESSES: BASICS	3
A. Principles of ALD	3
B. ALD reactants	4
C. Overview of recent two-reactant ALD	
material studies	21
D. Growth of ternary compounds by ALD	22
III. CRYSTALLINITY OF INORGANIC ALD	
MATERIALS: OVERVIEW	25

^{a)}Present address: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway. Electronic mail: k.v.miikkulainen@smn.uio.no.

^{b)}Electronic mail: markku.leskela@helsinki.fi.

A. Metal oxides	26
1. General	26
2. Case: Aluminum oxide	26
3. Case: Zirconium oxide	41
4. Case: Zinc oxide	44
B. Metal nitrides	45
1. General	45
2. Case: Titanium nitride	46
C. Metal chalcogenides	52
1. General	52
2. Case: Zinc sulfide	52
D. Other inorganic ALD materials	57
1. General	57
2. Case: Ruthenium	59
IV. CRYSTALLINITY OF INORGANIC ALD	
MATERIALS: GENERAL TRENDS	63
A. Effect of temperature	63
B. Effect of reactants	64

c)Electronic mail: mikko.ritala@helsinki.fi.

^{d)}Author to whom correspondence should be addressed. Electronic mail: riikka.puurunen@vtt.fi.

C. Effect of impurities	65
D. Effect of plasma enhancement	65
E. Effect of substrate	66
F. Effect of film thickness	67
G. Grain size of ALD films	67
H. Schemes for the initial growth of	
crystalline grains in ALD	68
V. CONCLUSION	69

I. INTRODUCTION

Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The indifference of ALD to substrate shape facilitates the use of ALD in highly different fields of technology, e.g., dynamic random access memory (DRAM) and metal–oxide–semiconductor field-effect transistor (MOS-FET) production in microelectronics, thin-film electroluminescent (EL) displays (the oldest industrial application of ALD), catalysis, solar energy, microelectromechanical systems (MEMS), coating of fibers—in fact almost any area of nanotechnology research. The rising number of scientific publications on ALD per year, shown in Figure 1, testifies to the increasing world-wide interest towards ALD.

The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gassolid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic–organic hybrid compounds. ALD processes are at different levels of technology maturity: Some have been in continuous industrial use for more than two decades (e.g., the process to deposit Al_2O_3 from chloride reactants),¹ some have been shown to work in small laboratory-scale reactors with no commercially obtainable reactants yet, while most ALD processes are somewhere in between.

One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) are present. Amorphous films are desired, for example, as diffusion barriers, since grain boundaries between individual crystals would provide a leakage path for the diffusion of ions and lead to device failure. Crystalline films

FIG. 1. The number of scientific publications on ALD published per year during 1980 to 2010, analysed from the Web of Science.

with a specific phase, in turn, are often desired for their chemical or electrical properties. It is not trivial to know in advance, whether a given ALD process will result in an amorphous or crystalline film, and in the case of a crystalline film, what phase, orientation, crystal size, etc. are present, but these need to be experimentally determined.

The main goal of this review is to collect experimental data on the crystallinity of ALD films in their as-deposited state, to analyze the data superficially for all ALD processes and in more detail for selected cases, and finally to report general trends in the evolution of crystallinity of ALD films as function of important growth parameters. Collecting the experimental data has been a major effort and has included analyzing a major part of the published ALD literature. While working to achieve the main goal, we have also reviewed the ALD process development that has occurred during the past years, and as a secondary goal it has been to update the information of two-reactant ALD processes published in an earlier ALD review by one of the authors.² The earlier review,² whose main target was to review the AlMe₃ – H₂O ALD process in detail, covered ALD publications until early 2005, while the current work includes articles published by the end of 2010. Please note that two of the current authors have earlier reviewed many general aspects of ALD, which are not covered in this work.³,

Since the ALD reviews were listed in the earlier review,² several reviews have been published on various specific aspects of ALD, which the readers may find useful. Putkonen et al.⁵ reviewed the analysis of ALD films by ionbeam techniques; Putkonen and Niinistö⁶ the use of organometallic reactants (precursors) for ALD; Elers et al.⁷ the film uniformity in ALD; Schumacher et al.⁸ ALD and "AVD" (atomic vapour deposition) for next-generation microelectronic devices; Jones et al.⁹ ALD (and MOCVD) of high- κ oxides; Knez et al.¹⁰ the fabrication of nanostructures by ALD; Zaera¹¹ the surface chemistry of ALD for electronic device manufacturing; Sherman¹² general aspects of ALD; Ritala and Niinistö¹³ ALD in general; Niinistö *et al.*¹⁴ high- κ oxides of Group 4 metals for memory applications; Kim et al.¹⁵ applications of ALD to nanofabrication and emerging nanodevices; Clavel et al.¹⁶ non-aqueous sol-gel routes to ALD of oxides; George¹⁷ ALD in general; Puurunen et al.¹⁸ the use of ALD for MEMS; Bakke et al.¹⁹ the nanoengineering and interfacial engineering of photovoltaics (PV) by ALD; Profijt et al.²⁰ the basics, opportunities, and challenges of plasma-assisted ALD; Detavernier et al.²¹ the tailoring of nanoporous materials by ALD; George et al.²² metalcone molecular layer deposition (MLD); Marin et al.²³ ALD in corrosion protection; Parsons *et al.*²⁴ the progress in ALD chemistry; Leskelä et al.²⁵ novel materials by ALD and MLD; Bae et al.²⁶ ALD for 3D nanostructure fabrication; Elam et al.²⁷ ALD for clean energy conversion, utilization, and storage; Kessels and Putkonen²⁸ advanced ALD process technologies (e.g., PEALD, roll-to-roll); Peng et al.²⁹ ALD for electrochemical energy generation and storage; Im et al.³⁰ ALD for plasmonics and nanobiotechnology; Knoops et al.³¹ ALD for nanostructured Li-ion batteries; Zaera³² the surface chemistry of ALD of solid films; Elliott³³ the atomic-scale simulation of ALD chemistry; Knez³⁴ the

FIG. 2. Schematic illustration of one ALD reaction cycle.

diffusion phenomena in ALD; van Delft *et al.*³⁵ ALD for photovoltaics; and Wiemer *et al.*³⁶ ALD rare-earth-based binary and ternary oxides for microelectronic applications. Nilsen and co-workers published a valuable series of articles on the modeling of the growth of crystalline ALD layers from seed objects.^{37–40}

The structure of this review is as follows. We first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed todate, updating the information of an earlier review on ALD,² and give an overview of ternary materials made by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc sulfide, and ruthenium. Finally, we discuss the trends in the development of ALD film crystallinity as function of ALD process parameters.

II. ALD PROCESSES: BASICS

This section describes the basics of ALD, summarizes the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD,² and gives an overview of ternary materials made by ALD.

A. Principles of ALD

The principles of ALD are here described in sufficient detail that the readers can grasp an understanding of what ALD is, and to support the discussion on the crystallinity of ALD films from theoretical and practical viewpoint. Those looking for a more thorough description are referred to other sources, e.g., Refs. 2 and 3.

ALD is a chemical vapor deposition (CVD) technique that relies on saturating and irreversible, separated gas-solid reactions of typically at least two compounds, which are repeated in a cyclic manner. One ALD cycle consists typically of four steps, as schematically illustrated in Figure 2: first gas-solid reaction, i.e., chemisorption reaction, of the first reactant (Reactant A), typically of a metal reactant (Step 1a); purge or evacuation to remove the unreacted precursor and gaseous by-products (Step 1b); second gas-solid reaction, i.e., chemisorption reaction, of the second reactant (Reactant B), typically of a non-metal reactant (Step 2a); and again purge or evacuation to remove the unreacted precursor and gaseous by-products (Step 2b). (Please note that the compounds used to deposit film by ALD are often called precursors or reactants. Sometimes, a distinction is made to call the metal compound "precursor" and the non-metal compound "reactant." In this work, such distinction is not made but the two terms are used interchangeably.)

Essential characteristics of ALD processes, required to have a uniform thin film on large-area substrates and complex 3D shapes, are the *irreversible* and *saturating* reactions. Figure 3 compares the saturating and irreversible gas–solid reactions (often called self-terminating, self-limiting, etc.) to other types of adsorption. It is clear that only irreversible and saturating reactions, which are allowed to saturate, automatically lead to the same amount of material adsorbed on different parts of large and/or complex-shaped substrates, irrespective of how much reactant was available and of the exposure and purge times. As discussed elsewhere, reactant partial pressures also do not influence the amount of material adsorbed in saturating, irreversible reactions.² This automatic control of the amount of material deposited is a key feature of ALD.

FIG. 3. Schematic illustration of different types of adsorption: (a) irreversible saturating adsorption (as required for ALD), (b) reversible saturating adsorption, (c) combined irreversible and reversible saturating adsorption, (d) irreversible non-saturating adsorption (i.e., deposition), and (e) irreversible saturating adsorption not allowed to saturate. The dashed vertical line denotes the end of reactant pulse (Step 1a or 2a) and the beginning of purge sequence (Step 1b or 2b), as described in the text. Reprinted with permission from J. Appl. Phys. **97**, 121301 (2005). Copyright 2005 American Institute of Physics.

Another key feature of ALD processes is their weak temperature dependency. CVD processes in general are strongly temperature dependent, especially when they are in the surface-reaction-limited regime where the growth rate follows an Arrhenius-type relationship increasing exponentially with deposition temperature. In the special case of ALD, the amount deposited per cycle depends on the conditions where the saturating, irreversible reactions are carried out (reactants, substrate, temperature). Several trends how temperature may affect the amount deposited per cycle, referred to here as growth per cycle (GPC) and often in ALD literature as growth rate (denoting growth in a cycle, not per time unit), have been observed in the literature and are schematically summarized in Figure 4. The temperature dependencies are typically weak: For example in the case of Al₂O₃ deposition from AlMe₃ and H₂O, collection of data from many sources leads to the conclusion that in the temperature range $180 - 300^{\circ}$ C an 100° C increase in the deposition temperature decreases linearly the GPC by about 20%, as opposed to the expected exponentially increasing trend for CVD in general. The explanation behind the decreasing trend is the decrease of the -OH group concentration of the Al₂O₃ surface, as explored in detail elsewhere.^{2,41}

Good ALD processes follow the above description closely. When reactants that completely fulfill the ALD criteria are used in reactors optimized to operate in the ALD regime—with Steps 1a–2b tuned so that the reactions are allowed to saturate and the purges are sufficient to prevent Reactants A and B from mixing in the gas phase—the ALD growth should result in the same amount of material deposited per cycle in all reactors, irrespective the process parameter details and the reactor manufacturer. Comprehensive reviews on whether this is really the case are scarce, but, for example, for the AlMe₃ – H₂O process to deposit Al₂O₃ this seems to be valid.² In cases where the "correct" ALD behavior is known from the same results obtained by many groups

FIG. 4. Schematic illustration how the GPC can vary with the ALD temperature within the so-called *ALD window* (i.e., the temperature range where the process fulfills the criteria of ALD growth): (a) GPC decreases with temperature, (b) GPC is constant with temperature, optionally with different constant values at different temperatures, (c) GPC increases with temperature, and (d) GPC goes through a maximum with temperature. Reprinted with permission from J. Appl. Phys. **97**, 121301 (2005). Copyright 2005 American Institute of Physics.

with different reactors, obtaining results that deviate from the known trend points to problems in process optimization. In reality, however, many ALD processes deviate from the general requirements by having some non-ideal features not inherently typical for ALD. For example, the reactants may react partly reversibly, or some irreversible decomposition may take place, or reaction by-products may not be completely inert but they may interact with and adsorb on the surface, blocking further growth. Also the process conditions may be optimized closely, but not completely, to the ALD condition, generally to save time: Saturation of the surface by, e.g., 95% may be accepted, and the unreacted reactant may be purged to, e.g., 0.01% of the original concentration. Elers et al.⁷ have devoted a complete review article for examining these and other non-ideal factors contributing to film non-uniformity in ALD, and more in-depth discussion on ALD non-idealities is also presented in Ref. 13.

B. ALD reactants

Reactants to be used in ALD have many requirements. They must be either gaseous or vaporizable at a temperature lower than the ALD reaction temperature to enable transportation through the gas phase. They must react, preferably fast and aggressively, in a saturating, irreversible manner with sites on the surface of the growth substrate. When gaseous reaction by-products are formed, they should be inert and not interfere with the ALD growth. The reactants should not dissolve in the film. The reactants must not decompose thermally, neither during the storage, at the vaporization temperature nor at the ALD growth temperature. They should be safe and easy to handle, preferably non-toxic and noncorrosive towards the substrate and the reactor materials. For industrial use, price is also an issue. High purity is needed for some applications. While it in principle does not matter whether the reactants are gases, liquids, or solids at room temperature, the phase affects the reactor construction: Solids and low-vapor-pressure liquids require special source designs. The list of preferred properties is long, and it is evident that not many reactants in actual use fulfill all the criteria. Compromises often need to be made regarding, for example, the reactivity and corrosiveness of the by-products.

Many classes of compounds are used as metal reactants in ALD. Figure 5 summarizes the most typical ones (please note that this is an introductory view-a more complete treatment can be found in the Table I and Figure 7). The metal reactants used in ALD can be roughly divided into two groups, inorganic and metal organic, and these can be further categorized into elements, halides, alkyls, cyclopentadienyls, alkoxides, β -diketonates, amides and imides, phosphines, silyls, and amidinates. Occasionally, other types of reactants, e.g., heterocyclic compounds, have been used (generally referred to as other compounds in Figure 5), and active reactant development continues to take place. Each type of reactant has its benefits and drawbacks regarding reactivity, stability, gaseous by-products, and impurities left in the films. For example, alkyls, which are organometallic reactants containing a direct metal-carbon bond, are generally very reactive, but stable alkyls are not available for

FIG. 5. Overview of the classes of metal reactants used in ALD.

many metals and the deposition temperatures are limited because of the decomposition of the reactants. Chlorides, which belong to the general class of halides, are reactive, stable at a broad temperature range and available for many metals, but the deposited films may suffer from chlorine residues and film thickness gradients in the direction of flow, formed by secondary reactions of the HCl released in the reactions.

The variety in non-metal reactants is somewhat less than in metal reactants. The most typically used non-metal reactants are shown in Figure 6. (Again, a more complete list can be found in Table I.) The most commonly used types of nonmetal reactants in ALD are the hydrides of the non-metal elements: water (H₂O), ammonia (NH₃), and hydrogen sulphide (H₂S), etc., which are used to grow oxides, nitrides, and sulphides, respectively. The advantage of these types of reactants is their generally high stability and reactivity in a broad temperature range, including high temperatures. Ozone is often used for deposition of oxides especially from compounds having bulky ligands that are not reactive with water. The drawback of ozone is that it can oxidize also the surface of the underlying substrate. Ozone is also unstable, and its decomposition may be catalysed by the film itself. In such cases limitations arise for uniformity across large wafers and batches, and for conformality in high aspect ratio 3D structures. With plasma-enhanced ALD (PEALD), molecular elements which otherwise would not be sufficiently

Ζ	Material	Reactant A ^a	Reactant B	References
3	Lithium			
	Li ₂ O (LiOH)	Li(O'Bu)	H_2O	44
	Li ₂ CO ₃	Li(thd)	O ₃	45
5	Boron			
	B_2O_3	BBr ₃	H_2O	46 and 47
	BN	BCl ₃	NH ₃	48
		BBr ₃	NH ₃	49 and 50
		BBr ₃	NH ₃ ⁿ	50
	$B_x P_y O_z$	B(OMe) ₃	POCl ₃	51 and 52
6	Carbon			
	C ^b	CF_x	H ^c	53
		CCl ₃	H ^c	54
12	Magnesium			
	MgO	MgCp ₂	H_2O	55-62
		Mg(CpEt) ₂	H_2O	63
		Mg(thd) ₂	H_2O_2	64
		$Mg(thd)_2$	O ₃	65
	MgF_2	Mg(thd) ₂	TiF_4	66 and 67
		Mg(thd) ₂	TaF ₅	68
	MgTe	Mg	Te	69 and 70
13	Aluminum			
	Al	AlMe ₃	H_2^{e}	71 and 72
	Al_2O_3	AlCl ₃	H ₂ O	73–98
		AlCl ₃	$H_2O + cat.$	99
		AlCl ₃	O_2	100 and 101
		AlCl ₃	ROH ^d	80, 88, and 102

TABLE I. Overview of ALD processes based on two reactants (source: ISI Web of Science, status end December 2010).

021301-6 Miikkulainen *et al.*

Material	Reactant A ^a	Reactant B	References
	AlCl ₃	Al(OEt) ₃	103
	AlCl ₃	$Al(O^iPr)_3$	103 and 104
	AlBr ₃	H_2O	105
	AlMe ₃	H ₂ O	41, 59, 86, 94, 95, 98, and 106–396
	AlMe ₃	H ₂ O ⁿ	397 and 398
	AlMe ₃	H_2O_2	325 and 399-407
	AlMe ₃	O ₃	152, 160, 161, 186, 199, 216, 236,
			267, 270, 333, 380, 381, and 408-42
	AlMe ₃	O ₂ ^e	199, 242, 310, 336, 354, 357, 372, 375, 426, and 429–456
	AlMe ₃	$O_2 + H_2O + H_2O_2$	457
	AlMe ₃	$CO_2^{\mathbf{e}}$	458
	AlMe ₃	$N_2 O$	402
	AlMe ₃	NO ₂	110
	AlMea	N ₂ O ₄	459
	AlMea	ⁱ PrOH	460 and 461
	AlMo	ⁿ DrOU	281
	Allvie ₃		201
	AlMe ₃	AI(UPT) ₃	105
	AIMe ₂ CI	H ₂ O	462 and 463
	AIMe ₂ O'Pr	H ₂ O	464 and 465
	AIMe ₂ O'Pr	O_2^{c}	435
	AlEt ₃	H_2O	56
	$Al(OEt)_3$	H_2O	80
	$Al(OEt)_3$	O_2	80
	$Al(OnPr)_3$	H_2O	80 and 88
	$Al(O''Pr)_3$	O_2	80
	Al(mmp) ₃	H_2O	466
	$AlH_3N:(C_5H_11)$	O_2^{e}	467
	$Al(NEt_2)_3$	H ₂ O	468–471
	$Al(NEt_2)_3$	03	472–475
	$Al(N^i Pr_2)_2$	H ₂ O	470
	Al(ⁱ PrAMD)Et ₂	H ₂ O	476
AIN	AlCla	NH ₂ O	477 and 478
	AICL	NH. + H. ^e	479 and 480
	AIMe.	NH.	125 132 338 478 and 481 400
	AlMo	NIL n	401
	Allvic ₃		491
	AIMe ₃	$NH_3 + N_2$	492
	AIMe ₃	$NH_3 + H_2$	493
	AIMe ₃	$N_2 + H_2^{\circ}$	494
	AlEt ₃	NH ₃	495 and 496
	Me ₃ N:AlH ₃	NH ₃	497
	Me ₂ EtN:AlH ₃	NH ₃	498–500
	$Al(NMe_2)_3$	NH ₃	501
AlP	AlMe ₂ H	PH ₃	502–504
	Me ₂ EtN:AlH ₃	PH ₃	505
AlAs	AlCl ₃	AsH ₃	506 and 507
	AlMe ₃	AsH ₃	508–518
	AlMe ₂ H	AsH ₃	519–523
	AlEt ₃	AsH ₃	512 and 514
	Al^iBu_3	AsH ₃	524
	Me ₂ N:AlH ₂	AsH ₃	525
	Me ₂ N:AlH ₂	As(NMe	526 and 527
	Me ₂ EtN·AlH ₂	AsH ₂	523 and 528–533
AISb		$(Ft_s Si)_s Sh$	525 and 520-555
		S(OE+)	525
$A_1 \cap / S \cap f$		$(^{t}\mathbf{P}_{1}\mathbf{O})$ south	رور 12 524 میں 225
AI_2U_3/SIU_2	AlMe ₃	(BUO) ₃ SiOH	43, 536, and 537
$AI_x II_y O_z$	AICl ₃	$T1(OEt)_4$	103
	AlCl ₃	Ti(O'Pr) ₄	103
	AlMe ₃	Ti(O'Pr) ₄	103
$Al_x Cr_y O_z$	AlMe ₃	CrO_2Cl_2	538

TABLE I. (Continued.)

Z Material	Reactant A ^a	Reactant B	References
$Al_xZr_yO_z$	Al(OEt) ₃	$ZrCl_4$	103
$Al_xHf_yO_z$	Al(OEt) ₃	$HfCl_4$	103
AlLaO ₃	LaAl(O ⁱ Pr) ₆ (ⁱ PrOH)] ₂	H_2O	539
$AlPr_xO_y$	$AlPr(O^{i}Pr)_{6}(Pr^{i}OH)]_{2}$	H ₂ O	540
$AlNd_xO_y$	$AlNd(O^{i}Pr)_{6}(Pr^{i}OH)]_{2}$	H_2O	540
Silicon			
Si	SiCl ₄	Si ₂ H ₆	541
	SiCl ₂ H ₂	H_2	542 and 543
	SiCl ₂ H ₂	H ^c	544-551
	SiCl ₂ H ₂	j	552–554
	SiEt ₂ H ₂	k	555
	SiH4	k	556–558
	Si ₂ Cl ₆	$Si_2 H_6$	547, 548, 559, and 560
	Si ₂ Cl ₆	H ^c	561
	Si ₂ H ₆	k	562-570
	Si ₂ H ₆	j	571–575
	Si ₂ H ₆	k	570 and 576
	Si ₂ H ₆	1	577
	Si ₃ H ₈	k	546 and 578
SiO ₂	SiCl ₄	H ₂ O	74, 111, 130, and 579–587
2	SiCl ₄	$H_2O + cat.^g$	99, 584, and 588–594
	Si ₂ Cl ₆	03	595
	SiCl ₃ H	H ₂ O	596–598
	SiCl ₂ H ₂	0 ₃	599 and 600
	SiH ₄	N ₂ O ^e	601
	Si(OMe) ₄	H ₂ O	602
	Si(OMe) ₄	$H_2O + NH_3$ cat.	603
	Si(OEt) ₄	$H_2O + cat.$	604 and 605
	Si(OEt) ₄	$O_2^{\mathbf{e}}$	433, 606, and 607
	Si(OEt) ₃ ((CH ₂) ₃ NH ₂)	$H_2O + O_3$	362 and 608–612
	Si(O'Pe) ₃ OH	AlMe ₃	613 and 614
	HMDS ^h	02	615
	SiH ₂ (N(CH ₃) ₂) ₂	03	616 and 617
	$SiH_2(NH 'Bu)_2$	$O_2^{\mathbf{e}}$	618
	SiH ₂ (NEt ₂) ₂	$O_2^{\mathbf{e}}$	619
	SiH ₂ (NEt ₂) ₂	03	389
	$SiH(N(CH_3)_2)_3$	03	616, 617, and 620–622
	$SiH(N(CH_3)_2)_3$	H ₂ O	623
	$SiH(N(CH_3)_2)_3$	H_2O_2	623 and 624
	Si(NCO) ₄	H ₂ O	625
	Si(NCO) ₄	NEt ₃	626
	MeOSi(NCO) ₃	H_2O_2	627 and 628
Si ₃ N ₄	SiCl ₄	NH ₃	629–633
-	SiCl ₂ H ₂	NH ₃	632 and 634
	SiCl ₂ H ₂	NH ₃ ^e	635
	SiCl ₂ H ₂	$NH_3 + cat.$	636 and 637
	Si ₂ Cl ₆	$N_2 H_4$	638
	Si ₂ Cl ₆	NH ₃	639
SiC	SiCl ₂ H ₂	$C_2 H_4$	640 and 641
	SiEt ₂ H ₂	i	642
	Si ₂ H ₆	$C_2 H_4$	643
	Si ₂ H ₆	$C_2 H_2$	644–647
$Si_xAl_yO_z$	Si(OEt) ₄	AlCl ₃	535
SiO ₂ /Al ₂ O ₃ ^f	(^t BuO) ₃ SiOH	AlMe ₃	43, 536, and 537
Si _x Ti _v O _z	Si(OEt)₄	TiCl ₄	51
~ y 2	Si(O ⁿ Bu) ₄	Ti(NEt ₂₎₄	648 and 649
$Si_xZr_vO_z$	SiCl ₄	$Zr(O^{t}Bu)_{4}$	650
~ <i>j</i> 2	Si(OEt) _A	ZrCl ₄	103
	$Si(O^nBu)_4$	$ZrCl_4$	103 and 651
	· · · ·	-	

Ζ	Material	Reactant A ^a	Reactant B	References
		Si(O ⁿ Bu) ₄	Zr(NEt ₂₎₄	652
	$Si_xHf_yO_z$	Si(OEt) ₄	$HfCl_4$	653
		Si(OEt) ₄	HfI_4	653
		(^t BuO) ₃ SiOH	Hf(NMe ₂₎₄	654
		Si(O"Bu) ₄	Hf(NEt ₂₎₄	655–659
		Si(O'Pe) ₃ OH	Hf(NEt ₂₎₄	660
		Si(O ⁿ Bu) ₄	Hf(NEtMe) ₄	661
	$Si_xBi_yO_z$	Bi(CH ₂ SiMe ₃) ₃	O ₃	662 and 663
15	Phosphorus			
	PO_x	PCl ₃	H_2O	664–668
		POCl ₃	H ₂ O	581, 669, and 670
	$P_x B_y O_z$	POCl ₃	B(OMe) ₃	51 and 52
20	Calcium			
	CaO (CaCO ₃)	$Ca(thd)_2$	H ₂ O	671
		$Ca(thd)_2$	O3	672 and 673
		$Ca(^{i}Pr_{3}Cp)_{2}$	H ₂ O	674
	CaS	$Ca(thd)_2$	H ₂ S	671 and 675–679
	CaF ₂	$Ca(thd)_2$	HF	680
	2	$Ca(thd)_2$	TiF ₄	67 and 681
21	Scandium			
	Sc ₂ O ₃	ScCp ₃	H ₂ O	682
	2 9	$Sc(thd)_3$	0 ₃	682
		$Sc(thd)_3$	$O_3 + H_2O_2$	682
		$Sc(iPrAMD)_2$	H ₂ O	683
		$Sc(emd)_3$	O ₂	684
22	Titanium			
	Ti	TiCl	Hae	685 and 686
	TiO ₂	TiF₄	H ₂ O	687
	- 2	TiCl ₄	H ₂ O	44, 92, 94, 123, 128, 153, 176, 179, 198, 207, 218, 228, 238, 305, 365, 378, 379, 390, 581, 585, 664, 665, and
		TiCl ₄	H_2O_2	301, 334, 403, 405, 490, 815, and 816
		TiCl ₄	MeOH	817
		TiCl ₄	$O_2^{\mathbf{e}}$	818 and 819
		TiL	H ₂ O	820-822
		TiL	H ₂ O ₂	823-825
		Til	O_2	826 and 827
		Ti(CpMe ₅)(OMe) ₂	02	828 and 829
		Ti(CpMe ₅)(OMe) ₂	O_2^e	375
		$Ti(CpMe)(O'Pr)_2$	O_2^e	375
		Ti(OMe)4	H ₂ O	95 and 830–838
		$Ti(OEt)_4$	H ₂ O	122, 128, 760, 773, 782, 837, and
		Ti(OEt) ₄	H_2O_2	839–845 96, 760, 773, and 782
		Ti(O ⁱ Pr) ₄	H ₂ O	128, 212, 236, 273, 280, 285, 325, 328, 350, 359, 362, 396, 764, 788, 701, and 846, 881
		$T_i(\bigcap^{i} D_{r})$	чΩ	271, and 040-001
		$T(OFI)_4$ $T(O^iD_r)$		004 anu 070 205 224 406 407 949 990 1992
		$11(O PT)_4$	H_2O_2	525, 554, 406, 407, 848, 882, and 883
		$Ti(O^{i}Pr)_{4}$ $Ti(O^{i}Pr)_{4}$	O_2 O_2^e	/36 and 884 375, 439, 442, 448, 607, 854, 864, 878, and 885, 805
		$Ti(O^{i}Pr)$	$O_2 + NH_2$	8/8, and 885–895 896
		$Ti(O^{i}Pr)$	NH-	000 and 808
		$Ti(O^{i}Pr)$	0.	236 890 and 899_006
		$Ti(O^{i}Dr)$	$N_{-} O^{e}$	200, 000, and 007-000 800 and 007
		11(011)4	1120	070 and 707

TABLEL	(Continued)
1110000	(commean)

TABLE I.	(Continued.)
----------	--------------

Z Material	Reactant A ^a	Reactant B	References
	Ti(O ⁱ Pr) ₄	НСООН	908
	Ti(O ⁱ Pr) ₄	CH ₃ COOH	908–911
	$Ti(O^iPr)_2(dmae)_2$	H_2O	912
	$Ti(O^i Pr)_2(thd)_2$	H_2O	913–916
	Ti(trhd) ₂ (O(CMe ₂ Et) ₂	H_2O	913
	Ti(OBu) ₄	H_2O	917
	Ti(NMe ₂) ₄	H_2O	356, 377, 864, 914, and 918–924
	Ti(NMe ₂) ₄	O ₃	418 and 925
	Ti(NMe ₂) ₄	H_2O^e	864
	Ti(NMe ₂) ₄	O_2^{e}	864 and 926–930
	Ti(NMe ₂) ₄	q	931
	$TiCp_2((^iPrN)_2C(NH^iPr))$	q	932
TiN	TiCl	NH_3	766 and 933–956
	TiCl4	$NH_3 + cat.$	121, 934–936, 957
	TiCl4	N_2 , H_2^e	429, 449, 453, and 958–965
	TiCl	Me ₂ NNH ₂	966
	TiCl	^t BuNH ₂	967
	TiCl	AvNH ₂	967
	TiL	NH ₂	936 and 968
	Til4		967
	Til	AvNH ₂	967
	Ti(NMe ₂) ₄	NH ₂	319 and 969–987
	$Ti(NMe_2)_4$	NH2 ^e	986, 988, and 989
	$Ti(NMe_2)_4$	NH ₂ H ₂ ^e	493, 979, and 990
	$Ti(NMe_2)_4$	Na ^e	986 989 and 991–994
	Ti(NMe ₂) ₄	H ₂ ^e	989, 992, 993, and 995
	$Ti(NMe_2)_4$	112	931
	T(NEt)	Ч NIII	077
	$\Pi(\operatorname{INEt}_2)_4$	NH ₃	977
	$Ti(NEtM_{2})$	INIT ₃	990 and 997
	$\Pi(NELIME)_4$	q	996
	$TiCp_2((PrN)_2C(NHPr))$	q	932
TiS ₂	${ m TiCl_4}$	H_2S	999
$Ti_xAl_yO_z$	Ti(OEt) ₄	AlCl ₃	103
	Ti(O'Pr) ₄	AlCl ₃	103
	Ti(O'Pr) ₄	AlMe ₃	103
$Ti_x Si_y O_z$	$TiCl_4$	Si(OEt) ₄	51
	Ti(NEt ₂) ₄	$Si(O^nBu)_4$	648 and 649
$Ti_x Zr_y O_z$	Ti(O'Pr) ₄	$ZrCl_4$	103, 1000, and 1001
$Ti_xHf_yO_z$	Ti(O'Pr) ₄	$HfCl_4$	103
3 Vanadium			
VOv	VOC ₃	H ₂ O	581, 668, 698, 705, and 1002–100
	VO(O ⁱ Pr) ₃	H ₂ O	1006–1010
	$VO(O^i Pr)_2$	H ₂ O ^e	1010
	$VO(O^i Pr)_3$	H ₂ O ₂	1011
	$VO(O^{i}Pr)_{2}$	02	1012–1014
	$VO(O^{i}Pr)_{2}$	$\Omega_2^{\mathbf{e}}$	1010
	$VO(O^{n}Pr)_{2}$	CH ₂ COOH	910, 1015, and 1016
	$VO(acac)_2$	0 ₂	1017–1019
4 Chromium			
CrO_x	CrO_2Cl_2	H ₂ O	581, 668, 670, 698, 705, and 1020–1028
	CrO ₂ Cl ₂	H ₂ O ₂	1026
	CrO ₂ Cl ₂	MeOH	538, 817, and 1028–1031
	$Cr(acac)_3$	02	736 and 1032–1036
Cr.Al.O.	$CrO_2 Cl_2$	AlMe ₂	538
c_x , $m_y c_z$			550

Ζ	Material	Reactant A ^a	Reactant B	References
25	Manganese			
	MnO_x	Mn(CpEt) ₂	H_2O	1037
		$Mn(thd)_3$	O ₃	1038-1041
	MnS	MnCl ₂	H_2S	77 and 78
	MnTe	Mn	Те	70 and 1042–1051
	MnAs	Mn(CpMe) ₂	As(NMe ₂) ₃	1052
6	Iron			
0	Fe	Fe(^t BuAMD) ₂	H ₂	1053
	FeO _r	FeCl ₃	H ₂ O	1054
		Fe(acac) ₂	02	1055
		Fe(acac) ₂	02	1056
		Fe(thd) ₂	02	1057-1061
		$Fe(Cn)_{2}$	0,	821 1062 and 1063
		$Fe(Cp)_2$	02	609, 1064, and 1065
		$F_{0}(^{t}P_{1}AMD)$		1053
		$Fe_{1}(BuO)_{2}$	п ₂ 0 Н ₂ 0	1055
		102(1000)6	1120	1001 1000
7	Cobalt			
	Со	$Co('PrAMD)_2$	H_2	1053, 1067, and 1068
		Co('PrAMD) ₂	NH ₃	1068
		$Co(PrAMD)_2$	NH ₃ ^e	1069
		CoCp('PrAMD)	NH ₃ ^e	1070
		CoCp ₂	NH_3^{e}	1071 and 1072
		$CoCp(CO)_2$	NH_3^{e}	1073 and 1074
		$CoCp(CO)_2$	H_2^e	1074 and 1075
		$CoCp(CO)_2$	N_2^e	1074 and 1075
		$Co_2(CO)_8$	H_2^e	1075–1077
		$Co_2(CO)_8$	N ₂ ^e	1075
	CoO_r	CoI ₂	02	1078
		$Co(acac)_2$	02	1079–1081
		Co(acac) ₃	0,	1079–1087
		Co(thd) ₂	02	1060 and 1088–1090
		$Co(iPrAMD)_2$	H ₂ O	1053
	CoSi ₂	CoCp ₂	NH_3 , SiH_4^e	1091
8	Nickel	Ni(acco)	TT	1002
	INI	$Ni(acac)_2$	П ₂	1092
		$M(PTAWD)_2$	п ₂	1033
		$Ni(dmamb)_2$		1093
		$NI(dmamb)_2$	NH ₃	10/2 and 1093
	NO	$N1(n\pi p)_2$	H ₂	1094 and 1095
	IN1O	NICp ₂	H ₂ O	1096
		NICp ₂	03	1097-1100
		N1(CpEt) ₂	0 ₃	1097 and 1100
		Ni(dmamb) ₂	H ₂ O	1101
		Ni(dmamp) ₂	H ₂ O	1102 and 1103
		$Ni(acac)_2$	O ₂	1104–1106
		$Ni(acac)_2$	O ₃	1092 and 1107
		Ni(thd) ₂	H ₂ O	1108–1110
		Ni(thd) ₂	O ₃	1111
		Ni(apo) ₂	O ₃	1107
		Ni(dmg) ₂	O ₃	1107
9	Conner			
/	Cu	CnCl	Ha	1112 and 1113
	- 4	CuCl	$H_{a} + H_{a}O$	1112 and 1115
		CuCl	112 + 1120 7n	1115 and 1114
				1002
		$Cu(acac)_2$		1092
		$Cu(acac)_2$	n ₂	1110-1118

TABLE I.	(Continued.)
----------	--------------

TABLE I.	(Continued.)
----------	--------------

Z Material	Reactant A ^a	Reactant B	References
	Cu(thd) ₂	H ₂	1119–1122
	Cu(thd) ₂	H_2^{e}	1123
	$Cu(hfac)_2$	ROH ^d	1124
	Cu(hfac) ₂	HCHO ^m	1124
	$Cu(hfac)_2$	$H_2 + cat.$	1125
	Cu(hfac)(vtmos)	H_2^e	1126
	Cu(ⁱ PrAMD)	H_2	1053 and 1067
	Cu(^s BuAMD)	H_2	1127–1131
	$Cu(dmap)_2$	ZnEt ₂	1132
	Cu(dki)(vtms)	SiH ₂ Et ₂	1133
CuO _r	$Cu(acac)_2$	02	1134
~	Cu(thd) ₂	0,	1135–1137
	$Cu(hfac)_2$	H ₂ O	1138
	$Cu(P^nBu_2)_2(acac)$	$H_2O_2O_2$	1139
CuaN	$Cu(^{s}BuAMD)$	NH ₂	1128 and 1140
Cuzit	Cu(bfac)	$NH_{0} \pm H_{0}O$	11/1
CuS	Cu(thd)	н с	1142 1146
Cu _x s	$Cu(MU)_2$	11 ₂ 5	1142-1140
C C	$Cu(BuAMD)_2$	H ₂ S	1147
Cu _x Se	$Cu(O_2C Bu)_2$	$(Et_3 S1)_2Se$	1148
	CuCl	$(Et_3S1)_2Se$	1148
0 Zinc			
Zn	ZnEt ₂	H_2O	1149
ZnO	Zn	O ₂	1150
	Zn	H_2O	1151
	$ZnCl_2$	H_2O	1152
	$ZnCl_2$	O ₂	1153–1155
	ZnMe ₂	H ₂ O	1156–1162
	ZnMe ₂	$\tilde{O_2^e}$	1163 and 1164
	$ZnMe(O^{i}Pr)$	H ₂ O	1165
	ZnEt ₂	H ₂ O	60, 117, 145, 147, 204, 240, 264, 28 291, 297, 300, 305, 306, 318, 323, 346, 350, 352, 368, 374, 812, 1011 1149, 1157, and 1159–1265
	ZnEta	H ₂ O ^e	1266
	ZnEta	H_2O^n	1179
	ZnEt ₂	$H_2O + NH_2$	202 and 1267
	$ZnEt_2$	$H_2O + NH_1 \pm O_2$	157
	$ZnEt_2$	$H_2O + 10H_3 + O_2$	1223 1268 and 1269
	Z_{nEt}	11202	11223, 1206, and 1209
	$Z_{11}E_{12}$	O_2	1160
	$ZnEl_2$	O_2	12/0=12/5
	$ZnEl_2$	03	1195
	ZnEt ₂	N ₂ O	12/6–12/8
	$ZnEt_2$	N ₂ O ^e	458
	$Zn(OAc)_2$	H ₂ O	1160 and 1279–1285
ZnS	Zn	S	76 and 1286–1288
	Zn	H_2S	1289
	$ZnCl_2$	H_2S	77, 78, 84, and 1290–1305
	ZnI_2	H_2S	1305
	ZnMe ₂	H_2S	1156 and 1306–1314
	ZnEt ₂	H_2S	206, 1177, 1194, 1215, and 1315–1320
	ZnEt ₂	Et_2S_2	1321
	Zn(CH ₃ COO) ₂	H_2S	1304
	Zn(OAc) ₂	H_2S	680, 1279, 1292, 1293, 1295–1297 1304, and 1322
ZnF	$Zn(OAc)_2$	HF	680
ZnSe	7 n	Se	1150, 1287, and 1323–1339
	7n	Hase	1340
	Z11 7n	Et So	13/1
	Z11	El ₂ Se	1341

Ζ	Material	Reactant A ^a	Reactant B	References
		ZnCl ₂	H ₂ Se	1342–1344
		$ZnCl_2$	(Et ₃ Si) ₂ Se	1148
		ZnMe ₂	H ₂ Se	1312-1314 and 1345-1355
		ZnEt ₂	H ₂ Se	1356
		ZnEt ₂	Et_2Se_2	1321
		$Zn[N(SiMe_3)_2]_2$	H ₂ Se	1356
	ZnTe	Zn	Te	1044, 1323, 1326–1328, 1330, and 1357–1366
		$ZnCl_2$	(Et ₃ Si) ₂ Te	1148
		ZnMe ₂	Et ₂ Te	1367
		ZnMe ₂	MeAyTe	1367
21	Callium			
51	Gallun	Ga(acac)-	0.	1368 and 1360
	Oa_2O_3	$Ga(acac)_3$		1308 and 1309
		$Ga(acac)_3$		1308
		$[Game_2NH_2]_3$	0 ₂	13/0=13/2
	C-N	$Ga_2(NMe_2)_6$	H ₂ O	13/3
	GaN	Ga	N_2	13/4 and 13/5
		GaCl	NH ₃	1376 and 1377
		GaCl ₃	NH ₃	1378 and 1379
		GaMe ₃	NH ₃	485 and 1380–1384
		GaEt ₃	NH ₃	496, 1385, and 1386
		GaEt ₃	NH ₃ °	1387
	GaP	Ga	Р	1286
		GaCl	PH_3	1388
		GaMe ₃	PH_3	502, 516, and 1389–1394
		GaMe ₃	$P(NMe_2)_3$	1395
		GaEt ₃	PH_3^n	1396
	GaAs	GaCl	AsH ₃	1388, 1394, and 1397–1410
		GaCl ₃	AsH ₃	506, 507, and 1411–1415
		GaCl ₃	As	1414
		GaBr	AsH ₂	1416
		GaI	AsH ₂	1416
		GaMe ₃	AsH ₃	508–511, 514, 516, 518, 521, 524, 1390, 1393, and 1417–1467
		GaMes	Ft AsH.	1468
		GaMe-	^t BuAsH.	1469 1476
		GaEt ₃	AsH ₃	512, 514, 1390, 1424, 1433, 1438, an 1477–1485
		GaEta	^t BuAsH ₂	1475 and 1486
		GaEt ₂	(Me ₂ N) ₂ As	527, 1487, and 1488
		GaEtaCl	As	1489
		GaEt ₂ Cl	AsHa	1450 and 1490
		GaEt-Me	AsH.	1300
		Ga ⁱ Bu.	AsH.	1480
		Ga Du ₃		1400
	GaSb	GaRp ₃ GaCl ₃	(Et ₃ Si) ₃ Sb	534
			(.)- /)	
32	Germanium		**0	1402 11402
	Ge	GeCl ₄	H	1492 and 1493
		GeMe ₂ H ₂	H	1494–1496
		GeEt ₂ H ₂		1497 and 1498
		GeH ₄	···· .	558 and 1499
		Ge ₂ H ₆	^k	1500 and 1501
	GeO ₂	GeCl ₄	H_2O	689 and 1502
		Ge(dpp-BIAN)	O ₃	1503
	GeSb	$GeCl_2 \cdot (C_4H_8O_2)$	(Et ₃ Si) ₃ Sb	534
	GeTe	$GeCl_2 \cdot (C_4H_8O_2)$	(Et ₃ Si) ₂ Te	1148 and 1504

TABLE I. (Continued.)

TABLE I. (Continued.)

Ζ	Material	Reactant A ^a	Reactant B	References
38	Strontium			
	SrO (SrCO ₃)	$Sr(Cp^{i}Pr_{3})_{2}$	H ₂ O	1505 and 1506
		$Sr(Cp^{n}PrMe_{3})_{2}$	H ₂ O	1507
		$Sr(Cp^{n}PrMe_{3})_{2}$	O_2	1507
		$Sr(Cp'Bu_3)_2$	H_2O	838
		$Sr(thd)_2$	O ₃	1508
		$Sr(methd)_2$	O_2^e	885
	SrS	$Sr(CpMe_5)_2$	H_2S	1509
		$Sr(Cp^iPr_3)_2$	H_2S	1509 and 1510
		$Sr(thd)_2$	H_2S	675, 677, and 1511–1513
	SrF ₂	$Sr(thd)_2$	HF	680
	SrTa ₂ O ₆	$Sr[Ta(OEt)_5(me)]_2$	O_2^{e}	1514
39	Yttrium			
	Y_2O_3	YCp ₃	H_2O	1515 and 1516
		Y(CpMe) ₃	H_2O	1515 and 1517–1520
		Y(CpMe) ₃	O ₃	1521
		Y(CpEt) ₃	H_2O	1522 and 1523
		Y(thd) ₃	O_2	1524
		Y(thd) ₃	O ₃	135, 153, and 1524–1526
		Y(thd) ₃	O_2^e	1527–1532
		Y(ⁱ PrAMD) ₃	H_2O	1533
	YF ₃	$Y(thd)_3$	TiF ₄	1534
	Y_2O_2S	Y(thd) ₃	H_2S	1535
40	Zirconium			
	ZrO ₂	$ZrCl_4$	H ₂ O	98, 128, 135, 138, 146, 162, 221, 736, 1516, and 1536–1563
		$ZrCl_4$	H_2O_2	1544 and 1545
		$ZrCl_4$	O_2	1564 and 1565
		ZrI_4	H_2O	1566
		ZrI_4	H_2O_2	1567–1570
		$ZrCp_2Cl_2$	O ₃	1571–1573
		$ZrCp_2Me_2$	H_2O	1574 and 1575
		ZrCp ₂ Me ₂	O ₃	1571 and 1576
		ZrCp ₂ Me(OMe)	O ₃	1577
		ZrCp(NMe ₂) ₃	O ₃	1578
		Zr (CpMe) ₂ Me ₂	O ₃	1579–1581
		Zr(CpMe) ₂ Me(OMe)	H_2O	1582
		Zr(CpMe) ₂ Me(OMe)	O ₃	1579–1584
		Zr(CpMe)(NMe ₂) ₃	O ₃	1578
		Zr(CpEt)(NMe ₂) ₃	O ₃	1578
		$Zr(Cp_2CMe_2)Me_2$	O ₃	1585
		Zr(Cp ₂ CMe ₂)Me(OMe)	O ₃	1585
		$Zr(O^{i}Pr)_{4}$	H_2O	1586
		$Zr(O^{i}Pr)_{2}(dmae)_{2}$	H_2O	861 and 1587
		$Zr(O'Bu)_4$	H ₂ O	273, 850, 852, 853, 879, and 1588–1594
		Zr(O'Bu) ₄	O_2	1592
		$Zr(O'Bu)_4$	O_2^{e}	1595–1598
		$Zr(O'Bu)_4$	$N_2 O$	1592
		$Zr(O'Bu)_4$	Ār ^e	1598
		$Zr(O^{t}Bu)_{2}(dmae)_{2}$	H ₂ O	1587 and 1599
		$Zr(O^{t}Bu)_{2}(dmae)_{2}$	H ₂ ^e	1600
		$Zr(dmae)_4$	H ₂ O	1587
		$Zr(thd)_4$	O_2^e	1571
		$Zr(NMe_2)_4$	H ₂ O	350, 1517–1519. and 1601–1605
		$Zr(NEt_2)_4$	H ₂ O	295, 311, 315, 320, 1601, and 1606
		$Zr(NEt_2)_A$	02	1607
		$Zr(NEt_2)_4$	$\tilde{O_2^e}$	1596 and 1608
		· · · · · · · · · · · · · · · · · · ·		

Ζ	Material	Reactant A ^a	Reactant B	References
		Zr(NEtMe) ₄	H ₂ O	1601 and 1609
		Zr(NEtMe) ₄	O ₃	1610–1615
		Zr(NEtMe) ₄	O_2^{e}	1616–1619
		Zr(NEtMe) ₄	$N_2 O^e$	1618
		Zr(NEtMe) ₄	q	998
		Zr[N(SiMe ₃) ₂] ₂ Cl ₂	H_2O	1620
		Zr(MeAMD) ₄	H_2O	1609
	ZrN_x	$ZrCp_2(NMe_2)_2$	N_2^{e}	1621
		$Zr(NMe_2)_4$	$\overline{NH_3}$	1622
		Zr(NEtMe) ₄	NH ₃	1622
		Zr(NEt ₂) ₄	NH ₂	1622
		$Zr(NEt_2)_4$	N ₂ ^e	1623
	7r A1 O	7rC L	$A1(OEt)_{a}$	103
	$Z_{x}A_{y}O_{z}$		Si(OEt)3	103 and 1624
	$\Sigma I_x S I_y O_z$		$SI(OEI)_4$	103 and 1024
		$ZICI_4$	SI(O Bu) ₄	
		$Zr(OBu)_4$	SiCl ₄	650
		$Zr(NEt_2)_4$	$S1(O^{n}Bu)_{4}$	652
	$Zr_xTi_yO_z$	ZrCl_4	Ti(O'Pr) ₄	103, 1000, and 1001
	$Zr_xLa_yO_z$	$Zr(CpMe)_2 Me(OMe)$	La('PrCp) ₃	1625
1	Niobium			
	Nb ₂ O ₅	Nb(OEt) ₅	H ₂ O	91, 122, 391, 842, 1539, and 1626–1629
	NbN	NbCl ₅	NH_3	933, 935, and 1630–1632
		NbCl ₅	$NH_3 + cat.$	935 and 1630
		NbCl ₅	Me ₂ NNH ₂	966
		Nb(N ^t Bu)(NEtMe) ₃	H_2^{e}	1633
2	Molybdenum			
2	Morybachum	MoCl ₅	Zn	1634
	Mo.N	MoCle	NHa	933 and 1635
	1110,111	MoCl	MeaNNHa	966
		$Mo(N^tBu)_s(NMe_s)_s$	NH	1636-1640
		$Mo(N'Bu)_2(NEt_2)_2$	NH ₃	1638 and 1640
1	Ruthenium			
-	Runemann	$\mathbf{R}\mathbf{u}(\mathbf{chd})(\mathbf{inmn})$	0.	1641
	Ru	Ru(end)(ipinp)	02	05 09 and 1642 1651
		RuCp ₂	NUL e	95, 98, and 1042–1051
		RuCp ₂	NH3	1649
		$Ru(CpEt)_2$	O_2	1649 and 1652–1659
		$Ru(CpEt)_2$	NH ₃	196, 1649, 1656, and 1660–167
		$Ru(CpEt)_2$	$N_2 + H_2$	994 and 1671
		$Ru(CpEt)_2$	$H_2 + O_2$	900
		Ru(CpEt)(dmp)	O ₂	906 and 1672–1677
		Ru(CpEt)(dmp)	Ч	1678
		Ru(CpEt)(pyr)	NH ₃ ^e	1679
		RuCp(CpCH(Me)(NMe ₂))	O_2	1680
		RuCp(CO) ₂ Et	O_2	1681 and 1682
		RuCp(CO) ₂ Et	O_2^{e}	1681
		Ru(od) ₃	O ₂	1683
		Ru(thd) ₃	H_2	1684
		$Ru(thd)_3$	O ₂	1644 and 1685–1687
		$Ru(^{t}BuAMD)_{2}(CO)_{2}$	02	1688
		$\operatorname{Ru}(^{t}\operatorname{BuAMD})_{2}(\operatorname{CO})_{2}$	NH ₂	1689 and 1690
		RuO.	Ha	1691
	RuOa	$\mathbf{Ru}(\mathbf{CnFt})$	0.	$1652 \ 1654 \ 1687 \ and 1602$
	KuO2	$Ru(thd)_2(cod)$	O ₂	1693
~	Dh - 4'			
,	KHOOHUM Ph	Ph(acac)	0	1652 and 1604
	1/11	KII(acac)3	O_2	1055 and 1094

TABLE I. (Continued.)	
-----------------------	--

TABLE I. (Continued.)

Ζ	Material	Reactant A ^a	Reactant B	References
	Rh ₂ O ₃	Rh(acac) ₃	O ₃	1695
46	Palladium			
	Pd	$Pd(thd)_2$	H_2	1684
		$Pd(thd)_2$	02	1136
		Pd(hfac) ₂	Ha	1696–1698
		$Pd(hfac)_2$	H ₂ ^e	1699 and 1700
		$Pd(hfac)_{2}$	$H_2 + N_2^e$	1701
		Pd(hfac)	$H_2 + H_2$	1696
		$\operatorname{Dd}(\operatorname{hfac})_2$	ucuom	268 206 1011 and 1702 1704
		$Pd(nrac)_2$	нсно	508, 596, 1011, and 1702–1704
7	Silver			
	Ag	$Ag(O_2C'Bu)(PEt_3)$	H_2^e	1705
	0	Ag(hfac)(cod)	propanol	1706
0				
١Ŋ	Cadmium	Cd	\$	1707 and 1708
	245	CACI	це	1200
			H ₂ 5	1215
	C 10	CalMe ₂	H ₂ S	1515 and 1/09–1/14
	CdSe	Cd	Se	1287, 1708, and 1715–1722
		CdMe ₂	H ₂ Se	1315 and 1346
	CdTe	Cd	Te	70, 1042–1047, 1049–1051, 1338 1360, 1364, 1366, 1708, 1720, 172 and 1723–1747
		CdMe ₂	Et ₂ Te	1367
		CdMe ₂	MeAyTe	1367 and 1748–1750
		CdMe ₂	^{<i>i</i>} Pr ₂ Te	1751 and 1752
0	Indium			
	Incluin In-O-	InCl.	H.O	128 and 1753_1757
	III_2O_3		H ₂ O	128 and 1755–1757
		InCl ₃	H_2O_2	1757
		InMe ₃	H ₂ O	1758
		InCp	O ₃	787, 1759, and 1760
		$In(acac)_3$	H_2O	1761
		$In(acac)_3$	O_3	1761
	InN	In	N_2	1762
		InEtMe ₂	NH ₃	485, 1381, and 1382
	In_2S_3	InCl ₃	H_2S	1763 and 1764
		$In(acac)_3$	H_2S	1177, 1178, and 1765–1772
	InP	InCl	PH ₃	1388
		InCl		1406
		InMe	PH ₂	1436 1449 and 1773–1781
		InMe	^t BuPH _a	1782_1784
		InFt.	DUI II2 DH.	1380 and 1301
		InEt	^t BuDH	1785
	L. C.		(Et Si) S	1765
	In ₂ Se ₃	InCl ₃	(El ₃ SI) ₂ Se	1148
	InAs	InCl	AsH ₃	1398, 1399, and 1411
		InMe ₃	AsH ₃	1394, 1428, 1786, and 1787
		InMe ₃	'BuAsH ₂	1476, 1775, 1777, 1788, and 1789
		InClMe ₂	AsH ₃	1790
		InEt ₃	AsH ₃	1421, 1791, and 1792
	InSb	In	Sb	1793 and 1794
0	Tin			
	SnO ₂	Sn	0,	1286
		SnCL	U_2 H_0	128 714 747 1369 and 1795-181
		SnCl.	H_O	1801 and 1812 1819
		SilCi ₄	11202	1004 and 1013-1010
		51114 CT	$\Pi_2 U_2$	
		Sni ₄	O_2	1804, 1813, 1814, and 1819–182.
		SnMe ₄	N_2O_4	459 and 883
		SnEt ₄	N_2O_4	459

Ζ	Material	Reactant A ^a	Reactant B	References
		Sn ⁿ Bu ₂ (CH ₃ COO) ₂	O_2^e	1822–1825
		$Sn(NMe_2)_4$	H_2O_2	1760, 1826, and 1827
		Sn(tbba)	H_2O_2	1828
	SnS	$Sn(acac)_2$	H_2S	384
51	Antimony			
	Sb	SbCl ₅	(Et ₃ Si) ₃ Sb	534
	Sb ₂ O ₅	SbCl ₅	H ₂ O	1797
		$Sb(NMe_2)_3$	O_3	1829
	Sb_2S_3	$Sb(NMe_2)_3$	H_2S	1226 and 1829
	Sb ₂ Te ₃	SbCl ₃	(Et ₃ Si) ₂ Te	534, 1148, and 1504
56	Barium			
	BaO (Ba(OH) ₂)	$Ba(Cp^tBu_3)_2$	H_2O	1830
	BaO	Ba(Cp ⁿ PrMe ₄) ₂	H_2O	1519
	BaS	Ba(CpMe ₅) ₂	H_2S	1509 and 1510
		$Ba(thd)_2$	H_2S	675 and 1831
	BaB_2O_4	$Ba(Tp^{Et2})_2$	H ₂ O	1832
57	Lanthanum			
	La ₂ O ₃	La(thd)3	O_2	1135 and 1137
		La(thd) ₃	O ₃	44, 1088, 1111, 1577, and 1833–1833
		La(thd) ₃	H ₂ O	237, 1836, and 1837
		La[N(SiMe ₃) ₂] ₃	H_2O	654 and 1838–1842
		La(ⁱ PrAMD) ₃	H_2O	1053 and 1843
		La(ⁱ PrfAMD) ₃	H_2O	1844
		La(ⁱ PrfAMD) ₃	O_2	1607
		La(ⁱ PrfAMD) ₃	O_3	1844
		La(Cp) ₃	H_2O	1835, 1845, and 1846
		La(CpEt)3	O_2^e	1847
		La(CpEt) ₃	O_3^e	1848
		$La(Cp^iPr)_3$	H_2O	1849 and 1850
		$La(Cp^{i}Pr)_{3}$	O_3	1851 and 1852
		$La(Cp^{i}Pr)_{3}$	O_2^e	1850 and 1853–1856
	La_2S_3	La(thd) ₃	H_2S	1857
	LaF ₃	La(thd) ₃	TiF ₄	67 and 1858
	$La_x Si_v O_x$	La[N(SiMe ₃₎₂] ₃	(^t BuO) ₃ Si	654
	LaAlO ₃	$LaAl(OiPr)_6(iPrOH)]_2$	H ₂ O	539
	$La_x Zr_y O_z$	$La(Cp^i Pr)_3$	$Zr(CpMe)_2 Me(OMe)$	1625
8	Cerium			
	CeO ₂	$Ce(thd)_4$	O_2	1135 and 1137
	-	$Ce(thd)_4$	0 ₃	1859 and 1860
		Ce(thd) ₃ phen	O ₃	1859
59	Praseodymium			
	PrO _r	$Pr[N(SiMe_3)_2]_3$	H ₂ O	1861 and 1862
		Pr(ⁱ PrAMD) ₃	H ₂ O	1863
		$Pr(Cp^{i}Pr)_{3}$	H ₂ O	1863
	$PrAl_xO_y$	$[PrAl(O^{i}Pr)_{6}(Pr^{i}OH)]_{2}$	H ₂ O	540
0	Neodymium			
	Nd ₂ O ₃	Nd(thd) ₃	O ₃	1864 and 1865
	$NdAl_xO_y$	$NdAl(OiPr)_6(PriOH)]_2$	H ₂ O	540
52	Samarium			
	Sm ₂ O ₃	Sm(thd) ₃	O ₃	1864
52	Furonium			
5	Europium Fu-O	En(thd)	0	1964
	EU2U3	Eu(110)3	03	1004

Ζ	Material	Reactant A ^a	Reactant B	References
64	Gadolinium			
	Gd_2O_3	Gd(thd) ₃	O ₃	1583, 1864, and 1866
		Gd(CpMe) ₃	H_2O	1866
		Gd(mmp) ₃ -tetraglyme	H_2O	1867
		Gd(dmb) ₃	H_2O	96 and 1868–1870
		Gd((ⁱ PrN) ₂ CNMe ₂) ₃	H_2O	1871–1873
66	Duanracium			
00	Dysprosium Dy ₂ O ₃	$Dv(thd)_3$	O ₃	1864
	- 12 - 3	$Dy(emd)_3$	O ₂	684
67	Holmium			
07		Ha(thd)	0	1864
	$\Pi_{02}O_{3}$	$HO(HIG)_3$	O_3	1804
68	Erbium			
	Er_2O_3	Er(thd) ₃	O ₃	1584, 1864, and 1874
		Er(thd) ₃	O_2^{e}	1527, 1528, and 1530–1532
		Er(CpMe) ₃	H_2O	1875
		Er(^{<i>t</i>} BuAMD) ₃	O ₃	1876
69	Thulium			
~/	Tm ₂ O ₃	Tm(thd) ₃	O ₃	1864
	-	. /-	-	
70	Ytterbium	371 (.1. 3)	~	1077
	Yb ₂ O ₃	$Y b(thd)_3$	O ₃	1877
71	Lutetium			
	Lu_2O_3	$Lu(OiPr)_3$	H_2O	1878
	-	Lu[Cp(SiMe ₃)] ₂ Cl	H ₂ O	1879 and 1880
	LuSi _x O _v	Lu[N(SiMe ₃) ₂] ₃	H ₂ O	1881 and 1882
	J	$Lu[N(SiMe_3)_2]_3$	O ₃	1881 and 1882
70	Hafairre			
12	Hainium	UfC1	ЦО	02 125 154 160 169 160 171 172
	HIO ₂	HICI4	H ₂ O	92, 135, 134, 100, 168, 169, 171–175, 175, 188–190, 199, 221, 259, 310, 587, 741, 761, 1520, 1541, 1551, 1554–1562, 1566, 1610, 1839, and 1883–1974
		HfCl ₄	O_2	1975 and 1976
		HfCl ₄	O_3	420, 423, 1897, 1917, 1933, 1951,
			TT0/ \	1954, 1977, and 1978
		HfCl ₄	$Ht(mmp)_4$	1979
		$HICl_2[N(S1Me_3)_2]_2$	H ₂ O	1980
		Hfl ₄	H ₂ O	1566, 1896, 1901, 1981, and 1982
			H ₂ O ₂	1981
		Htl ₄	O_2	1901 and 1983–1987
			O_2^4	1988
		$HtCp_2Me_2$	H ₂ O	1989 and 1990
		HfCp ₂ Me ₂	O ₃	1990
		HfCp ₂ Cl ₂	H ₂ O	1990
		HfCp ₂ Cl ₂	O ₃	1990
		Hf(CpMe) ₂ Me ₂	H ₂ O	1579
		Hf(CpMe) ₂ Me ₂	O ₃	1991
		Hf(CpMe) ₂ (OMe)Me	H ₂ O	1579
		Hf(CpMe) ₂ (OMe)Me	O ₃	1521, 1581, 1860, 1991, and 1992
		Hf(CpMe) ₂ (O'Pr)Me	H ₂ O	1993
		Hf(CpMe) ₂ (mmp)Me	H_2O	1993
		$Hf(Cp)(NMe_2)_3$	O ₃	1994
		Hf(CpMe)(NMe ₂) ₃	O ₃	1994
		$Hf(Cp_2CMe_2)Me_2$	O_3	1585

TABLE I. (Continued.)

TABLE I. (Continued.)

Ζ	Material	Reactant A ^a	Reactant B	References
		Hf(Cp ₂ CMe ₂)Me(OMe)	O ₃	1585
		$Hf(O^{i}Pr)_{4}$	O_2	1995
		$Hf(O'Bu)_4$	H_2O	274 and 1996
		$Hf(O'Bu)_4$	O ₃	1997–1999
		$Hf(O'Bu)_4$	O_2	2000
		$Hf(O'Bu)_4$	O_2^e	1597
		$Hf(O^{t}Bu)_{4}$	HCOOH	908
		$Hf(O'Bu)_4$	CH ₃ COOH	908–911
		$Hf(O'Bu)_2(mmp)_2$	H_2O	2001
		$Hf(O'Bu)_2(mmp)_2$	O_2	684
		Hf(O'Bu)(NEtMe) ₃	O_3	2002 and 2003
		Hf(mmp) ₄	H ₂ O	1867 and 2004
		$Hf(mp)_4$	H_2O	2005
		$Hf(mp)_4$	O_2^e	2006
		$Hf(ONEt_2)_4$	H ₂ O	2007
		Hf(NMe ₂) ₄	H ₂ O	254, 312, 350, 358, 362, 654, 1601, 1602, 1605, 1660, 1960, and 2008–2033
		$Hf(NMe_2)_4$	O ₃	2009 and 2034–2039
		Hf(NMe ₂) ₄	O ₂	2040
		$Hf(NMe_2)_4$	O_2^e	1667 and 2041-2044
		$Hf(NEt_2)_4$	H_2O	197, 468, 633, 1523, 1601, 1932, 1962, and 2045–2057
		$Hf(NEt_2)_4$	O ₂	1522 and 2058
		$Hf(NEt_2)_4$	O_2^c	440, 2006, and 2058–2069
		$Hf(NEt_2)_4$	O_3	472–475
		$Hf(NEt_2)_4$	N ₂ O	2070
		$Hf(NEt_2)_4$	N_2O^e	2062 and 2070
		Hf(NEtMe) ₄	H ₂ O	160, 247, 250, 253, 1601, 1842, 1849, 1912, 1967, 2023, and 2071–2095
		Hf(NEtMe) ₄	O ₃	428, 616, 620, 829, 1521, 1610, 1611, 1938, 1994, 1998, and 2095–2108
		Hf(NEtMe) ₄	O ₂ ^e	438, 963, 1610, 1618, 1619, 1853, and 2109–2111
		Hf(NEtMe) ₄	N_2O^e	1618
		Hf(NEtMe) ₄	q	998
		Hf[N(SiMe ₃) ₂] ₂ Cl ₂	H_2O	2112
		$Hf(NO_3)_4$	H_2O	2113–2116
ł	Hf_3N_4	Hf(NMe ₂₎₄	NH ₃	1622
		$Hf(NEt_2)_4$	NH ₃	1622
		$Hf(NEtMe)_4$	NH ₃	501 and 1622
	HfN	$Hf(NMe_2)_4$	H ₂ ^e	2042, 2117, and 2118
		$Hf(NMe_2)_4$	N_2^e	2119
	$Hf_xAl_yO_z$	HfCl ₄	$Al(OEt)_3$	103
	$Hf_xSi_yO_z$	HfCl ₄	Si(OEt) ₄	653 and 2120
		HfCl ₄	Si(O''Bu) ₄	2121 and 2122
		Hfl ₄	Si(OEt) ₄	653
		Hf(O'Bu) ₄	Si(NEtMe) ₄	2123
		$Hf(NMe_2)_4$	$(BuO)_3$ SiOH	654
		$Hf(NEtMe)_4$	$Si(O^nBu)_4$	661
		$Ht(NEt_2)_4$	$Si(O^{t}Bu)_{4}$	655–659
		$HI(NEt_2)_4$	$S1(UPe)_3UH$	660
	$Hf_xTi_yO_z$	HI(NO ₃) ₄ HfCl ₄	$(^{1}BuO)_{3}SiOH$ $Ti(O^{i}Pr)_{4}$	2116 103
,	Tantalum			
	Та	TaCl ₅	${\rm H_2}^{\rm e}$	685 and 2124
		TaF ₅	${\rm H_2}^{\rm e}$	2125–2127
		TaF_5	Si ₂ H ₆ ^p	2128

Material	Reactant A ^a	Reactant B	References
Ta ₂ O ₅	TaCl ₅	H ₂ O	75, 77, 78, 81, 90, 92, 128, 392, 1291 1541 1627 1883 and 2129–2134
	TaCls	Ta(OEt)₅	103 and 2135
	TaE ₂	H ₂ O	2136
	Tal-	H2O2	2130
	Tal-	0	2137
	T_{a15}	U ₂ НО	2156 85 01 122 123 128 201 803 833
	Ta(OLt)5	1120	842, 1539, 1563, 1627, 1885, and 2139–2146
	Ta(OEt) ₅	O_2^{e}	2143, 2147, and 2148
	Ta(OEt) ₅	O_2^n	2149
	Ta(OEt) ₄ (dmae)	O ₃	2150
	Ta(NMe ₂) ₅	H_2O	843, 918, and 2151–2154
	$Ta(NMe_2)_5$	O_2^{e}	375, 453, 918, 1650, 2152, and 2155
	$Ta(NEt_2)_5$	H ₂ O	2156
	$Ta(NEt)(NEt_2)_3$	H ₂ O	2156
	$Ta(N^{t}Bu)(^{t}Bu_{2}pz)_{3}$	0 ₃	2157
	$Ta(N^{t}Bu)({}^{i}PrAMD)_{2}(NMe_{2})$	H ₂ O	2158
TaO _x N _y	$Ta(N^{i}Pr)(NEtMe)_{2}$	$H_2 + N_2 + NH_3^e$	2159
TaN.	TaCle	NH ₂	933 and 2160–2162
1 un v _X	TaCle	$NH_2 + cat$	2160
	TaCle	MeaNNHa	966
	TaCl-		2163
	TaCl-	AvNH.	2163
		N. ^e	2164 2166
	TaCl		2104-2100
		$\Pi_2 + \Pi_2$	2107 and 2108
	$1 \text{ aC15} \cdot \text{SE12}$	$nn_3 + Anne_3$	2109
	TaBr ₅	BUINH ₂	2103
		$H_2 + N_2$	2170
		$H_2 + NH_3$	2126 and 2127
		$H_2 + NH_3$	2127
	$Ta(NMe_2)_5$	NH ₃	2152 and 21/1–2180
	$Ta(NMe_2)_5$	NH ₃ °	2181
	$Ta(NMe_2)_5$	H ₂ °	964, 2152, 2182, and 2183
	$Ta(NMe_2)_5$	N ₂ °	2181–2183
	$Ta(NMe_2)_5$	N_2, H_2^e	453
	Ta(NEtMe) ₅	NH ₃	2184
	$Ta(N'Pr)(NEtMe)_3$	$H_2 + N_2^e$	2185
	$Ta(N^{t}Bu)(NEt_{2})_{3}$	NH ₃	2186–2190
	$Ta(N'Bu)(NEt_2)_3$	N_2H_4	2188
	$Ta(N'Bu)(NEt_2)_3$	H_2^e	1669 and 2191–2193
	$Ta(N'Bu)(NEt_2)_3$	NH ₃ ^e	1668 and 2186
	$TaCp(N^{t}Bu)(NEt_{2})_{2}$	NH ₃	2190
	$Ta(N^tAm)(NMe_2)_3$	H ₂ ^e	1671
TaN_xC_y	$Ta(N^{t}Bu)(NEt_{2})_{3}$	H_2	2194
	$Ta(N^{t}Bu)(NEt_{2})_{3}$	H_2^e	2194–2196
	$Ta(N'Bu)(NEt_2)_3$	H ₂ -CH ₄ ^e	2197
	$Ta(N'Bu)(NEt_2)_3$	NH ₃	2198
	$Ta(N'Bu)(NEt_2)_3$	NH_3^e	2198
	$Ta(N^tAm)[(NMe_2)]_3$	H ₂ ^e	2199
TaSi _x	TaF ₅	Si ₂ H ₆	2200
Ta ₂ SrO ₆	$Sr[Ta(OEt)_5(Me)]_2$	O_2^e	1514
Tungsten			
W	WF_6	SiH_4	2201–2206
	WF ₆	Si_2H_6	165, 184, 187, 193, 220, 249, 309, 314, 1183, and 2207–2219
	WF_6	B_2H_6	2202, 2205, and 2206
WO	WF.	H ₂ O	2220
WOr	VV 1 6	11/0	2220

TABLE I. (Continued.)

	Material	Reactant A ^a	Reactant B	References
		WF _x O _y	H ₂ O	2220
		WOCl ₄	^q	2222
		$W_2(NMe_2)_6$	H_2O	2223
	W _x N	WF ₆	NH ₃	944, 945, 2207, and 2224–2226
		WF ₆	NH_3^e	2226–2229
		WF ₆	$NH_3 + B_2H_6$	2230
		$W(N^tBu)_2(NMe_2)_2$	NH ₃	1067, 1636, 1639, 1689, and 2231–2234
		$W_2(NMe_2)_6$	NH ₃	2235
	W _x C	$W(N'Bu)_2(NMe_2)_2$	H_2, N_2^e	2236
	WN _x C _y	WF ₆	$NH_3 + Et_3B$	945, 1939, 2173, and 2384–2389
		W(CpEt)(CO) ₂ (NO)	H ₂ ^e	2237
	WS ₂	WF_6	H_2S	2238 and 2239
7	Iridium			
	Ir	$Ir(acac)_3$	O_2	95, 98, 276, 832, 835, and 2240–2245
		Ir(acac) ₃	$O_3 + H_2$	2246
		Ir(acac) ₃	q	2247
		Ir(CnEt)(cod)	0-	2248
		Ir(CpEt)(cod)	NIH. ^e	2240
		Ir(CpMe)(cbd)	<u> </u>	2249
	IrO.	Ir(CpEt)(chd)	O_2	2250
	nO ₂	Ir(CpEt)(cnd)	$O_2 + \Pi_2$	2231 2248 and 2240
			02	2240 anu 2249
		$II(acac)_3$	03	2252
8	Platinum			05 00 005 050 000 1640 1644
	Pl	PI(CpMe)Me ₃	O_2	95, 98, 295, 550, 805, 1642, 1644, 1651, 1676, 2013, 2015, 2243, 2245, and 2253, 2271
		Pt(CnMa)Ma	0 °	2260
		Pt(CpMe)Me	U2 Ц	2200 2266 and 2272
			11 ₂	1002
		$Pt(acac)_2$	П ₂	1092
	D+O	$Pt((acac)_2$	O_3	2275
	PlO_x	Pt(CpMe)Me ₃	O_2	2200
		$Pt(acac)_2$	O_3	2213
)	Mercury	11-14-	М. АТ	1749 1 1750
	ngre	ngivie ₂	MeAyre	1748 and 1750
2	Lead			
	PbO ₂	$Pb(thd)_2$	H_2O	915 and 2274
		$Pb(thd)_2$	O ₃	2275
		Pb(tod) ₂	H_2O	913
		PbPh ₄	O ₃	2275
		Pb(dmamp) ₄	H_2O	2276
	PbS	PbBr ₂	H_2S	2277
		PbI_2	H_2S	2277
		Pb(OAc) ₂	H_2S	2277
		Pb(O'Bu) ₂	H_2S	2278
		Pb ₄ O(O'Bu) ₆	H_2S	2278
		Pb(thd) ₂	H_2S	2277–2281
		$Pb(dedtc)_2$	H_2S	2277 and 2278
3	Bismuth			
	D:O	Bi[N(SiMe ₃) ₂] ₃	H_2O	2282
	DIO _x		-	
	DIO _X	Bi(thd) ₃	H_2O	2283
	DIO _x	Bi(thd) ₃ Bi(O'Bu) ₃	H ₂ O H ₂ O	2283 2283

TABLE I.	(Continued.)
----------	--------------

TABLE I.	(Continued.)
----------	--------------

Ζ	Material	Reactant A ^a	Reactant B	References	
]	Bi ₂ Se ₃	BiCl ₃	(Et ₃ Si) ₂ Se	1148	
	Bi ₂ Te ₃	BiCl ₃	(Et ₃ Si) ₂ Te	1148	
1	$Bi_x Si_y O_z$	Bi(CH ₂ SiMe ₃) ₃	O ₃	662 and 663	

^aThe metal thd complexes may have been slightly oligomerized and contain a neutral adduct molecule. ^bDiamond.

^cAtomic hydrogen produced by a hot tungsten filament. ^dR refers to alkyl chains of various lengths.

^ePlasma.

^fThis process is atypical for ALD: It deposits nanolaminates of Al_2O_3 and SiO_2 , where the growth-per-cycle is many nanometers, through a catalytic mechanism.⁴³

^gCat. = catalyst.

^hHMDS = hexamethyldisilazane, $(Me_3Si)_2NH$.

ⁱControlled desorption.

^jIrradiation.

^kTemperature treatment, such as flash heating or temperature modulation.

¹He plasma treatment.

 m Reactant B was formaline, containing $\sim 37\%$ of formaldehyde HCHO and some ethanol in water.

ⁿPhoto-assisted.

^oDecomposed.

^pPreliminary surface science investigation.

^qOnly one half-reaction of an ALD reaction cycle was carried out.

reactive (e.g., O_2 , H_2 , N_2) can be used. The conformality of PEALD films is however limited due to the finite lifetime of radicals and charged species, as discussed in recent work by Knoops *et al.*⁴² In addition to these classes of compounds, various organic compounds have also been used, with reducing or oxidizing characteristics, as needed.

C. Overview of recent two-reactant ALD material studies

Recently, the development of ALD processes has been more need- than curiosity-driven. Microelectronics has been the most important application area motivating the ALD research. In microelectronics, high- κ oxides for both transistors and DRAM capacitors have formed the largest focus area. New processes have been developed for Group 4 metal (Zr, Hf) oxides but doping of the oxide films, making of nanolaminates, and ternary compounds have been important part of the research aiming for increase of the κ -value and more stable films. Publication-wise the most active ALD research topic has recently been the integration of high- κ oxides with various III–V and Ge channel materials.

Microelectronics has also motivated the development of ALD processes for metal and conducting metal oxide films to be used as electrodes. Noble metal and noble metal oxide films, and especially the interfacial behavior between dielec-

FIG. 6. Overview of the classes of non-metal reactants used in ALD.

trics and metal electrodes, have received a lot of attention. Phase-change materials for non-volatile electronic memories present a new area for ALD. For that application, new chemistry and processes to deposit germanium and antimony tellurides have been developed.

MEMS (nanoelectromechanical systems, NEMS) and different nanotechnology applications are naturally suited for ALD. In these studies, no new processes have been developed but existing well-working processes such as those for Al_2O_3 , TiO_2 , and ZnO have been applied. Protective (barrier) layers and optics form other important and increasing application areas. They also mostly rely on existing processes but for optics new chemistry has been studied for metal fluoride films. In the case of protective films, the substrate to be covered is often polymer material, setting limitations for the process temperature.

Energy applications form yet another increasing interest area, which has motivated ALD thin film research. Both nanostructured dye-sensitized solar cells (DSSC) and Li-ion batteries could utilize the conformality of ALD films. In case of batteries, new processes have been developed for lithiumcontaining films while DSSC could utilize the existing oxide processes. In photovoltaics, the surface passivation of silicon solar cells with ALD-Al₂O₃ has shown excellent results and has been extensively studied.

Both for PV applications and barrier layers for high volume products, the productivity of conventional ALD even in batch mode is of a concern. Therefore, increasing effort has been devoted towards fast spatial ALD, where the substrate is moved under spatially separated continuous precursor and purge gas flows. So far, this work has focused almost exclusively on Al_2O_3 , and it will be interesting to see how well other ALD processes can be transferred to this mode.

The literature contains extensive amounts of information on the development of new ALD processes and the characteristics of existing processes. The collection of tworeactant ALD processes made in 2005 in Ref. 2 has now been updated to correspond to the situation about 5 years later, at the end of 2010. Accordingly, Table I collects information on ALD processes based on two reactants. The data collection principles have been the same as in the earlier review:² Investigations published in scientific journals have been included; we have not judged the contents of the paper as to whether the process really obeys the principles of ALD but have included it if the authors present it as ALD; and investigations have been included if they bring some information or data on the particular ALD process which could be useful to others using the same process. Therefore, conference papers are generally not included in the table (with some exceptions); some investigations may be included which in fact do not correspond to ALD but rather some other form of CVD; and many publications are not referred to, where ALD layers have merely been used as part of a multi-layer process flow while the properties of the ALD layers have not been individually investigated. Restricting the table contents mainly to two-reactant processes leaves out information on ALD processes based on three or more reactants, laminates, mixed oxides, and doping. Therefore, although the table is meant to cover all two-reactant ALD processes, it is not an overview of all ALD processes.

The metal reactants used in the processes collected in Table I contained almost a hundred different ligands. To assist reading the table, the ligands have been collected in their own figures. Figure 7(a) contains the inorganic, organometallic, and some metal-organic ligands, and Figure 7(b) completes the set of metal-organic ligands. Also, to assist reading Table I, a quick overview of the different types of materials grown in two-reactant ALD processes is given in Figure 8 in the form of a periodic table.

Examination of Table I reveals several popular ALD processes, which are repeatedly used in various applications. The process that appears to be used the most often is the AlMe₃ – H₂O to deposit Al₂O₃: Since the previous review,² this process has gained over 200 new citations. AlMe₃ is also often combined with ozone or O₂ plasma. Examples of other widely applied ALD processes are the ZnEt₂ – H₂O process to deposit ZnO (almost 100 new citations), the HfCl₄ – H₂O process to deposit HfO₂ (almost 80 citations), and TiCl₄ – H₂O process to deposit TiO₂ (about 70 new citations).

Many new binary compound materials have been demonstrated since the previous review.² Of oxides, lithium oxide has been deposited from Li(O^{*t*}Bu) and H₂O,⁴⁴ barium oxide from cyclopentadienyl-based reactants Ba(Cp^{*t*}Bu₃)₂ and Ba(Cp^{*n*}PrMe₄)₂ combined with H₂O,^{1519,1830} and ytterbium oxide from Yb(thd)₃ and ozone.¹⁸⁷⁷ ALD of noble metal oxide films has been demonstrated for rhodium,¹⁶⁹⁵ iridium,²²⁵² and platinum.²²⁷³ Also PEALD processes to deposit oxides of iridium and platinum have been developed.^{2251,2260} Of nitrides, copper nitride has been grown from Cu(^{*s*}BuAMD) and NH₃ and Cu(hfac)₂ and NH₃ + H₂O.^{1140,1141} Of sulphides, titanium sulphide has been deposited from TiCl₄ and H₂S,⁹⁹⁹ tin sulphide from Sn(acac)₂ and H₂S,³⁸⁴ and antimony sulphide from Sb(NMe₂)₃ and H₂S.^{1226,1829} The selection of ALD-made fluoride materials has been extended substantially using titanium and tantalum fluorides as fluorine sources: Magnesium fluoride was deposited from Mg(thd)₂ and TiF₄ or TaF₅,^{66,68} yttrium fluoride from Y(thd)₃ and TiF₄,¹⁵³⁴ and lanthanum fluoride from La(thd)₃ and TiF₄.^{67,1858} Many new selenides have been deposited: bismuth selenide from BiCl₃ and (Et₃Si)₂Se,¹¹⁴⁸ copper selenide from Cu(O₂C^{*t*}Bu)₂ or CuCl and (Et₃Si)₂Se,¹¹⁴⁸ and indium selenide from InCl₃ and (Et₃Si)₂Se,¹¹⁴⁸ Also new tellurides have been deposited: germanium telluride from GeCl₂ · (C₄H₈O₂) and (Et₃Si)₂Te,¹¹⁴⁸ antimony telluride from SbCl₃ and (Et₃Si)₂Te,¹¹⁴⁸ and bismuth telluride from BiCl₃ and (Et₃Si)₂Te,¹¹⁴⁸ and bismuth telluride from BiCl₃ and (Et₃Si)₂Te,¹¹⁴⁸ of arsenides, manganese arsenide has been deposited from Mn(CpMe)₂ and As(NMe₂)₃,¹⁰⁵² and of silicides, cobalt silicide has been deposited from CoCp₂ and NH₃ – SiH₄ plasma.¹⁰⁹¹

In addition to compound materials, also many new elemental metals have been demonstrated since the previous review.² Rhodium has been deposited from $Rh(acac)_3$, employing similar oxidative O₂-based chemistry as in the other noble-metal ALD processes.¹⁶⁹⁴ The corresponding O₃-based process leads to oxidation of rhodium.¹⁶⁹⁵ Silver films have been deposited by PEALD using Ag(O₂C'Bu) (PEt₃) and H₂ plasma,¹⁷⁰⁵ and silver nanoparticles by thermal ALD using a Ag(hfac)(cod)-propanol process.¹⁷⁰⁶ Metallic zinc has been detected in a film made by the ZnEt₂ $-H_2O$ process, when large ZnEt₂ doses were used.¹¹⁴⁹ The main product of this process remains ZnO, however, and since pure metallic zinc films will be still difficult if not impossible to make by ALD; elemental zinc deposition is not shown with black but with gray background in Figure 8. Most recently in 2011 (not shown in Table I), antimony films have been grown by combining the SbCl₃ and Sb(SiEt₃)₃ reactants.534

Several trends can be seen by examining Table I regarding the development of new ALD processes. Significant attention has been given since the previous review² to the development of new processes to deposit noble metals Ru, Pd, Ir, and Pt. Also metallic Co and Ni have clearly been in the center of attention. Regarding compound materials, especially active process development has been made for SiO_2 , HfO_2 , FeO_x , and TaN. For groups of reactants, active development has been made with cyclopentadienyls (e.g., to deposit Yb₂O₃, ZrO₂, Ru, and La₂O₃), alkylamides (e.g., to deposit Al₂O₃, AlN, TiO₂, ZrO₂, and HfO₂), and on the nonmetal precursor side with alkyl silyl chalcogenides to deposit various selenides and tellurides. PEALD is at a rapidly developing stage, with new processes developed since the previous review for Al₂O₃, AlN, SiO₂, TiO₂, TiN, V₂O₅, Co, CoSi₂, Ni, Cu, ZnO, Ga₂O₃, Y_2O_3 , ZrO_2 , ZrN_x , NbN, Ru, Pd, Ag, SnO_2 , La_2O_3 , Er_2O_3 , HfO_2 , HfN, Ta, Ta_2O_5 , TaN, Ir, IrO_2 , Pt, and PtO_x .

D. Growth of ternary compounds by ALD

The number of ternary compounds studied in ALD is limited but increases. The compounds studied are mainly multi-component oxides, as shown in Table II. Interest in them stems from their high dielectric constant, ferroelectric properties, or magnetic properties. Ternary chalcogenides (a)

FIG. 7A. Ligands for ALD metal reactants, part 1 of 2.

have recently been studied for phase-change memory applications.¹¹⁴⁸ Lithium-containing ternary or quaternary films gain interest because of their possible use in all-solid-state thin-film Li-ion batteries.45

There are several ways how the ternary compounds can be deposited. The most straightforward way is the one where separate binary deposition cycles are mixed to get the right stoichiometry. Since the growth rates per cycle differ in the

(b)

FIG. 7B. Ligands for ALD metal reactants, part 2 of 2.

						the p	oure elen	nent has	been gro	own							
1		со	mpounds	with O				compoi	unds with	١F							18
1																	2
н	2	CO	mpounas	s with in				other c	ompound	IS		13	14	15	16	17	не
3	4	co	mpound	s with S			·	compoi	unds with	п⊤е		5	6	7	8	9	10
Li 🎆	Be						omnoun	do with C	20			В 📕	С	N	0	F	Ne
11	12	compounds with Se									13	14	15	16	17	18	
Na	Mg											AI	Si	P	S	CI	Ar
		3	4	5	6	7	8	9	10	11	12						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	SC		V	Cr	IVIN	Fe	Co	INI		Zn	Ga	Ge	AS	5e	Br	ĸr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	ln 📕	Sn	Sb	Те		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112					1 1	
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		Dece	mber 20	010		
															<i></i>		
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
La	anthan	oids*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	Actino	ids**	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

FIG. 8. Overview of the materials grown by ALD. Classification according to Reactant A, with details of the investigations in Table I. Growth of pure elements as well as compounds with oxygen, nitrogen, sulphur, selenium, tellurium, fluorine, and other compounds grouped together is indicated through shadings of different types at different positions. The elements are named according to the recommendations of The International Union of Pure and Applied Chemistry (IUPAC, http://www.iupac.org/reports/periodic_table/, dated 21 January 2011).

TABLE II. Examples of ALD processes for ternary and quaternary compounds.

Compound	Precursors	Reference
MgAl ₂ O ₄	$Mg(C_5H_5)_2 + Al(CH_3)_3 + O_3$	59
LaAlO ₃	$La(thd)_3 + Al(acac)_3 + O_3$	2284
	$La(^{i}Pr)AMD)_{3} + Al(CH_{3})_{3} + H_{2}O$	2285
NdAlO ₃	$Nd(thd)_3 + Al(CH_3)_3 + O_3$	1865
$MSiO_4$ (M = Zr, Hf)	$MCl_4 + Si(OEt)_4$	103
	$MCl_4 + Si(OEt)_4 + H_2O$	103
	$MCl_4 + Si(O''Bu)_4$	103
	$MCl_4 + H_2O + NH_2(CH_2)_3Si(OEt)_3 + O_3$	2286
$Bi_4Si_3O_{12}\left(Bi_2SiO_5\right)$	$Bi(CH_2SiMe_3)_3 + O_3$	662
Ca10(PO4)6(OH)2	$Ca(thd)_2 + O_3 + (CH_3O)_3PO + H_2O$	673
RScO ₃	$R(thd)_3 + Sc(thd)_3 + O_3$	2287
(R = lantanide)	$R(MeC_5H_4)_3 + Sc(C_5H_5)_3 + H_2O$	2288
$MTiO_3$ (M = Sr,Ba)	$\mathrm{M}(^{i}\mathrm{Pr})_{3}\mathrm{C}_{5}\mathrm{H}_{2})_{2}+\mathrm{Ti}(\mathrm{O}^{i}\mathrm{Pr})_{4}+\mathrm{H}_{2}\mathrm{O}$	2289
	$\mathrm{M}({}^{t}\mathrm{Bu})_{3}\mathrm{C}_{5}\mathrm{H}_{2})_{2}+\mathrm{Ti}(\mathrm{OMe})_{4}+\mathrm{H}_{2}\mathrm{O}$	1505
	$\mathrm{M}(\mathrm{thd})_2 + \mathrm{O}_3 + \mathrm{Ti}(\mathrm{O}^i\mathrm{Pr})_4 + \mathrm{H}_2\mathrm{O}$	1508
	$M(thd)_2 + Ti(O^iPr)_2(thd)_2 + H_2O$	2290
$Bi_4Ti_3O_{12}$	$Bi(CH_2SiMe_3)_3+Ti(OMe)_4+H_2O$	2291
	$Bi(Ph)_3 + O_3 + Ti(O^iPr)_4 + H_2O$	663
PbTiO ₃	$Pb(Ph)_4 + O_3 + Ti(O^iPr)_4 + H_2O$	2292
	$Pb(dmamp)_2 + H_2O + Ti(O'Bu)_4 H_2O$	2293
LaMnO ₃	$La(thd)_3 + Mn(thd)_3 + O_3$	1038
LaCoO ₃	$La(thd)_3 + Co(thd)_2 + O_3$	1088
LaNiO ₃	$La(thd)_3 + Ni(thd)_2 + O_3$	1111
LaGaO ₃	$La(thd)_3 + Ga(thd)_3 + O_3$	2294
PbZrO ₃	$PH_4Pb + Zr(thd)_4 + O_3$	2295
LiLaO _x	$Li(thd) + La(thd)_3 + O_3$	45
LaLuO ₃	$La(thd)_3 + Lu(thd)_3 + O_3$	2296
SrTa ₂ O ₆	$SrTa_2(OEt)_{10}(dmae)_2 + H_2O$	2297
SrBi2Ta2O9	$SrTa_2(OEt)_{10}(dmae)_2 + H_2O$	2282
	+Bi(N(SiMe ₃) ₂) ₃ $+$ H ₂ O	
$Ge_2Sb_2Te_5$	$GeCl_2 \cdot L + SbCl_3 + (R_3Si)_2Te$	1148
CuGaS ₂	$CuCp{\cdot}PEt_3+Et_3Ga+H_2S$	2298

binary processes, careful adjustment in pulsing is needed.²²⁸⁹ The optimum process temperatures may also be different in the binary processes, making the temperature window for ternary process narrow.²²⁹⁷ The second possibility for deposition of ternary compounds is the use of bimetallic single-source precursors. The approach is common in CVD but very sparsely studied in ALD, the most well-known case being the deposition of SrTa₂O₆ from SrTa₂(OEt)₁₀(dmae)₂ and water.²²⁸² The reason for the limited use of bimetallic precursors is the lack of volatile, thermally stable, and reactive compounds. The third way to make ternary compounds is to use reactants, which supply two of the three elements into the film. This has been exemplified with silicon alkoxides, which when reacting with metal chlorides produce metal silicates.¹⁰³

In transistors and DRAMs, a shift from SiO₂ to binary high- κ oxides, like HfO₂ and ZrO₂ or multilayer structures (ZrO₂ – Al₂O₃ – ZrO₂), has already occurred. The further step to higher- κ materials is the adoption of ternary oxides. Aluminates, especially LaAlO₃, have been of interest, because it makes a stable structure on Si, contrary to pure La₂O₃.²²⁸⁴ The κ value is not very high, being something between those of the binary oxides (9–27).²²⁸⁵ As a very high- κ material, SrTiO₃ is attracting constant interest as a possible material for DRAMs. The limited Sr precursor chemistry has slowed down the industrial use of ALD SrTiO₃. The oldest chemistry is based on Sr cyclopentadienyls with water as the oxygen source.^{1505,2289} Later, Sr β diketonates have been used in combination with ozone or oxygen plasma.^{1508,2299} Since the application of ALD SrTiO₃ has been delayed, mixed rare-earth oxides have received attention as possible candidates for high- κ materials in microelectronics. Combination of large rare-earth ions with small ones can produce separate ternary compounds with perovskite structure, which may have κ -values above 20. Scandium as the smallest rare-earth ion forms perovskites with all larger lanthanide ions (La-Gd), and lanthanum, for example, forms perovskites even with the smallest lanthanides (LaLuO₃).²²⁹⁶ Ternary rare-earth perovskite oxides can be made with both cyclopentadienyl and β -diketonate chemistry, with water or ozone, respectively, being the oxygen source.^{2287,2288}

Ferroelectric materials are usually ternary of quaternary oxides. BaTiO₃ is one of the most widely studied ferroelectric materials, and ALD films have been deposited similarly to SrTiO₃.^{2289,2297,2300} Bismuth titanates form another group of ALD ferroelectric materials. In their deposition, the precursor chemistry of bismuth has played a major role, ^{2291,2301,2302} and so far the most versatile precursor has been Bi(OCMe₂ⁱPr)₃.²²⁸³ Quaternary compound SrBi₂Ta₂O₉ is an interesting ferroelectric material. In its ALD process, the bimetallic SrTa₂(OEt)₁₀(dmae)₂ has been utilized.²²⁹⁷ PbZrO₃ films have been grown Ph₄Pb, Zr(thd)₄ and ozone at around 300 °C.²²⁹⁵ PbZrO₃ is an interesting material due to its applications in sensors and transducers but especially as a component for lead zirconate titanate (PZT) ferroelectrics.

Ternary oxide films are usually deposited at low temperatures, because of the low thermal stability of the precursors. As-deposited films are amorphous. Crystalline films are obtained after high-temperature annealing, which for example in case of mixed rare earth oxides requires 800 - 1000 °C. It would be beneficial from the electrical property point of view to get as-deposited crystalline films. By selecting precursors tolerating higher temperature, crystalline SrTiO₃ films have been deposited at 370 °C.²²⁹⁰ Electrical performance of these films is better than that of films crystallized by postdeposition annealing.

The number of other ternary compounds studied in ALD is limited, some early work on $CuGaS_2$ (Ref. 2298) and recent studies on germanium antimony tellurides¹¹⁴⁸ being the examples. Because of the importance of many ternary compounds, it is obvious that much more ALD studies will be devoted to this area.

III. CRYSTALLINITY OF INORGANIC ALD MATERIALS: OVERVIEW

This section analyzes the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc sulfide, and ruthenium.

A. Metal oxides

1. General

Though the list of various oxides deposited by ALD is long, as is the list of metal precursors used in these processes, from the oxygen precursor point of view the processes divide into three main groups: those using water, ozone, and oxygen plasma. While the water processes proceed through protonation of the ligands that remain intact, with ozone and oxygen plasma the mechanism is more complicated and more combustion-like. Besides these three main groups, one can also distinguish various alternative oxygen precursors like H_2O_2 , alcohols, and N_2O . A special case includes processes that do not exploit a separate oxygen precursor but one of the metal precursors (metal alkoxide or carboxylate) serves both as a metal and oxygen source. This chemistry was developed originally to avoid oxidation of the substrate surface, silicon in particular, by the common oxygen sources.¹⁰³

High- κ oxides for both transistors and DRAM capacitors have formed one of the most important driving forces for ALD oxide research. New processes have been developed for Group 4 metal oxides, the focus being first in hafnium oxide and then shifting to zirconium oxide since its tetragonal and cubic forms have higher κ -values than the corresponding hafnium oxide phases. Meanwhile, attention has also been paid to TiO₂, because its rutile phase can have very high κ values 80–150. The problem is the small band gap of TiO₂ and accordingly high leakage currents. Doping with aluminum has given promising results.⁹⁰⁴ From titanates, SrTiO₃ has received much attention as a potential next-generation dielectric material for DRAMs. The study of ALD of rare-earth oxide films as potential high- κ oxides has been existing during the last years. Almost all lanthanide oxides have been studied. In particular, interesting results in respect of stability and reasonably high κ -value have been obtained with ternary compounds having the perovskite structure, which have been formed from rare earth aluminates and from ternary oxides containing two rare earth elements. Ferroelectric, magnetic, and multiferroic oxide films have been very recently of interest. These ternary compounds have needed new precursors and process development especially for bismuth and iron.

The increasing interest towards organic and flexible electronics and displays is reflected in studies of transparent conducting oxides. ALD of ZnO:Al is of vital interest.

The properties of the oxide films strongly depend on the crystal structure. Not only the difference between amorphous and crystalline phases but also the difference between the different crystalline phases of the oxides has to be taken into account. The Group 4 metal oxides TiO_2 , ZrO_2 and HfO_2 are illustrative examples, as they all can exist as amorphous or as 3–4 different crystalline phases in the ALD films. In the dielectric properties, the difference is seen in the κ -values and leakage currents, amorphous films having the lowest κ -value but the best leakage current properties. Therefore, it is of utmost importance to know the conditions where difference is seen in the difference.

ent crystalline phases are formed, and the dependencies between the precursor chemistry, process parameters, and crystalline phases.

An overview of crystallinity of metal oxide films grown by two-reactant ALD processes is shown in Table III. This table, similarly to the corresponding crystallinity tables later for other classes of materials, has been drawn up for tworeactant ALD processes on the basis of experimental evidence for the presence of amorphous and crystalline phases in films made by particular ALD processes on particular substrates at a specified ALD temperatures. The data are collected for ALD films in their as-deposited state; postdeposition treatments are excluded. The presence or absence of different crystalline phases is indicated on the basis of diffraction or spectroscopy investigations. The investigations include Raman scattering and x-ray absorption spectroscopies as well as x-ray, neutron, and electron diffraction. All notations of crystallinity or amorphicity in the table should therefore be reliable. In many cases the phase interpretation is not straightforward due to overlapping of peaks, however. Problematic interpretations are noted in the table inputs if the ambiguity has been reported in original papers.

2. Case: Aluminum oxide

Aluminum oxide is the most studied and used material in ALD. The deposition is usually performed using TMA (trimethylaluminum) and water as precursors. This is almost an ideal self-limiting ALD process and considered as a model system for ALD. The first report dates back to late 1980s¹⁰⁷ but since then the process has been extensively studied and characterized in detail both ex situ and in situ. The details of the TMA-water process have been discussed by Puurunen in the earlier review.² Besides water, ozone and recently also oxygen plasma have been extensively used with TMA. Other aluminum precursors, such as chloride, bromide, different alkoxides, alkylamides, amidinates and mixed ligand compounds (AlMe₂Cl, Al(OR)_x R'_{y}), have been studied in ALD of Al₂O₃, but TMA as a high-vapour-pressure liquid has many advantages over the other precursors. ALD Al₂O₃ films are widely used as protective, barrier, and dielectric layers as such or as component in nanolaminates.

The TMA-water process can be used at 30 - 300 °C, and 300°C is a common upper limit for all organometallic aluminum precursors, but in some reports temperatures as high as 500°C have been used. Chlorides tolerate much higher temperatures, but for practical reasons, also with AlCl₃ the growth temperatures have usually been $<500^{\circ}$ C or below. All aluminum oxide films grown below 600°C are amorphous regardless the type of the substrate. Crystallization of the dielectric ALD Al₂O₃ upon post-deposition annealing has been studied to increase the dielectric constant (Figure 9). Crystallization of 5 nm thick films on 1 nm chemical SiO₂ oxide occurs at 900°C. The temperature depends on film thickness, and thicker films crystallize at lower temperatures possibly because thicker films have a higher likelihood to contain seeds to originate the nucleation.¹⁵¹ Besides the thickness, the substrate has some effect: On 4H-SiC wafers epitaxial $\gamma - Al_2O_3$ was obtained at

L' O (L'OID				Phases		References
$L_{12}O(L_1OH)$		Amorphous				
Li(O'Bu) H ₂ O	O Si, SLG	225 °C				44
B ₂ O ₃		Amorphous	Hexagonal			
BBr ₃ H ₂ C) Si, SLG	20–50 °C				47
MgO		Amorphous	Cubic			
$\begin{array}{ccc} Mg(thd)_2 & O_3 \\ Mg(thd)_2 & H_2 C \\ Mg(Cp)_2 & H_2 C \\ Mg(Cp)_2 & H_2 C \\ Mg(Cp)_2 & H_2 C \\ Mg(CpEt)_2 & H_2 C \\ \end{array}$	Si, SLG 92 SLG 0 H-Si, Si, SLG 0 Si 0 Si 0 Si	370–500 °C	225–250 °C 325–425 °C 105–375 °C 500–900 °C 150 °C	_		65 64 58, 60, and 61 55–57 63
Al ₂ O ₃		Amorphous	Hexagonal	Cubic	Tetragonal	
AICl ₃ H ₂ (AICl ₃ O ₂ AICl ₃ O ₂ AICl ₃ 'BuC AICl ₃ AI(OI AICl ₃ AI(O ¹) AIMe ₃ H ₂ (Si, SiO₂, glass, ITO, Al, PC Sapphire^f Nb^f Si, SLG, ITO, Al StLG, ITO, Al H-Si Si, H-Si, GaAs, SiC, MgO, ZnO, CuO, LiMnO₂, LiCoO₂, SiO₂, Al₂O₃, TiO₂, PC, PMMA, PEEK, PTFE, PET, PP, GaQ3, cotton, paper, CNC, MWCNT, Fe, W, SS 	100–500 °C 500 °C 400 °C 150–375 °C 25–500 °C	660 °C 450 °C	600–800 °С ^ь	600–800 °C ^b	79, 83, 86, 88, 93, and 2303 101 101 88 103 and 104 86, 94, 107, 108, 118, 123, 158, 159, 179, 187, 189, 207, 209, 214, 219, 223–226, 243, 250, 258, 262, 268, 273, 279, 282, 298, 302, 309, 315, 321, 339, 348, 361, 362, 367, 387, 392, 624, 657, 770, 832, 1922, and
AlMe3H2CAlMe3H2CAlMe3H2C	d Cr D ITO D_2 Si,H-Si, GaAs, SiO ₂ , SS, Cu, Al	200 °C 24–700 °C	700–750 °C ^b	$300^\circ C^j$		2304–2309 292 313 399 and 402
AIMe ₃ 'PrO AIMe ₂ O ₂	H Si SiC, SiO ₂	250 °C 300–450 °C				460 421 and 2309

TABLE III. Crystallinity studies of ALD binary oxide films made by diffraction or spectroscopy.^a

Reactant A	Reactant B	Substrate(s)			Phases		References
AlMe ₃	O ₂ ^c	Si, borosilicate, ITO, PE, PP, wool	25–300 °C				432
AlMe ₃	$Al(OiPr)_3$	H-Si	300 °C				103
AlMe ₂ Cl	H ₂ O	SLG	125–500 °C				462
$AlMe_2(O^iPr)$	H ₂ O	H-Si	100–250 °C				465
AlEt ₃	H_2O	Si	600–750 °C				56
$Al(OnPr)_3$	H_2O	Si, SLG, ITO, Al	500 °C				88
$Al(O^nPr)_3$	^t BuOH	Si, SLG, ITO, Al	500 °C				88
Al(mmp) ₃	H_2O	Si	250 °C				466
$Al(NMe_2)_3$	H_2O	Si	200–400 °C				469
$Al(NEt_2)_3$	H ₂ O	Si	250–325 °C				470
Al(NEt ₂) ₃	O_3	Si	200–325 °C				472 and 473
$Al(N^iPr_2)_3$	H ₂ O	Si	250–325 °C				470
SiO ₂			Amorphous				
Si(OMe) ₄	H ₂ O	Au-TiO ₂ catalyst	150 °C				602
SiH(NMe ₂) ₃	H_2O_2	TiO_2	500 °C				624
SiH ₂ (NMe ₂) ₂	O ₃	H-Si	225 °C				2310
CaO			Amorphous	Cubic			
$Ca(thd)_2$	O ₃	Si, Glass	225–350 °C	350 °C			672 and 673
$Ca(Cp^iPr_3)_2$	H ₂ O	Si, borosilicate		205–300 °C			674
Sc ₂ O ₃			Amorphous	Cubic			
Sc(thd) ₃	O ₃	SLG, Si		335–375 °C			682
Sc(Cp) ₃	H ₂ O	SLG, Si		250–350 °C			682
Sc(ⁱ PrAMD) ₃	H ₂ O	H-Si		290–360 °C			683
TiO ₂			Amorphous	Anatase	Orthorhombic	Rutile	
TiF ₄	H ₂ O	borosilicate		300–500 °C			687
TiF_4	H ₂ O	SLG		300–400 °C		400–500 °C	687
TiCl ₄	H ₂ O	Si, H-Si, Ge,	25–600 °C	125–680 °C		275–680 °C	44, 94, 128,
		GaAs,ZnO, SiO ₂ ,					207, 365, 719,
		Al ₂ O ₃ , glass, PC,					720, 722–724,
		PS, MWCNT, Ni,					727, 737, 738,
		Mo, Ti, Ta, Pt					742, 744, 746–
							749, 753, 756,
							758–760, 762,

767, 769, 770, 773, 775–778, 780–782, 785, 786, 788–790, 795, 800, 801, 803, 805, 806,

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	808, 809, 814, 1011, and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1011, and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TiCl ₄ H ₂ O RuO ₂ 150 °C 275-600 °C TiCl ₄ H ₂ O RuO ₂ on sapphire, Sapphire(0001) 425-450 °C ^f TiCl ₄ H ₂ O Al ₂ O ₃ 100-150 °C 150-350 °C 425-500 °C ^f TiCl ₄ H ₂ O MgO ^f 300 °C 300 °C 400-427 °C TiCl ₄ H ₂ O Si 27-67 °C 27-67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 27-67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 27-67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 340-490 °C TiCl ₄ H ₂ O ₂ H-Si, MgO ^f 340-490 °C 375 °C TiCl ₄ MeOH Si, SiO ₂ 375 °C 375 °C	2311-2313
TiCl ₄ H_2O RuO_2 on sapphire, Sapphire(0001) $425-450^{\circ}C^{\circ}$ TiCl ₄ H_2O Al_2O_3 $100-150^{\circ}C$ $150-350^{\circ}C$ $425-500^{\circ}C^{\circ}$ TiCl ₄ H_2O MgO^{f} $300^{\circ}C$ $425-500^{\circ}C^{\circ}$ TiCl ₄ H_2O MgO^{f} $300^{\circ}C$ $150-427^{\circ}C$ $300-427^{\circ}C$ $400-427^{\circ}C$ TiCl ₄ H_2O^{h} Si $27-67^{\circ}C$ $27-67^{\circ}C$ $27-67^{\circ}C$ TiCl ₄ H_2O_2 Fe $100^{\circ}C$ $340-490^{\circ}C$ $27-67^{\circ}C$ TiCl ₄ H_2O_2 H-Si, MgO^{f} $340-490^{\circ}C$ $375^{\circ}C$ $375^{\circ}C$ TiCl ₄ MeOH Si, SiO ₂ $375^{\circ}C$ $375^{\circ}C$ $375^{\circ}C$	780 and 799
TiCl ₄ H ₂ O Al ₂ O ₃ 100–150 °C 150–350 °C 425–500 °C ^f TiCl ₄ H ₂ O MgO ^f 300 °C 300–427 °C 400–427 °C TiCl ₄ H ₂ O Si, SiO ₂ , SS, KBr 100–350 °C 150–427 °C 300–427 °C 400–427 °C TiCl ₄ H ₂ O ^h Si 27–67 °C 27–67 °C 27–67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 340–490 °C 375 °C 375 °C TiCl ₄ MeOH Si, SiO ₂ 375 °C 375 °C 375 °C	799 and 812
TiCl ₄ H ₂ O MgO ^f 300° C TiCl ₄ H ₂ O Si, SiO ₂ , SS, KBr $100-350^{\circ}$ C $150-427^{\circ}$ C $300-427^{\circ}$ C $400-427^{\circ}$ C TiCl ₄ H ₂ O ^h Si $27-67^{\circ}$ C $27-67^{\circ}$ C $27-67^{\circ}$ C TiCl ₄ H ₂ O ₂ Fe 100° C $27-67^{\circ}$ C $27-67^{\circ}$ C TiCl ₄ H ₂ O ₂ Fe 100° C $340-490^{\circ}$ C $27-67^{\circ}$ C TiCl ₄ H ₂ O ₂ Fe 100° C $340-490^{\circ}$ C 375° C TiCl ₄ MeOH Si, SiO ₂ 375° C 375° C	748 and 754
TiCl ₄ H ₂ O Si, SiO ₂ , SS, KBr 100–350 °C 150–427 °C 300–427 °C 400–427 °C TiCl ₄ H ₂ O ^h Si 27–67 °C 27–67 °C 27–67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 27–67 °C 27–67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 150–490 °C 150–490 °C TiCl ₄ H ₂ O ₂ H-Si, MgO ^f 340–490 °C 375 °C 375 °C TiCl ₄ MeOH Al ₂ O ₃ 375 °C 375 °C 375 °C	757
TiCl ₄ H ₂ O ^h Si 27-67 °C 27-67 °C TiCl ₄ H ₂ O ₂ Fe 100 °C 100 °C TiCl ₄ H ₂ O ₂ H-Si, MgO ^f 340-490 °C TiCl ₄ HeOH Si, SiO ₂ 375 °C TiCl ₄ MeOH Al ₂ O ₃ 375 °C	123, 207, 728,
TiCl4H2OhSi27-67 °C27-67 °CTiCl4H2O2Fe $100 °C$ TiCl4H2O2H-Si, MgOf $340-490 °C$ TiCl4MeOHSi, SiO2 $375 °C$ TiCl4MeOHAl2O3 $375 °C$	732, 733, 739,
TiCl ₄ H_2O^h Si $27-67 ^{\circ}C$ $27-67 ^{\circ}C$ TiCl ₄ H_2O_2 Fe $100 ^{\circ}C$ 100 $^{\circ}C$ TiCl ₄ H_2O_2 H-Si, MgO ^f $340-490 ^{\circ}C$ 100 $^{\circ}C$ TiCl ₄ H_2O_2 H-Si, MgO ^f $340-490 ^{\circ}C$ 100 $^{\circ}C$ TiCl ₄ MeOH Si, SiO ₂ $375 ^{\circ}C$ 375 $^{\circ}C$	750, 751, 772,
If Cl ₄ H ₂ O ² Si $2/-6/^{-C}$ $2/-6/^{-C}$ TiCl ₄ H ₂ O ₂ Fe 100 °C TiCl ₄ H ₂ O ₂ H-Si, MgO ^f $340-490 °C$ TiCl ₄ MeOH Si, SiO ₂ $375 °C$ TiCl ₄ MeOH Al ₂ O ₃ $375 °C$	and 807
TiCl4 H_2O_2 Fe $100^{\circ}C$ TiCl4 H_2O_2 H -Si, MgOf $340-490^{\circ}C$ TiCl4MeOHSi, SiO_2 $375^{\circ}C$ TiCl4MeOH Al_2O_3 $375^{\circ}C$	/31
H1Cl4H2O2H-S1, MgO $340-490$ °CTiCl4MeOHSi, SiO2 375 °CTiCl4MeOHAl2O3 375 °C	490
InCl4MeOHSi, SiO2 $3/5^{\circ}C$ TiCl4MeOH Al_2O_3 $375^{\circ}C$	815
Hicl_4 MeOH Al_2O_3 $3/5^{-}C$	817
	817
TiCl ₄ O_2° H-Si 110-200 °C	818 and 819
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	820, 823, and 824
TiI4H2OSi, Al2O3 ^f , SiO2, AAO, CNS135 °C165–375 °C445 °C	820–822, 824
Ti I_4 O ₂ H-Si 235-457 °C 457 °C	826
TiI ₄ O_2 $Al_2O_3^{f}$ $300-455 ^{\circ}C$	827
TiI ₄ O_2 MgO^f $375-455$ °C	827
$Ti(CpMe_5)(OMe)_3 O_3 Ru 280 °C 280 °C$	828
$Ti(CpMe_5)(OMe)_3$ O_3 TiN $280 ^{\circ}C$	828
Ti(OMe) ₄ H ₂ O Glass, Ni, Si, Ti 200–300 °C 250–350 °C	830, 834, 836, and 837
Ti(OEt) ₄ H ₂ O Si, H-Si, SiO ₂ , $100-300$ °C $180-350$ °C	128, 760, 773,
SLG, paper, Mo,	782, 831, 832,
Ti	837, 839–841,
	845
Ti(OEt) ₄ H_2O_2 H -Si, Mo 125–175 °C 225–350 °C	773 and 782
$Ti(O'Pr)_4 H_2O Si, SiO_2, Glass, 50-225 °C 150-350 °C$	128, 273, 328,
$PC, PVP, Al_2O_3,$	362, 788, 846,
ZnO, SS, Ru, Pt,	and 847 848
CrN, 1151 ₂ , CNC	250 252 255

861, 864–868, 870, 875, 877, 881, 914, and 2314

Reactant A	Reactant B	Substrate(s)			Phases		References
Ti(O ⁱ Pr) ₄	H ₂ O	RuO ₂ , ISM	70–160 °C	225–300 °C		225–300 °C	318 and 859
Ti(O ⁱ Pr) ₄	H_2O_2	Si, SiO ₂ , PE, Fe, Ni	77–150 °C	180–300 °C			334, 848, and 882
Ti(O ⁱ Pr) ₄	O ₂	silica	100–165 °C				736 and 884
Ti(O ⁱ Pr) ₄	O ₃	Si, Pt		250 °C			899 and 1612
Ti(O ⁱ Pr) ₄	O ₃	Ru				250 °C	899, 900, 1612, and 2315
Ti(O ⁱ Pr) ₄	O ₃	Ru, TiN		250 °C		250 °C	906
Ti(O ⁱ Pr) ₄	O_2^{c}	Si, SiN _x , borosilicate, Pt, RuO ₂ , PC, PP, wool	50–275 °C	250–300 °C			439, 864, 885, 886, 891, and 892
Ti(O ⁱ Pr) ₄	O_2^{c}	H-Si, Ru, Ir		150–250 °C		150–250 °C	888, 890, and 892
Ti(O ⁱ Pr) ₄	O_2^{c}	IrO ₂				250 °C	892
Ti(O'Pr) ₄	H ₂ O ^c	Si	50–210 °C				864
Ti(O ⁱ Pr) ₄	N_2O^c	Ru, Al ₂ O ₃		250–280 °C		250–280 °C	890 and 907
Ti(O ⁱ Pr) ₄	НСООН	Si, SrTiO ₃ , LaAlO ₃ , MgO, wool, cellulose, latex, CNT	150–200 °C				908
Ti(O ⁱ Pr) ₄	CH₃COOH	Si, SrTiO ₃ , LaAlO ₃ , MgO, wool, cellulose, latex, CNT	150–200 °C				908–911
$Ti(O^iPr)_4$	NH ₃	xerogel	140 °C				898
$Ti(thd)_2(O^iPr)_2$	H ₂ O	Pt	220–420 °C				913
$Ti(thd)_2(O^iPr)_2$	H_2O	Pt		340–470 °C			916
Ti(trhd) ₂ (O(CMe ₂ Et) ₂	H_2O	Pt	220–420 °C				913
Ti(NMe ₂) ₄	H ₂ O	Si, H-Si, CeO ₂ , ZnO, Ni	50–250 °C	250–350 °C		300–350 °C	864, 914, 918, 919, 921, and 923
Ti(NMe ₂) ₄	H ₂ O ^c	Si	50–210 °C				864
Ti(NMe ₂) ₄	O_2^{c}	Si, Kapton, SS, Zn	50–210 °C	250–400 °C		300–400 °C	864, 928, and 930
VO _x			Amorphous	Orthorhombic V_2O_5	Monoclinic VO ₂		
VOCl ₃	H_2O	silica		490 °C	490 °C		1005
VO(acac) ₂	O ₂	glass			400–475 °C		1019
VO(O ⁱ Pr) ₃	H_2O	SnO ₂ , SiO ₂ , Ti	50–150 °C				1006, 1008, and 1010
$VO(O^i Pr)_3$	H_2O^c	SiO ₂	150 °C				1010
$VO(OiPr)_3$	O ₂	silica, titania	90–120 °C				1012–1014
VO(O ⁱ Pr) ₃	O_2^{c}	SiO ₂		150 °C			1010

TABLE III. (Continued.)

Reactant A	Reactant B	Substrate(s)			Phases				References
$VO(O^n Pr)_3$	CH ₃ COOH	CNT, CNF	200 °C	200 °C					910, 1015, and 1016
CrO _x			Amorphous	α-Cr ₂ O ₃					
Cr(acac) ₂	air	alumina –	200 °C						1033 and 1034
CrO ₂ Cl ₂	MeOH	$Al_2O_3^{f}$		330–465 °C					1030 and 1031
CrO ₂ Cl ₂	MeOH	SiO ₂ , Si, TiO ₂	330–375 °C	330–465 °C					817 and 1031
MnO _x			Amorphous	β -MnO ₂	Mn ₃ O ₄	α-MnO ₂	ɛ-MnO₂	MnO	
Mn(thd) ₃	O ₃	SLG, Si		162–257 °C	235–331 °C				1039
$Mn(thd)_3$	O ₃	NaCl, KCl, KBr				186 °C			1040
Mn(thd) ₃	O ₃	SiO ₂ , Al ₂ O ₃ , muscovite, MgO, SLG, Si		186 °C					1040
$Mn(thd)_3$	O ₃	Al_2O_3					186 °C		1040
Mn(thd) ₃	O ₃	$Al_2O_3^{f}$					186 °C		1041
$Mn(CpEt)_2$	H ₂ O	Si						150 °C	1037
FeO _x			Amorphous	α-Fe ₂ O ₃	γ-Fe ₂ O ₃	Fe ₃ O ₄			
FeCl ₃	H ₂ O	Pt		500 °C					1054
FeCp ₂	O_2	Si, Al ₂ O ₃		350–600 °C	350–600 °C ^b	350–600 °C ^b			1062
FeCp ₂	O_2	TiO ₂		400–500 °C		400 °C			821
FeCp ₂	O_2	ZrO_2	367–534 °C						1063
Fe(thd) ₃	O ₃	SLG, Si, Al ₂ O ₃		160–210 °C					1057 and 1058
Fe(thd) ₃	O ₃	MgO			160–210 °C				1058
Fe(thd) ₃	O_3^{i}	SLG, Al ₂ O ₃		186 °C					1057
$Fe(O^tBu)_3$	H ₂ O	Al_2O_3		130–170 °C					1066
CoO _x			Amorphous	Co ₃ O ₄	CoO				
CoI ₂	O_2	SiO ₂ , MgO ^f		475–700 °C		_			1078
$Co(acac)_3$	O_2	silica		400 °C					1083
Co(thd) ₂	O ₃	Si, SLG, Corning 7059		114–450 °C	250–400 °C				1088 and 1089
Co(thd) ₃	O ₃	Al ₂ O ₃ ^f , MgO ^f , SrTiO ^f		138–283 °C					1090
NiO			Amorphous	Cubic					
Ni(acac) ₂	H ₂ O	glass	190–310 °C						1107
Ni(acac) ₂	CH ₃ COOH	glass	190–310 °C						1107
Ni(acac) ₂	O_3+H_2O	glass		190–310 °C					1107
Ni(dmg) ₂	H ₂ O	glass	190–310 °C						1107
Ni(dmg) ₂	O ₃	glass		190–310 °C					1107
Ni(apo) ₂	O ₃	glass		190–310 °C					1107
Ni(dmamp) ₂	H ₂ O	H-Si	100–160 °C						1102 and 1103
Ni(CpEt) ₂	O ₃	H-Si	150 °C	200–300 °C					1100

TABLE III. (Continued.)

Reactant A	Reactant B	Substrate(s)			Phases	References
Ni(Cp) ₂	O ₃	H-Si, Ni, Pt, W, TiN		150–300 °C		1098–1100
Ni(thd) ₂	H ₂ O	SiO ₂ , Si		205–275 °C		1108 and 1110
$Ni(thd)_2$	H ₂ O	$MgO(100)^{f}$,		200–275 °C		1109
× 72	2	α -Al ₂ O ₃ (001) ^f				
CuO _x		_	Amorphous	Cu ₂ O		
$Cu(^{n}Bu_{3}P)_{2}(acac)$	$O_2 + H_2O$	Ta/TaN		100–150 °C		1139
ZnO		_	Amorphous	Hexagonal		
Zn	H ₂ O	SLG		430 °C		1151
ZnCl ₂	O ₂	Sapphire(0001) ^f , GaN ^f		450–550 °C		1153–1155
ZnMe ₂	H ₂ O	Si, glass,		80–300 °C		1157, 1160–
12	2 -	GaN/Al ₂ O ₃ ^f				1162
ZnMe ₂	O_2^{c}	H-Si, Si		25–120 °C		1163 and 1164
$ZnEt_2$	H ₂ O	Si, H-Si, glass,		23–400 °C		60, 282, 297,
-	-	SiO ₂ , Al ₂ O ₃ , TiO ₂ ,				318, 1149,
		SnO ₂ , ZnO, MgO,				1157, 1160,
		ZnTe, PS, CNT,				1161, 1186,
		ISM				1190, 1192–
						1194, 1196,
						1197, 1199,
						1201, 1203,
						1204, 1207–
						1210, 1213,
						1215–1220,
						1222, 1223,
						1225, 1228,
						1231–1233,
						1235–1238,
						1241, 1243,
						1245, 1248,
						1250, 1253,
						1257, 1259,
						1261–1265,
		G 1: (0001)		10, 200, %		2510-2518
ZnEt ₂	H ₂ O	Sapphire(0001)		40-300 °C		1200, 1214,
						1246, 1247,
	ЦО			05 450 °C		and 2316
$LnEt_2$	H ₂ O	Sappnire(0001)		25-450°C		812, 1226,
						1229, 1246,
		a Musica f		100.00000		1247, and 1251
$ZnEt_2$	H ₂ O	$GaN/Al_2O_3^{\dagger}$,		180–300 °C		1162, 1202,
		p-GaN [*] , YSZ				1225, 1242,
						1244, and 1248

TABLE III.	(Continued.)
------------	--------------

Reactant A	Reactant B	Substrate(s)			Phases	References
ZnEt ₂	H ₂ O	silica, Bi ₂ O ₃	150–200 °C	150–200 °C		1149, 1211,
						and 1239
ZnEt ₂	H_2O^c	SiO_2		100–250 °C		1266
ZnEt ₂	H ₂ O-O ₂	Al_2O_3		180 °C		1186
ZnEt ₂	H_2O^h	Sapphire(0001) ^f		600 °C		1181
ZnEt ₂	H_2O_2	TiO ₂ , SiO ₂		50–100 °C		1223, 1268,
						and 1269
ZnEt ₂	$H_2O+NH_3^d$	Al_2O_3		200 °C		292
ZnEt ₂	$H_2O+NH_3+O_2^d$	Al_2O_3		200 °C		457
ZnEt ₂	O ₃	SiO ₂ , TiO ₂		170–300 °C		1193, 1208,
						and 1209
ZnEt ₂	O_2^{c}	H-Si, ZnO, ITO,		75–200 °C		1270–1272,
		Glass				1274, and 2308
ZnEt ₂	O_2^c	PES	100 °C	150–250 °C		1275
ZnEt ₂	N ₂ O	Al ₂ O ₃ , Sap- phire(11-20)/ZnO buffer		300–600 °C		1276 and 1278
ZnEt ₂	N_2O^c	Al_2O_3		200 °C		458
Zn(CH ₃ COO) ₂	H ₂ O	Sapphire(0001), SLG, Si, GaN, GaAs		280–400 °C		1160, 1279, 1282, 1284, and 1285
Ga ₂ O ₃			Amorphous			
Ga(acac) ₂	H_2O	SLG, Corning 7059	365–380 °C			1368
Ga(acac) ₂	O ₃	SLG, Corning 7059	350–375 °C			1368
Ga ₂ (NMe ₂) ₆	H_2O	Si	170–250 °C			1373
[GaMe ₂ NH ₂] ₃	O_2^{c}	Si, SiO ₂ , Sapphire	50–250 °C			1370–1372
Y ₂ O ₃			Amorphous	Cubic		
$Y(Cp)_3$	H ₂ O	Si		250–400 °C	_	1515
$Y(CpMe)_3$	H ₂ O	Si		200–400 °C		1515
$Y(CpEt)_3$	H ₂ O	Si		250 °C		1522
Y(thd) ₃	O_2	Si, SLG, Corning 7059		425–600 °C		1524
Y(thd) ₃	O ₃	Si, glass		200–600 °C		1524–1526
Y(thd) ₃	O_2^{c}	Si		350 °C		1530 and 1531
Y(ⁱ PrAMD) ₃	H ₂ O	H-Si		280 °C		683

021301-33

TABLE III.	(Continued.)
------------	--------------

Reactant A	Reactant B	Substrate(s)			Phases			References
ZrO ₂			Amorphous	Cubic	Tetragonal	Monoclinic	Orthorhombic	
ZrCl ₄	H_2O	SLG, SiO ₂	300–500 °C					128, 1536, and
								1555
ZrCl ₄	H ₂ O	Ta_2O_5 , $Ta_xNb_yO_z$	300 °C ^b	300 °C ^b	300 °C ^b			1563
ZrCl ₄	H_2O	H-Si, SiO ₂ , Al ₂ O ₃	160–450 °C	180–300 °C	300–600 °C	300–600 °C		1537, 1538,
								1544, and 1545
$ZrCl_4$	H_2O	Si, SLG	160–325 °C		250–350 °C	300–350 °C		85, 1549,
								1558, 1559,
								and 1561
$ZrCl_4$	H ₂ O	Si, H-Si, SiO ₂ ,			230–500 °C	230–500 °C		140, 1539,
		glass, Ta_2O_5 , sap-						1540, 1548,
		phire, MgO						1554, 1550, and 1557
7: C1	ЧО	$(Nh T_2) O$				325 °C		1530
$ZrCl_4$	H ₂ O	$(100_{1-x}1a_x)_20_5$ Ge(100) ^f		300 °Cb	300 °Cb	525 C		1535
	H ₂ O	н s;	160 450 °C	180, 210°C	210,600°C	300,600°C		1544 and 1545
		н s;	272 °C	272 350 °C	210-000°C	500-000 C		1544 and 1545
	$H_2O+H_2O_2$	н s;	272 C	272-350°C	272–550°C	325 500 °C		1568
Z:14 7:1	$H_2O+H_2O_2$	П-51 Ц \$;	250 C	250–275°C	325–500 °C	500°C		1567
	$H_2O+H_2O_2$			250~500 °C	325–500 °C	250, 500 °C		1570
Z_{114}	$H_{2}O + H_{2}O_{2}$	FI-SI, FI	175 °C	250 C	230–300 °C	230–300 °C		1370 961 and 1599
$\Sigma I(BuO)_4$	H ₂ O	7059	175 C		200–300 C	200–300°C		801 and 1388
Zr(^t BuO) ₄	H ₂ O	Al ₂ O ₃ , PC			120–160 °C			273
Zr(^t BuO) ₄	H_2O^g	PET	20 °C					1594
$Zr(^{t}BuO)_{2}(dmae)_{2}$	H_2O	SLG	190–240 °C	340 °C ^b	340 °C ^b	290–340 °C ^b		1599
Zr(dmae) ₄	H_2O	SLG, borosilicate	190–240 °C	340 °C ^b	340 °C ^b	300–500 °C ^b		1587
$Zr(^{i}PrO)_{2}(dmae)_{2}$	H_2O	SLG, borosilicate	190–240 °C	340 °C ^b	340 °C ^b	300–500 °C ^b		1587
Zr(thd) ₄	O ₃	Si, SLG	275–300 °C			300–500 °C	300–500 °C	1571
ZrCp ₂ Me ₂	H_2O	Si		200–300 $^\circ \text{C}^{\text{b}}$ and 400–500 $^\circ \text{C}^{\text{b}}$		200–500 °C ^b	200–500 °C ^b	1574
ZrCp ₂ Me ₂	O ₃	Si, SLG	250–300 °C			300–500 °C	250–500 °C	1571
ZrCp ₂ Me(OMe)	O ₃	Si			300 °C			1577
$ZrCp_2Cl_2$	O ₃	Si, SLG	250–300 °C			250–500 °C	275–500 °C	1571
ZrCp(NMe ₂) ₃	O ₃	Si	300 °C ^b	300 °C ^b	300 °C ^b			1578
Zr(CpMe) ₂ Me(OMe)	H_2O	Si	300 °C					2319
Zr(CpMe) ₂ Me(O'Bu)	H_2O	Si	300 °C					2319
Zr(CpMe) ₂ Me ₂	H_2O	Si		350 °C ^b	350 °C ^b	350 °C	350 °C ^b	1579
Zr(CpMe) ₂ Me ₂	O ₃	SiO ₂	300–400 °C	300–400 °C	300–400 °C	300–400 °C	300–400 °C ^b	1580
Zr(CpMe) ₂ Me(OMe)	H_2O	Si		350 °C ^b	350 °C ^b	350 °C	350 °C ^b	1579
Zr(CpMe) ₂ Me(OMe)	O ₃	SiO_2	300–400 °C	300–400 °C	300–400 °C	300–400 °C	300–400 °C ^b	1580
Zr(CpMe) ₂ Me(OMe)	O ₃	SiO_2		300–350 °C ^b	300–350 °C ^b	300–350 °C		1583 and 1584
Zr(CpMe)(NMe ₂) ₃	O ₃	Si	300 °C ^b	300 °C ^b	300 °C ^b			1578
Zr(CpEt)(NMe ₂) ₃	O ₃	Si	300 °C ^b	300 °C ^b	300 °C ^b			1578
Zr[(Me ₃ Si) ₂ N] ₂ Cl ₂	H ₂ O	H-Si	250 °C					1620
Reactant A	Reactant B	Substrate(s)			Phases		References	
------------------------------------	-------------------------------	---	------------	-------------------------	-------------------------	-------------------------	-------------------------	
Zr(NMe ₂) ₄	H ₂ O	Si	50 °C	100–200 °C ^b	100–200 °C ^b		1601 and 1602	
Zr(NEtMe) ₄	H ₂ O	Si	300 °C				1609	
Zr(NEtMe) ₄	O ₃	TiN		225–300 °C ^b	225–300 °C ^b	225–300 °C ^b	1612 and 1613	
Zr(NEtMe) ₄	O ₃	Si	275 °C				1614	
Zr(NEtMe) ₄	O_2^{c}	H-Si		100–250 °C ^b	100–280 °C ^b		1617 and 1619	
$Zr(NEt_2)_4$	O_2	Si, Ge	300 °C				1607	
Zr(MeAMD) ₄	H ₂ O	Si	300 °C				1609	
Nb ₂ O ₅			Amorphous					
Nb(OEt) ₅	H ₂ O	SLG	215–275 °C				1626	
RuO ₂			Amorphous	Rutile				
$Ru(CpEt)_2$	O ₂	Si, SiO ₂ , TiN		265–270 °C	_		1652, 1654, and 1692	
$Ru(CpEt)_2$	O_2	Ta_2O_5		300–350 °C			1687	
$Ru(thd)_2(cod)$	O ₂	Si		290 °C			1693	
Rh ₂ O ₃			Amorphous					
Rh(acac) ₃	O ₃	Si, SLG	160–180 °C				1695	
In ₂ O ₃			Amorphous	Cubic				
InCl ₃	H ₂ O	SLG		400–500 °C			1753	
InCl ₃	$H_2O + H_2O_2$	Corning 7059		300–500 °C			1757	
InCp	O_3	Si, glass, Al ₂ O ₃		200–450 °C			1759 and 1760	
$In(acac)_3$	H ₂ O	Si	175 °C	200–225 °C			1761	
$In(acac)_3$	O ₃	Si	200 °C				1761	
SnO ₂			Amorphous	Tetragonal				
SnCl ₄	H ₂ O	Ga ₂ O ₃	350 °C				1812	
SnCl ₄	H_2O	SiO ₂ , Graphene	180–200 °C	300–400 °C			747, 1802, and 1810	
SnCl ₄	H ₂ O	Si		500 °C			1369	
SnCl ₄	H ₂ O	ZnS, CuO _x	350 °C				1808 and 1811	
SnCl ₄	H ₂ O	SLG, Corning 7059		300–600 °C			1796, 1799, and 1801	
SnCl4	H ₂ O	$Al_2O_3^{f}$		400–600 °C			1804 and 1805	
SnCl ₄	H_2O+O_3 (hexane cat.)	SLG		500 °C			1799	
SnCl ₄	H ₂ O ₂	Si	150–430 °C				1816	
SnCl ₄	H_2O_2	$Al_2O_3^{f}$		600–700 °C			1804 and 1813	
SnI ₄	H_2O_2	$Al_2O_3^{f}$		600 °C			1804	
SnI_4	O_2	SiO ₂		400–750 °C			1820	
SnI_4	O ₂	$Al_2O_3^{f}$		400–750 °C			1804, 1813,	
							1820, and 1821	

TABLE III. (Continued.)

Reactant A	Reactant B	Substrate(s)			Phases			References
Sn(NMe ₂) ₄	H ₂ O ₂	Si, glass	50–300 °C					1826
Sn(tbba)	H_2O_2	SiN, glass		120 °C				1828
$\mathrm{Sn}^{n}\mathrm{Bu}_{2}(\mathrm{OAc})_{2}$	O_2^c	SiO_2, TiO_2^{κ}		200–400 °C				1822, 1823, and 1825
Sb ₂ O ₅			Amorphous					
Sb(NMe ₂) ₃	O ₃	Si	120 °C					1829
BaO(Ba(OH) ₂) ^e			Amorphous Ba(OH) ₂	Monoclinic Ba(OH) ₂	Orthorhombic Ba(OH)	2		
$Ba(Cp'Bu_3)_2$	H ₂ O	Al_2O_3	240 °C	290–340 °C	340 °C ^b	_		1830
La ₂ O ₃			Amorphous	Cubic	Hexagonal	Hexagonal La(OH) ₃	Monoclinic La(O)OH	
La(thd) ₃	O ₃	SLG, Si	200–300 °C	300–450 °C	400–450 °C			44, 1088, and 1577
La(thd) ₃	O ₃	Corning 7059	200–300 °C	300–350 °C	400–450 °C			1088
La(thd) ₃	0 ₃	Corning 7059	225–300 °C	300–425 °C				1833
La(thd) ₃	O_3	SiO ₂ ¹		350–500 °C	350–500 °C			1835
La(thd)3	O_3	${\rm SiO_2}^{\rm m}$		350 °C		350 °C	350 °C	1835
La(thd) ₃	H_2O	H-Si, TiN	230–350 °C					237, 1836, and 1837
La[N(SiMe ₃) ₂] ₃	H ₂ O	H-Si	250 °C	250 °C				1838
La[N(SiMe ₃) ₂] ₃	H ₂ O	H-Si, Si, borosili- cate	200–400 °C					1840
La[N(SiMe ₃) ₂] ₃	H ₂ O	Si			300 °C			1841
La(Cp) ₃	H_2O	SiO ₂ ¹		260 °C	260 °C			1835
La(Cp) ₃	H_2O	SiO ₂ ^m				260 °C		1835
La(CpEt)3	O_2^{c}	Si	350 °C		350–400 °C			1847
La(Cp ⁱ Pr) ₃	O_3	Si	200 °C			200 °C		1852
$La(Cp^iPr)_3$	O_3	Ge	200 °C					1852
La(ⁱ PrfAMD) ₃	O_2	Si, Ge	300 °C					1607
CeO ₂			Amorphous	Cubic				
Ce(thd) ₄	O_3	SLG, Si		175–250 °C				1859
Ce(thd) ₃ phen	O ₃	SLG, Si		225–275 °C				1859
PrO_x			Amorphous					
Pr[N(SiMe ₃) ₂] ₃	H ₂ O	borosilicate, Si	200–400 °C					1861 and 1862
Pr(ⁱ PrAMD) ₃	H_2O	H-Si	200–315 °C					1863
Nd ₂ O ₃			Amorphous	Cubic				
Nd(thd) ₃	O ₃	Si, SLG	200–250 °C	290–325 °C				1864 and 1865

Reactant A	Reactant B	Substrate(s)			Phases			References
Sm ₂ O ₃			Amorphous	Cubic				
Sm(thd) ₃	O ₃	Si		300 °C				1864
Eu ₂ O ₃			Amorphous	Cubic				
Eu(thd) ₃	O ₃	Si		300 °C	_			1864
Gd ₂ O ₃			Amorphous	Cubic	Monoclinic			
Gd(thd) ₃	O ₃	Si		300 °C		_		1864 and 1866
Gd(CpMe) ₃	H ₂ O	Si		150–250 °C				1866
Gd(mmp) ₃ -tetraglyme	H ₂ O	Si		200–250 °C				1867
Gd[OCMe ₂ CHMe ₂] ₃	H ₂ O	Si, H-Si, SLG,	350 °C	300–400 °C	250–300 °C			1868 and 1869
$Gd[(N^iPr)_2CN(CH_3)_2]_3$	H ₂ O	Si	200 °C	160–250 °C				1871 and 1873
Dy ₂ O ₃			Amorphous	Cubic				
Dy(thd) ₃	O ₃	Si		300 °C	_			1864
Ho ₂ O ₃			Amorphous	Cubic				
Ho(thd) ₃	O ₃	Si		300 °C				1864
Er ₂ O ₃			Amorphous	Cubic				
$Er(thd)_2$	02	Si –		300–350 °C				1584 and 1864
Er(thd) ₂	O_2°	Si		350 °C				1530 and 1531
$Fr(CnMe)_2$	H ₂ O	Si SLG		250–300 °C				1875
$Er(^{t}BuAMD)_{3}$	03	Si, SEC	250 °C	250 900 C				1876
Tm ₂ O ₂			Amorphous	Cubic				
Tm(thd) ₃	O ₃	Si		300 °C	_			1864
Yh ₂ O ₂	2		Amorphous	Cubic				
Yb(thd) ₃	O ₃	Si, glass	I	300–350 °C	_			1877
Lu ₂ O ₃	2		Amorphous					
Lu[Cp(SiMe ₃)] ₂ Cl	H ₂ O	SiO ₂	360–370 °C					1879 and 1880
HfO ₂	_	2	Amorphous	Cubic	Tetragonal	Monoclinic	Orthorhombic	
HfCl ₄	HaO	H-Si	300 °C					1897 and 1947
HfCl.	H ₂ O	Si H-Si SiO	200–350 °C			250-600 °C		1918 1919
111-014	1120	GaAs TiN Pt Ir	200 000 0			200 000 0		1922, 1930
		Ru						1931, 1970.
								and 2320
$HfCl_4$	H_2O	H-Si, Ge, SiO ₂	226–300 °C	226–300 °C		300–750 °C		1915, 1935,
Ŧ	-	·						and 1974

TABLE III.	(Continued.)
------------	--------------

Reactant A	Reactant B	Substrate(s)			Phases			References
HfCl ₄	H ₂ O	H-Si, SiO ₂	300 °C	600 °C		300–600 °C		1901
HfCl ₄	H_2O	Si	600–880 °C	880–940 °C	500–600 °C ^b	500–940 °C	500–600 °C ^b	1888
HfCl ₄	H_2O	Si, H-Si, SiO ₂ ,	225–300 °C	300–750 °С ^ь	300−750 °C ^b	300–940 °C	300–750 °C ^b	1554, 1887,
		HfO ₂						1906, 1918,
								and 2321
HfCl ₄	H ₂ O	Si		300 °С ^ь	300 °C ^b	300 °C	300 °C ^b	1559
HfCl ₄	H_2O	Si, SiO ₂ , sapphire, MgO		600 °С ^ь	600 °C ^b	600 °C	600 °C ^b	1556 and 1557
HfCl ₄	H_2O	H-Si			300 °C ^b	300 °C	300 °C ^b	1566
HfCl ₄	H_2O	Si, H-Si			300 °C	300 °C		189, 1561, and
								1959
HfCl ₄	H_2O	Si, H-Si, glass, Pt,				300–350 °C		1883, 1948,
		TiN						and 1971
HfCl ₄	H_2O	Ge				375 °C	375 °C	1917
HfCl ₄	H_2O	Pt	350 °C ^b			350 °C ^b	350 °C ^b	1970
HfCl ₄	H_2O	Si, SiO ₂ , glass	300–500 °C		500 °C ^b	300–600 °C	500 °C ^b	1558, 1884, and 1932
HfC1	H ₂ O	SiOa	300 °C ^b		300 °C	300 °C		1555
HfCl ₄	02	H-Si	300 °C			300 °C	300 °C	1897
HfCl ₄	02	Ge	375 °C					1917
HfL	H ₂ O	H-Si_SiO2	300 °C	600 °C		300–600 °C		1566 and 1901
HfL	H ₂ O	poly-Si	225 °C	400–500 °C ^b	400–500 °C ^b	300–500 °C	400–500 °C ^b	1981
HfL	H ₂ O	MoO	220 0	100 200 0	100 200 0	400–500 °C	100 200 0	1981
HfL	H ₂ O ₂	poly-Si	225 °C	400–500 °C ^b	400–500 °C ^b	300–500 °C	400–500 °C ^b	1981
HfL	H ₂ O ₂	MgO	220 0	100 200 0	100 200 0	400–500 °C	100 200 0	1981
HfL	02	H-Si				570–750 °C		1984
HfCn ₂ Me ₂	H ₂ O	Si				300–425 °C		1989 and 1990
HfCp ₂ Me ₂	02	Si				300-425 °C		1989 and 1990
Hf(CnMe) ₂ Me ₂	H ₂ O	Si		350 °C ^b	350 °C ^b	350°C	350 °C ^b	1579
Hf(CpMe) ₂ Me ₂	0.	Si		550 C	550 C	300–500 °C	550 C	1991
$Hf(CpMe)_2(OMe)Me$	H ₂ O	Si		350 °C ^b	350 °C ^b	350°C	350 °C ^b	1579
$Hf(CpMe)_2(OMe)Me$	02	Si TiN		350 °C	350 °C ^b	300-500 °C ^b	550 C	1521 and 1991
$Hf(CnMe)_2(O^iPr)Me$	H ₂ O	Si	250-440 °C	550 0	550 0	300 300 C		1993
$Hf(CpMe)_2(0 TT)Me$	H ₂ O	Si	250_440 °C					1993
HfCn(NMea)a	02	Si	250°C	300-350 °C ^b	300-350 °C ^b	300-350 °C		1993
$Hf(CnMe)(NMe_{2})_{3}$	0,	Si	250°C	300–350 °C ^b	300-350 °C ^b	300-350 °C		1994
$Hf(^{t}BuO)$	03	H_Si	250°C	500 550 C	500 550 C	500 550 C		2322
Hf(mmn)	O_2	Si	550- 1 00 C			550°C		684
$Hf(mmp)_4$	H-O	borosilicate Si	225_325 °C			325_425 °C		1867 and 2004
$Hf(mmp)_4$	H ₂ O	borosilicate Si	300 °C			325_425 °C		2004
$Hf(^{t}BuO)_{a}(mmn)_{a}$	H ₂ O ₂	borosilicate SiO	275_300 °C		360 °Cb	300_400 °C		2004
Hf(OCEtMe.)	но		275-300°C		500 C	J00-400 C		2001
$Hf(OCEtMe_{2})_{4}$	$\Pi_2 \cup$	н Si	250-550 C		250 °C	250°C		2005
$111(0CEUVIC_2)_4$	O_2	n-31			230 C	250 C		2000

Reactant A	Reactant B	Substrate(s)			Phases			References
Hf(O ⁱ Pr) ₄	O ₂	H-Si				300 °C		1995
$\mathrm{Hf}(\mathrm{O}'\mathrm{Bu})_4$	НСООН	Si, SrTiO ₃ , LaAlO ₃ , MgO, wool, cellulose, latex, CNT	100–125 °C					908
$\mathrm{Hf}(\mathrm{O}^{t}\mathrm{Bu})_{4}$	CH ₃ COOH	Si, SrTiO ₃ , LaAlO ₃ , MgO, wool, cellulose, latex, CNT	175–275 °C					908–911
Hf(O'Bu)(NEtMe) ₃	O ₃	Si	300 °C			300 °C		2002
Hf(O'Bu)(NEtMe) ₃	O ₃	TiO ₂ (rutile)	250 °C		250 °C			355
Hf(O'Bu)(NEtMe) ₃	O ₃	TiO ₂ (anatase)				250 °C		355
$Hf(NMe_2)_4$	H_2O	Si	50–150 °C			200–300 °C		1601 and 1602
Hf(NMe ₂) ₄	H ₂ O	CNC				150 °C		362
Hf(NMe ₂) ₄	H ₂ O	H-Si, SiO_2	200–400 °C			205–400 °C ^b		250, 2011, 2023, and 2320
$Hf(NMe_2)_4$	H_2O	Si	250 °C		350 °C ^b	350 °C	350 °C ^b	2010 and 2016
$Hf(NMe_2)_4$	H_2O	Ge	225 °C					2021
Hf(NMe ₂) ₄	O_2^{c}	Si, H-Si	250 °C			280 °C		1619 and 2041
Hf(NEtMe) ₄	H_2O	Si	250 °C			250 °C ^b		2023
Hf(NEtMe) ₄	H_2O	borosilicate, ITO, Si, Al ₂ O ₃	150–200 °C		200–300 °C ^b	200–300 °C	200–300 °C ^b	1601, 2071, 2072, and 2082
Hf(NEtMe) ₄	H_2O	H-Si	200–250 °C					2023 and 2081
Hf(NEtMe) ₄	H_2O	InP			350 °C	350 °C		2094
Hf(NEtMe) ₄	D_2O	H-Si, Si_xN_y	60–100 °C					2074 and 2323
Hf(NEtMe) ₄	O_3	H-Si, SiO ₂	180–275 °C		350 °C ^b		350 °C ^b	2102
Hf(NEtMe) ₄	O_2^{c}	Si	290 °C					963
$Hf(NEt_2)_4$	H_2O	Si	150–250 °C					1522 and 1932
$Hf(NEt_2)_4$	O ₃	Si, H-Si	200–275 °C					472, 473, and 2310
$Hf(NEt_2)_4$	O_2^{c}	H-Si			250 °C	250 °C		2006
Hf(ONEt ₂) ₄	H_2O	borosilicate, Si	300 °C			300 °C ^b		2007
$Hf(NO_3)_4$	H_2O	H-Si	180 °C					2114
Ta ₂ O ₅			Amorphous	Hexagonal	Tetragonal	Orthorhombic		
TaF₅	H ₂ O	H-Si	400–450 °C	400–450 °C		400 °C	-	2136
TaCl ₅	H ₂ O	Glass, Si	300–500 °C					392, 1291, and 1883
TaCl ₅	H ₂ O	Glass, Si	80–160 °C	400–500 °C	400–500 °C			2130
TaCl ₅	H ₂ O	Corning 7059	300–325 °C	300–350 °C		400 °C		2133
TaI ₅	H ₂ O	H-Si	250–400 °C	350–400 °C		350–400 °C		2137
TaI ₅	H ₂ O	SiO ₂	250–400 °C					2137
Ta(OEt) ₅	H ₂ O	Si, SLG, SS, Nb _x Zr _y O _z	170–325 °C					123, 1563, 2139, 2145,
		-						and 2146

TABLE III. (Continued.)

Reactant A	Reactant B	Substrate(s)			Phases	References
Ta(OEt) ₅	H ₂ O ^g	Si	170–400 °C			2142
Ta(OEt) ₅	TaCl ₅	Corning 7059	275–450 °C			2135
Ta(OEt) ₅	O_2^{g}	Si, SiO ₂	190–285 °C			2149
Ta(OEt) ₅	O_2^{c}	Si, borosilicate, Pt	150–250 °C			2148
Ta(OEt) ₅	$O_2^{c} + H_2O$	Si, borosilicate, Pt	150–250 °C			2148
Ta(OEt) ₄ (dmae)	O ₃	N-Si	400 °C			2150
Ta(NMe ₂) ₅	H_2O	H-Si	150–350 °C			918, 2152, and
						2153
$Ta(NMe_2)_5$	O_2^{e}	H-Si, Si, SiO_2	100–350 °C			918, 1650, 2152 and 2155
Ta(NEt)(NEt ₂) ₃	H ₂ O	Si, SiO ₂	50–350 °C			2152, and 2155
Ta(NEt ₂) ₅	H ₂ O	Si, SiO ₂	50–250 °C			2156
$Ta(N'Bu)('Bu_2pz)_3$	O ₃	Si	300–450 °C			2157
$Ta(N^{t}Bu)(^{i}PrAMD)_{2}(NMe_{2})$	H ₂ O	Si	275–350 °C			2158
WO _x			Amorphous	Monoclinic		
$WF_6 + WO_3$	H_2O	sapphire		200 °C	_	2220
$W_2(NMe_2)_6$	H_2O	Si	160–200 °C			2223
IrO ₂			Amorphous	Tetragonal		
Ir(acac) ₃	O ₃	Si, SLG, Al ₂ O ₃		165–200 °C	_	2252
Ir(CpEt)(cod)	O_2	SiO_2		290 °C		2248
PtO_x			Amorphous			
$Pt(acac)_2$	O ₃	Si, SLG, Al ₂ O ₃	120–130 °C			2273
Pt(CpMe)Me ₃	O_2^{c}	Si, SiO ₂	300 °C			2260
PbO ₂			Amorphous	Tetragonal	Orthorhombic	
Pb(thd) ₂	O ₃	Si		150–300 °C ^b	150–300 °C ^b	2275
PbPh ₄	O ₃	Si		185–400 °C ^b	185–400 °C ^b	2275

^aH-Si, HF-etched Si; MWCNT, multi-walled carbon nanotube; CNS, carbon nanosheet; CNC, carbon nanocoil; CNT, carbon nanotube; SLG, soda lime glass; SS, stainless steel; PE, polyethylene; PET, polyethylene terephtalate; PMMA, polymethylmethacrylate; PP, polypropylene; PS, polystyrene; PVC, polyvinylchloride; PVP, polyvinylpyrrolidone; PC, polycarbonate; PES, polyethersulfone; PTFE, polyetrafluoroethylene; ISM, Inner shell membrane from hen's egg; YSZ, Yttria-stabilized zirconia; Precursors dash-separated, pulsed separately; Two precursors connected with +, fed in the same pulse.

^bAmbiguous interpretation due to reflection overlap or weak intensity.

^cPlasma.

^dCoating-head type deposition.

^eOxide was formed after 1 day delay after deposition.

^fEpitaxy.

^gPhoto-assisted deposition.

^hElectric field enhanced deposition.

ⁱMagnetic field enhanced deposition.

^jXRD was measured after depositing 10-nm HfO₂ film on top at the same temperature.

^kRutile single crystals of various orientations.

¹Film was capped with ALD-Al₂O₃ in situ.

^mBare film without ALD-Al₂O₃ in situ capping.

FIG. 9. First appearance of long-range order in Al₂O₃ films, as detected by XRD. The inset shows XRD spectra for 5 nm Al₂O₃ layers annealed for 60 s at different temperatures. Reprinted with permission from S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films **425**, 216 (2003). Copyright 2003 Elsevier.

1100 °C,²³²⁴ while on ZnO nanotubes crystalline alumina was obtained at 800 °C.²⁶⁸

ALD of alumina films that are crystalline already in the as-deposited state requires growth temperatures above 600°C. That is possible when AlCl₃ is employed as the precursor. Dueñas et al.²³²⁵ grew films on HF-treated silicon and obtained crystalline material in thick films (30-100 nm) at $600 - 800^{\circ}$ C, while thin films (3–9 nm) did not show crystallinity at any temperature. The structure of the aluminum oxide could not be unambiguously detected since the x-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) reflections could be attributed either to cubic $\gamma - Al_2O_3$ or tetragonal $\delta - Al_2O_3$. Oya *et al.*^{100,101} have succeeded in epitaxial growth of $\alpha - Al_2O_3$ on sapphire at 600 °C and on single crystal Nb at 450 - 500 °C. The process employed was $AlCl_3 + O_2$, and the reason for the low temperature in the case of the Nb substrate was explained by catalytic effect of the substrate.

3. Case: Zirconium oxide

Zirconium oxide (ZrO₂) has been studied as possible high- κ oxide material for future microelectronic circuits owing to its high permittivity. ALD ZrO₂ is already used in DRAM capacitors in ZAZ (ZrO₂-Al₂O₃-ZrO₂) multilayer structures. ZrO₂ has different crystal structures, from which the monoclinic phase has permittivity value of 23, while tetragonal and cubic phases show nearly twice as high values of 42 and 40.²³²⁶ ZrO₂ is a good oxide ion conductor which has been utilized, for example, in fuel cells as a solid electrolyte.¹⁵¹⁷

For bulk ZrO_2 , monoclinic phase is the most stable polymorph at temperatures below 1150 °C, whereas tetragonal and cubic phases are found at high temperatures.^{2327,2328} In addition, orthorhombic phases have been characterized at elevated pressures.²³²⁸ In thin films and particles at submicrometer scale, additional parameters such as surface energy and strain step in, however, and the phase behavior differs from the bulk.

In submicron architectures, such as nanoparticles and thin films, the ratio of surface area to volume is high. Therefore, the surface-related parameters, such as surface energy, start to affect the overall energy and further the phase transition conditions. The effect of surface energy to the phase behavior has been formulated by Garvie.^{2327,2329,2330} According to Garvie, the low surface energy stabilizes the tetragonal phase and decreases the monoclinic to tetragonal phase transition temperature when the feature size of ZrO₂ is decreased. Cubic phase has even lower surface energy, making it stable in very small particles.²³³¹ Both tetragonal and cubic nanoparticles have been synthesized.²³³²⁻²³³⁹ In thin film deposition, especially in ALD, physical dimensions of the crystallites can be controlled by laminating ZrO₂ with an other, often amorphous layer such as Al₂O₃, which interrupts the crystallite growth.¹⁵³⁹

On the other hand, there are reports on syntheses of monoclinic^{2340,2341} and orthorhombic^{2342,2343} ZrO₂ nanoparticles as well. Besides the surface energy, there appear to be also other factors contributing to the phase, such as crystallite morphology, oxygen vacancies in the lattice, and strain.^{2334,2335,2338,2339,2341,2344–2346} Oxygen vacancies can be generated by doping cations with an oxidation state of two or three into the crystal lattice of ZrO₂. This method has been widely applied for stabilizing cubic and tetragonal phases of ZrO₂. Typical stabilizing dopants are yttrium, magnesium, and calcium.²³⁴⁷

Atomic layer deposited zirconium oxides, and the closely related hafnium oxides, have been doped with cations to stabilize their high permittivity cubic and tetragonal phases. With ALD, the doping level can be straightforwardly controlled by introducing the doping oxide cycles in between the matrix oxide cycling. Through the alternate cycling, accurate and reproducible dopant concentration is achieved. In a paper by Putkonen et al., ZrO₂ was prepared from Cp- and thd-complexes together with ozone, while yttrium doping was enabled by Y(thd)₃.²³⁴⁷ They found phase-pure cubic ZrO₂ over wide range of dopant concentration. Niinistö et al. stabilized amorphous ZrO₂ by strontium doping in the as-deposited state, and the films were crystallized in cubic/tetragonal phase upon post-deposition annealing.¹⁴ In the same paper, HfO₂ grown from Hf(NMe₂)₄-O₃ was doped with yttrium using Y(CpMe)₃. The films were amorphous as-deposited and crystallized into cubic/tetragonal phase when annealed above 400 °C. Similar phase behavior was found when novel HfCp(NMe₂)₃ and Hf(CpMe) (NMe₂)₃ were used as a hafnium source, as reported in a separate paper by the same authors.¹⁹⁹⁴ Cubic HfO₂ can be also stabilized by doping with Er and Dy or Sc.^{684,2348}

In ALD, the most widely studied precursor system for ZrO_2 is $ZrCl_4$ and water.¹⁵³⁶ Besides chloride, zirconium tetraiodide (ZrI₄) has been utilized as another metal halide precursor for ZrO_2 ALD.¹⁵⁶⁷ With ZrI₄, hydrogen peroxide (H₂O₂) was also applied as the oxygen source.¹⁵⁶⁷ Zirconium alkoxides,¹⁵⁸⁸ aminoalkoxides,¹⁵⁸⁷ alkylamides,¹⁶⁰¹ and cyclopentadienyl (Cp) complexes¹⁵⁷¹ as well as complexes of their combinations have been utilized as metal sources. In addition to water and hydrogen peroxide, ozone has been used as a source for oxygen.^{1571,1610} Several ALD processes exploiting plasma have been also reported.^{1595,1596} Processes reported for ZrO₂ ALD are collected in Table I.

ALD of zirconium oxide starts as amorphous phase regardless of precursor system utilized.^{1536,1544,1545,1549,1569,1587,1599,1620} After a certain thickness is deposited, crystalline ZrO₂ is observed. The phase evolution is not straightforward, and also the overlap in diffraction patterns complicates the interpretation. The literature data on ALD-ZrO₂ crystallization are collected in Table III.

Nucleation of the film is anyhow different on oxideterminated and HF-etched H-terminated silicon. This is clearly seen in Figure 10. On oxidized silicon, ZrO_2 layer is smooth yet clearly polycrystalline. On HF-etched silicon, the nucleation density has been lower and the film shows more or less separate crystallites and is much rougher, because the nuclei have had more time to grow independently before coalescing. There are amorphous regions in between the crystallites and also an amorphous SiO_x film at the filmsubstrate interface.¹⁵⁴⁰ A special case where a strong effect of substrate has been seen is local epitaxy of ZrO_2 on germanium substrates at 300 °C.¹⁵⁴⁷

The thickness required for crystalline ZrO_2 to form depends on the precursor combination and deposition temperature. For the $ZrCl_4$ –H₂O process, the film thickness needed for crystallization is as high as 100 nm at 185 °C, and it monotonically decreases as deposition temperature increases, being around 1 nm at 600 °C.¹⁵⁴⁴ The crystallization threshold thickness is only slightly higher at the low deposition temperatures, when hydrogen peroxide is used in place of water. The threshold thickness as a function of temperature is illustrated in Figure 11. Kukli *et al.*¹⁵⁴⁵ suggested

FIG. 10. HR-TEM images of thin ZrO_2 layers deposited on (a) oxidized and (b) HF-etched silicon. Arrow indicates amorphous region.¹⁵⁴⁰ Reprinted with permission from Appl. Phys. Lett. **76**, 436 (2000). Copyright 2000 American Institute of Physics.

FIG. 11. Minimum film thickness required for crystalline ZrO_2 phases to be observed by RHEED as a function of temperature. Films were deposited on Si(100). Reprinted with permission from J. Aarik, A. Aidla, H. Mändar, T. Uustare, and V. Sammelselg, Thin Solid Films **408**, 97 (2002). Copyright 2002 Elsevier.

that hydrogen peroxide has its effect on the silicon-film interface, but shows similar chemistry as water as the film growth proceeds further. Hydrogen peroxide most probably oxidizes the substrate in the early stages of the film growth more effectively than water, and forms a thicker amorphous interfacial layer.

With the ZrI₄-H₂O₂/H₂O process, the thickness needed for film crystallization is higher, being 20 nm at 272 °C,¹⁵⁶⁹ while with ZrCl₄, crystallization took place for less than 10 nm thick film at the same temperature.¹⁵⁴⁴ Films deposited from cyclopentadienyl-based precursors and ozone start to grow as amorphous as well, since only weak diffraction if any was observed in the patterns measured from very thin films.^{1576,1578,1580} Films deposited from alkoxides, alkyland silylamides, and aminoalkoxides are mainly amorphous throughout.^{1587,1588,1599,1602,1620,2319} Reason for the amorphicity can be impurities, which originate from the thermally unstable precursors. Recently, alkylamidinate complex showed good thermal stability and the films deposited from it and water yielded amorphous films.¹⁶⁰⁹ The films were just 3.9 nm thick, which is below the common crystallization limit, however.

Whether the crystals grow from new nuclei formed on the already-deposited amorphous layer, or the original amorphous layer is crystallized as well, is not extensively studied. However, there are reports^{1540,1554,1558,2349} presenting crosssectional transmission electron microscopy (TEM) images of few-nanometer thick films showing through-film crystallites (Figure 10), supporting the latter option. The apparent amorphicity in very thin films can originate also from crystallite sizes below detection limit of the applied methods.

The first phase appearing in the zirconia films, as the film thickness increases above the crystallization threshold, is typically cubic or tetragonal. In films deposited from ZrCl₄, especially at low deposition temperature, the first phase appearing is cubic.¹⁵⁴⁴ Evidently, the cubic phase appears as a very thin layer and is transformed to the

tetragonal form as the film thickness increases, since reflections from the cubic phase are not visible together with tetragonal phase.¹⁵⁴⁴ Due to the similarity of the tetragonal and cubic phases (see, for example, ICSD (inorganic crystal structure database) Cards 17-0923 and 27-0997), the interpretation between the two is challenging, however.

In the films grown from ZrI₄ and hydrogen peroxide, the cubic phase is found for much higher thicknesses: 125-nm film grown at 275 °C shows a strong (200) reflection from the cubic phase.¹⁵⁶⁷ Kukli *et al.* suggested several reasons for the phase behavior different from the ZrCl₄ process: the chemical mechanism of the crystal growth, kinetics of the phase formation, effect of grain size, and mobility of surface species affecting the nucleation density. It was reported by the same authors that neither the ZrI₄ pulse nor the peroxide-water pulse did completely saturate, as evidenced by quartz crystal microbalance (QCM) data. Also the film mass decreased when the purge period after the ZrI₄ pulse was elongated, which was concluded to be caused by iodine desorption from the film surface.¹⁵⁶⁷

The QCM observations from the $ZrCl_4$ -water process were somewhat different. First, the elongation of the purge after the metal precursor did not affect the film mass. On the other hand, the $ZrCl_4$ pulse did not fully saturate even if the pulse was elongated to the scale of tens of seconds. The mass gain was nevertheless diminishingly small after a few seconds. Second, reaction between the film surface and water was found to saturate.¹⁵⁴⁴ The film growth mechanisms are obviously different when $ZrCl_4$ and ZrI_4 are applied as precursors, however.

The orientation of the cubic crystallites is much more evident when deposited from ZrI_4 than in the $ZrCI_4$ -based films. This is probably because the crystallites can grow larger in the ZrI_4 than in the $ZrCI_4$ process. The first signs of the cubic phase, as observed by RHEED, refer to randomly oriented crystallites.¹⁵⁶⁹ This is also supported by XRD studies of thin films.¹⁵⁶⁷ As the thickness of the cubic layer increases, the (200) reflection becomes the most intense one, indicating the [100] orientation of cubic crystallites.^{1567–1570}

The films deposited from Cp₂ZrMe₂ and ozone show as their first trace of crystallization a weak diffraction slightly above 2θ of 30° , which was interpreted as cubic or orthorhombic (111) reflection.¹⁵⁷⁶ In the same study, films were deposited also from Cp₂ZrCl₂ together with ozone, and similar phase behavior was found. Very thin films deposited from (MeCp)₂ZrMe₂ and (MeCp)₂Zr(OMe)Me and ozone as oxygen source showed reflections from tetragonal and/or cubic phase as the first signs of crystalline formation.¹⁵⁸⁰ Similar phase evolution was found when ozone was replaced by water as an oxygen source.¹⁵⁷⁹ Kukli et al. reported recently that novel cyclopentadienyl-alkylamido complexes CpZr(NMe₂)₃, (CpMe)Zr(NMe₂)₃, and (CpEt)Zr(NMe₂)₃ yielded tetragonal zirconium oxide when utilized together with ozone.¹⁵⁷⁸ The thickness range was 5.2-7.8 nm. The films deposited from Zr(thd)₄ and ozone showed weak reflections in XRD, which were addressed to the monoclinic or orthorhombic phases.¹⁵⁷¹

As the film thickness increases, the tetragonal phase starts to appear. In the films deposited from ZrCl₄ and water,

the tetragonal phase dominates at thicknesses around 50 nm. ^{1544,1545,1548,1557} At moderate deposition temperatures (around 300 °C), the first traces of the monoclinic phase are found as films reach thickness around 100 nm. ^{1544,1557} The monoclinic and tetragonal phases are found in the films simultaneously over a wide range of thicknesses. For the films deposited from Cp₂ZrMe₂, the monoclinic and orthorhombic phases were the most visible, similarly when deposited with water or ozone. ^{1571,1574} When (MeCp)₂ZrMe₂ and (MeCp)₂Zr(OMe)Me were used together with water or ozone, cubic and monoclinic phases were reported to start showing as these films had grown thicker. ^{1579,1580} The (111) reflection of the cubic phase at 30.2° was alternatively addressed to the orthorhombic phase. ^{1579,1580}

In a paper by Tkachev et al.,¹⁵⁵⁷ it is concluded from findings with Raman spectroscopy that part of the originally formed tetragonal phase transformed to monoclinic, since the absolute amount of the tetragonal phase decreased upon appearance of the monoclinic phase. All of the tetragonal phase was not, however, transformed but remained underneath the monoclinic layer. Non-equilibrium crystal growth conditions have been suggested to be responsible for stabilizing the tetragonal phase in ALD ZrO2.¹⁵⁴⁸ In addition, there were small crystallites, which had been formed at the early stage of film deposition. The small size together with intercrystallite strain could stabilize the tetragonal phase in these crystallites and inhibit the transformation to monoclinic. When ZrO₂ is deposited in nanolaminates in the thickness of about 10nm, the tetragonal phase is the only one observed.^{85,1539} The peaks are reported to be relatively wide indicating small crystallite size. The tetragonal crystallites in the nanolaminate structure are randomly oriented, since the (111) reflection is the strongest one similar to the powder pattern (JCPDS (joint committee on powder diffraction standards) Card 27-0997).^{85,1539}

The crystallites of the monoclinic phase in thick films deposited from $ZrCl_4$ seem to prefer [001] orientation, since the (002) reflection becomes the most intense as the film gets thicker, while ($\bar{1}11$), the strongest peak in powder pattern (JCPDS Card 36-0420) diminishes.^{1544,1557} The monoclinic phase, when appearing in ZrI₄-based films, shows random orientation.¹⁵⁶⁸ The studied films were, however, in the thickness range where the cubic and tetragonal phases are dominant and the monoclinic phase was just starting to form. The films deposited from some precursors containing cyclopentadienyl ligands show monoclinic ($\bar{1}11$) as their most intense reflection in thickness range over 100 nm, when deposited at 350 °C or higher.¹⁵⁷¹

Interpretation of some reflections of ZrO_2 phases is complicated due to overlap of diffraction lines. The presence of the orthorhombic phase in ALD ZrO_2 films has been suggested by Putkonen *et al.*,^{1571,1574} Niinistö *et al.*,^{1576,1580} and Dezelah *et al.*,¹⁵⁷⁹ while several papers^{1544,1545,1557} do not suggest the appearance of that phase. The orthorhombic phase is indeed a high pressure phase found only in high pressure as bulk material.^{2327,2328} There are, however, reports on nanostructured and thin film ZrO_2 appearing in the orthorhombic phase also in ambient conditions.^{2342,2343,2350} Therefore neither of the interpretations cannot be ruled out.

4. Case: Zinc oxide

Zinc oxide (ZnO) is a versatile material owing to its beneficial electrical, physical, and chemical properties. ZnO is a semiconductor with a wide band gap of 3.37 eV and large exciton binding energy, 60 meV, making it a promising optoelectronic material. It can be applied in ultraviolet (UV) light emitting diodes.²³⁵¹ It is also an efficient gas sensor material.²³⁵² Hexagonal ZnO as a piezoelectric material can be utilized, for example, as a force sensor.²³⁵³ Aluminum-doped ZnO is a widely studied transparent conducting oxide.

The crystal structures occurring for ZnO are cubic zinc blende, cubic rock salt, and hexagonal wurtzite. The zinc blende phase is stable only on cubic substrates, and the rock salt structure occurs only at high pressures.²³⁵¹ The hexagonal phase is stable at ambient conditions. Crystalline ZnO films produced by ALD are all of hexagonal phase, as seen in Table III.

The most studied precursor combination for ZnO ALD is diethyl zinc (DEZ)–water. The deposition temperature range lies from around 100 to 350 °C. Zinc oxide thin films are typically crystalline even when deposited at low temperature. Amorphous zinc oxide films can be deposited only as very thin films on certain substrate materials.^{1149,1211,1239} With the DEZ-water process, ZnO films have been deposited on wide variety of substrate materials, including glasses, silicon, and different oxide materials (for details, see Table III). Besides water, oxygen,¹¹⁸⁶ oxygen radicals,¹²⁷⁰ N₂O,¹²⁷⁶ and ozone^{1193,1208,1209} have been utilized as oxygen sources together with DEZ.

Resistivity of ZnO is sensitive to stoichiometry. Usually, oxide films prepared in vacuum are oxygen deficient and therefore rather conducting. In fact, it is difficult to prepare strictly stoichiometric, insulating ZnO needed in, for example, piezo applications. Ozone and oxygen radicals can improve the stoichiometry and thereby increase the resistivity.^{1193,1270} When DEZ is replaced by its methyl analogue dimethyl zinc (DMZ), higher GPC is obtained due to the smaller size of DMZ.¹¹⁵⁷ At low deposition temperature, the films deposited from DMZ were more transparent than the ones grown from DEZ. Resistivity, in turn, was higher in the films grown from DMZ.

In addition to the alkyl compounds, zinc acetate has been applied as a zinc precursor for ZnO ALD.^{1279,1282,1285} Resistivity was reported to be higher in the films grown from the acetate than in the films grown from DEZ.¹²⁸² With zinc chloride (ZnCl₂) and oxygen gas (O₂), epitaxial growth of zinc oxide was found on both sapphire^{1153,1154} and GaN¹¹⁵⁵ at temperature range 450 – 550 °C. In addition, atmospheric deposition pressure was applied in these experiments.^{1153,1154} Crystalline ZnO films have been also deposited from elemental zinc and water.¹¹⁵¹

In zinc oxide thin films prepared by ALD, the microstructure is crystalline hexagonal. The orientation of crystallites in the film can be modified by substrate material and by tailoring the ALD growth parameters. The extreme case of substrate effect on the film orientation is epitaxy. ZnO films have been deposited epitaxially on sapphire (1120), (1010), and (1120) faces as well as on GaN.^{1162,1229,1246,1278,1282} Also on ZnO nanowires and seed crystals, the film growth shows high degree of orientation in the same direction as the substrate.^{297,2316} Interestingly, by depositing ALD aluminum oxide of different thicknesses on the ZnO nanowires the substrate effect on the film orientation could be modified. The thicker the alumina layer between the substrate and the film, the more random was the orientation in the ALD ZnO film.²⁹⁷

When deposited on silicon, glass, or, e.g., TiO₂, ZnO films are polycrystalline and typically orientate towards [100] or [001] direction. The orientation appears to depend, first, on growth temperature. At low temperature, random or [100] orientation is favored whereas at higher temperatures, film orientates to [001]. The phenomenon seems to be universal when epitaxial growth is excluded. Very similar orientation behavior has been found for several precursor systems. The temperature limit for the orientation change from [100] to [001] depends on the precursors being around 100 °C for processes exploiting oxygen plasma together with DEZ or DMZ, 1164,1270,1272,1275 slightly above 200 °C for DEZ-water, 1157,1160,1176,1220,1228 and above 300 °C for zinc acetate-water. 1285 Further increase in deposition temperature improves the film crystallinity and orientates the film more strongly towards [001], as illustrated in Figure 12. The temperature dependence in the case of zinc acetate is illustrated in Figure 13. In addition to (100), and (002) reflections, strong (110) reflections have been reported to arise from films whose thickness lies in the range from hundreds to thousands of nanometers, especially at low growth temperatures.^{1160,1233} There are deviations from the above mentioned crystallite orientation trends, however. The strongest reflection from the film has been also reported to be (101).1180,1181,2126

Besides deposition temperature and the precursors, film orientation can be modified by other deposition conditions. At low growth temperatures, the [100] orientation can be turned to [001] by elongating the purge time between the precursor pulses. This has been found for both diethyl zincwater¹²¹³ and zinc acetate-water¹²⁸⁵ processes. Malm *et al.* deposited films from DEZ and water with long purges in temperature range starting from room temperature up to 140 °C and reported [001] preferred orientation throughout the studied range.¹²⁶⁵ Furthermore, an additional pulse of molecular oxygen switched the orientation from [100] to [001] in the case of DEZ-water at 180 °C.¹¹⁸⁶ In addition, ZnO could be deposited epitaxially onto sapphire $(10\overline{1}0)$ and (0001) faces from DEZ-water only when the precursor exposure time was elongated by isolating the reaction chamber during the precursor pulse.^{1229,1246} Liu *et al.* reported that the film grown from DEZ-water by regular ALD is more or less randomly oriented, but by applying an electric field over the substrate, epitaxial films can be grown on (0001)-cut sapphire without modifying any other process conditions.^{1180,1181} It was suggested that polarization of precursor molecules would align them and that way direct the film growth on the substrate.

It has been reported that the (001) surface is thermodynamically the most favorable, i.e., it has the lowest surface energy.¹¹⁹³ The (100) crystal face, in turn, has been reported

FIG. 12. Low resolution [(a) and (c)] and high resolution [(b) and (d)] TEM images of ZnO films deposited from DEZ and water at 250 °C [(a) and (b)] and 400 °C [(c) and (d)] on SiO₂/Si. Insets show digital diffractograms from the corresponding high resolution TEM images.¹²⁵⁰ Reprinted with permission from Y.-S. Min, C. J. An, S. K. Kim, J. Song, and C. S. Hwang, Bull. Korean Chem. Soc. **31**, 2503 (2010). Copyright 2010 The Korean Chemical Society.

to have stepped structure.¹¹⁷⁶ Pung *et al.* suggested that at low deposition temperature the dissociation products of DEZ could block the surface sites of the (001) face while at higher temperature these species would further react into desorbable molecules revealing the (001) face for ALD growth.¹²²⁰ Makino *et al.* suggested that a decrease of the hydroxyl group density on the substrate surface at higher temperature would increase the surface mobility.¹¹⁶¹ Yousfi *et al.* reported that when the ZnO growth process was interrupted for 10 min and then restarted, a nucleation period was observed, while after a shorter pause, the growth recovered immediately.¹¹⁷⁶ They suggested that the surface could rearrange to a less reactive form during the longer interrupt. Wójcik *et al.* concluded that elongated purge time allows longer time for the surface species to diffuse.¹²⁸⁵ As dis-

FIG. 13. Relative ratio of XRD peak intensities of ZnO films as a function of temperature deposited from zinc acetate and water.¹²⁸⁵ Reprinted with permission from A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, J. Cryst. Growth **310**, 284 (2008). Copyright 2008 Elsevier.

cussed above, many papers report that elongation of purge or exposure times, or addition of an intermediate oxygen pulse switches the ZnO crystallite orientation from [100] to [001]. However, origin of the phenomena is not widely discussed in the literature and still requires further investigations.

Film thickness as a factor in the development of the ZnO film orientation has not been as extensively studied as temperature and other reaction conditions. Makino et al. reported that as the film grows thicker, the orientation seems to decrease and becomes more random.¹²²² They applied PEALD process at low deposition temperature, and the orientation was not observed to be strong in the earlier stage of the growth either. Przézdziecka et al. studied the effect of thickness when the film was grown from DEZ and water.¹²³³ At 100 °C, (110) reflection was notable and became stronger as films grew thicker. At 200 °C, the effect of the film thickness on the (110) reflection was found to be opposite. Song et al. deposited ZnO on indium tin oxide (ITO) from DEZ and O_2 plasma.²³⁰⁸ They reported that the thinnest films (100 nm) showed [001] orientation and the orientation became random as the film reached 200 nm thickness but arranged again at 300 nm thickness, now towards [100].

As above demonstrated, characteristically hexagonal ALD zinc oxide shows diverse behavior as it comes to crystal orientation. The orientation appears to be a function not only of substrate and deposition temperature but also of other deposition conditions, such as precursor purge time.

B. Metal nitrides

1. General

Metal nitrides are hard, chemically resistant, sometimes catalytically active, and often electrically conductive materials.²³⁵⁴ Since the pioneering work on the growth of metal nitrides by ALD published in 1988,⁹³³ there has been

increasing interest in nitride deposition by ALD, especially for application as diffusion barriers and electrodes in microelectronics.²³⁵⁵ An overview of the crystallinity of metal nitride films grown by ALD is shown in Table IV.

Metal nitrides have most typically been grown by ALD using metal chloride reactants or other halides and ammonia (Table IV). These processes give nitrides at relatively high temperatures (typically ca. 350 - 500 °C) with some residues of the respective halogens. For transition metals (TiN, ZrN_x , MoN_x , HfN_x , TaN_x , WN_x), many recent efforts have concentrated on metalorganic alkylamide-based compounds as reactants, with the goal of eliminating halogen residues. With the alkylamides, the deposition temperatures are typically lower than with the halides (typically ca. 150 - 250 °C). A drawback of the amide compounds is their thermal decomposition at low temperatures (even during storage),^{976,2357} resulting in a non-self-limiting CVD component in addition to the ALD growth and high impurity contents. The nitrogen of the alkylamide reactants has in many cases been observed to incorporate in the film, serving as an additional or even the main nitrogen source.995,996,2042,2118 Organometallic reactants (with direct metal-carbon bonds), mainly alkyls, have been used to grow the nitrides of Main Group III elements (Al, Ga, In). Decomposition of the organometallic reactants at the temperatures needed for ammonia to complete the reactions may be a problem also for metal alkyls, however.484

In many metal nitride ALD processes, the metal center needs to be reduced, since in the reactant the metal often is in a higher oxidation state than in the product nitride. Ammonia works as a reducing agent, at least in some processes (e.g., TiN and NbN). If several stable nitrides exist for a given metal, ammonia leads generally to the one with the highest oxidation state, of this the Ta₃N₅ (dielectric) and TaN (conductive) pair being perhaps the most well-known example. Additional reducing agents (e.g., Zn, Me₃Al, B_2H_6 , Si₂H₆) may be employed to assist the metal nitride deposition, although these may leave behind residues in the film. In nitride ALD, plasma-enhanced processes are often useful, in many cases facilitating the growth of the desired phase with the metal in the reduced state and at the same time decreasing the impurity levels and extending the ALD temperature range towards lower temperatures.⁹⁶⁰ Drawbacks of PEALD are the more complex process control, decreased conformality of the film, and possible plasma damage to the substrate.

2. Case: Titanium nitride

TiN is one of the most investigated ALD nitride processes. As in many other transition metal nitride processes, also in TiN ALD, reduction of the metal center is needed, since the oxidation state of titanium in the reactants is +IV(see Table IV), whereas in the desired product nitride, TiN, it is +III. In many cases, the nitrogen source (e.g., NH₃) acts also as a reducing agent, while in other processes, separate reducing agents have been added.

In the pioneering work on metal nitride ALD by Hiltunen *et al.* in 1988,⁹³³ TiN was grown from titanium tetrachloride (TiCl₄) and ammonia (NH₃) at 500 °C. The $TiCl_4 - NH_3$ process has remained the most commonly applied process to deposit TiN to date, while according to Table IV the temperature range of the $TiCl_4 - NH_3$ process has been extended down to about 300°C and up to 550°C.^{938-940,946,951,952,955} Higher temperatures should also be possible since decomposition of the reactants is not expected. Growth per cycle values between ca. 0.02 and 0.04 nm have been reported. In some studies, Zn^{934,935} or AlMe₃^{957,2358} has been added as a reducing agent to the $TiCl_4 - NH_3$ process, with the goal to improve the TiN characteristics such as the electrical conductivity. While little zinc residues were left in the TiN films deposited with Zn, several atomic percents of aluminum and carbon were left in the films from AlMe₃. In addition to TiCl₄, also TiI₄ can be used together with NH₃ to deposit TiN.⁹⁶⁸ In combination with TiCl₄ and TiI₄, dimethylhydrazine, tert-butylamine, and allylamine have been explored as alternative nitrogen sources with more reducing power than ammonia.^{966,967} Plasma of H₂ and N₂ has also been used in combination with TiCl₄, extending the deposition temperature range down to 100°C.^{958,960,962,963}

In addition to inorganic halides, also metal-organic reactants have been used for TiN deposition. Metal-organic reactants are desired in cases where the corrosive by-products of the halide-based processes cannot be tolerated either by the underlying materials (e.g., copper pitting by HCl⁹⁴⁴) or by the ALD reactor itself (e.g., stainless steel reactors). Titanium alkylamides $Ti(NMe_2)_4$ [tetrakis(dimethylamido) titanium, TDMAT]^{973,975,980} and $Ti(NEtMe)_4$ [tetrakis (ethylmethylamido) titanium, TEMAT]⁹⁹⁶ have been used to deposit TiN together with ammonia at temperatures typically around 150 - 250 °C. TiN has also been grown by PEALD processes from Ti(NMe₂)₄.^{988,989,994,995} Growth per cycle values from 0.2 nm up to several nanometers per cycle, corresponding to several TiN monolayers per cycle, have typically been reported. The high absolute values and the high variation of the GPC originate from the fact that the alkylamide-based processes do not fulfill the basic saturation criterion of ALD because decomposition of the metal precursor occurs.⁹⁷⁶

TiN is one of the materials whose amorphous/crystalline nature depends on the ALD process parameters; both crystalline and amorphous films have been frequently reported. Investigating the data in Table IV shows two trends. TiN films deposited from the metal halide reactants are mainly crystalline, while TiN films deposited from the alkylamide reactants are mainly amorphous—both with some exceptions. In the following, we analyze the reasons for these trends as well as for their exceptions. To assist this analysis, published data for the growth characteristics, impurities, and density of TiN films made by different ALD processes have been collected in Table V together with information on film crystallinity.

When grown from the metal halide reactants and ammonia, crystalline TiN films are always obtained (Tables IV and V). Also the corresponding PEALD TiN process gives crystalline films, even at 100 °C.⁹⁶⁰ The films are polycrystalline, with cubic columnar crystals that extend throughout the film.^{938,945,952} An example of a TiN film made with the

TABLE IV. Crystallini	y studies of ALE	nitride films made b	y diffraction	or spectroscopy.ª
-----------------------	------------------	----------------------	---------------	-------------------

Material reactant A	Reactant B	Substrate(s)		Phases	References
BN			Amorphous	Turbostratic	
BBr ₃	NH ₃	silica	400 °C	750 °C	49
BBr ₃	NH ₃	Al_2O_3		250–600 °C	50
BBr ₃	NH ₃ ^e	Al_2O_3		250–600 °C	50
AlN			Amorphous	Hexagonal	
AlCl ₃	NH ₃	SLG		500 °C	477
AlCl ₃	$NH_3 + H_2^c$	H-Si		350 °C	480
AlMe ₃	NH ₃	Corning 7059		325–425 °C	484
AlMe ₃	NH ₃	Si	325–400 °C		488
AlMe ₃	NH ₃	Sapphire		1200 °C	489
AlEt ₃	NH ₃	Sapphire		450 °C	495
$Al(NMe_2)_3$	NH ₃	Ge	200–250 °C		501
Me ₂ EtN:AlH ₃	NH ₃	Al ₂ O ₃		300–380 °C	498
Me ₂ EtN:AlH ₃	NH ₃	Si	300–380 °C		498
TiN			Amorphous	Cubic	
TiCl ₄	NH ₃	SLG, Si, H-Si, SiO ₂ , HfSiO ₂ , HfO ₂		300–550 °C	933, 938–940, 946, 951, 952, and 955
TiCl ₄	NH ₃ -Zn	SLG		400–500 °C	934 and 935
TiCl ₄	NH ₃ -AlMe ₃	GaAs	275 °C		957
TiCl ₄	$H_2 + N_2^c$	Si, SiO ₂		100–400 °C	958, 960, and 962–965
TiCl ₄	DMHy	SLG	250 °C	300–400 °C	966
TiCl ₄	^t BuNH ₂	SLG, borosilicate	400 °C	400 °C	967
TiCl ₄	allylNH ₂	SLG, borosilicate	400 °C	400 °C	967
TiI ₄	NH ₃	SLG		400–500 °C	968
TiI ₄	^t BuNH ₂	SLG, borosilicate	400 °C	400 °C	967
TiI ₄	allylNH ₂	SLG, borosilicate	400 °C	400 °C	967
Ti(NMe ₂) ₄	NH ₃	H-Si	200–300 °C	350 °C	975
Ti(NMe ₂) ₄	NH ₃	Si, SiO ₂	180 °C	180 °C	973 and 980
Ti(NMe ₂) ₄	NH ₃ ^c	SiO ₂	250 °C		988 and 989
$Ti(NMe_2)_4$	$NH_3 + H_2^{c}$	Al ₂ O ₃		150–300 °C	493 and 990
Ti(NMe ₂) ₄	N_2^c	SiO ₂	250 °C		989
$Ti(NMe_2)_4$	N_2^{c}	SiO ₂		200 °C	994
Ti(NMe ₂) ₄	H_2^{c}	Si, SiO ₂	150–250 °C	150 °C	989 and 995
Ti(NEtMe) ₄	NH ₃	Si, SiO ₂	150–220 °C		996 and 997
Cu ₃ N			Amorphous	Cubic	
[Cu(^s BuAMD)] ₂	NH ₃	Ru		140–300 °C	1140
Cu(hfac) ₂	H ₂ O-NH ₃	SiO_2		210–300 °C	1141

021301-47 Miikkulainen *et al.*

TABLE	IV.	(Continued	<i>l.</i>)
-------	-----	------------	-------------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Material reactant A	Reactant B	Substrate(s)		Pł	nases		References
	GaN			Amorphous	Cubic			
GGC1 NH ₁ GAAs 300-40°C 137 GGC1, NH ₁ GAAs(01) 500°C 1378 GGC1, NH ₁ GAAs(111) ¹ 500°C 1378 GGC1, NH ₁ GAAs(111) ¹ 500°C 1379 GGC1, NH ₁ AN ^A 500°C 1380 GAMp NH ₁ AN ^A 500°C 1381 GAMp NH ₁ AN ^A 800-90°C 1383 GAMp NH ₁ GAAs(00) 500-60°C 1383 GAB1, NH ₁ GAAs(00) 250-50°C 1387 GaB1, NH ₁ SiC(000) ⁴ 250-50°C 1622 Zr(NMe ₂) ₄ NH ₂ Si 150-25°C 1622 Zr(NMe ₂) ₄ NH ₃ Si 150-25°C 1622 Zr(NM ₂) ₄ NH ₃ Si 150-25°C 1622 Zr(NM ₂) ₄ NH ₃ Si 150-25°C 1622 Zr(NM ₂) ₄ NH ₃ Si 150-25°C 1622 Zr(NM ₂) ₄ NH ₃ Si 150-25°C 1622 Zr(NM ₂) ₄ NH ₃ Si 150-25°C 933 and 160 NNC1, NH ₃ SiG 350°C 90°C </td <td>GaCl</td> <td>NH₃</td> <td>GaN</td> <td></td> <td>300–400 °C</td> <td></td> <td></td> <td>1376 and 1377</td>	GaCl	NH ₃	GaN		300–400 °C			1376 and 1377
	GaCl	NH ₃	GaAs	300–400 °C				1377
	GaCl ₃	NH ₃	GaAs(001)	500 °C				1378
	GaCl ₃	NH ₃	$GaAs(111)^d$		500 °C			1378
	GaCl ₃	NH ₃	H-Si		650 °C			1379
	GaMe ₃	NH ₃	AlN ^d		550–650 °C			1380
	GaMe ₃	NH ₃	AlN ^d		800–900 °C			1384
	GaMe ₃	NH ₃	GaAs(001)		500–650 °C			1383
	GaEt ₃	NH ₃	AlN ^d		450–900 °C			1385
GaEta NH3 SiC(0001) 150-170 °C 170-250 °C 1387 ZrN, Amorphous Interpretation	GaEt ₃	NH ₃	$SiC(0001)^{d}$		250–500 °C			1387
ZN, Amorphous Zr(Nke ₂) ₄ NH ₃ Si 150-250 °C 1622 Zr(NkDe) ₄ NH ₃ Si 150-250 °C 1622 Zr(NkD ₂) ₄ NH ₃ Si 150-250 °C 1622 Zr(NkD ₂) ₄ NH ₃ Si 150-250 °C 1622 Zr(NkD ₂) ₄ Nf ₃ Si 150-250 °C 1622 Zr(NkD ₂) ₄ Nf ₃ Si 150-250 °C 1623 NbCl Nf ₃ Si 300 °C 1623 NbCl ₅ NH ₃ SLG, SiO ₂ , Al ₂ O ₃ 400-500 °C 933, 1630, and 1 NbCl ₅ NH ₃ SLG 500 °C 500 °C 935 and 163 NbCl ₅ NH ₃ SLG 500 °C 500 °C 935 and 163 NbCl ₅ NH ₃ SLG 500 °C 500 °C 933 and 163 MoCl ₅ NH ₃ SLG 500 °C 500 °C 933 and 163 MoCl ₅ NH ₃ SLG 500 °C 500 °C 966 MoCl ₅ NH ₃ SLG 500 °C 260-300 °C 1638 <td>GaEt₃</td> <td>NH₃</td> <td>SiC(0001)</td> <td>150–170 °C</td> <td>170–250 °C</td> <td></td> <td></td> <td>1387</td>	GaEt ₃	NH ₃	SiC(0001)	150–170 °C	170–250 °C			1387
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZrN _x			Amorphous				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr(NMe_2)_4$	NH2	Si	150–250 °C				1622
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr(NEtMe)_4$	NH ₂	Si	150–250 °C				1622
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr(NEt_2)_4$	NH ₂	Si	150–250 °C				1622
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr(NEt_2)_4$	N ₂ ^c	Si	300 °C				1622
NbCl ₅ NH ₃ SLG, SiO ₂ , Al ₂ O ₃ $400-500\ ^{\circ}C$ 933, 1630, and 1 NbCl ₅ NH ₃ SLG, borositicate $250-300\ ^{\circ}C$ $500\ ^{\circ}C^{b}$ $500\ ^{\circ}C^{b}$ 933 and 1630 NbCl ₅ NH ₃ -Zn SLG $500\ ^{\circ}C^{b}$ $500\ ^{\circ}C^{b}$ $933\ and 1630$ MoCl ₅ DMHy SLG $400\ ^{\circ}C^{b}$ $900\ ^{\circ}C^{b}$ $966\ ^{\circ}C^{b}$ MoCl ₅ NH ₃ SLG, Si $350-500\ ^{\circ}C$ $450-500\ ^{\circ}C$ $933\ and 1630\ ^{\circ}C^{b}$ MoCl ₅ NH ₃ -Zn SLG $500\ ^{\circ}C^{b}$ $500\ ^{\circ}C$ $906\ ^{\circ}C^{b}$ $933\ and 1630\ ^{\circ}C^{b}$ MoCl ₅ NH ₃ -Zn SLG $500\ ^{\circ}C^{\circ}$ $500\ ^{\circ}C^{\circ}$ $966\ ^$	NbN			Amorphous	Cubic	Hexagonal		
NbCl_5NH_3SLG, borosilicate $250-30^{\circ}$ C1631NbCl_5NH_3-ZnSLG 500° Cb 500° Cb 935 and 1630° CNbCl_5DMHySLG 400° Cb 966° 966° MoNAmorphousCubicHexagonalTetragonalMoCl_5NH_3-ZnSLG $350-500^{\circ}$ C $450-500^{\circ}$ C 933 and 1632° MoCl_5NH_3-ZnSLG 500° C 500° C 966° MoCl_5DMHySLG 500° C 500° C 966° Mo(BuN)_2(NE_2)_2NH_3Si, SiO_2, Ni, Cr $260-300^{\circ}$ C $260-300^{\circ}$ C 966° InN_5^{\circ}Sapphired 440° C $285-300^{\circ}$ C 1638° InMe_EtNH_3AlN 480° C 485° 485° InMe_EtNH_3AlN 480° C 485° 485° HfN_xAmorphousCubic 485° 485° HfN_xAmorphousCubic 450° C 1622° HfONNH_3Si $150-250^{\circ}$ C 1622° HfONNH_3Si $150-250^{\circ}$ C 1622° HfONNH_3Si $150-250^{\circ}$ C 1622°	NbCl ₅	NH ₂	SLG, SiO ₂ , Al ₂ O ₃		400–500 °C			933, 1630, and 1632
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NbCl ₅	NH ₃	SLG, borosilicate	250–300 °C				1631
NbCl ₅ DMHy SLG 400 °C ^b 966 MoN Amorphous Cubic Hexagonal Tetragonal 966 MoCl ₅ NH ₃ SLG, Si 350–500 °C 450–500 °C 933 and 1635 MoCl ₅ NH ₃ SLG 350–500 °C 450–500 °C 906 933 and 1635 MoCl ₅ NH ₃ SLG 500 °C 500 °C 500 °C 966 966 Mo(BuN) ₂ (NMe ₂) ₂ NH ₃ Si, SiO ₂ , Ni, Cr 260–300 °C 500 °C 500 °C 906 °C 966 In N ₂ ° Sapphire ^d Amorphous Hexagonal 285–300 °C 1638 InN N ₂ ° Sapphire ^d Amorphous Hexagonal 285–300 °C 1638 InMe ₂ Et NH ₃ AlN 480 °C 480 °C 485 488 °C 485 HfN _x Amorphous Cubic Hit 480 °C 480 °C 485 °C 485 °C HfN _x Amorphous Cubic Emotion Hit 160–250 °C Cubic 1622 °C 1622 °C 1622 °C 1622 °C	NbCl5	NH ₂ -Zn	SLG		500 °C ^b	500 °C ^b		935 and 1630
MoNAmorphousCubicHexagonalTetragonalMoCl_5NH_3SLG, Si $350-500\ ^{\circ}C$ $450-500\ ^{\circ}C$ 933 and 1633MoCl_5NH_3-ZnSLG $500\ ^{\circ}C$ $500\ ^{\circ}C$ 966 MoCl_5DMHySLG $500\ ^{\circ}C$ $500\ ^{\circ}C$ 966 Mo(BuN)_2(NMe_2)_2NH_3Si, SiO_2, Ni, Cr $260-300\ ^{\circ}C$ $260-300\ ^{\circ}C$ $260-300\ ^{\circ}C$ Mo(BuN)_2(NEt_2)_2NH_3Si, SiO_2, Ni, Cr $260-300\ ^{\circ}C$ $260-300\ ^{\circ}C$ $285-300\ ^{\circ}C$ InN_2 eSapphire ⁴ AlN ⁴ $440\ ^{\circ}C$ 1762 InMe_2EtNH_3AlN ⁴ $480\ ^{\circ}C$ 485 IfN_x $Amorphous$ $Cubic$ 485 HfN_x $Amorphous$ Cubic 485 HfN_x $Amorphous$ $Cubic$ 1622 HfNMe_2)_4NH_3Si $150-250\ ^{\circ}C$ 1622 HfNMe_2)_4NH_3Si $150-250\ ^{\circ}C$ 1622 HfNANHSi $660\ ^{\circ}C_1$ 1622 HfNANHSi $150-250\ ^{\circ}C$ 1622 HfNANHSi $150-250\ ^{\circ}C$ 1622 HfNANHSi $150-250\ ^{\circ}C$ 1622 HfNANHSi $150-250\ ^{\circ}C$ 1027	NbCl ₅	DMHy	SLG		400 °C ^b			966
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MoN			Amorphous	Cubic	Hexagonal	Tetragonal	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MoCl ₅	NH ₃	SLG, Si		350–500 °C	450–500 °C		933 and 1635
MoCl_5DMHySLG $500 ^{\circ}\text{C}$ $500 ^{\circ}\text{C}$ 966 Mo('BuN)_2(NE_2)_2NH_3Si, SiO_2, Ni, Cr $260-300 ^{\circ}\text{C}$ $260-300 ^{\circ}\text{C}$ 1636 Mo('BuN)_2(NE_2)_2NH_3Si $285-300 ^{\circ}\text{C}$ $260-300 ^{\circ}\text{C}$ 1638 InNInNMarphousHexagonal $440 ^{\circ}\text{C}$ 1762 InMe_2EtNH_3AlN ⁴ $480 ^{\circ}\text{C}$ 485 485 InMe_2EtNH_3AlN $480 ^{\circ}\text{C}$ 485 485 HfN_xMarphous $480 ^{\circ}\text{C}$ 485 485 HfN_xInformation of the second of	MoCl ₅	NH ₃ -Zn	SLG		500 °C	500 °C		966
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MoCl ₅	DMHy	SLG		500 °C	500 °C		966
Mo('BuN)_2(NEt_2)_2NH_3Si $285-300 ^{\circ}\text{C}$ $285-300 ^{\circ}\text{C}^{b}$ 1638 InNAmorphousHexagonalInN_2 eSapphired $440 ^{\circ}\text{C}$ 1762InMe_EtNH_3AIN ^d $480 ^{\circ}\text{C}$ 485InMe_EtNH_3AIN480 ^{\circ}\text{C}485HfN_xAmorphousCubic485Hf(NMe_2)_4NH_3Si150-250 ^{\circ}\text{C}1622Hf(NMe2)_4NH_3Si150-250 ^{\circ}\text{C}1622	$Mo(^{t}BuN)_{2}(NMe_{2})_{2}$	NH ₃	Si, SiO ₂ , Ni, Cr	260–300 °C			260–300 °C	1636
InNAmorphousHexagonalIn N_2^e Sapphired440 °C1762InMe_EtNH3AINd480 °C485InMe_EtNH3AIN480 °C485HfNxAmorphousCubic485Hf(NMe_2)_4NH3Si150-250 °C1622Hf(NMex)_4NH4Si Cubic150-250 °C1622	$Mo(^{t}BuN)_{2}(NEt_{2})_{2}$	NH ₃	Si	285–300 °C			285–300 °C ^b	1638
In N_2^e Sapphired440 °C1762InMe_2EtNH ₃ AIN ^d 480 °C485InMe_2EtNH ₃ AIN480 °C485HfN_xAmorphousCubicHf(NMe_2)_4NH ₃ Si150-250 °C1622Hf(NTerman150-250 °C1622	InN			Amorphous	Hexagonal			
InMe ₂ EtNH ₃ AIN ^d 480 °C485InMe ₂ EtNH ₃ AIN480 °C485HfN _x $\frac{Amorphous}{Cubic}$ 150–250 °C1622Hf(NMe ₂) ₄ NH ₃ Si150–250 °C1622	In	N_2^{e}	Sapphired		440 °C			1762
In Me ₂ Et NH ₃ AlN $480 \degree$ C 485 HfN _x $\frac{\text{Amorphous Cubic}}{150-250 \degree$ C 1622	InMe ₂ Et	NH ₃	AlN ^d		480 °C			485
HfNxAmorphousCubicHf(NMe_)4NH3Si $150-250$ °C1622Uf(NIFMA)NUSiCa150.250 °C100.200	InMe ₂ Et	NH ₃	AlN		480 °C			485
Hf(NMe ₂) ₄ NH ₃ Si 150–250 °C 1622	HfN_x			Amorphous	Cubic			
	Hf(NMe ₂) ₄	NH ₃	Si	150–250 °C				1622
$HI(NEIWe)_4$ NH ₃ 51, Ge 150–250 C 501 and 1622	Hf(NEtMe) ₄	NH ₃	Si, Ge	150–250 °C				501 and 1622
Hf(NEtMe) ₄ H_2^{c} SiO ₂ 250 °C 2118	Hf(NEtMe) ₄	H_2^{c}	SiO ₂		250 °C			2118
Hf(NEt ₂) ₄ NH ₃ Si 150–250 °C 1622	Hf(NEt ₂) ₄	NH ₃	Si	150–250 °C				1622

Material reactant A	Reactant B	Substrate(s)		F	Phases	References
TaN _x			Amorphous	Cubic	Orthorhombic	
TaCl ₅	NH ₃	SLG		500 °C ^b		933
TaCl ₅	NH ₃	SLG, SiLK TM	300–500 °C		400–500 °C	2160 and 2161
TaCl ₅	NH ₃ -Zn	SLG		400–500 °C		2160
TaCl ₅	DMHy	SLG	300–400 °C			966
TaCl ₅	^t BuNH ₂	SLG	350 °C	400–500 °C		2163
TaCl ₅	$^{t}BuNH_{2} + NH_{3}$	SLG		400–500 °C		2163
TaCl ₅	$H_2 + N_2^{c}$	H-Si, SiO ₂		100–400 °C		2164 and 2166
TaCl ₅ ·SEt ₂	NH ₃ - AlMe ₃	Si		400–500 °C		2169
TaBr ₅	^t BuNH ₂	SLG	400 °C	450–500 °C		2163
TaBr ₅	$^{t}BuNH_{2} + NH_{3}$	SLG		400–500 °C		2163
TaF ₅	$H_2 + N_2^{c}$	SiO ₂		350 °C	350 °C	2170
TaF ₅	H ₂ ^c -NH ₃	SiO ₂		200–350 °C		2125–2127
TaF ₅	$H_2 + NH_3^c$	SiO ₂		200 °C	200 °C	2127
Ta(NMe ₂) ₅	H ₂ ^c	H-Si, SiO ₂ , Si		150–250 °C		964, 2152, 2182, and 2183
Ta(NMe ₂) ₅	$N_2 + H_2^c$	H-Si, SiO ₂	250 °C		150–250 °C	2182 and 2183
Ta(NEtMe) ₅	$\rm NH_3$	H-Si, SiO ₂	220–250 °C	250 °C		2184
Ta(ⁱ PrN)(NEtMe) ₃	$N_2 + H_2^c$	SiO ₂	400 °C			2185
Ta(^t BuN)(NEt ₂) ₃	$\rm NH_3$	SiO ₂ , Si	150–260 °C	350–400 °C		2187, 2188, 2192, and 2198
Ta(^t BuN)(NEt ₂) ₃	N_2H_4	Si	150–250 °C			2188
Ta('BuN)(NEt ₂) ₃	H_2^{c}	SiO ₂ , Si	250–350 °C	250–350 °C		1669, 2191, 2192, and 2195
Ta(^t BuN)(NEt ₂) ₃	NH ₃ ^c	SiO ₂	250 °C	350–400 °C		2198
Ta(^t AmN)(NMe ₂) ₃	H_2^{c}	SiO_2		230 °C		1671
WN _x			Amorphous	Cubic W ₂ N	Hexagonal WN	
WF ₆	NH ₃	Si		327 °C		2224
WF_6	NH ₃ (ethene, silane cat.)	Si		350 °C	350 °C	2225
WF ₆	NH ₃	SiO ₂		350 °C ^b		944
WF ₆	$NH_{3} + B_{2}H_{6}$	SiO ₂	300 °C	300 °C ^b	300 °C ^b	2356
WF ₆	$NH_{3} + B_{2}H_{6}$	SiO ₂		200–350 °C	200–350 °C	2230
W(^t BuN) ₂ (NMe ₂) ₂	NH ₃	Si, SiO ₂ , Ni, Cr	250–380 °C			1067, 1689, and 2231
W ₂ (NMe ₂) ₆	NH ₃	Si	180–210 °C			2235

021301-49 Miikkulainen *et al.*

^aSLG, soda lime glass; H-Si, HF-etched Si; Precursors connected with +, fed in the same pulse; Precursors connected with dash, pulsed separately; DMHy, dimethylhydrazine. ^bAmbiguous interpretation due to reflection overlap, low film thickness, or weak intensity.

^cPlasma.

^dEpitaxy.

^ePhoto-assisted.

TABLE IV. (Continued.)

TABLE V. Results for some ALD and PEALD TiN films: film type (crystalline/weakly crystalline/amorphous), average growth per cycle (GPC), stoichiometry, impurities, and density.

ALD		GPC	Impurities, at. %					Density	
(°C)	Film type	(nm)) N:Ti	С	Н	0	Cl (I)	$(g \text{ cm}^{-3})$	References
Halide reactants									
Thermal ALD									
TiCl ₄ -NH ₃									
300	Cryst.	0.03					7.7 ^a		955
350	Cryst.	0.04	0.9	~ 0		~ 0	2.5	4.2	938
400	Cryst.	0.017				< d.l.	1.2		944
400	Cryst.	0.017	1.16	~ 0		~ 0	1.2	~ 5.4	950
400	Cryst.	0.04	0.9	~ 0		~ 0	0.5	4.7	938
450	Cryst.	0.03					1.8		955
450	Cryst.	0.04	0.9	~ 0		~ 0	0.3	4.9	938
500	Cryst.	0.02			< 0.4		< 0.5		934
500	Cryst.	0.02	0.9	~ 0		~15	< 0.05		935
500	Cryst.	0.03					1.0		955
TiI ₄ –NH ₃	5								
400	Cryst.	0.012	0.5			~ 30	<0.5 (I)		968
500	Cryst.	0.03	0.8			~ 10	<0.5 (I)		968
TiCl ₄ -allvlNH ₂	- 5								
400	Amorph. ^b	0.015	0.7	9	$\gtrsim 3^{\circ}$	≥ 13	7		967
TiCl_DMHv				, i i i i i i i i i i i i i i i i i i i	-				
250	Amorph.	0.022					18		966
300	W. cryst.	0.022		6	2		7		966
400	W. cryst.	0.026	1.0	13	2	14	2		966
Plasma ALD		0.020	110	10	-		_		,00
TiCl_N H plasma									
100	Cryst	0.026	1.1		16	2.6	2.1	3.9	960
200	Cryst	0.027	1.0		10	14	0.96	017	960
300	Cryst.	0.036	1.0			2.8	0.42		960
320	Cryst.	0.030	1 ^d	~0		~0	~ 1.0	4.9	950
400	Cryst.	0.050	1.0		3	1.8	0.07	4.9	960
Alkylamide reactants	Ciyst.	0.050	1.0		5	1.0	0.07	4.0	200
Thermal ALD									
Ti(NMea) -NHa									
150	Amorph	0.3	1.0	21		20			975
180	Amorph.	0.2	1.0	10		20°			973
180	W cryst	0.7	0.0	6		37		3.1	980
200	Amorph	0.5	1.0	20		20		5.1	975
200	Amorph.	0.06	0.5	0		37			986
240	W cryst	1_11	0.8	7		37		3.0	976
350	W cryst.	76	1.0	/		7		5.0	975
Ti(NEtMe)NH.	w. cryst.	7.0	1.0	75		/)15
200	Amorph	0.5	0.6	4	6				006
Plasma ALD	Amorph.	0.5	0.0	-	0				770
Ti(NMe.)H. plasma									
150	Cravet	0.035	0.7	11		0		4.1	005
250	Amorph	0.055	1	~5		25		7.1	080
Ti(NMe.)N. plasma	лиогри.	•••	1	~5		20			202
250	Amorph		13	45		10			080
Ti(NMes) -NH- plasma	z morph.	•••	1.5	т.Ј		10			209
200		0.08	0.0	1		5			086
250	Amorph	0.00	1.2	-3		20			088
250	Amorph.	0.2	1.2	1		20			080
200	Amorph.		1.1	1	•••	20			202

^aReduction of Cl by pump-down to 2.3 at. %.

^bResults for 7 sccm flow rate. Higher flow rate of 16 sccm gave weakly crystalline film.

^cFor a similar process using NH₃ with co-reactant, about 3 at. % H and 13 at. % O were reported. With the allylNH₂ alone, these impurities are most likely at a similar or higher level.

^dN:Ti adjustable, 0.93–1.1.

^e40 at. % O after 30d air exposure.

FIG. 14. TEM cross-section of TiN grown on native silicon oxide from $TiCl_4$ and NH_3 at 400 °C. Reprinted with permission from K.-E. Elers, V. Saanila, W.-M. Li, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Thin Solid Films **434**, 94 (2003). Copyright 2003 Elsevier.

TiCl₄ – NH₃ process on silicon with columnar crystallites is shown in Figure 14. Crystallite diameter is on the order of 20 nm.⁹⁴⁵ The orientation of the lattice planes varies depending on the exact process details—e.g., substrate, temperature,^{938,952,955,960} and the presence of additional reducing agents.⁹³⁴ The most abundant orientation is [100] in most studies, but other orientations are seen to coexist. Examples of x-ray diffractograms measured for TiN made by the TiCl₄ – NH₃ process are shown in Figure 15.

Temperature is among the most important factors affecting crystallinity, both directly as well as indirectly through the impurity contents. Common to the metal halide-based processes is the ALD-wise relatively high process temperature: Almost all studies with thermal ALD have been made at temperatures above 300°C. Although high for ALD, this temperature is still low compared to the melting point of TiN of about 2930°C. The minimum ALD temperature is set by thermodynamics: At lower temperatures, the Gibbs energy of the possible reaction paths of metal halides with ammonia is positive, and completing the necessary reactions is difficult.⁹³⁴ The relatively high ALD temperature can in principle be one factor that may explain the crystalline nature of TiN films grown from the halide reactants: Qualitatively seen, higher temperatures allow the atoms to find the most relaxed locations during the ALD cycle.

Another important factor that affects film crystallinity is the impurity concentrations: High concentrations might prevent crystallization altogether. It may be difficult to separate

FIG. 15. X-ray diffractograms of TiN films deposited from $TiCl_4$ and NH_3 at in 1000 ALD cycles at temperatures 350, 400, and 450 °C. Reprinted with permission from H. Jeon, J.-W. Lee, Y.-D. Kim, D.-S. Kim, and K.-S. Yi, J. Vac. Sci. Technol. A **18**, 1595 (2000). Copyright 2000 American Vacuum Society.

the effect of temperature from the effect of impurities, since these often go together: The higher the ALD temperature, the lower the impurity concentrations often (but not always) are. This decreasing trend in impurity contents with increasing ALD temperature is clear also for the titanium halideammonia TiN ALD processes (Table V). However, polycrystalline TiN has been reported even in cases where there are significant concentrations of impurities present in the layers, e.g., 7 at. % Cl for thermal ALD at 300°C and 2 at. % Cl and 16 at. % H for PEALD at 100°C. It is clear, therefore, that significant quantities of Cl and H impurities do not prevent the crystallization of ALD TiN films. Also the oxygen concentrations measured for some TiN films have been high (tens of percents). However, most likely this oxygen has not been incorporated during the film growth but has come through oxidation of the TiN films upon their exposure to air.²³⁵⁹ Also, in general in polycrystalline TiN films, oxygen has been found not to be uniformly distributed but concentrated on the surface and grain boundaries, thereby leaving crystallinity of grain interiors unaffected.^{2360,2361} Based on a recent paper, this seems to be the case for ALD TiN films also.²³⁵⁹ On the basis of the TiN growth results with the halide-ammonia processes, one cannot therefore conclude on the effect of O impurities on the crystallization behavior, but the fact that Cl and H impurities do not prevent crystallization seems clear.

The few exceptions related to the deposition of amorphous or weakly crystalline TiN from halide reactants (Tables IV and V) are all from processes where organic groups are present in the reducing agent. Carbon residues have been incorporated, and apparently hampered crystallization. This has been the case for the TiCl₄-DMHy process⁹⁶⁶ and the TiCl₄-allylNH₂ process.⁹⁶⁷ The carbon impurity levels were 6-13 at. %, while other impurities and reaction temperatures were similar to the other TiCl₄-based studies. No impurity analysis was reported for the film grown by the TiCl₄ – AlMe₃ – NH₃ process at $275^{\circ}C$, ⁹⁵⁷ but the low density of 3.2 g cm^{-3} reported points to high impurity contents in that case as well. On the basis of this analysis, it seems that C contents of some atomic percents hinder the crystallization of TiN films, also in films grown at higher temperatures (400°C).

TiN films grown from the alkylamide reactants have been reported in most cases to be amorphous (Table IV). Another difference compared to the halides is the markedly lower ALD temperature range: Films have been grown by the alkylamide-based processes at 150 - 250 °C whereas halides typically require temperatures above 300 °C.

The data in Table V indicate that the amorphous TiN films grown by thermal ALD from the alkylamide reactants are loaded with impurities. Typical are carbon contents of 10–20 at. %. Hydrogen content has been determined only in one study, being 6 at. %.⁹⁹⁶ Oxygen contents are in almost all cases high (tens of percents), but similarly to the halide-based processes, the oxygen probably originates from oxidation after the growth upon exposure of the films to ambient air.^{973,987} The density is low, just around 3 g cm⁻³.^{976,980} The high carbon content must originate from incomplete removal of the ligands of the alkylamide reactants or from

thermal decomposition. Ti(NEtMe)⁴, for example, decomposes at about 240 °C, depositing a TiN-type film without any co-reactant.⁹⁹⁶ In a few experiments, some crystallinity has been observed, and this has been accompanied with a somewhat lower carbon concentration, being <10 at. %.^{976,980} (The film grown at 350 °C with crystallinity and 45 at. % C is an exception to this "rule," but this film has been grown at a temperature far higher than decomposition temperature of the alkylamide reactant, and it is therefore a CVD film rather than ALD film.) The TiN films made from the alkylamide reactants by thermal ALD are another example of films, which are amorphous and simultaneously have a high C content.

Plasma-enhanced ALD processes based on alkylamide reactants have similarly to the thermal ALD processes most often given amorphous material with significant impurities. All films with a high oxygen content have also been amorphous (Table V); the amorphous and impure nature of the film probably allows easy oxidation in ambient air. In one study, crystalline film which was not oxidized in air was obtained, however. In this study, the conditions were optimized for removal of the amino groups of the alkylamide reactants by hydrogen plasma.⁹⁹⁵ Simultaneously, the GPC was much lower (0.035 nm) than in other alkylamide-based studies (and similar to the halide-based processes), and crystalline, dense and conductive films were obtained at 150°C. These films contained a significant amount of carbon, however, 11 at. %.⁹⁹⁵ It seems therefore that even the plasma process cannot remove all carbon that results from the decomposition of the alkylamide reactant. The plasma process has probably converted the carbon to carbidic, conductive form, and the material is more correctly described as Ti(C,N) solid solution instead of TiN.

In conclusion, TiN films deposited by ALD seem to grow in a crystalline form, unless there are high amounts of C impurities present that prevent crystallization. Temperature as such does not seem to dictate the crystallinity. Also Cl and H impurities even in high concentrations (over ten percents) do not seem to affect the crystallinity. Crystalline films are obtained by either halide-based processes at higher temperatures (>300 °C) or PEALD at lower temperatures (<300 °C). Amorphous, TiN-type films can be obtained in a wide temperature range by thermal ALD using reactants that contain organic groups—either titanium halide combined with organic reducing agents or alkylamides with any (or no) reducing agent—but this comes with the cost of significant carbon contamination of the films.

C. Metal chalcogenides

1. General

From metal chalcogenides, the most attention has been paid for zinc sulphide, and even the very early ALD experiments were with elemental zinc and sulfur to grow ZnS.²³⁶² The motivation for the development of the whole ALD thin film deposition technology was the need for a better method to fabricate thin film EL displays. The light-emitting layer in monochrome yellow display is Mn(II) doped ZnS. The development work was very successful and in addition to the

ZnS:Mn, strong contribution to the success was coming from the pinhole-free ALD Al_2O_3 and especially Al_2O_3/TiO_2 nanolaminate dielectric layers.^{81,2363} The need to develop multi-color and full color EL displays led to studies on rare earth doped ZnS films and doped alkaline earth sulfides.^{675,1512,2364,2365} The interest towards cadmium and indium sulfide originates from their use as buffer layer in solar cells, especially in those based on CuInSe₂.^{831,1766} ALD is one option for their fabrication.

ALD of selenides and tellurides was studied already in 1980s. The interest stems from thin film solar cells and blue light-emitting diode (LED) materials. CdTe is an important photovoltaic material, and most of the ALD studies have focused on the preparation of CdTe films from the elements.¹⁰⁴² ZnSe, on the other hand, was the most promising blue LED material in 1980s, and its studies concentrated on epitaxial films on single crystal substrates.¹³²³ ALD studies on epitaxial II-VI compounds did not lead to industrial applications, and ALD of selenide and telluride films was scarcely studied until 2009, when a new process based on alkylsilyl chalcogen compounds was discovered.¹¹⁴⁸ This new interest stems from phase change materials, which are aimed for electronic data storage.

An overview of crystallinity of metal sulfide, selenide, and telluride films grown by two-reactant ALD processes is shown in Table VI.

2. Case: Zinc sulfide

The first ZnS ALD experiments were made with elemental zinc and sulfur. However, it was soon realized that this process was not industrially applicable for the production of EL displays. Therefore, a new process, based on compound reactants ZnCl₂ and H₂S, was developed.⁷⁶ There were indications that EL displays may suffer in performance over time due to chlorine residues in the films. Since then, zinc acetate,¹²⁷⁹ DMZ,¹³⁰⁶ Zn(thd)₂ (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate),²³⁶⁷ and DEZ,¹³¹⁸ have been studied as a zinc precursor, H₂S being the sulfur source. The use of ZnBr₂ as a precursor has been mentioned in the literature and ZnI₂ has been used for deposition of ZnS:Mn.^{1305,2367}

The different zinc precursors affect strongly the growth rate and process temperatures. For zinc chloride and diethyl zinc, similar growth rates have been reported (about 1 Å/ cycle) 500°C and 150°C, at respectively.^{1294,1298,1299,1316,2368} Higher growth rates have been reported for films deposited at lower temperatures. The growth rates decrease with increasing temperature, and with DEZ this behavior is stronger than with halides. The deposition temperatures and growth rates with DMZ are similar to those of DEZ, but the temperature dependence is weaker.²³⁶⁸ Acetate yields higher growth rates (2.6 Å/cycle), which has been attributed to the fact that slowly heated zinc acetate molecules can form a volatile tetrameric complex that is referred to zinc oxoacetate (ZnOAc).²³⁶⁹ The complex adsorbs on the surface, and because the zinc atoms in the complex are at appropriate positions from each other for the ZnS lattice, high growth rate can be achieved.¹³⁰⁴ One

Reactant A	Reactant B	Substrate(s)		Phases		References
Sulfides						
CaS			Amorphous	Cubic		
Ca(thd) ₂	H_2S	SLG, Al ₂ O ₃		325–450 °C		675, 676, 678, and 679
TiS ₂			Amorphous	Cubic	Hexagonal	
TiCL	HaS	Rh	400 °C			999
TiCl ₄	H ₂ S	Ru	100 0	400 °C ^b	400 °C ^b	999
TiCl ₄	H_2S	SLG, ZnS, Ir, Pd, Pt, TiN		100 0	400 °C	999
CuS_x			Amorphous	Pseudocubic	Hexagonal	
$Cu(thd)_2$	H ₂ S	Si, SLG			120–160 °C	1144
Cu(thd) ₂	H ₂ S	Corning 7059, SnO ₂ :F, TiO ₂		175–280 °C	125–175 °C	1145 and 1146
Cu(^s BuAMD) ₂	H_2S	Al ₂ O ₃	130 °C		130 °C	1147
ZnS			Amorphous	Cubic	Hexagonal	
Zn	S	GaAs ^c		140–340 °C		1288
Zn	H_2S	GaP ^c		420–600 °C		1289
ZnCl ₂	H_2S	GaAs ^c		510 °C		1300 and 1301
ZnCl ₂	H_2S	glass, SLG, phlogopite, ITO, silica, Al ₂ O ₃			390–500 °C	84, 1290–1292, 1295, 1297–1299, 1302, 1304, and 2134
$ZnCl_2$	H_2S	Al ₂ O ₃		360–500 °C ^b	360–400 °C ^b	1304
ZnI_2	H ₂ S	Al ₂ O ₃		300–490 °C	300–490 °C	1305
$ZnMe_2$	H ₂ S	GaAs ^c		150–310 °C		1308 and 1311
ZnMe ₂	H_2S	H-Si ^c		125–175 °C		1313 and 1314
ZnMe ₂	H ₂ S	Si, Corning 7059		25–500 °C ^b	25–500 °C ^b	1306
ZnMe ₂	H_2S	Corning 7059		200–340 °C		1309
ZnEt ₂	H_2S	glass		120 °C ^b	120 °C ^b	1194
ZnEt ₂	H_2S	$Al_xTi_vO_z, Al_2O_3$		250–400 °C	350–400 °C	1317 and 1318
ZnEt ₂	H_2S	H-Si			110 °C	1215
ZnEt ₂	H_2S	Si		100–400 °C	300–400 °C	1320
$Zn(CH_3COO)_2$	H_2S	SLG, ITO		290–390 °C		1292, 1295, and 1297
$Zn(CH_3COO)_2$	H_2S	SLG, Al_2O_3		290–360 °C ^b	290–360 °C ^b	1279, 1304, and 1322
$Zn(OAc)_2$	H_2S	Al_2O_3		250–350 °C ^b	250–350 °C ^b	1304
SrS			Amorphous	Cubic		
$Sr(^{i}Pr_{3}Cp)_{2}$	H ₂ S	Al ₂ O ₂		260–400 °C		1509
Sr(Me ₅ Cp) ₂	H ₂ S	Al ₂ O ₂		280–350 °C		1509
Sr(thd) ₂	H ₂ S	Al ₂ O ₂ , SLG		350–450 °C		675 and 1512

TABLE VI. Crystallinity studies of ALD chalcogenide films made by diffraction or spectroscopy.^a

TABLE VI.	(Continued.)
-----------	--------------

Reactant A	Reactant B	Substrate(s)		Phases		References
CdS			Amorphous	Cubic	Hexagonal	
Cd	S	GaAs ^c		340 °C		1707
CdCl ₂	H_2S	GaAs ^c		510 °C		1300
CdCl ₂	H ₂ S	ZnS		510 °C		1300
CdMe ₂	H ₂ S	ZnSe ^c		RT		1709, 1710, and 1713
CdMe ₂	H_2S	Si, glass		100–400 °C	100–400 °C	1714
In_2S_3			Amorphous	Tetragonal		
InCl ₂	HaS	SLG		300–400 °C		1763
In(acac) ₂	H ₂ S	ZnO	160 °C	200 100 0		1178
In(acac) ₃	H ₂ S	glass		130–160 °C		1766, 1767, and 1772
$In(acac)_3$	H_2S	Si, Cu(In,Ga)Se ₂ , SLG, Corning 7059		140–260 °C		1768, 1769, and 1771
Sb ₂ S ₃			Amorphous	Orthorhombic		
$Sb(NMe_2)_3$	H_2S	Si	120 °C			1829
$Sb(NMe_2)_3$	H ₂ S	$Sb_2 S_3^c$		65–160 °C		2366
Sb(NMe ₂) ₃	H_2S	$Sb_2 Se_3^{c}$		90–160 °C		2366
BaS			Amorphous	Cubic		
Ba(Me ₅ Cp) ₂	H_2S	$Al_2 O_3$		240–300 °C		1509
Ba(thd) ₂	H_2S	Al ₂ O ₃ , SLG		300–450 °C		675 and 1831
La ₂ S ₃			Amorphous	Cubic		
La(thd) ₃	H_2S	SLG, Corning 7059	300–400 °C	500 °C		1857
WS ₂			Amorphous	Hexagonal		
WF ₆	H_2S	ZnS		300 °C		2238
WF ₆	$H_2S(ZnEt_2 \text{ cat.})$	ZnS		300–350 °C		2239
PbS			Amorphous	Cubic		
Pb(detc) ₂	H_2S	glass, Al ₂ O ₃ , BaF ₂		300–350 °C		2277
Pb(thd) ₂	H_2S	Si		160 °C		2279
Selenides						
ZnSe			Amorphous	Cubic		
Zn	Se	GaAs		200–430 °C		1323, 1327, 1331, and 1335–1337
Zn	Se	GaAs ^c		350–410 °C		1339
Zn	Se	ZnTe ^c		200–400 °C		1323, 1325, and 1327
ZnMe ₂	H_2Se	H-Si ^c		125–250 °C		1313, 1314, 1352, and 1354
ZnMe ₂	H ₂ Se	GaAs ^c		100–200 °C		1350 and 1352
ZnCl ₂	H ₂ Se	GaAs		400–500 °C		1342–1344

TABLE VI. (Continued.)

Reactant A	Reactant B	Substrate(s)		Phases		References
CdSe			Amorphous	Cubic		
Cd	Se	ZnSe		230–300 °C		1715, 1717, 1718, and 1720
Cd	Se	GaAs ^c		350–410 °C		1722
Tellurides						
MgTe			Amorphous	Cubic		
Mg	Те	CdTe		260–300 °C		69 and 70
ZnTe			Amorphous	Cubic		
Zn	Те	GaAs		200–400 °C		1323, 1327, and 1359
Zn	Те	GaAs ^c		380–390 °C		1363 and 1365
Zn	Те	ZnSe ^c		200–400 °C		1323 and 1327
Zn	Те	CdTe ^c		225–250 °C		1361
Zn	Те	ZnTe ^c		280 °C		1362
GeTe			Amorphous	Rhombohedral		
$GeCl_2\cdot C_4H_8O_2$	(Et ₃ Si) ₂ Te	Si		90 °C		1148
CdTe			Amorphous	Cubic		
Cd	Те	CdTe ^c , BaF ₂ ^c , GaAs ^c		260–290 °C		70, 1043, 1046, 1723, 1724, 1726, 1730, and 1731
Cd	Те	ZnSe		230–300 °C		1720
CdMe ₂	TeEt ₂	GaAs ^c , Si		250–320 °C		1367 and 1749
CdMe ₂	TeMe(allyl)	GaAs ^c , Si		250–320 °C		1367 and 1748–1750
Sb_xTe_y			Amorphous	Rhombohedral Sb ₂ Te ₃	Sb-like rhombohedral	
SbCl ₃	(Et ₃ Si) ₂ Te	Si		60 °C		1148
SbCl ₃	$(Et_3Si)_2Te-(Et_3Si)_2Sb$	Si			95°C	534
НgТе			Amorphous	Cubic		
HgMe ₂	TeMe(allyl)	GaAs ^c , Si		140 °C		1748 and 1750

^aSLG, soda lime glass; ITO, indium tin oxide; H-Si, HF-etched Si. ^bAmbiguous interpretation due to reflection overlap or weak intensity. ^cEpitaxy.

monolayer per cycle (3.1 Å/cycle) is possible with dimethyl zinc and elemental zinc precursors.^{1289,1309} The ZnI₂ molecule is significantly larger than ZnCl₂, and therefore the growth rate of ZnS from ZnI₂ is less than half of that from ZnCl₂.¹³⁰⁵ Process temperatures can vary from room temperature (alkyl compounds) to >500 °C (halides), depending on the precursor.

ALD zinc sulfide films studied have been polycrystalline. Since the application has been luminescence, there has been no interest in amorphous films, because it is known that crystalline order is beneficial for light emission. ZnS is known to exist in both cubic (zinc blende or sphalerite) and hexagonal (wurtzite) crystal phases. The phase depends on the temperature, and at atmospheric pressure, the lowtemperature cubic phase transforms to hexagonal form at 1020°C. In thin films, the wurtzite phase has been seen at much lower temperatures. However, the cubic phase is known as the low-temperature and the hexagonal phase as the high-temperature form. Distinguishing the phases from each other in thin film samples with x-ray diffraction measurements is difficult, because they both show the main reflection at around 28.5° (CuK_a radiation) which can be attributed to either cubic(111) or hexagonal(002). The appearance of the hexagonal phase is usually determined from the (103) reflection at 51.8°, but this reflection is always relatively weak.^{1295,2370,2371}

The XRD patterns show that the polycrystalline ALD ZnS films are preferentially oriented to either c[111] or h[001] direction. In the earlier studies, it has been suggested that ZnS films deposited by ALD below 400°C are mainly in the cubic form and above 400°C mainly in the hexagonal form.^{1292,1317,2370} The opinion was based on the observations from the chloride process where at 350°C the cubic phase was seen whereas at 460°C XRD showed hexagonal reflections. Optical measurements can be used to confirm the phase structure since the cubic and hexagonal forms have slightly different band gaps and Mn emission in ZnS shifts 3-4 nm towards red when the structure changes from cubic to hexagonal.²³⁷² It is obvious that there is a rather wide temperature range where the both phases can coexist. The films grown from the acetate have been cubic but this may be because the acetate cannot be used above 390°C due to thermal decomposition. Most of the crystal structure studies with the acetate have been made from the films grown at around 300°C.^{1292,1295,1322}

The structures of ZnS films grown from the alkyl compounds have not been studied thoroughly. The early paper on room temperature DMZ + H₂S process reports that the thin films (<100 nm) showed crystallinity, with the mean grain diameter increasing with increasing deposition temperature.¹³⁰⁶ One report deals with epitaxial monolayer per cycle growth from DMZ at 250 - 310 °C on GaAs(001) surface.¹³⁰⁸ The paper on the DEZ + H₂S process shows that the cubic phase dominates at 250 - 350 °C, and at 400 °C, the hexagonal structure appears in XRD.¹³¹⁷ The DEZ process, although widely used, has not been described thoroughly in literature. It is obvious that it allows the deposition of ZnS at low temperatures, but at which temperature the crystallization starts is unclear. XRD is not a very good method to study crystallinity in detail, since it requires relatively large ordered areas for detection. Electron diffraction with small beam size can distinguish smaller areas. In order to know exactly when the hexagonal phase appears and how broad the two-phase temperature range is, electron diffraction or careful optical measurements should be carried out. Recently, Bakke *et al.* confirmed by TEM and optical measurements that the cubic and hexagonal phases coexist in a wide temperature range ($225 - 400^{\circ}$ C), and traces of hexagonal phase were seen already in films deposited at 200° C with the DEZ-H₂S process.¹³²⁰

Grain sizes of the films have been studied by XRD and scanning electron microscopy. It seems that higher deposition temperature and thicker film result in larger grains in all processes.^{1295,1306,1322,2371} In the chloride process, the tendency is stronger than in the acetate process. It is believed that because of the larger grains, the electroluminescence efficiency is better in films grown from the chloride than in those made from the acetate.¹³⁰⁵ In the DEZ process, the dependence of the grain size on thickness is similar to that of the chloride process.¹³¹⁷ The SEM and TEM studies show that ALD ZnS films consist of columnar grains that extend through the whole thickness.^{1318,2373} The grain shape seems to depend on the process, since the acetate and DEZ processes show smaller conical or columnar grains than ZnS grown with the chloride process.¹³¹⁷ In films grown at low temperatures, the grains are largely aligned vertically to the sample surface, but at higher growth temperatures, the grains are more randomly oriented, as seen in Figure 16.¹³²⁰ Further on, it seems that larger thickness and higher growth temperature result in a rougher surface, as studied by atomic force microscopy (AFM).^{1298,1317,1320} It has also been shown that high roughness is promoted by low nucleation density at the beginning of the film growth.

The study of epitaxial growth on single-crystal GaAs(001) shows that the substrate has an effect on the structure and morphology.¹³⁰⁸ However, ZnS films have usually been grown on amorphous substrates (glass, aluminacoated glass, quartz) or native-oxide-covered silicon. The beginning of the growth on the amorphous surface has not been studied carefully. The density measurements by Rutherford backscattering spectrometry (RBS) and ellipsometry have shown that the growth on glass starts mainly as amorphous and crystallization occurs after a few tens of nanometers.¹²⁹³ On an Al₂O₃ layer, ZnS is polycrystalline already at the beginning of the growth, but poor crystal quality has been reported for the first 25 nm thickness, as evaluated by luminescence measurements. AFM study at the beginning of the growth in the chloride process shows a difference between glass and mica surfaces.¹²⁹⁸ The nucleation takes place more easily on glass than on the atomically flat crystal surface of mica and, accordingly, the film is smoother on glass than on mica. Angle-resolved x-ray photoelectron spectroscopy (ARXPS) on the DEZ + H₂S process on Al₂O₃-covered Si wafers showed that after 100 growth cycles there is aluminum at the surface. This tells that at first small ZnS agglomerates are formed at randomly distributed nucleation sites and more than 100 cycles are needed before the agglomerates coalesce.¹³¹⁷

FIG. 16. Bright field TEM images of 2000 cycles of ZnS from Et_2Zn and H_2S at (a) 150 °C and (b) 400 °C. Columnar grains extend from substrate to surface in the film grown at 150 °C, while the grains are more randomly oriented in the film grown at 400 °C. Reprinted with permission from J. R. Bakke, J. S. King, H. J. Jung, R. Sinclair, and S. F. Bent, Thin Solid Films **518**, 5400 (2010). Copyright 2010 Elsevier.

D. Other inorganic ALD materials

1. General

An overview of the crystallinity of elemental films, metal phosphides and arsenides, and fluorides, grown by two-reactant ALD processes, is shown in Tables VII–IX, respectively.

Elemental films divide into metals and Si, Ge (Table VII), and most recently also Sb.⁵³⁴ For metal ALD no such universal chemistries as available for metal oxides with water- and ozone-based processes, for example, have been established by now. The first clearly successful ALD metal process was based on the reduction of WF₆ with silane and later also borane. Analogous chemistry was used later also for molybdenum.²³⁷⁶ For noble metals, rather general chemistry that exploits molecular oxygen as the co-reactant has been established, as will be discussed in more detail in Sec. **III D 2.** For copper, various attempts have been made (Table VII), but the breakthrough process is still to be found. In principle, plasma activation of either hydrogen alone or with, for example, nitrogen (NH₃ or N₂-H₂ mixture) has potential to develop to the desired universal approach to metal ALD, and indeed, promising results have been reported with many metals, including the highly challenging electropositive metals Al and Ta.^{71,72,685,2124–2128} However, much effort is still needed to validate this promise and to solve potential problems, both chemistry- and reactorrelated, deriving from the exploitation of plasma.

Nearly all the ALD metal films have been polycrystalline in the as-deposited form. An interesting, and potentially technologically important exception, is the amorphous tungsten films that were obtained using B_2H_6 as a reducing agent WF_6 at 300 °C.²²⁰² Under identical conditions, the use of Si₂H₆ as reducing agent resulted in crystalline W films. One might think that the amorphous structure would be due to higher impurity contents, but the films contained about the same amounts (ca. 5 at. %) of boron and silicon. The rest of the amorphous ALD metal films reported can be ascribed to their low deposition temperatures and/or high impurity contents.

ALD, or in this case more exactly ALE, of Si and Ge, together with the III–V compound semiconductors (arsenides and phosphides) was extensively investigated in the late 1980s and the early 1990s.^{1480,2377} With Si and Ge, a substantial amount of surface chemistry studies were conducted

but the film properties were not reported in similar detail. The III–V compounds gained even more effort and were thoroughly characterized with respect to both deposition chemistry and film properties. However, as there was no clear advantage compared to competing techniques, metalorganic vapor-phase epitaxy (MOVPE) in particular, and the films suffered from high carbon contamination levels, the interest toward ALE of semiconductors faded away toward mid-1990s. As noted, this research was aimed at epitaxial growth and, accordingly, the crystalline properties of the resulting films were dominated by the epitaxial effects of the substrate material.

Metal fluorides form an important class of thin film materials especially for optics because of their transparency to short UV wavelengths and low refractive index. Yet, ALD studies on metal fluorides have remained rather limited. This must be partly due to concerns related to fluorine precursor. Noting the wide use of hydrides as nonmetal precursors in general would make HF an obvious choice, but it is highly corrosive and toxic. Indeed, in the very first ALD metal fluoride studies, HF was obtained by decomposing NH₄F thermally and reacted successfully with Ca(thd)₂, Sr(thd)₂, and Zn acetate.⁶⁸⁰ Quite recently, Pilvi et al. showed that TiF₄ and TaF5 can serve as fluorine source when reacted with metal-thd precursors. $^{66-68,681,1534,1858,2378}$ TiF₄ and TaF₅ are reasonably low-volatility solids and therefore safe to handle and easy to capture from the reactor exhaust. The reaction with metal thd precursors was surprisingly complete, leaving only minor amounts of Ti and Ta residues into the films.

With respect to crystallization, metal fluoride films (LaF₃, YF₃, CaF₂, MgF₂) deposited from the corresponding metal-thd precursors and TiF₄ or TaF₅ showed similar behavior: Films deposited at 225–250 °C were only weakly crystalline and the crystallinity intensified strongly with increasing deposition temperature.^{66–68,681,1534,1858,2378} This led to a substantial roughening of the films which is unfortunate with respect to the potential UV optics applications of the films. Only YF₃ could be deposited below 225°C, down to 175°C, and these films were amorphous to XRD and had smooth surfaces.¹⁵³⁴ The negative effect of the low deposition temperatures was the contamination of the films by residual elements from the precursors. The fluoride films obtained with HF were all crystalline as the deposition temperatures were 260°C and higher.⁶⁸⁰

TABLE VII. Crystallinity studies of ALD element films made by diffraction or spectroscopy.^a

Material reactant A	Reactant B	Substrate(s)	Pha	Phases		
Al			Amorphous	Crystalline		
AlMea	H ₂ °	Si SiO ₂ TiN		250 °C	71 and 72	
Si		51, 510 ₂ , 111		200 0	, 1 (110) / 2	
Si2Cle	Si2 H6	$\operatorname{Ge}(100)^{d}$		465 °C	548	
SiClaHa	H ₂ ^c	$Ge(100)^d$		465 °C	548	
SiClaHa	H ₂	$H-Si(100)^{d}$		815-825 °C	542 and 543	
SiClaHa	H ₂	$H-Si(111)^d$		890–910 °C	543	
Fe	• • <u>/</u>			0,0 ,10 0	010	
$Fe(^{t}BuNCMeN^{t}Bu)_{2}$	Ha	SiO ₂ , glass		250 °C	1053	
Co		010 ₂ , grass		200 0	1000	
$Co(^{i}PrNCMeN^{i}Pr)_{2}$	Ha	SiO ₂ , glass		350 °C	1053	
$Co(^{i}PrNCMeN^{i}Pr)_{2}$	H ₂	SiO ₂ , SiNS		300 °C	1067	
$C_0(P_0)$	NH ₂ ^c	Si Si		300 °C	1071	
$CoCp(CO)_{2}$	NH ₂ ^C	SiO ₂ Si		250_400 °C	1073	
$CoCp(CO)_2$	H. ^C	H Si		250-400 °C	1075	
$Coc(CO)_2$	н ₂ н. ^с		75 110 °C	125-175 C	1070	
Ni	112	11-51	75-110 C		1077	
Ni(ⁱ PrNCMeN ⁱ Pr) ₂	H_2	SiO ₂ , glass		250 °C	1053	
Ni(acac) ₂	H_2	Ti, Al, Si		250 °C	1092	
Ni(hfip) ₂	H ₂	H-Si		225 °C	1094	
Cu						
CuCl	$H_2 + H_2O$	Al ₂ O ₃		425 °C	1114	
CuCl	H ₂ -H ₂ O	Al_2O_3 , SiO_2		375–475 °C	1113 and 1114	
CuCl	H ₂ -H ₂ O	$Al_2O_3^{d}$		400 °C	2374	
CuCl	Zn	Al ₂ O ₃		500 °C	1115	
$Cu(hfac)_2$	NH ₃ -H ₂ O	SiO ₂		283–302 °C	1141	
Cu(hfac) ₂ ·XH ₂ O	formalin	TiN, TaN, Ta		300 °C	1124	
$Cu(hfac)_2 + H_2 + H_2O$	MeOH	TiN, TaN, Cu, Ta, glass		300 °C	1138	
$Cu(hfac)_2 + H_2 + H_2O$	EtOH	TiN, TaN, Cu, Ta, glass		300 °C	1138	
$Cu(hfac)_2 + H_2 + H_2O$	ⁱ PrOH	TiN, TaN, Cu, Ta, glass		300 °C	1138	
$Cu(hfac)_2 + H_2 + H_2O$	formalin	TiN, TaN, Cu, Ta, glass		300 °C	1138	
$Cu(hfac)_2 + H_2 + H_2O$	CO	TiN. TaN. Cu. Ta. glass		300 °C	1138	
Cu(hfac)(vtmos)	H ₂ ^c	TiN		200–300 °C	1126	
Cu(acac)	H ₂	Ti Al glass		250 °C	1092	
$Cu(acac)_2$	H ₂ ^c	Si. glass		140 °C	1116	
$Cu(thd)_2$	H ₂	SLG-Pt/Pd SiO ₂ glass		190–350 °C	1119 1120 and	
Cu(mu) ₂	112	510 T (T G, 510 ₂ , 5105		170 550 0	1120, und 1122	
Cu(thd) ₂	H_2^{c}	Au, TaN_x , SiO ₂		90–250 °C	1123	
$Cu(dmap)_2$	ZnEt ₂	Si		100–120 °C	1132	
$[Cu(^{i}PrNCMeN^{i}Pr)]_{2}$	H_2	SiO ₂ , glass, Co, WN		190–280 °C	1053 and 1067	
[Cu(^s BuNCMeN ^s Bu)] ₂	H_2	Al ₂ O ₃ , SiO ₂ , Si ₃ N ₄ , glass, Ru,		150–190 °C	1127	
		Co, Cu, WN				
Zn						
ZnEt ₂	H_2O	silica		200 °C	1149	
Ge						
GeMe ₂ H ₂	H_2^{c}	SiO_2^d		480 °C	1494	
Mo						
MoCl ₅	Zn	Al ₂ O ₃ , SLG		400–500 °C	1634	
Ru						
Ru(chd)(ipmp)	O ₂	SiO ₂		220 °C	1641	
$Ru(Cp)_2$	O ₂	Al_2O_3 , TiO_2 , SiO_2 , HfO_2 , $HfSiO_1Ta_2O_2$, cathon aerogel		275–400 °C	1643, 1646, 1647, and 1650	
$Ru(Cn)_{2}$	NH ₂ ^c	$TaN_{a} Ta_{2}O_{5}$, can be in a long of TaN_{a}		300 °C	1649	
$Ru(EtCp)_2$	0.	Si SiO ₂ TiN Ta ₂ O ₂		270_300 °C	1652 1654 and	
Mu(Licp)2	U 2	51, 5102, 1113, 14205		270-300 C	1687	
Ru(EtCp) ₂	NH ₃ ^c	TaN, Si	290 °C ^b		1669	
$Ru(EtCp)_2$	${\rm NH_3}^{\rm c}$	TiN, TaN _x , Ta ₂ O ₅ , H-Si, SiO ₂ , Si	100–200 °C ^b	270–350 °C	1650, 1661, 1662, 1666, and 1670	
Ru(EtCp) ₂	$H_2^{c}-O_2$	TiO ₂		300 °C	900	
Ru(EtCp) ₂	$H_2 + N_2^{c}$	O-Si, SiO ₂		200–230 °C	994 and 1671	

TABLE VII. (Cor	ntinued.)
-----------------	-----------

Material reactant A	Reactant B	Substrate(s)	Pha	ases	References
Ru(EtCp)(dmp)	O ₂	Si, Au, Pt, Al ₂ O ₃ , SiO ₂ , TiO ₂ , TiN		230–290 °C	906, 1672, 1673, and 1677
RuCp(CpCH(Me)(NMe ₂))	O_2	Al ₂ O ₃		325–500 °C	1680
Ru(thd) ₃	02	Al ₂ O ₃		325–400 °C	1685 and 1686
$Ru(^{t}BuAMD)_{2}(CO)_{2}$	02	O-Si		300–400 °C	1688
$Ru(^{t}BuAMD)_{2}(CO)_{2}$	NH ₃	WN		250–300 °C	1689
Rh	-				
$Rh(acac)_3$	O_2	Al ₂ O ₃		250 °C	1694
Pd	-				
$Pd(hfac)_2$	formalin	Al_2O_3		200 °C	1702
Pd(hfac) ₂	H ₂	Ir, TaN		80–130 °C	1696 and 1697
Pd(hfac) ₂	НСОСООН	tetrasulfide SAM		200 °C	1696
$Pd(thd)_2$	H_2	Al_2O_3 , SiO_2		180 °C	1684
Pd(thd) ₂	H ₂ ^c	Ir. W. Si	80 °C		2375
Ag	2	, · · , · ·			
$Ag(O_2C^tBu)(PEt_3)$	H_2^{c}	Si, glass		140 °C	1705
Ag(hfac)(cod)	propanol	glass		110–150 °C	1811
Sb	III	6			
SbCl ₃	(Et ₃ Si) ₃ Sb	Si, SLG		95–250 °C	534
Ta	(.). /)				
TaCl ₅	H_2^c	Si, SiO ₂	25–400 °C	400 °C ^b	685, 2124, and 2165
TaF5	${\rm H_2}^{\rm c}$	SiO ₂		200–350 °C	2125–2127
W					
WF ₆	Si ₂ H ₆	Si		327 °C ^b	2208
WF ₆	Si ₂ H ₆	Al ₂ O ₃		122–177 °C	187 and 309
WF ₆	SiH_4	TiN, SiO ₂		300 °C	2201 and 2202
WF ₆	B_2H_6	TiN	300 °C		2202
Ir					
Ir(acac) ₃	O ₂	Al_2O_3 , TiO_2 , SS		225–375 °C	276, 832, 2240, and 2243
Ir(acac) ₃	O ₃	Si, SLG, Al ₂ O ₃		200–225 °C	2252
Ir(acac) ₃	O ₃ -H ₂	Al ₂ O ₃		165–200 °C	2246
Ir(EtCp)(cod)	O_2	SiO ₂ , TiN		270–290 °C	2248 and 2249
Ir(EtCp)(cod)	NH ₃ ^c	TiN		270 °C	2249
Ir(MeCp)(chd)	02	Al_2O_3		225–350 °C	2250
Pt					
Pt(MeCp)Me ₃	O ₂	Al ₂ O ₃ , Ir, Si, SiO ₂ , ZrO ₂ , SrTiO ₃ , SnO ₂ , borosilicate		200–300 °C	295, 1644, 2243, 2253, 2255, 2260, 2262, and 2270
Pt(MeCp)Me ₃	O_2^{c}	Si, SiO ₂		300 °C	2260
Pt(acac)Me ₂	O ₃	Al ₂ O ₃		140–200 °C	2273

^aDMHy, dimethylhydrazine; SLG, soda lime glass; H-Si, HF-etched Si; SAM, Self-assembled monolayer; Precursors connected with +, fed in the same pulse; Precursors connected with dash, pulsed separately.

^bAmbiguous interpretation due to reflection overlap or weak intensity.

^cPlasma.

^dEpitaxy.

2. Case: Ruthenium

Ruthenium is a potential high-work-function electrode material for DRAM capacitors and MOSFETs, and has therefore gained substantial interest in ALD as well. Further motivation for Ru ALD development comes from fuel cell electrodes, catalysts, and the use of Ru as a seed layer for the electrodeposition of Cu on barrier layers for IC interconnects. The first Ru ALD process exploited RuCp₂ and molecular oxygen as precursors.¹⁶⁴³ Exploitation of molecular oxygen as the other precursor for metal deposition is some-

what surprising, as O_2 is not a reducing agent, but this process is more complicated and involves oxidative decomposition of the metal precursor.¹⁶⁴² Subsequently it was demonstrated that besides organometallic compounds, also β -diketonates could be used as Ru precursors, and also other noble metals (Ir, Pt, Rh, Pd) could be deposited with similar O₂-based processes. A common feature for these metals is that they are catalytically active in dissociating O₂ to atomic oxygen, which apparently is critical for activating O₂ that otherwise has turned out to be often inert in ALD. Deposition temperatures have typically been between 250

021301-60 Miikkulainen *et al.*

TABLE VIII. Crystallinity studies of ALD phosphide, arsenide and antimonide films made by diffraction or spectroscopy.^a

Material reactant A	Reactant B	Substrate(s)	Pha	ises	References
Phosphides GeP			A 100 ann h	Cubic	
Gar		~ - d ~ d	Amorphous	Cubic	
GaMe ₃	PH ₃	GaP ^a , GaAs ^a		500 °C	1394
GaMe ₃	PH_3	Si ⁻		450–600 °C	516 and 1392
Game ₃	$P(NMe_2)_3$	\$10 ₂		450 °C	1395
InP			Amorphous	Cubic	
InMe ₃	PH ₃	GaAs ^d		420–580 °C	1773
InMe ₃	PH ₃	InP ^d		350–360 °C	1775 and 1776
Arsenides					
AlAs			Amorphous	Cubic	
AlMe ₃	AsH ₃	H-Si ^d		500 °C	513
AlMe ₂ H	AsH ₃	GaAs ^d		470 °C	520
AlMe ₂ H	AsH ₃ -NMe ₂ H	GaAs ^d		460 °C	522
AlMe ₃	AsH ₃	H-Si ^d		500 °C	516 and 1426
AlMe ₃	AsH ₃	As ^d		500–850 °C	516
(Me ₃ N)·AlH ₃	$As(NMe_2)_3$	GaAs ^d		310–400 °C	527
(Me ₃ N)·AlH ₃	AsH ₃	As-Si, GaAs ^d		150 °C	525
(Me ₂ EtN)·AlH ₃	AsH ₃	GaAs ^d		250–650 °C	528–532
MnAs			Amorphous	Hexagonal	
Mn(CpMe) ₂	As(NMe ₂) ₃	GaAs ^d		350–500 °C	1052
GaAs			Amorphous	Cubic	
Ga+HCl	AsH ₃	GaAs ^d		350–550 °C	1397, 1399, and 1411
GaCl ₃	AsH ₃	GaAs ^d		300–450 °C	1413 and 1414
GaCl ₃	AsH ₃	GaAs		200–250 °C	1413 and 1414
GaMe ₃	AsH ₃	GaAs ^d		450–700 °C	1417, 1420, 1433, and 1438
GaMe ₃	AsH ₃	silica		400 °C	1467
GaMe ₃	AsH ₃	H-Si		500 °C	516, 1426, 1439, and 1463
GaMe ₃	AsH ₃	InAs ^d		500 °C	1394
GaMe ₃	$AsH_3-H_2^c$	GaAs		430–500 °C	1441
GaMe ₃	AsH ₃	GaP ^d		500 °C	516
GaMe ₃	^t BuAsH ₂	GaAs ^d		500–580 °C	1470 and 1474
GaMe ₃	EtAsH ₂	GaAs ^d		500–540 °C	1468
GaMe ₃	As	GaAs ^d		370–530 °C	1434
GaMe ₃ ^b	AsH ₃	GaAs ^d		370–430 °C	514
GaEta	AsH ₃	GaAs ^d		385 °C	1438
GaEt ₃	^t BuAsH ₂	GaAs ^d		550 °C	1486
GaEt ₃	As(NMe ₂) ₃	GaAs ^d		440–495 °C	527
GaEt ₃ ^b	AsH ₃	GaAs ^d		370–430 °C	514
GaEt ₂ Cl	AsH ₃	GaAs ^d		450–525 °C	1490
$Ga(C_5H_{11})_3$	^t BuAsH ₂	GaAs ^d		430–500 °C	1491
InAs			Amorphous	Cubic	
In+HCl	AsH ₃	GaAs ^d		350–550 °C	1399 and 1411
InMe ₃	^t BuAsH ₂	InP ^d		350–410 °C	1775, 1776, 1788, and 1789
InMe ₃	AsH ₃	InAs ^d		360–420 °C	1394
Antimonides					
AlSb			Amorphous	Cubic	
AlCl ₃	$(Et_3Si)_3Sb$	Si, SLG		300 °C	534
GaSb			Amorphous	Cubic	
GaCl ₃	$(Et_3Si)_3Sb$	Si, SLG	150 °C		534

TABLE VIII. (Continued.)

Material reactant A	Reactant B	Substrate(s)	Phases		References
GeSb			Amorphous	Cubic	
$GeCl_2 \cdot (C_4H_8O_2)\text{-}SbCl_3$	(Et ₃ Si) ₃ Sb	Si, SLG	95 °C		534

^aH-Si, HF-etched Si; Precursors connected with +, fed in the same pulse; Precursors connected with dash, pulsed separately.

^bPhoto-assisted deposition.

^cPlasma.

^dEpitaxy.

and 350° C but with *N*,*N*-dimethyl-1-ruthenocenylethylamine, i.e., a derivative of RuCp₂ where the alkyl substituent of the Cp-ring has an amine group, self-limiting growth was achieved up to at least 450° C.¹⁶⁸⁰ Examples of Ru films grown from this precursor are shown in Figure 17.

Reaction mechanism studies on the RuCp₂–O₂ process with quadrupole mass spectrometer (QMS) showed that CO₂ and H₂O were the main byproducts of the process, and that these both were released during both precursor pulses.¹⁶⁴² This implies that during the oxygen pulse not only the hydrocarbon ligands remaining from the preceding metal precursor pulse are oxidized, but also adsorbed oxygen atoms are formed on the surface to react with the next metal precursor pulse. Interestingly, QCM measurements showed that the amount of oxygen atoms left on the film surface was equal to 2–3 ML, which means that some subsurface oxygen had to be formed as well. The same and following studies have shown that a similar mechanism seems to apply to other O₂-based noble metal processes as well, except that the subsurface oxygen formation seems to be unique to Ru.

In general, the Ru films obtained with the O_2 -based processes have contained only small amounts (a few at. % in maximum, often below 1 at. %) of oxygen as an impurity, showing that the atomic oxygen formed on the film surface during the O_2 pulse is almost completely consumed in the

following reactions with the hydrocarbon ligands of the metal precursor. However, a combination of a high O_2 dose and low metal precursor dose has sometimes resulted in RuO₂ instead of metallic Ru, but this seems to imply that the metal precursor dose has remained short from saturation.⁹⁹⁴ While oxides of other noble metals (IrO₂, RH₂O₃, PtO_x) have been successfully deposited at low temperatures using ozone instead of O_2 , ^{1695,2252,2273} with Ru this is not possible because Ru and RuO₂ are etched by O₃ forming volatile RuO₄. Accordingly, while Ir, Rh, and Pt can be deposited at low temperatures using a cycle sequence metal precursor– O_3 –H₂, ^{2246,2273} this is not applicable to Ru.

In addition to the O_2 -based processes, Ru films have been grown by PEALD using ammonia plasma, but the growth rate in these processes has sometimes been modest, though rates comparable to thermal ALD have been reported, too. The plasma processes have exhibited similar nucleation delays as the O_2 -based processes.¹⁶⁷⁰

A common observation to the Ru and other noble-metal ALD processes has been a long incubation time (nucleation delay) of tens of cycles before the film starts go grow with a constant rate. This is understandable, as in these cases the surfaces on which Ru is deposited are not catalytically active for O_2 dissociation. In fact, it still remains an open question how the growth gets started on a surface that does not

TABLE IX. Crystallinity studies of ALD fluoride films made by diffraction or spectroscopy.

Material reactant A	Reactant B	Substrate(s)	Phases		References
			Amorphous	Tetragonal	
Mg(thd) ₂	${ m TiF_4}$	Si		250–400 °C	66 and 67
CaFa			Amorphous	Cubic	
Ca(thd) ₂	HF	Al ₂ O ₃		320 °C	680
$Ca(thd)_2$	TiF ₄	Si		300–450 °C	67 and 681
Ca(thd) ₂	TaF ₅	Si		225–400 °C	68
ZnFa			Amorphous	Rutile	
Zn(CH ₃ COO) ₂	HF	$Al_2 O_3$		300 °C	680
SrFa			Amorphous	Rutile	
$Sr(thd)_2$	HF	Al ₂ O ₃		350 °C	680
VF.			Amorphous	Orthorhombic	
$Y(thd)_3$	TiF_4	Si	175–200 °C	225–325 °C	1534
LeE			Amorphous	Hexagonal	
Lar_3 La(thd) ₃	${ m TiF_4}$	Si		225–250 °C	1858

FIG. 17. Top-view SEM images of Ru films grown from CpRuCpCH(CH₃)N(CH₃)₂ and air at 400 °C (top row), 450 °C (middle row), and 500 °C (bottom row). The labels indicate the deposition temperature, number of ALD cycles, cycle time (Ru precursor-purge-O₂-purge), Ru thickness, and electrical resistivity. Reprinted with permission from K. Kukli, M. Ritala, M. Kemell, and M. Leskelä, J. Electrochem. Soc. **157**, D35 (2010). Copyright 2010 ECS—The Electrochemical Society.

catalyze O₂ dissociation. Most likely some minor decomposition of Ru precursor occurs first to form the first metallic Ru nuclei that then act as the catalysts. Indeed, with increasing deposition temperature the nucleation delay is shortened. Furthermore, new precursors like (η^6 -1-isopropyl-4-methylbenzene)(η^4 -cyclohexa-1,3-diene)ruthenium(0)¹⁶⁴¹ and (2,4dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium (DER),¹⁶⁷² which from the chemistry point of view should be somewhat less stable than the cyclopentadienyls and β -diketonates, have exhibited linear growth almost from the very beginning of the growth, yet the processes do not seem to suffer from precursor decomposition.

Based on their observation that negligible nucleation delay was observed when Ru was deposited from DER and O_2 on gold film even when gold should not activate O_2 dissociation, Kim *et al.*¹⁶⁷⁷ suggested that instead of O_2 dissociation, it would be the metal precursor adsorption that determines the initial growth. However, while the adsorption of the metal precursor is an important step, it alone does not ensure the onset of the film growth. There are several examples where the metal precursors are clearly adsorbing but no film growth is observed. For example, noble-metal oxides could have been grown at low temperatures with the more reactive co-reactant ozone, but no growth occurs with O_2 at the same temperatures from the same metal precursors.^{1694,1695,2252} Therefore, a more plausible explanation is

that the gold surface catalyzes the decomposition of the Ru precursor so that the first Ru nuclei form on the surface and then start to catalyze the O_2 dissociation. One should also be aware that not all the gold surfaces are the same. Especially nanostructured gold has become famous about its high catalytic activity that greatly exceeds that exhibited by single crystal surfaces. In summary, one can list the following alternatives for the onset of noble metal ALD growth using O_2 as the other precursor: (1) the surface activates O_2 by catalyzing its dissociation to atomic oxygen, (2) the surface catalyzes metal precursor decomposition to form the first metal nuclei, and (3) the first metal nuclei form by chance with non-catalyzed decomposition reaction.

A positive consequence of the difficulties in nucleation of ruthenium and other noble metals is that selective-area ALD is easier to realize with noble metals than with oxides, for example. For selective-area ALD, chosen areas of the substrate surface are covered with self-assembled monolayers (SAM) or polymers upon which the films do not nucleate and thus the films grow only in those areas that are without these passivation layers.^{95,98,835,2241} Another area where poor nucleation and the resulting isolated island deposits have been exploited is nanocrystal floating gates in flash memories.^{1648,1659}

All the Ru films deposited by ALD have been crystalline with the common hexagonal structure; no amorphous ALD Ru films have been reported. The crystalline orientation is more or less random when the deposition is carried out at low temperature. As the temperature is elevated, crystallites tend to orient towards [001] direction.¹⁶⁴² In PEALD Ru films, the same [001] orientation increases with the plasma power. No major differences have been observed between various Ru precursors. The substrate, in turn, may have quite an effect: The films deposited with PEALD from Ru(EtCp)₂ and NH₃ plasma had a random orientation on silicon but were [001] oriented on PEALD TiN film.¹⁶⁷⁰ Examples of x-ray diffractograms measured for Ru grown from *N*,*N*dimethyl-1-ruthenocenylethylamine and air are shown in Figure 18.

IV. CRYSTALLINITY OF INORGANIC ALD MATERIALS: GENERAL TRENDS

This section discusses the general trends in the development of ALD film crystallinity as function of ALD process parameters. We have attempted to isolate the effects of different parameters, but often this is not completely possible because several parameters are interrelated, e.g., temperature, reactants, and impurities. Also, while many ALD processes share characteristics with the examples discussed here, one must remember that each ALD process (reactant pair) is unique and may behave completely differently as compared to the examples given here.

A. Effect of temperature

Temperature affects the crystallinity of all solid inorganic materials, as they undergo phase transition from amorphous to crystalline or a crystalline phase to another at characteristic temperatures. In general, the phase transition temperatures are similar for ALD films as for films made by other techniques. In addition to changes in film crystallinity, other changes occur during ALD process with increase of ALD processing temperature, as reaction and mass transport kinetics get faster. Most notably, the impurity contents in the films change, often decreasing with increasing temperature, but sometimes also increasing with temperature if decomposition of the reactants takes place. The choice of process temperature dictates also the choice of available ALD reactants, since not all reactant combinations work at all temperatures, and the reactants largely determine the impurities. The effect of temperature on crystallinity cannot therefore in most cases be completely separated from its effect on other factors.

Aluminum oxide (Sec. III A 2) is one the materials that predominantly grow in an amorphous form by ALD. At the temperatures used typically for the AlMe₃ – H₂O process (\leq 300 °C) as well as for the AlCl₃ – H₂O process (\leq 500 °C), the films are almost always amorphous. Amorphous Al₂O₃ films can be crystallized by heating. The crystallization temperature is a function of the film thickness, annealing time (and probably also the substrate): the longer the annealing time and thicker the film, the lower the temperature where crystallization is seen. As examples, a 5 nm Al₂O₃ film crystallized at about 900 °C in 1 min anneal,¹⁵¹ and a 100 nm thick Al₂O₃ film between 750 and 800 °C in 30 min anneal.²²⁸ When crystalline films grow during ALD,

FIG. 18. Representative x-ray diffractograms of Ru films grown at different substrate temperatures, measured in GIXRD mode (uppermost panel); Ru films grown to variable thickness or with different Ru precursor pulse length, measured in GIXRD mode (the second panel); Ru films grown at different substrate temperatures to different thicknesses, measured in Θ -2 Θ mode (the third panel); and thin Ru films grown at 450 °C, measured in Θ -2 Θ mode (bottom panel). The inset depicts an x-ray diffractogram from a film grown at 500 °C. Ru peaks are denoted with corresponding Miller indexes. Labels denote the amounts of ALD cycles used, cycle times, growth temperatures, diffraction peak intensity ratios, and film thicknesses (*d*). Reprinted with permission from K. Kukli, M. Ritala, M. Kemell, and M. Leskelä, J. Electrochem. Soc. **157**, D35 (2010). Copyright 2010 ECS—The Electrochemical Society.

the temperature needed for crystalline growth is similar or somewhat lower than the temperature needed for crystallization of thick films by annealing: For Al_2O_3 this is from approximately 700°C upwards (Table III). In rare cases, growth of crystalline Al_2O_3 has succeeded at temperatures significantly lower than the general temperature for crystalline growth (even at 450°C), enabled by the epitaxial growth guided by the single-crystalline substrate.^{100,101}

Zinc oxide (Sec. III A 4) gives an example of a material that almost always grows in a crystalline form. This is the case for films deposited at 25 - 600 °C (Table III). Furthermore, the crystalline films always show a hexagonal structure. ZnO is therefore an example of a material where changes in process temperature do not lead to significant changes in crystallinity or phase. Process temperature affects the crystallite orientation in the film, however, as discussed in detail in Sec. III A 4.

Titanium nitride (Sec. III B 2) exemplifies a material that forms both amorphous or crystalline films, depending on the process details. Most processes carried out at "low" temperatures around 200°C have resulted in amorphous TiN films, and at "high" temperatures around 400°C to crystalline TiN films. However, as discussed in more detail in Sec. III B 2, it is not the process temperature itself but mainly the carbon impurities, which have determined the amorphous/crystalline nature of the films. Alkylamides can be used only at "low" temperatures because of their thermal decomposition, and halides at "high" temperatures because of thermo-dynamic requirements of the reactions. The films grown from alkylamides always contain significant amounts of carbon impurities, which have led to the amorphous TiN films.

Zinc sulphide (Sec. III C 2) is an example of a material where temperature affects the crystallinity. All ZnS films studied have been crystalline. Cubic phase is obtained at low temperatures, at medium temperatures cubic and hexagonal phases coexist, and at higher temperatures hexagonal phase dominates. The transition from the cubic to the hexagonal phase takes place at around 400 °C. In this case, ALD temperature also affects the grain size: The higher the temperature, the larger the grains.

For titanium dioxide, both amorphous and crystalline films have been reported. TiCl₄ and H₂O are the reactants first introduced for the growth of TiO2,⁶⁸⁹ and still remain among the most frequently used reactants. Aarik et al.⁷²⁷ have thoroughly studied the reaction between TiCl₄ and H₂O. They observed by electron diffraction amorphous TiO₂ films at temperatures below 165°C, anatase structure at 165 - 350 °C, and rutile structure dominated at temperatures above 350°C.⁷²⁷ Besides the temperature itself, an additional explanation for the amorphous structure formed at low temperatures may be that chlorine residues hinder the crystallization. The reason for the existence of rutile structure at such a low temperature remains open; the surface intermediates formed and their mobility may favour the growth of rutile. The same group observed also an anomalous effect of temperature on the ALD of TiO₂: A significant increase in growth rate, roughening, and decrease in refractive index occurred when growth temperature was increased from 150 to 225 °C, a behaviour attributed to crystallization of the film.⁷⁴⁴ The crystallization temperature of TiO₂ films is similar regardless of the titanium precursor. With alkoxide (methoxide, ethoxide, isopropoxide) precursors, crystalline anatase together with amorphous phase has been observed at 250 °C, while films deposited at 200 °C have been completely amorphous.^{830,839,847} It is evident, therefore, that for TiO₂, higher temperature promotes crystalline growth, but it is not totally clear whether this is a direct consequence of the temperature or does the decreasing impurity content with increasing temperature dominate.

Temperature can also affect the preferred orientation of the films. For example, TiN films grown from TiI₄ and NH₃ showed [100] orientation when deposited at 400 and 425 °C, but changed to [111] orientation when the growth temperature was $450 - 500^{\circ}$ C.⁹⁶⁸ This change was suggested to be due to a change in steric hindrances caused by the iodido ligands in the TiI_x surface species formed during the TiI_4 pulse. At low temperatures the steric hindrance was thought to be stronger and thereby prevent the formation of the energetically favorable (111) close packed arrangement, which consists of alternate Ti and N layers. At 450°C and above, fewer iodido ligands seemed to remain incorporated in the TiI_x chemisorption layer, as both the orientation changed and growth rate increased. Similar behavior has been reported also for ZnO. At low temperature, [100] orientation is found most often whereas at high temperature [001] becomes dominant. The temperature at which the orientation is changed depends on the reactants as well as on other process parameters.

B. Effect of reactants

It is sometimes considered that certain reactants give certain crystalline phases. It is, however, difficult to separate the effect of reactant alone from the effect of temperature on crystallinity: Most ALD reactants have a characteristic range of temperatures where they can be employed, and these temperature ranges are often different for different types of reactants. Another interrelated parameter strongly affecting crystallinity is the film impurities.

One example of an indirect effect of the reactants on the crystallinity is the deposition of V_2O_5 from vanadyl-tri-isopropoxide and H_2O or O_2 at 150 °C by PEALD. When H_2O plasma was used as reactant, amorphous film resulted, while O_2 -plasma led to a crystalline film.¹⁰¹⁰ The primary reason why the different reactants led to different crystallinity was their effectiveness for removing the ligands of the metal reactant. Water was not sufficiently reactive and the H_2O based V_2O_5 films contained 22 at. % C films, while oxygen plasma effectively combusted the ligands and the film was free from carbon impurities.¹⁰¹⁰ The purity of the film allowed the crystallization.

There are several other examples where certain classes of reactants lead to amorphous films, while others lead to crystalline films. In the ZrO_2 case study (Sec. III A 3), it was pointed out that films grown from halide reactants are generally crystalline when the film thickness is above a certain threshold, while films grown from alkoxides, alkylamides, silylamides and aminoalkoxides are generally amorphous throughout. Similarly, the TiN case study (Sec. III B 2) revealed that films grown from the halide reactants are crystalline, while films from the alkylamides are amorphous. In both cases, the amorphous nature of the films made from the metalorganic precursors is most likely accounted for by their carbon impurities. One must note, however, that also the growth temperature was lower with the alkylamides than with the halides.

In addition to defining whether films are crystalline or amorphous, the choice of reactants may affect the phase, orientation and grain size of a crystalline film, and thereby greatly influences the properties of the films. An example of the effect of reactants on the preferred orientation is the addition of Zn to the deposition of nitrides from chloride reactants. TiN films grown from TiCl₄ and NH₃ at 500°C were of cubic TiN and showed [100] as the preferred orientation, while addition of Zn led to [111] as the preferred orientation.⁹³⁵ Similar to the above-cited temperature effect on the TiI₄ - NH₃ process, also here relaxed steric hindrance caused by removal of chlorido ligands with zinc was thought to enable the formation of the energetically favourable [111] orientation. NbN films grown from NbCl₅ and NH₃ at 500°C showed a significantly higher grain size and increased AFM rms roughness when zinc was added as a reducing agent.⁹³⁵ ZnS films grown by the acetate and DEZ processes show smaller conical or columnar grains than ZnS grown with chloride process.¹³¹⁷

C. Effect of impurities

Impurities are one of the main factors influencing the crystallinity of ALD-grown films. The effect of impurities is interlinked with other ALD parameters: the reactants, temperature, the use of plasma, and sometimes also the substrate.

In the TiN case study (Sec. III B 2), the effect of impurities on crystallinity was investigated in detail for various types of processes (halide-based, alkylamide-based) and for various impurities (Cl, C, H). It was found that impurities indeed strongly affect the amorphous/crystalline nature of the films. Not all impurities were alike, however. Rather high chlorine and hydrogen impurities (up to 7.7 at. % Cl and 16 at. % H) could still be tolerated and resulted in crystalline films. Already moderate carbon concentrations (a few atomic percents), in contrast, resulted in weakly crystalline or completely amorphous films. The TiN case therefore indicated that C impurities effectively prevent crystallization, while Cl and H do not.

The deposition of V_2O_5 from vanadyl-tri-isopropoxide and H_2O or O_2 gives another example of the effect of carbon impurities on the growth. When the growth was done at 150°C, H_2O was used as reactant and the growth was by ALD or PEALD, amorphous film resulted, but when the non-metal reactant was O_2 -plasma, PEALD-grown film was crystalline.¹⁰¹⁰ The ALD and PEALD-grown H_2O -based V_2O_5 films contained 6.5 and 22 at. % C, respectively, while the film grown with O_2 -plasma was free from carbon impurities according to x-ray photoelectron spectroscopy (XPS).¹⁰¹⁰ Obviously, it is the high carbon impurity content that prevented the crystallization of V_2O_5 when H_2O was used as a reactant.

D. Effect of plasma enhancement

The use of PEALD processes brings additional energy to the surface processes in the form of radicals as reactive species, and further energy may be provided by electrons, ions and photons coming from the plasma in variable amounts depending on the plasma configuration and operation pressure. PEALD is used instead of ALD mainly either to enable completely new processes, which would not be operational by thermal ALD at all, or to lower the deposition temperature of processes where thermal ALD also works. For films grown at relatively low temperatures by thermal ALD and PEALD, those grown by PEALD often contain less impurities. The deposition of pure metals such as Al, Ti, and Ag is an example of PEALD as an enabling technology. The lowering of the deposition temperature of the TiCl₄ - NH_3 process down to 100 °C, again, is an example where the use of plasma enhancement allows the process to operate at a significantly lower temperature than possible by thermal ALD. The main drawbacks of PEALD compared to thermal ALD are the limited film conformality⁴² and the more complicated reactor design. Defect generation by energetic photons is possible, too.²³⁷⁹

For thermal ALD and PEALD processes carried out from the same or similar reactants at the same (nominal) temperature, PEALD may result in films with a decreased impurity concentration, and thereby allows crystallization. The additional energy may also lead to increased local temperature and thereby induces crystallization. There are examples where PEALD has resulted in crystalline films while thermal ALD results in amorphous films, but as well examples where PEALD has not influenced the film crystallinity. When at the limit between amorphous and crystalline films, the plasma configuration may have an effect, too: Kim et al.²⁰⁵⁹ compared remote- and direct-plasma PEALD of HfO₂ from Hf(NEt₂)₄ and O₂-plasma at 250°C, and observed that while the 2-3 nm thick films deposited with the remote-plasma were amorphous, those deposited with the direct-plasma were already partially crystallised. This difference was attributed to the additional energy provided by the plasma species, the flux of which is more intense in the direct plasma configuration than in the remote plasma.

The following gives examples where certain PEALD films are crystalline, while comparable films grown by thermal ALD (or other comparable PEALD processes) are amorphous. The deposition of V_2O_5 from vanadyl-triisopropoxide and O_2 -plasma at 150 °C is one such example. When H₂O was used as reactant and the growth was by ALD or PEALD, amorphous films resulted, but when non-metal reactant was O_2 -plasma, the PEALD-grown film was crystalline.¹⁰¹⁰ This difference was related to the fact that carbon impurities prevented crystallization of the films grown using H₂O: the ALD and PEALD-grown H₂O-based V₂O₅ films contained 6.5 and 22 at. % C, respectively, while the PE O₂-grown film was free from carbon impurities according to

XPS.¹⁰¹⁰ A second example is the Ti(NMe₂)-based process to deposit Ti(C)N by PEALD. While all other investigations referred to in Table V using alkylamide reactants by ALD or PEALD resulted in amorphous films, in one investigation the authors had managed to tune the PEALD process so that crystalline, dense, and conductive film was obtained.⁹⁹⁵ A third example is the growth of TiO₂ at 110°C using the TiCl₄ reactant. A PEALD process using TiCl₄ and O₂ plasma resulted in a crystalline TiO₂ film,⁸¹⁸ while a corresponding thermal ALD process with H₂O resulted in amorphous films at such low temperature.^{228,727,814}

The case studies presented in this work contained two examples, where the use of PEALD has resulted in amorphous thin films, similarly to the corresponding thermal ALD processes. The AlMe₃–O₂ PEALD processes to deposit Al₂O₃ resulted in amorphous films at 25 – 300 °C.⁴³² To obtain crystalline Al₂O₃ films by thermal ALD, about 700 °C is required (Table III). Obviously, the additional energy provided by the plasma process does not correspond to several hundreds of degrees temperature increase in thermal ALD. Another example is the Ti(NMe₂)₄-based processes to deposit TiN, where PEALD processes most often are reported to deposit amorphous material, similarly as the thermal processes.^{988,989} This process is somewhat special, though, because the decomposition of the metal reactant makes the process to deviate from the principles of ALD.⁹⁷⁶

E. Effect of substrate

The outermost surface of the substrate has a strong influence on ALD growth, since it determines how the growth starts. Suitable adsorption sites are needed for growth to initiate-if there are none, no growth occurs. The GPC does not need to be constant during the first cycles or tens of cycles of ALD. The way the GPC varies with the number of cycles in the beginning of the growth reveals details of the substrate-reactant interaction, and division of processes to linear growth, substrate-enhanced growth, substrateinhibited growth of type 1 and substrate-inhibited growth of type 2 has been proposed.^{2,163} Type 2 substrate-inhibited growth has been related with island growth, where growth starts from initial nuclei scattered on the surface. 163,2380 Island growth and difficult nucleation are common in ALD processes, especially when the substrate and film are of different types (metal on oxide, nitride on oxide, oxide on Hterminated Si, etc.). An extreme case of nucleation problems is used in area-selective ALD growth, where pre-determined parts of the surface have been passivated with a non-reactive surface termination to block the growth from those parts completely.

The effect of surface groups and their amount on substrate surface on the beginning of ALD growth has been widely studied when depositing high- κ oxides (ZrO₂, HfO₂) on silicon and/or oxidized silicon surfaces. The number of reactive OH groups differs significantly on H-terminated and fully hydroxylated silicon oxide surfaces. For reaction between HfCl₄ and H₂O, it has been shown that at 300 °C the hafnium amount deposited in one cycle is 0.3–0.4 Hf/nm² on H-terminated Si and 3.7–3.9 Hf/nm² on fully hydroxylated SiO₂ surface.¹⁹⁶¹ The difference in nucleation is reflected in the structure and properties of the HfO₂ films. Compared to good quality continuous films deposited on SiO₂ surface, HfO₂ films deposited on H-terminated Si surfaces show a non-uniform, island-like morphology and poor electrical properties due to poor nucleation.¹⁸⁹²

In some cases, the substrate determines whether film grows in an amorphous or crystalline form. The deposition of HfO₂ films from HfCl₄ and H₂O at 300°C is an example of this. Crystalline HfO₂ films of \sim 20 nm thickness with columnar grains of $\sim 8 \text{ nm}$ diameter were observed on Si when it was terminated with 0.5 nm of thermally grown SiO₂, while termination with 0.55 nm of chemically grown SiO₂ (O₃-based aqueous process) led to an amorphous film.¹⁸⁹³ Another example is the deposition of $TiO_2 - Al_2O_3$ laminates using the TiCl₄ – H₂O process at 200 $^{\circ}$ C. The laminate stack consisted of 20 nm films of TiO₂ and Al₂O₃ films, five of each, starting with TiO₂.²⁰⁷ The first TiO₂ layer grown directly on Radio Corporation of America (RCA)-cleaned Si was partly crystalline, while all the TiO₂ layers grown on Al_2O_3 in the process sequence were amorphous.²⁰⁷ In cases where a certain choice of substrate leads to amorphous growth, it is likely that the film thickness also plays a role: For significantly thicker films, the amorphous films might turn to crystalline.

For growth of crystalline films, the substrate will often guide the size of the grains. Crystalline ALD films frequently show columnar grains that extend through the whole film thickness. The first cycles of the ALD growth define how the initial nuclei are located, and this will affect the characteristics of the crystalline film even after thousands of cycles. The denser the initial nuclei are located, the smaller the grains will be, while fewer initial nuclei lead to larger grains, as the columnar crystals need to grow larger before their coalescence. Obviously, there are possibilities for tuning the surface preparations to obtain the desired grain size of a crystalline film. As an example, the Pt nanoparticle size from MeCpPtMe3 and O2 at 270 °C could be controlled by choosing the substrate (SiO₂ vs. Al_2O_3) and other process parameters (cycle numbers, exposure time).²²⁶⁸ In that work it was also shown that the initially obtained Pt nanoparticle distribution and grain size were stable during annealing, unless the temperature needed to initiate diffusion of Pt particles (1000°C) was exceeded.²²⁶⁸ Another example is the growth of ZnO on sapphire, where the initial crystal size was controlled by the number of ALD cycles and annealing conditions, and growth was continued on pre-formed nuclei.²³¹⁶ In the deposition of ZnS, glass substrate resulted in better nucleation and, according to AFM, smoother films than mica substrate.¹²⁹⁸ In XRD, the films on mica showed dramatically more intense reflections, which was most probably due to their larger and more strongly oriented grains.

In some cases, the substrate dictates which crystalline phase is formed. This may lead to the growth of a certain phase at a temperature lower than generally expected, and is often related to epitaxy. The growth of TiO₂ on SnO₂ is an example of this: The SnO₂ substrate guided the growth from Ti(^{*i*}OPr)₄ and H₂O₂ to result in rutile at 250°C,⁸⁸³ while anatase is commonly observed at this temperature. The growth

of Al₂O₃ from AlCl₃ and O₂ is another example: Epitaxial growth of α -Al₂O₃ was observed on sapphire at 600°C and on single-crystal Nb at 450–500°C,^{100,101} while amorphous alumina would be expected at these temperatures in the absence of epitaxy.

Many examples can be found from the literature of the effect of substrate on the preferred orientation of polycrystalline films. For example, the TiCl₄ – H₂O process to deposit TiO₂ resulted at 250–350 °C in randomly oriented polycrystalline anatase on HF-etched Si, KBr and RCA-cleaned Si,^{207,751} while strongly preferred orientation and partial epitaxy were observed on MgO(100).⁷⁵⁷ Zinc oxide grows in general in crystalline form, and with ZnCl₂ and O₂, epitaxial growth of zinc oxide was found on both sapphire^{1153,1154} and GaN¹¹⁵⁵ at temperature range 450 – 550 °C. The deposition of Ru is yet another example of the effect of substrate on the orientation of polycrystalline films: Hexagonal Ru films deposited with PEALD from Ru(EtCp)₂ and NH₃ plasma had a random orientation on silicon but were [001] oriented on PEALD TiN film.¹⁶⁷⁰

On the basis of the examples in the paragraphs above, it is clear that the substrate can influence the evolution of crystallinity in ALD films in many ways. A natural consequence of such influence is that the steady-regime GPC obtained for an ALD process-defined by the reactants and the ALD temperature-may differ for two substrates, even when all experimental growth parameters are identical. Experimentally, such differences in GPC have been observed, for example, for the $TiCl_4 - H_2O$ and $TiF_4 - H_2O$ processes on various glass substrates.^{687,724} Also theoretical modelling has shown that the GPC can differ on two substrates at least because of surface topography differences (and consequently differences in the effective surface area) originating from differences in film nucleation density,²³⁸⁰ differences in the shape of the growing crystallites,³⁸ and differences in the GPC on the various facets of crystalline grains.^{39,40}

F. Effect of film thickness

In the growth of crystalline films, film thickness affects the crystalline properties of the films. The effect of film thickness on crystallinity is often interlinked to other factors, such as temperature and substrate.

Thinner films of a given material may appear amorphous and turn to crystalline after a given thickness. As discussed in detail in Sec. III A 3, ZrO_2 is one of the materials whose deposition starts in an amorphous form, while crystalline ZrO₂ is observed after a certain thickness. This thickness depends on the reactants and temperature, and maybe in some cases also the substrate. Aarik et al.1544 showed that for ZrCl₄ and H₂O reactants, the thickness where ZrO₂ crystallinity is observed is 100 nm at 185 °C, and it decreases with increasing deposition temperature to about 1 nm at 600 °C (Figure 11). In the TiO₂ deposition from TiCl₄ and H₂O, it has been shown that on RCA-cleaned Si the films are originally deposited in amorphous form, but when the films are made thicker, the films crystallize throughout, leading to grains an order of magnitude larger than the film thickness.²⁰⁷ Similar through-crystallization of an amorphous film operates on an Al₂O₃-coated surface, and grains with diameter of approximately $1 \,\mu m$ have been observed for a TiO₂ film thickness of about 20 nm.⁸¹⁴

Increasing thickness may also transform a crystalline material from one phase to another. The growth of ZrO_2 from $ZrCl_4$ and H_2O is an example of such behavior. According to the experimental details reviewed in Sec. III A 3, the first phase to appear is typically cubic or tetragonal; with increasing film thickness, the tetragonal phase starts to dominate; and for still thicker films, the monoclinic phase appears. This behaviour is due to a competition of surface and bulk energy contributions.

G. Grain size of ALD films

A general rule of thumb says that grain size of crystalline thin films should not exceed the film thickness. Most ALD processes probably obey this general rule. Of the case studies of this work, the ZnO process (Figure 12), TiN process (Figure 14), and ZnS process (Figure 16) are examples, where columnar grains are observed, where the width of the columns is smaller than the film thickness. In a separate work, the deposition of ZrO₂ and HfO₂ from alkylamides and water was investigated, concluding for thicknesses up to about 100 nm that the crystal diameter was slightly less than the film thickness, and the average crystal diameter was less than half of the film thickness.¹⁶⁰² These experimental observations closely resemble the simulation results by Nilsen et al.^{37–40} for the development of grains from crystalline seed objects during ALD, a summary of which is shown in Figure 19.

In some cases, the grain size of polycrystalline ALD films has slightly exceeded the film thickness. In Figure 10, ZrO_2 crystallites are seen that are somewhat wider than the film thickness. Another example of the grain size modestly exceeding the film thickness is a recent TiO₂ study, where for films up to 20 nm thickness grown on RCA-cleaned Si and thermal SiO₂, the grain size measured by AFM exceeded the average film thickness by about 20 nm.⁸¹⁴ Island growth^{162,163,2380} might be one candidate to explain such behaviour, although this should be looked into in detail and there may be other explanations, too.

There are also cases where the grain size of polycrystalline ALD films has exceeded the average film thickness significantly, being several times or even order(s) of magnitude larger. The ruthenium case study gives one example of such behavior. The average grain size was on the order of 100 nm for a film whose average thickness was about 20 nm, the largest grains exceeding the lateral size of 200 nm (Figure 17). The film topography differs from those of the simulations for ALD (Figure 19). One particular choice made in the simulations was that surface diffusion was not allowed.^{37–40} While this choice most likely is valid for most processes, for the elemental Ru films it will not be, and the large grain size in the Ru case probably is explained by the surface diffusion of the metallic species. Another example where the crystallite size significantly exceeds the film thickness is the growth of TiO₂. For example, the deposition of \sim 20 nm TiO₂ from TiCl₄ and H₂O on RCA-cleaned Si at 250 - 300 °C resulted

FIG. 19. Pictorial summary of the simulation results by Nilsen *et al.*^{37–40} for the growth of crystalline ALD films from seed objects of various kinds, with respect to the topography and cross-section, for films of a similar simulated thickness. The porosity indicated for films made of platelets and needles is exaggerated. Reprinted with permission from O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films **515**, 4550 (2007). Copyright 2007 Elsevier.

in anatase crystals >200 nm in diameter.^{207,228,814} In the same process on an Al₂O₃ surface, the crystallites were still larger,⁸¹⁴ an example of which is shown in Figure 20. Also the corresponding ethoxide-based TiO₂ process resulted in large grains.⁸³⁷ In the TiO₂ case, the large crystallites are explained to result from the crystallization of the originally amorphous film during the growth of a thicker film.^{207,814} A further speciality regarding TiCl₄-based processes is the fact that rutile TiO₂ crystallites up to more than a micrometer in diameter have been observed after one single TiCl₄ reaction on amorphous high-surface-area silica.⁷²³ The generation of gaseous short-lived OH-containing intermediate species such

FIG. 20. Electron back-scattered diffraction inverse pole figure map for TiO_2 deposited on Al₂O₃ at 250 °C in 500 cycles. A misorientation profile is shown for a grain at the bottom right of the image; the scale bar is 2 μ m. The film thickness is about 20 nm and the average grain size about 0.9 μ m. Reprinted with permission from R. L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, and M. Leskelä, J. Nanosci. Nanotechnol. **11**, 8101 (2011). Copyright 2011 American Scientific Publishers.

as $TiCl_{4-x}OH_x$ has been proposed to explain the observation.^{723,2381,2382}

H. Schemes for the initial growth of crystalline grains in ALD

At least three general schemes can be identified from the ALD literature which proposed to describe the initial stages of growth of crystalline nuclei in ALD. These schemes are summarized in Figure 21. All schemes have their specific features regarding the size of the resulting crystalline grains, extent of crystallinity of the resulting film, and the related growth curve characteristics.

Scheme I refers to a growth of an initially amorphous film, in which crystalline nuclei form randomly. Crystalline grains grow when more material is deposited. The material landing on the crystalline nuclei adopts the existing crystalline structure, and the material landing on amorphous regions remains amorphous. This scheme was visually proposed by Hausmann and Gordon.¹⁶⁰² In this scheme, the size of the resulting crystalline grains increases steadily with the film

FIG. 21. Schematic illustration of different schemes for growth of crystalline grains in ALD. Scheme I: growth of crystalline grains from initial crystalline nuclei embedded in an amorphous film. Scheme II: growth of crystalline grains from initial crystalline nuclei embedded in an amorphous film, and crystallization of the amorphous regions next to the grains. Scheme III: growth of ALD film directly in crystalline form, starting from separate crystalline nuclei.

thickness until the neighboring crystals touch each other. The crystallite size should not exceed the film thickness.¹⁶⁰² Close to the substrate, the ALD film is mostly amorphous, and the film crystallinity increases with increasing thickness. Since in this scheme the growth of the film occurs everywhere on the surface, the ALD growth curve (material deposited vs. cycles) is approximately linear, except perhaps for slight variations due to difference in GPC on amorphous and crystalline regions of the film. This scheme is in accord with the experimental results obtained for the growth of ZrO₂ and HfO₂ films from the alkylamide reactants.¹⁶⁰²

Scheme II can be considered as an extension of Scheme I. In addition to the crystal growth of Scheme I, crystallization of the previously deposited amorphous film next to the grains occurs. This scheme eventually leads to a fully crystalline film, although growth starts as amorphous. The grain size is not limited by the film thickness, but rather dictated by the distance between the randomly formed crystalline nuclei. This scheme was recently proposed by Puurunen et al.⁸¹⁴ Similarly as in Scheme I, the growth curve should be rather linear, with minor deviations from linearity caused by differences in GPC on amorphous and crystalline material. This scheme is in accord with the experimental results for the growth of TiO₂ from TiCl₄ and H₂O on various substrates. 207,228,727,814 TiO₂ crystallites with lateral size of even a micrometer have been observed for Al₂O₃ substrate for TiO₂ film thicknesses in the range of tens of nanometers.⁸¹⁴ The crystallization of as-deposited amorphous films through high-temperature annealing shares characteristics with this scheme, as there also, crystallites order(s) of magnitude larger than the film thickness is(are) sometimes observed.1670,2383

Scheme III assumes that growth starts only at specific sites on the surface as crystalline nuclei. With increasing deposition, the grains grow from the initial nuclei. During the initial phase of the growth, only part of the substrate is covered with ALD material. With increasing deposition, neighbouring grains touch each other, coalesce, and finally form a continuous film. The film is fully crystalline at all phases of growth. The crystallite size increases with the number of cycles, being typically larger than the average film thickness. Here, the film is not uniform, and the maximum film thickness measured from the top of the crystallites is significantly higher than the average film thickness calculated from the amount of material deposited per unit surface area. This scheme formed the basis of the simulations by Nilsen *et al.*^{37–40} In the beginning of the growth, where the nuclei are freely expanding and have not touched each other yet, the growth curve is strongly non-linear. The growth in this case corresponds to island growth, where the average film thickness has a third-order relationship on the number of cycles in the initial growth regime before coalescence.^{163,2380} After coalescence, the growth curve should be roughly linear, similarly as in the other schemes.

Growth of crystalline film through the Schemes I–III results in characteristically different crystallites and ALD growth characteristics (growth curve). While none of these simple schemes will be able to explain all the observations encountered in experimental ALD investigations, they will be useful in analyzing the type of growth in question. The real grain growth may then occur through one of these schemes, a combination of them, or completely another mechanism.

V. CONCLUSION

In this article, we have overviewed the existing ALD processes for growth of inorganic materials, reviewed the crystallinity of such films grown by ALD, explored the trends in crystallinity for illustrative material cases, and discussed general trends in the evolution of the crystallinity of ALD films. Most of the material has been tabulated for easy reference.

To simplify, the following trends can be identified regarding the crystallinity of inorganic ALD films. The higher the ALD temperature, the thicker the film, and the purer the resulting material, the more likely the resulting film will be crystalline. The use of plasma enhancement increases the probability of depositing a crystalline film, but does not guarantee it. Polycrystalline ALD films consisting of columnar grains are typical, the extent of randomness of the orientation depending on the substrate and temperature. The crystalline grain size is most typically related to the film thickness, although in some cases it can be order(s) of magnitude larger than the film thickness. Each ALD process is unique, however, and particular ALD processes may contradict some, several or even all of these simplified trends.

ACKNOWLEDGMENTS

Dr. Kai-Erik Elers, VTT, is thanked for helpful discussions related to TiN growth. Funding for writing this review came from the ALEBOND Tekes project (Dnro 3544/31/07) and from the Finnish Center of Excellence on Atomic Layer Deposition by the Academy of Finland.

- ¹T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
- ²R. L. Puurunen, J. Appl. Phys. **97**, 121301 (2005).
- ³M. Ritala and M. Leskelä, in Handbook of Thin Film Materials, edited
- by H. S. Nalwa (Academic, San Diego, 2002), Vol. 1, pp. 103–159.
- ⁴M. Leskelä and M. Ritala, Angew. Chem., Int. Ed. **42**, 5548 (2003).
- ⁵M. Putkonen, T. Sajavaara, L. Niinistö, and J. Keinonen, Anal. Bioanal. Chem. **382**, 1791 (2005).
- ⁶M. Putkonen and L. Niinistö, Top. Organomet. Chem. 9, 125 (2005).
- ⁷K. E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, and S. Marcus, Chem. Vap. Deposition **12**, 13 (2006).
- ⁸M. Schumacher, P. K. Baumann, and T. Seidel, Chem. Vap. Deposition **12**, 99 (2006).
- ⁹A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, T. D. Manning, Y. F. Loo, R. O'Kane, J. M. Gaskell, and L. M. Smith, Chem. Vap. Deposition 12, 83 (2006).
- ¹⁰M. Knez, K. Nielsch, and L. Niinistö, Adv. Mater. 19, 3425 (2007).
- ¹¹F. Zaera, J. Mater. Chem. 18, 3521 (2008).
- ¹²A. Sherman, Atomic Layer Deposition for Nanotechnology: An Enabling Process for Nanotechnology Fabrication (Ivoryton, Connecticut, 2008).
- ¹³M. Ritala and J. Niinistö, "Atomic layer deposition," in *Chemical Vapour Deposition* (Royal Society of Chemistry, Cambridge, UK, 2009), pp. 158–206.
- ¹⁴J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).
- ¹⁵H. Kim, H.-B.-R. Lee, and W. J. Maeng, Thin Solid Films **517**, 2563 (2009).
- ¹⁶G. Clavel, E. Rauwel, M.-G. Willinger, and N. Pinna, J. Mater. Chem. 19, 454 (2009).

¹⁷S. M. George, Chem. Rev. **110**, 111 (2010).

- ¹⁸R. L. Puurunen, H. Kattelus, and T. Suntola, "Atomic layer deposition in MEMS technology," in *Handbook of Silicon-Based MEMS Materials* and *Technologies* (Elsevier, 2010), pp. 433–446.
- ¹⁹J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, Nanoscale 3, 3482 (2011).
- ²⁰H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A **29**, 050801 (2011).
- ²¹C. Detavernier, J. Dendooven, S. P. Sree, K. F. Ludwig, and J. A. Martens, Chem. Soc. Rev. 40, 5242 (2011).
- ²²S. M. George, B. H. Lee, B. Yoon, A. I. Abdulagatov, and R. A. Hall, J. Nanosci. Nanotechnol. 11, 7948 (2011).
- ²³E. Marin, A. Lanzutti, F. Andreatta, M. Lekka, L. Guzman, and L. Fedrizzi, Corros. Rev. 29, 191 (2011).
- ²⁴G. N. Parsons, S. M. George, and M. Knez, MRS Bull. 36, 865 (2011).
- ²⁵M. Leskelä, M. Ritala, and O. Nilsen, MRS Bull. **36**, 877 (2011).
- ²⁶C. Bae, H. Shin, and K. Nielsch, MRS Bull. **36**, 887 (2011).
- ²⁷J. W. Elam, N. P. Dasgupta, and F. B. Prinz, MRS Bull. 36, 899 (2011).
- ²⁸W. Kessels and M. Putkonen, MRS Bull. 36, 907 (2011).
- ²⁹Q. Peng, J. S. Lewis, P. G. Hoertz, J. T. Glass, and G. N. Parsons, J. Vac. Sci. Technol. A **30**, 010803 (2012).
- ³⁰H. Im, N. J. Wittenberg, N. C. Lindquist, and S. H. Oh, J. Mater. Res. **27**, 663 (2012).
- ³¹H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 010801 (2012).
- ³²F. Zaera, J. Phys. Chem. Lett. **3**, 1301 (2012).
- ³³S. D. Elliott, Semicond. Sci. Technol. 27, 074008 (2012).
- ³⁴M. Knez, Semicond. Sci. Technol. 27, 074001 (2012).
- ³⁵J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012).
- ³⁶C. Wiemer, L. Lamagna, and M. Fanciulli, Semicond. Sci. Technol. 27, 074013 (2012).
- ³⁷O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4527 (2007).
- ³⁸O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4538 (2007).
- ³⁹O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4550 (2007).
- ⁴⁰O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, J. Cryst. Growth 308, 366 (2007).
- ⁴¹R. L. Puurunen, Appl. Surf. Sci. 245, 6 (2005).
- ⁴²H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010).
- ⁴³D. Hausmann, J. Becker, S. L. Wang, and R. G. Gordon, Science 298, 402 (2002).
- ⁴⁴T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvåg, J. Mater. Chem. 20, 2877 (2010).
- ⁴⁵M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, and H. Fjellvåg, J. Mater. Chem. **19**, 8767 (2009).
- ⁴⁶S. I. Kol'tsov, T. V. Tuz, and A. N. Volkova, Zh. Prikl. Khim. **52**, 2196 (1979) [J. Appl. Chem. USSR **52**, 2074 (1979)].
- ⁴⁷M. Putkonen and L. Niinistö, Thin Solid Films **514**, 145 (2006).
- ⁴⁸J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 413, 16 (2002).
- ⁴⁹B. Mårlid, M. Ottosson, U. Pettersson, K. Larsson, and J.-O. Carlsson, Thin Solid Films **402**, 167 (2002).
- ⁵⁰J. Olander, L. M. Ottosson, P. Heszler, J. O. Carlsson, and K. M. E. Larsson, Chem. Vap. Deposition 11, 330 (2005).
- ⁵¹V. V. Brei, V. A. Kasperskii, and N. E. Gulyanitskaya, React. Kinet. Catal. Lett. **50**, 415 (1993).
- ⁵²V. M. Gun'ko, Kinet. Katal. **34**, 463 (1993); **34**, 406 (1993).
- ⁵³S. F. Komarov, J. J. Lee, J. B. Hudson, and M. P. D'Evelyn, Diamond Relat. Mater. 7, 1087 (1998).
- ⁵⁴T. I. Hukka, R. E. Rawles, and M. P. D'Evelyn, Thin Solid Films 225, 212 (1993).
- ⁵⁵R. Huang and A. H. Kitai, Appl. Phys. Lett. **61**, 1450 (1992).
- ⁵⁶R. Huang and A. H. Kitai, J. Electron. Mater. **22**, 215 (1993).
- ⁵⁷R. Huang and A. H. Kitai, J. Mater. Sci. Lett. **12**, 1444 (1993).
- ⁵⁸M. Putkonen, T. Sajavaara, and L. Niinistö, J. Mater. Chem. **10**, 1857 (2000).
- ⁵⁹M. Putkonen, M. Nieminen, and L. Niinistö, Thin Solid Films 466, 103 (2004).

- ⁶⁰T. Törndahl, C. Platzer-Björkman, J. Kessler, and M. Edoff, Prog. Photovoltaics 15, 225 (2007).
- ⁶¹R. Mantovan, M. Georcieva, M. Perego, H. L. Lu, A. Zenkevich, G. Scarel, and M. Fanciulli, Acta Phys. Pol. A **112**, 1271 (2007).
- ⁶²H.-L. Lu, S.-J. Ding, and D. W. Zhang, Electrochem. Solid-State Lett. 13, G25 (2010).
- ⁶³B. B. Burton, D. N. Goldstein, and S. M. George, J. Phys. Chem. C 113, 1939 (2009).
- ⁶⁴T. Hatanpää, J. Ihanus, J. Kansikas, I. Mutikainen, M. Ritala, and M. Leskelä, Chem. Mater. **11**, 1846 (1999).
- ⁶⁵M. Putkonen, L.-S. Johansson, E. Rauhala, and L. Niinistö, J. Mater. Chem. 9, 2449 (1999).
- ⁶⁶T. Pilvi, T. Hatanpää, E. Puukilainen, K. Arstila, M. Bischoff, U. Kaiser, N. Kaiser, M. Leskelä, and M. Ritala, J. Mater. Chem. **17**, 5077 (2007).
- ⁶⁷T. Pilvi, M. Ritala, M. Leskelä, M. Bischoff, U. Kaiser, and N. Kaiser, Appl. Opt. 47, C271 (2008).
- ⁶⁸T. Pilvi, E. Puukilainen, U. Kreissig, M. Leskelä, and M. Ritala, Chem. Mater. **20**, 5023 (2008).
- ⁶⁹J. M. Hartmann, J. Cibert, F. Kany, H. Mariette, M. Charleux, P. Alleysson, R. Langer, and G. Feuillet, J. Appl. Phys. **80**, 6257 (1996).
- ⁷⁰J. M. Hartmann, M. Charleux, H. Mariette, and J. L. Rouvière, Appl. Surf. Sci. 112, 142 (1997).
- ⁷¹Y. J. Lee and S.-W. Kang, J. Vac. Sci. Technol. A **20**, 1983 (2002).
- ⁷²Y. J. Lee and S.-W. Kang, Electrochem. Solid-State Lett. 5, C91 (2002).
- ⁷³S. I. Kol'tsov, V. B. Kopylov, V. M. Smirnov, and V. B. Aleskovskii, Zh. Prikl. Khim. **49**, 516 (1976) [J. Appl. Chem. USSR **49**, 525 (1976)].
- ⁷⁴S. I. Kol'tsov, V. M. Smirnov, R. R. Rachkovskii, T. V. Malalaeva, and V. B. Aleskovskii, Zh. Prikl. Khim. **51**, 2596 (1978) [J. Appl. Chem. USSR **51**, 2475 (1978)].
- ⁷⁵K. Ezhovskii and A. I. Klusevich, Neorg. Mater. **39**, 1230 (2003) [Inorg. Mater. **39**, 1062 (2003)].
- ⁷⁶T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, in *SID International Symposium in San Diego, California, 29 April-1 May 1980, Digest of Technical Papers* (SID, Los Angeles, California, 1980), pp. 108–109.
- ⁷⁷T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. patent 4,413,022 (1 November, 1983).
- ⁷⁸T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. patent 4,389,973 (28 June, 1983).
- ⁷⁹J. Aarik, A. Aidla, A. Jaek, A.-A. Kiisler, and A.-A. Tammik, Acta Polytech. Scand., Chem. Technol. Metall. Ser. **195**, 201 (1990).
- ⁸⁰L. Hiltunen, H. Kattelus, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Mater. Chem. Phys. 28, 379 (1991).
- ⁸¹H. Kattelus, M. Ylilammi, J. Saarilahti, J. Antson, and S. Lindfors, Thin Solid Films 225, 296 (1993).
- ⁸²M. Nieminen, L. Niinistö, and R. Lappalainen, Microchim. Acta 119, 13 (1995).
- ⁸³M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Thin Solid Films 286, 54 (1996).
- ⁸⁴D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, Thin Solid Films 289, 250 (1996).
- ⁸⁵K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 144, 300 (1997).
- ⁸⁶S. J. Yun, K. H. Lee, J. Skarp, H. R. Kim, and K. S. Nam, J. Vac. Sci. Technol. A 15, 2993 (1997).
- ⁸⁷S. J. Yun, J. S. Kang, M. C. Paek, and K. S. Nam, J. Korean Phys. Soc. 33, S170 (1998).
- ⁸⁸M. Tiitta, E. Nykänen, P. Soininen, L. Niinistö, M. Leskelä, and R. Lappalainen, Mater. Res. Bull. 33, 1315 (1998).
- ⁸⁹M. Nieminen and L. Niinistö, Fresenius' J. Anal. Chem. **364**, 224 (1999).
- ⁹⁰Y. S. Kim, J. S. Kang, S. J. Yun, and K. I. Cho, J. Korean Phys. Soc. 35, S216 (1999).
- ⁹¹K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 148, F35 (2001).
- ⁹²M. Lulla, J. Asari, J. Aarik, K. Kukli, R. Rammula, U. Tapper, E. Kauppinen, and V. Sammelselg, Microchim. Acta 155, 195 (2006).
- ⁹³S. Dueñas, H. Castán, H. García, A. de Castro, L. Bailón, K. Kukli, A. Aidla, J. Aarik, H. Mändar, T. Uustare, J. Lu, and A. Hårsta, J. Appl. Phys. **99**, 054902 (2006).
- ⁹⁴M. Kemell, E. Färm, M. Ritala, and M. Leskelä, Eur. Polym. J. 44, 3564 (2008).
- ⁹⁵E, Färm, M. Kemell, M. Ritala, and M. Leskelä, J. Phys. Chem. C 112, 15791 (2008).
- ⁹⁶S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, J. Aarik, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 155, G241 (2008).
- ⁹⁷A. K. Roy, W. Baumann, I. Koenig, G. Baumann, S. Schulze, M. Hietschold, T. Maeder, D. J. Nestler, B. Wielage, and W. A. Goedel, Anal. Bioanal. Chem. **396**, 1913 (2010).
- ⁹⁸E. Färm, M. Kemell, E. Santala, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 157, K10 (2010).
- ⁹⁹Y. K. Ezhovskii and V. Y. Kholkin, Inorg. Mater. 46, 38 (2010).
- ¹⁰⁰G. Oya, M. Yoshida, and Y. Sawada, Appl. Phys. Lett. **51**, 1143 (1987).
- ¹⁰¹G. Oya and Y. Sawada, J. Cryst. Growth **99**, 572 (1990).
- ¹⁰²M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Acta Polytech. Scand., Chem. Technol. Metall. Ser. **195**, 193 (1990).
- ¹⁰³M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, Science **288**, 319 (2000).
- ¹⁰⁴P. I. Räisänen, M. Ritala, and M. Leskelä, J. Mater. Chem. **12**, 1415 (2002).
- ¹⁰⁵G. V. Anikeev, K. Ezhovskii, and S. I. Kol'tsov, Neorg. Mater. 24, 619 (1988) [Inorg. Mater. 24, 514 (1988)].
- ¹⁰⁶G. S. Higashi and L. J. Rothberg, J. Vac. Sci. Technol. B 3, 1460 (1985).
- ¹⁰⁷G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. 55, 1963 (1989).
- ¹⁰⁸C. Soto and W. T. Tysoe, J. Vac. Sci. Technol. A 9, 2686 (1991).
- ¹⁰⁹C. Soto, R. Wu, D. W. Bennett, and W. T. Tysoe, Chem. Mater. 6, 1705 (1994).
- ¹¹⁰V. E. Drozd, A. P. Baraban, and I. O. Nikiforova, Appl. Surf. Sci. 82/83, 583 (1994).
- ¹¹¹S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, Appl. Surf. Sci. 82/83, 460 (1994).
- ¹¹²A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surf. Sci. 322, 230 (1995).
- ¹¹³E.-L. Lakomaa, A. Root, and T. Suntola, Appl. Surf. Sci. **107**, 107 (1996).
- ¹¹⁴A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way, and S. M. George, Appl. Surf. Sci. **107**, 128 (1996).
- ¹¹⁵A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, Thin Solid Films **292**, 135 (1997).
- ¹¹⁶A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, K. C. McCarley, and J. D. Way, Chem. Mater. 9, 707 (1997).
- ¹¹⁷J. I. Skarp, P. J. Soininen, and P. T. Soininen, Appl. Surf. Sci. **112**, 251 (1997).
- ¹¹⁸P. Ericsson, S. Bengtsson, and J. Skarp, Microelectron. Eng. **36**, 91 (1997).
- ¹¹⁹Y. Kim, S. M. Lee, C. S. Park, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett. **71**, 3604 (1997).
- ¹²⁰B. S. Berland, I. P. Gartland, A. W. Ott, and S. M. George, Chem. Mater. 10, 3941 (1998).
- ¹²¹M. Ritala, M. Leskelä, J.-P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, Chem. Vap. Deposition 5, 7 (1999).
- ¹²²M. Ritala, M. Juppo, K. Kukli, A. Rahtu, and M. Leskelä, J. Phys. IV France 9, Pr8/1021 (1999).
- ¹²³R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén, J. Phys. IV France 9, Pr8/493 (1999).
- ¹²⁴E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. **76**, 176 (2000).
- ¹²⁵R. L. Puurunen, A. Root, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, J. Phys. Chem. B 104, 6599 (2000).
- ¹²⁶A. M. Uusitalo, T. T. Pakkanen, M. Kröger-Laukkanen, L. Niinistö, K. Hakala, S. Paavola, and B. Löfgren, J. Mol. Catal. A: Chem. 160, 343 (2000).
- ¹²⁷M. Juppo, A. Rahtu, M. Ritala, and M. Leskelä, Langmuir 16, 4034 (2000).
- ¹²⁸R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, Thin Solid Films 368, 1 (2000).
- ¹²⁹J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 371, 95 (2000).
- ¹³⁰J. D. Ferguson, A. W. Weimer, and S. M. George, Appl. Surf. Sci. 162/ 163, 280 (2000).
- ¹³¹M. Juppo, "Atomic layer deposition of metal and transition metal nitride thin films and in situ mass spectrometry studies," Ph.D. dissertation (University of Helsinki, Finland, 2001).
- ¹³²R. L. Puurunen, M. Lindblad, A. Root, and A. O. I. Krause, Phys. Chem. Chem. Phys. 3, 1093 (2001).
- ¹³³A. Rahtu, T. Alaranta, and M. Ritala, Langmuir 17, 6506 (2001).
- ¹³⁴A. Paranjpe, S. Gopinath, T. Omstead, and R. Bubber, J. Electrochem. Soc. 148, G465 (2001).

- ¹³⁵E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, Microelectron. Eng. 59, 341 (2001).
- ¹³⁶A. Rahtu, "Atomic layer deposition of high permittivity oxides: Film growth and in situ studies," Ph.D. dissertation (University of Helsinki, Finland, 2002).
- ¹³⁷R. Puurunen, "Preparation by atomic layer deposition and characterisation of catalyst supports surfaced with aluminium nitride," Ph.D. dissertation (Helsinki University of Technology, Espoo, Finland, 2002).
- ¹³⁸O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin Solid Films 402, 248 (2002).
- ¹³⁹H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. De Gendt, M. Heyns, J. Maes, and M. Tuominen, J. Non-Cryst. Solids 303, 83 (2002).
- ¹⁴⁰W. F. A. Besling, E. Young, T. Conard, C. Zhao, R. Carter, W. Vandervorst, M. Caymax, S. De Gendt, M. Heyns, J. Maes, M. Tuominen, and S. Haukka, J. Non-Cryst. Solids 303, 123 (2002).
- ¹⁴¹L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids **303**, 17 (2002).
- ¹⁴²J. W. Elam, Z. A. Sechrist, and S. M. George, Thin Solid Films 414, 43 (2002).
- ¹⁴³J. W. Elam, M. D. Groner, and S. M. George, Rev. Sci. Instrum. 73, 2981 (2002).
- ¹⁴⁴M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002).
- ¹⁴⁵J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, J. W. Elam, and S. M. George, Chem. Mater. 14, 2276 (2002).
- ¹⁴⁶B. Brijs, C. Huyghebaert, S. Nauwelaerts, M. Caymax, W. Vandervorst, K. Nakajima, K. Kimura, A. Bergmaier, G. Döllinger, W. N. Lennard, G. Terwagne, and A. Vantomme, Nucl. Instrum. Methods Phys. Res. B **190**, 505 (2002).
- ¹⁴⁷J. W. Elam and S. M. George, Chem. Mater. 15, 1020 (2003).
- ¹⁴⁸T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Appl. Phys. Lett. **82**, 2883 (2003).
- ¹⁴⁹N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George, and Y. C. Lee, Sens. Actuators, A 103, 100 (2003).
- ¹⁵⁰R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. 94, 6411 (2003).
- ¹⁵¹S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films **425**, 216 (2003).
- ¹⁵²S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Appl. Surf. Sci. **211**, 352 (2003).
- ¹⁵³R. L. Puurunen, Chem. Vap. Deposition 9, 327 (2003).
- ¹⁵⁴J.-F. Damlencourt, O. Renault, A. Chabli, F. Martin, and M.-N. Séméria, J. Mater. Sci.: Mater. Electron. 14, 379 (2003).
- ¹⁵⁵M. M. Frank, Y. J. Chabal, and G. D. Wilk, Appl. Phys. Lett. 82, 4758 (2003).
- ¹⁵⁶M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk, M.-Y. Ho, E. B. O. da Rosa, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. 83, 740 (2003).
- ¹⁵⁷P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003).
- ¹⁵⁸J. S. Lee, B. Min, K. Cho, S. Kim, J. Park, Y. T. Lee, N. S. Kim, M. S. Lee, S. O. Park, and J. T. Moon, J. Cryst. Growth **254**, 443 (2003).
- ¹⁵⁹M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639 (2004).
- ¹⁶⁰T. Kawahara, K. Torii, R. Mitsuhashi, A. Muto, A. Horiuchi, H. Ito, and H. Kitajima, Jpn. J. Appl. Phys., Part 1 43, 4129 (2004).
- ¹⁶¹S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Mater. Sci. Eng., B **107**, 251 (2004).
- ¹⁶²R. L. Puurunen, W. Vandervorst, W. F. A. Besling, O. Richard, H. Bender, T. Conard, C. Zhao, A. Delabie, M. Caymax, S. De Gendt, M. Heyns, M. M. Viitanen, M. de Ridder, H. H. Brongersma, Y. Tamminga, T. Dao, T. de Win, M. Verheijen, M. Kaiser, and M. Tuominen, J. Appl. Phys. **96**, 4878 (2004).
- ¹⁶³R. L. Puurunen and W. Vandervorst, J. Appl. Phys. **96**, 7686 (2004).
- ¹⁶⁴R. T. Brewer, M.-T. Ho, K. Z. Zhang, L. V. Goncharova, D. G. Starodub, T. Gustafsson, Y. J. Chabal, and N. Moumen, Appl. Phys. Lett. 85, 3830 (2004).
- ¹⁶⁵R. K. Grubbs, C. E. Nelson, N. J. Steinmetz, and S. M. George, Thin Solid Films 467, 16 (2004).
- ¹⁶⁶S. S. Lee, J. Y. Baik, K.-S. An, Y. D. Suh, J.-H. Oh, and Y. Kim, J. Phys. Chem. B 108, 15128 (2004).

- ¹⁶⁷M. Kang, J.-S. Lee, S.-K. Sim, B. Min, K. Cho, H. Kim, M.-Y. Sung, S. Kim, S. A. Song, and M.-S. Lee, Thin Solid Films 466, 265 (2004).
- ¹⁶⁸C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, and J. Jeong, J. Vac. Sci. Technol. B 22, 1838 (2004).
- ¹⁶⁹R. G. Vitchev, J. J. Pireaux, T. Conard, H. Bender, J. Wolstenholme, and C. Defranoux, Appl. Surf. Sci. 235, 21 (2004).
- ¹⁷⁰J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 16, 5602 (2004).
- ¹⁷¹H. Bender, T. Conard, O. Richard, B. Brijs, J. Pétry, W. Vandervorst, C. Defranoux, P. Boher, N. Rochat, C. Wyon, P. Mack, J. Wolstenholme, R. Vitchev, L. Houssiau, J.-J. Pireaux, A. Bergmaier, and G. Dollinger, Mater. Sci. Eng., B 109, 60 (2004).
- ¹⁷²P. Boher, C. Defranoux, P. Heinrich, J. Wolstenholme, and H. Bender, Mater. Sci. Eng., B 109, 64 (2004).
- ¹⁷³C. Lee, C. S. Hwang, and H. J. Kim, Integr. Ferroelectr. 67, 49 (2004).
- ¹⁷⁴R. Matero, "Atomic layer deposition of oxide filmsGrowth, characterisation and reaction mechanism studies," Ph.D. dissertation (University of Helsinki, Finland, 2004).
- ¹⁷⁵D. Wu, J. Lu, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, M. Östling, and S.-L. Zhang, Solid-State Electron. **49**, 193 (2005).
- ¹⁷⁶D. R. G. Mitchell, D. J. Attard, K. S. Finnie, G. Triani, C. J. Barbé, C. Depagne, and J. R. Bartlett, Appl. Surf. Sci. 243, 265 (2005).
- ¹⁷⁷S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang, and H. Y. Chu, Electrochem. Solid-State Lett. 8, H21 (2005).
- ¹⁷⁸K. K. Yadavalli, A. O. Orlov, G. L. Snider, and J. Elam, Microelectron. J. 36, 272 (2005).
- ¹⁷⁹G. Xiong, J. W. Elam, H. Feng, C. Y. Han, H. H. Wang, L. E. Iton, L. A. Curtiss, M. J. Pellin, M. Kung, H. Kung, and P. C. Stair, J. Phys. Chem. B 109, 14059 (2005).
- ¹⁸⁰C. Wilson, R. Grubbs, and S. George, Chem. Mater. 17, 5625 (2005).
- ¹⁸¹L. S. Wielunski, Y. Chabal, M. Paunescu, M. T. Ho, R. Brewer, and J. E. Reyes, Nucl. Instrum. Methods Phys. Res. B 241, 377 (2005).
- ¹⁸²K. Y. Gao, Th. Seyller, K. Emtsev, L. Ley, F. Ciobanu, and G. Pensl, Silicon Carbide And Related Materials 2004 483, 559 (2005).
- ¹⁸³A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B **109**, 20522 (2005).
- ¹⁸⁴M. K. Tripp, F. Fabreguette, C. F. Herrmann, S. M. George, and V. M. Bright, Proc. SPIE **5720**, 241 (2005).
- ¹⁸⁵A. Stesmans and V. V. Afanas'ev, J. Appl. Phys. **97**, 033510 (2005).
- ¹⁸⁶T. Seidel, G. Y. Kim, A. Srivastava, and Z. Karim, Solid State Technol. 48, 45 (2005).
- ¹⁸⁷Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, Chem. Mater. **17**, 3475 (2005).
- ¹⁸⁸M. Park, J. Koo, J. Kim, H. Jeon, C. Bae, and C. Krug, Appl. Phys. Lett. 86, 252110 (2005).
- ¹⁸⁹J. Koo, J. Lee, S. Kim, Y. Do Kim, H. Jeon, D. S. Kim, and Y. Kim, J. Korean Phys. Soc. **47**, 501 (2005).
- ¹⁹⁰J. Koo and H. Jeon, J. Korean Phys. Soc. 46, 945 (2005).
- ¹⁹¹N. Kawakami, Y. Yokota, T. Tachibana, K. Hayashi, and K. Kobashi, Diamond Relat. Mater. 14, 2015 (2005).
- ¹⁹²M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
- ¹⁹³C. F. Herrmann, F. H. Fabreguette, D. S. Finch, R. Geiss, and S. M. George, Appl. Phys. Lett. 87, 123110 (2005).
- ¹⁹⁴L. F. Hakim, S. M. George, and A. W. Weimer, Nanotechnology 16, S375 (2005).
- ¹⁹⁵L. F. Hakim, J. Blackson, S. M. George, and A. W. Weimer, Chem. Vap. Deposition 11, 420 (2005).
- ¹⁹⁶N. J. Seong, S. G. Yoon, S. J. Yeom, H. K. Woo, D. S. Kil, J. S. Roh, and H. C. Sohn, Integr. Ferroelectr. 74, 131 (2005).
- ¹⁹⁷D. B. Farmer and R. G. Gordon, Electrochem. Solid-State Lett. 8, G89 (2005).
- ¹⁹⁸J. W. Elam and M. J. Pellin, Anal. Chem. 77, 3531 (2005).
- ¹⁹⁹M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwang, J. Jeong, H. S. Kang, and Y. W. Kim, J. Electrochem. Soc. **152**, F49 (2005).
- ²⁰⁰A. A. Yasseri, N. P. Kobayashi, and T. I. Kamins, Appl. Phys. A 84, 1 (2006).
- ²⁰¹W. S. Yang and S. W. Kang, Thin Solid Films **500**, 231 (2006).
- ²⁰²M. Xu, C. Zhang, S. J. Ding, H. L. Lu, W. Chen, Q. Q. Sun, D. W. Zhang, and L. K. Wang, J. Appl. Phys. **100**, 106101 (2006).
- ²⁰³M. Xu, C. H. Xu, S. J. Ding, H. L. Lu, D. W. Zhang, and L. K. Wang, J. Appl. Phys. **99**, 074109 (2006).
- ²⁰⁴C. R. Stoldt and V. M. Bright, J. Phys. D: Appl. Phys. **39**, R163 (2006).
- ²⁰⁵Z. A. Sechrist, B. T. Schwartz, J. H. Lee, J. A. McCormick, R. Piestun, W. Park, and S. M. George, Chem. Mater. 18, 3562 (2006).

- J. Appl. Phys. 113, 021301 (2013)
- ²⁰⁶B. Moghtaderi, I. Shames, and E. Doroodchi, Chem. Eng. Technol. 29, 97 (2006).
- ²⁰⁷D. R. G. Mitchell, G. Triani, D. J. Attard, K. S. Finnie, P. J. Evans, C. J. Barbé, and J. R. Bartlett, Smart Mater. Struct. 15, S57 (2006).
- ²⁰⁸Y. S. Min, I. P. Asanov, and C. S. Hwang, Electrochem. Solid-State Lett. 9, G231 (2006).
- ²⁰⁹H. L. Lu, L. Sun, S. J. Ding, M. Xu, D. W. Zhang, and L. K. Wang, Appl. Phys. Lett. 89, 152910 (2006).
- ²¹⁰H.-L. Lu, Y.-B. Li, M. Xu, S.-J. Ding, L. Sun, W. Zhang, and L.-K. Wang, Chin. Phys. Lett. 23, 1929 (2006).
- ²¹¹K. Y. Lee, W. C. Lee, Y. J. Lee, M. L. Huang, C. H. Chang, T. B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 222906 (2006).
- ²¹²M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, and K. Nielsch, Nano Lett. 6, 1172 (2006).
- ²¹³H. J. Kim, M. W. Kim, H. S. Kim, H. S. Kim, S. H. Kim, S. W. Lee, B. H. Choi, B. K. Jeong, and H. H. Lee, Mol. Cryst. Liq. Cryst. 459, 239 (2006).
- ²¹⁴L. F. Hakim, J. A. McCormick, G. D. Zhan, A. W. Weimer, P. Li, and S. M. George, J. Am. Ceram. Soc. **89**, 3070 (2006).
- ²¹⁵M. D. Groner, S. M. George, R. S. McLean, and P. F. Carcia, Appl. Phys. Lett. 88, 051907 (2006).
- ²¹⁶S. D. Elliott, G. Scarel, C. Wiemer, M. Fanciulli, and G. Pavia, Chem. Mater. 18, 3764 (2006).
- ²¹⁷H. W. Song, W. S. Han, J. Kim, J. H. Kim, and S. H. KoPark, Electron. Lett. 42, 808 (2006).
- ²¹⁸E. Graugnard, J. S. King, D. P. Gaillot, and C. J. Summers, Adv. Funct. Mater. 16, 1187 (2006).
- ²¹⁹H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gösele, and M. Zacharias, Nanotechnology 17, 5157 (2006).
- ²²⁰F. H. Fabreguette, R. A. Wind, and S. M. George, Appl. Phys. Lett. 88, 013116 (2006).
- ²²¹I. Kim, J. Koo, J. Lee, and H. Jeon, Jpn. J. Appl. Phys., Part 1 45, 919 (2006).
- ²²²X. H. Zhang, B. Domercq, X. D. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007).
- ²²³L. Zhang, H. C. Jiang, C. Liu, J. W. Dong, and P. Chow, J. Phys. D: Appl. Phys. 40, 3707 (2007).
- ²²⁴C. C. Wang, C. C. Kei, Y. W. Yu, and T. P. Perng, Nano Lett. 7, 1566 (2007).
- ²²⁵C. M. Tanner, M. Sawkar-Mathur, J. Lu, H. O. Blom, M. F. Toney, and J. P. Chang, Appl. Phys. Lett. **90**, 061916 (2007).
- ²²⁶C. M. Tanner, Y. C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett. **91**, 203510 (2007).
- ²²⁷R. H. A. Ras, M. Kemell, J. de Wit, M. Ritala, G. ten Brinke, M. Leskelä, and O. Ikkala, Adv. Mater. **19**, 102 (2007).
- ²²⁸R. L. Puurunen, J. Saarilahti, and H. Kattelus, ECS Trans. 11, 3 (2007).
- ²²⁹Q. Peng, X. Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak, and G. N. Parsons, Nano Lett. 7, 719 (2007).
- ²³⁰J. A. McCormick, K. P. Rice, D. F. Paul, A. W. Weimer, and S. M. George, Chem. Vap. Deposition 13, 491 (2007).
- ²³¹J. A. McCormick, B. L. Cloutier, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol. A 25, 67 (2007).
- ²³²X. H. Liang, L. F. Hakim, G. D. Zhan, J. A. McCormick, S. M. George, A. W. Weimer, J. A. Spencer, K. J. Buechler, J. Blackson, C. J. Wood, and J. R. Dorgan, J. Am. Ceram. Soc. **90**, 57 (2007).
- ²³³X. H. Liang, S. M. George, and A. W. Weimer, Chem. Mater. **19**, 5388 (2007).
- ²³⁴D. Lee, T. Seidel, J. Dalton, and T. J. K. Liu, Electrochem. Solid-State Lett. **10**, H257 (2007).
- ²³⁵N. P. Kobayashi, C. L. Donley, S. Y. Wang, and R. S. Williams, J. Cryst. Growth **299**, 218 (2007).
- ²³⁶C. H. Ko and W. J. Lee, J. Solid State Electrochem. **11**, 1391 (2007).
- ²³⁷S. Y. Kim, H. Kwon, S. J. Jo, J. S. Ha, W. T. Park, D. K. Kang, and B. H. Kim, Appl. Phys. Lett. **90**, 103104 (2007).
- ²³⁸I. Jõgi, K. Kukli, M. Kemell, M. Ritala, and M. Leskelä, J. Appl. Phys. 102, 114114 (2007).
- ²³⁹G. K. Hyde, K. J. Park, S. M. Stewart, J. P. Hinestroza, and G. N. Parsons, Langmuir 23, 9844 (2007).
- ²⁴⁰C. F. Herrmann, F. W. DelRio, D. C. Miller, S. M. George, V. M. Bright, J. L. Ebel, R. E. Strawser, R. Cortez, and K. D. Leedy, Sens. Actuators, A 135, 262 (2007).
- ²⁴¹H. L. Lu, M. Xu, S. J. Ding, W. Chen, D. W. Zhang, and L. K. Wang, J. Mater. Res. 22, 1214 (2007).
- ²⁴²J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. **154**, G165 (2007).

- ²⁴³L. F. Hakim, C. L. Vaughn, H. J. Dunsheath, C. S. Carney, X. Liang, P. Li, and A. W. Weimer, Nanotechnology 18, 345603 (2007).
- ²⁴⁴L. F. Hakim, J. H. Blackson, and A. W. Weimer, Chem. Eng. Sci. 62, 6199 (2007).
- ²⁴⁵O. Hahtela, P. Sievilä, N. Chekurov, and I. Tittonen, J. Micromech. Microeng. 17, 737 (2007).
- ²⁴⁶K. Y. Gao, F. Speck, K. Emtsev, T. Seyller, and L. Ley, J. Appl. Phys. 102, 094503 (2007).
- ²⁴⁷M. M. Frank, Y. Wang, M. T. Ho, R. T. Brewer, N. Moumen, and Y. J. Chabal, J. Electrochem. Soc. 154, G44 (2007).
- ²⁴⁸S. Ferrari, F. Perissinotti, E. Peron, L. Fumagalli, D. Natali, and M. Sampietro, Org. Electron. 8, 407 (2007).
- ²⁴⁹F. H. Fabreguette and S. M. George, Thin Solid Films **515**, 7177 (2007).
- ²⁵⁰Y. K. Chiou, C. H. Chang, C. C. Wang, K. Y. Lee, T. B. Wu, R. Kwo, and M. H. Hong, J. Electrochem. Soc. **154**, G99 (2007).
- ²⁵¹M. J. Chen, Y. T. Shih, M. K. Wu, and F. Y. Tsai, J. Appl. Phys. 101, 033130 (2007).
- ²⁵²N. Chekurov, M. Koskenvuori, V. M. Airaksinen, and I. Tittonen, J. Micromech. Microeng. 17, 1731 (2007).
- ²⁵³C. H. Chang, Y. K. Chiou, C. W. Hsu, and T. B. Wu, Electrochem. Solid-State Lett. **10**, G5 (2007).
- ²⁵⁴K. Tapily, J. E. Jakes, D. S. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. A. Elmustafa, J. Electrochem. Soc. **155**, H545 (2008).
- ²⁵⁵S. Maikap, P. J. Tzeng, T. Y. Wang, C. H. Lin, L. S. Lee, J. R. Yang, and M. J. Tsai, Electrochem. Solid-State Lett. 11, K50 (2008).
- ²⁵⁶C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, C. D. Chiang, and J. J. Luo, J. Electrochem. Soc. **155**, G180 (2008).
- ²⁵⁷Y. Yang, D. S. Kim, R. Scholz, M. Knez, S. M. Lee, U. Gösele, and M. Zacharias, Chem. Mater. **20**, 3487 (2008).
- ²⁵⁸Y. Yang, D. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Gösele, and M. Zacharias, J. Phys. Chem. C 112, 4068 (2008).
- ²⁵⁹Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D. Ye, Appl. Phys. Lett. **92**, 013101 (2008).
- ²⁶⁰J. Sung, K. M. Kosuda, J. Zhao, J. W. Elam, K. G. Spears, and R. P. Van Duyne, J. Phys. Chem. C **112**, 5707 (2008).
- ²⁶¹B. Shin, D. Choi, J. S. Harris, and P. C. McIntyre, Appl. Phys. Lett. 93, 052911 (2008).
- ²⁶²Y. Qin, S. M. Lee, A. Pan, U. Gösele, and M. Knez, Nano Lett. 8, 114 (2008).
- ²⁶³M. J. Preiner and N. A. Melosh, Appl. Phys. Lett. **92**, 213301 (2008).
- ²⁶⁴J. Meyer, P. Görrn, S. Hamwi, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. **93**, 073308 (2008).
- ²⁶⁵Y. Luo, Y. Du, and V. Misra, Nanotechnology **19**, 265301 (2008).
- ²⁶⁶X. Liang, G.-D. Zhan, D. M. King, J. A. McCormick, J. Zhang, S. M. George, and A. W. Weimer, Diamond Relat. Mater. 17, 185 (2008).
- ²⁶⁷B. K. Lee, S. Y. Park, H. C. Kim, K. Cho, E. M. Vogel, M. J. Kim, R. M. Wallace, and J. Y. Kim, Appl. Phys. Lett. **92**, 203102 (2008).
- ²⁶⁸J. Y. Huang, S. Liu, Y. Wang, and Z. Z. Ye, Appl. Surf. Sci. 254, 5917 (2008).
- ²⁶⁹J. Huang, X. Wang, and Z. L. Wang, Nanotechnology **19**, 025602 (2008).
- ²⁷⁰K. Grigoras, S. Franssila, and V. M. Airaksinen, Thin Solid Films 516, 5551 (2008).
- ²⁷¹Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. H. Xiu, C. P. Wong, and Z. L. Wang, Nanotechnology **19**, 355708 (2008).
- ²⁷²R. Cooper, H. P. Upadhyaya, T. K. Minton, M. R. Berman, X. Du, and S. M. George, Thin Solid Films **516**, 4036 (2008).
- ²⁷³C. D. Bae, S. Y. Kim, B. Y. Ahn, J. Y. Kim, M. M. Sung, and H. J. Shin, J. Mater. Chem. 18, 1362 (2008).
- ²⁷⁴M. Sawkar-Mathur, Y.-C. Perng, J. Lu, H.-O. Blom, J. Bargar, and J. P. Chang, Appl. Phys. Lett. **93**, 233501 (2008).
- ²⁷⁵M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 252905 (2008).
- ²⁷⁶M. Kemell, M. Ritala, M. Leskelä, R. Groenen, and S. Lindfors, Chem. Vap. Deposition 14, 347 (2008).
- ²⁷⁷M. C. Kautzky, A. V. Demtchouk, Y. Chen, K. M. Brown, S. E. McKinlay, and J. Xue, IEEE Trans. Magn. 44, 3576 (2008).
- ²⁷⁸J.-S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, J. Phys. Chem. C **112**, 20510 (2008).
- ²⁷⁹Y. Yang, R. Scholz, A. Berger, D. S. Kim, M. Knez, D. Hesse, U. Gösele, and M. Zacharias, Small 4, 2112 (2008).
- ²⁸⁰B. H. Lee, K. H. Lee, S. Im, and M. M. Sung, Org. Electron. 9, 1146 (2008).
- ²⁸¹N. P. Kobayashi and R. S. Williams, Chem. Mater. 20, 5356 (2008).

- ²⁸²D. S. Kim, S. M. Lee, R. Scholz, M. Knez, U. Gösele, J. Fallert, H. Kalt, and M. Zacharias, Appl. Phys. Lett. **93**, 103108 (2008).
- ²⁸³E. Ghiraldelli, C. Pelosi, E. Gombia, G. Chiavarotti, and L. Vanzetti, Thin Solid Films **517**, 434 (2008).
- ²⁸⁴X. Liang, D. M. King, M. D. Groner, J. H. Blackson, J. D. Harris, S. M. George, and A. W. Weimer, J. Membr. Sci. 322, 105 (2008).
- ²⁸⁵Y. Qin, L. Liu, R. Yang, U. Gösele, and M. Knez, Nano Lett. 8, 3221 (2008).
- ²⁸⁶C.-Y. Chang, F.-Y. Tsai, S.-J. Jhuo, and M.-J. Chen, Org. Electron. 9, 667 (2008).
- ²⁸⁷D. S. Finch, T. Oreskovic, K. Ramadurai, C. F. Herrmann, S. M. George, and R. L. Mahajan, J. Biomed. Mater. Res. Part A 87(A), 100 (2008).
- ²⁸⁸C.-C. Cheng, C.-H. Chien, G.-L. Luo, J.-C. Liu, C.-C. Kei, D.-R. Liu, C.-N. Hsiao, C.-H. Yang, and C.-Y. Changa, J. Electrochem. Soc. 155, G203 (2008).
- ²⁸⁹E. Ghiraldelli, C. Pelosi, E. Gombia, C. Frigeri, L. Vanzetti, and S. Abdullayeva, Jpn. J. Appl. Phys., Part 1 47, 8174 (2008).
- ²⁹⁰Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan, Appl. Phys. Lett. **95**, 223501 (2009).
- ²⁹¹J.-S. Na, Q. Peng, G. Scarel, and G. N. Parsons, Chem. Mater. 21, 5585 (2009).
- ²⁹²D. H. Levy, S. F. Nelson, and D. Freeman, J. Disp. Technol. 5, 484 (2009).
- ²⁹³A. Brzezinski, Y.-C. Chen, P. Wiltzius, and P. V. Braun, J. Mater. Chem. **19**, 9126 (2009).
- ²⁹⁴E. J. Kim, E. Chagarov, J. Cagnon, Y. Yuan, A. C. Kummel, P. M. Asbeck, S. Stemmer, K. C. Saraswat, and P. C. McIntyre, J. Appl. Phys. 106, 124508 (2009).
- ²⁹⁵C. Henkel, S. Abermann, O. Bethge, and E. Bertagnolli, Semicond. Sci. Technol. 24, 125013 (2009).
- ²⁹⁶Y. Zhao, M. Wei, J. Lu, Z. L. Wang, and X. Duan, ACS Nano 3, 4009 (2009).
- ²⁹⁷J.-S. Na, B. Gong, G. Scarel, and G. N. Parsons, ACS Nano 3, 3191 (2009).
- ²⁹⁸W. E. Fenwick, N. Li, T. Xu, A. Melton, S. Wang, H. Yu, C. Summers, M. Jamil, and I. T. Ferguson, J. Cryst. Growth **311**, 4306 (2009).
- ²⁹⁹Y.-J. Chang, J. M. Gray, A. Imtiaz, D. Seghete, T. M. Wallis, S. M. George, P. Kabos, C. T. Rogers, and V. M. Bright, Sens. Actuators, A 154, 229 (2009).
- ³⁰⁰E. Sun, F.-H. Su, Y.-T. Shih, H.-L. Tsai, C.-H. Chen, M.-K. Wu, J.-R. Yang, and M.-J. Chen, Nanotechnology **20**, 445202 (2009).
- ³⁰¹X. Liang, A. D. Lynn, D. M. King, S. J. Bryant, and A. W. Weimer, ACS Appl. Mater. Interfaces 1, 1988 (2009).
- ³⁰²R. Beetstra, U. Lafont, J. Nijenhuis, E. M. Kelder, and J. R. van Ommen, Chem. Vap. Deposition 15, 227 (2009).
- ³⁰³P. Kumar, M. K. Wiedmann, C. H. Winter, and I. Avrutsky, Appl. Opt. 48, 5407 (2009).
- ³⁰⁴L. Qian, W. Shen, B. Das, B. Shen, and G. W. Qin, Chem. Phys. Lett. 479, 259 (2009).
- ³⁰⁵D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 95, 091101 (2009).
- ³⁰⁶Y. Wang, Y. Qin, A. Berger, E. Yau, C. He, L. Zhang, U. Gösele, M. Knez, and M. Steinhart, Adv. Mater. 21, 2763 (2009).
- ³⁰⁷P. F. Carcia, R. S. McLean, M. D. Groner, A. A. Dameron, and S. M. George, J. Appl. Phys. **106**, 023533 (2009).
- ³⁰⁸E. Graugnard, O. M. Roche, S. N. Dunham, J. S. King, D. N. Sharp, R. G. Denning, A. J. Turberfield, and C. J. Summers, Appl. Phys. Lett. 94, 263109 (2009).
- ³⁰⁹R. W. Wind, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, J. Appl. Phys. **105**, 074309 (2009).
- ³¹⁰M. Caymax, G. Brammertz, A. Delabie, S. Sioncke, D. Lin, M. Scarrozza, G. Pourtois, W.-E. Wang, M. Meuris, and M. Heyns, Microelectron. Eng. 86, 1529 (2009).
- ³¹¹O. Bethge, S. Abermann, C. Henkel, and E. Bertagnolli, Thin Solid Films 517, 5543 (2009).
- ³¹²N. T. Gabriel, S. S. Kim, and J. J. Talghader, Opt. Lett. 34, 1958 (2009).
 ³¹³W.-K. Lee, B.-Y. Oh, J.-H. Lim, H.-g. Park, B.-Y. Kim, H.-J. Na, and
- D.-S. Seo, Appl. Phys. Lett. **94**, 223507 (2009). ³¹⁴A. S. Cavanagh, C. A. Wilson, A. W. Weimer, and S. M. George, Nano-
- technology 20, 255602 (2009).
- ³¹⁵J. Meyer, P. Goerrn, F. Bertram, S. Hamwi, T. Winkler, H.-H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky, Adv. Mater. 21, 1845 (2009).
- ³¹⁶N. Kim, W. J. Potscavage, Jr., B. Domercq, B. Kippelen, and S. Graham, Appl. Phys. Lett. **94**, 163308 (2009).

- ³¹⁷C. Lin, F.-Y. Tsai, M.-H. Lee, C.-H. Lee, T.-C. Tien, L.-P. Wang, and S.-Y. Tsai, J. Mater. Chem. **19**, 2999 (2009).
- ³¹⁸S.-M. Lee, G. Grass, G.-M. Kim, C. Dresbach, L. Zhang, U. Gösele, and M. Knez, Phys. Chem. Chem. Phys. **11**, 3608 (2009).
- ³¹⁹P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, Nat. Nanotechnol. 4, 292 (2009).
- ³²⁰O. Bethge, S. Abermann, C. Henkel, C. J. Straif, H. Hutter, and E. Bertagnolli, J. Electrochem. Soc. **156**, G168 (2009).
- ³²¹N. Avci, J. Musschoot, P. F. Smet, K. Korthout, A. Avci, C. Detavernier, and D. Poelman, J. Electrochem. Soc. **156**, J333 (2009).
- ³²²J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X. H. Zhang, and B. Kippelen, Appl. Phys. Lett. **94**, 142107 (2009).
- ³²³Q. Peng, X.-Y. Sun, J. C. Spagnola, C. Saquing, S. A. Khan, R. J. Spontak, and G. N. Parsons, ACS Nano 3, 546 (2009).
- ³²⁴W. C. Sun, W. L. Chang, C. H. Chen, C. H. Du, T. Y. Wang, T. Wang, and C. W. Lan, Electrochem. Solid-State Lett. **12**, H388 (2009).
- ³²⁵A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, Appl. Opt. 48, 1727 (2009).
- ³²⁶O. M. Hahtela, A. F. Satrapinski, P. H. Sievilä, and N. Chekurov, IEEE Trans. Instrum. Meas. 58, 1183 (2009).
- ³²⁷M. J. Preiner and N. A. Melosh, Langmuir 25, 2585 (2009).
- ³²⁸S. D. Standridge, G. C. Schatz, and J. T. Hupp, Langmuir 25, 2596 (2009).
- ³²⁹F. L. Lie, W. Rachmady, and A. J. Muscat, Microelectron. Eng. 86, 122 (2009).
- ³³⁰S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
- ³³¹M. Li, M. Dai, and Y. J. Chabal, Langmuir 25, 1911 (2009).
- ³³²J.-M. Moon, D. Akin, Y. Xuan, P. D. Ye, P. Guo, and R. Bashir, Biomed. Microdevices 11, 135 (2009).
- ³³³C.-I. Hsieh, T.-M. Pan, J.-C. Lin, Y.-B. Peng, T.-Y. Huang, C.-R. Wu, and S. Shih, Appl. Surf. Sci. **255**, 3769 (2009).
- ³³⁴D. M. King, Y. Zhou, L. F. Hakim, X. Liang, P. Li, and A. W. Weimer, Ind. Eng. Chem. Res. 48, 352 (2009).
- ³³⁵L. Lamagna, G. Scarel, M. Fanciulli, and G. Pavia, J. Vac. Sci. Technol. A 27, 443 (2009).
- ³³⁶S. Sioncke, A. Delabie, G. Brammertz, T. Conard, A. Franquet, M. Caymax, A. Urbanzcyk, M. Heyns, M. Meuris, J. L. van Hemmen, W. Keuning, and W. M. M. Kessels, J. Electrochem. Soc. **156**, H255 (2009).
- ³³⁷J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 156, P63 (2009).
- ³³⁸J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, J. Vac. Sci. Technol. B **27**, 568 (2009).
- ³³⁹C.-C. Wang, C.-C. Kei, Y. Tao, and T.-P. Perng, Electrochem. Solid-State Lett. **12**, K49 (2009).
- ³⁴⁰V. Ganapathy, B. Karunagaran, and S.-W. Rhee, J. Power Sources 195, 5138 (2010).
- ³⁴¹C. Adelmann, D. Pierreux, J. Swerts, D. Dewulf, A. Hardy, H. Tielens, A. Franquet, B. Brijs, A. Moussa, T. Conard, M. K. VanBael, J. W. Maes, M. Jurczak, J. A. Kittl, and S. VanElshocht, Chem. Vap. Deposition 16, 170 (2010).
- ³⁴²T. Hirvikorpi, M. Vähä-Nissi, A. Harlin, and M. Karppinen, Thin Solid Films **518**, 5463 (2010).
- ³⁴³L. Qian, W. Shen, B. Shen, G. W. Qin, and B. Das, Nanotechnology 21, 305705 (2010).
- ³⁴⁴M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, Thin Solid Films **518**, 4935 (2010).
- ³⁴⁵R. A. Wind and S. M. George, J. Phys. Chem. A **114**, 1281 (2010).
- ³⁴⁶J.-S. Na, G. Scarel, and G. N. Parsons, J. Phys. Chem. C 114, 383 (2010).
- ³⁴⁷J.-h. Chang, D. Y. Choi, S. Han, and J. J. Pak, Microfluid. Nanofluid. 8, 269 (2010).
- ³⁴⁸G. K. Hyde, G. Scarel, J. C. Spagnola, Q. Peng, K. Lee, B. Gong, K. G. Roberts, K. M. Roth, C. A. Hanson, C. K. Devine, S. M. Stewart, D. Hojo, J.-S. Na, J. S. Jur, and G. N. Parsons, Langmuir 26, 2550 (2010).
- ³⁴⁹J. F. John, S. Mahurin, S. Dai, and M. J. Sepaniak, J. Raman Spectrosc. 41, 4 (2010).
- ³⁵⁰D. Gu, H. Baumgart, T. M. Abdel-Fattah, and G. Namkoong, ACS Nano 4, 753 (2010).
- ³⁵¹D. J. Comstock, J. W. Elam, M. J. Pellin, and M. C. Hersam, Anal. Chem. 82, 1270 (2010).
- ³⁵²Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, J. Electrochem. Soc. 157, A75 (2010).
- ³⁵³X. Liang, X. Lu, M. Yu, A. S. Cavanagh, D. L. Gin, and A. W. Weimer, J. Membr. Sci. 349, 1 (2010).

- ³⁵⁴G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 13, H76 (2010).
- ³⁵⁵I. Seo, D.-J. Lee, Q. Hu, C.-W. Kwon, K. Lim, S.-H. Lee, H.-M. Kim, Y.-S. Kim, H. H. Lee, D. Y. Ryu, K.-B. Kim, and T.-S. Yoon, Electrochem. Solid-State Lett. 13, K19 (2010).
- ³⁵⁶S. Swaminathan, M. Shandalov, Y. Oshima, and P. C. McIntyre, Appl. Phys. Lett. **96**, 082904 (2010).
- ³⁵⁷G. Dingemans, R. Seguin, P. Engelhart, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi (RRL) **4**, 10 (2010).
- ³⁵⁸N. T. Gabriel and J. J. Talghader, Appl. Opt. **49**, 1242 (2010).
- ³⁵⁹H. H. Park, P. S. Kang, G. T. Kim, and J. S. Ha, Appl. Phys. Lett. **96**, 102908 (2010).
- ³⁶⁰T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, and J. T. Hupp, J. Am. Chem. Soc. **132**, 4580 (2010).
- ³⁶¹G. Scarel, J.-S. Na, and G. N. Parsons, J. Phys.: Condens. Matter 22, 155401 (2010).
- ³⁶²Y. Qin, Y. Kim, L. Zhang, S.-M. Lee, R. B. Yang, A. Pan, K. Mathwig, M. Alexe, U. Gösele, and M. Knez, Small 6, 910 (2010).
- ³⁶³L. J. Antila, M. J. Heikkilä, V. Aumanen, M. Kemell, P. Myllyperkiö, M. Leskelä, and J. E. I. Korppi-Tommola, J. Phys. Chem. Lett. 1, 536 (2010).
- ³⁶⁴E. Sun, F.-H. Su, C.-H. Chen, and M.-J. Chen, Appl. Surf. Sci. 256, 5021 (2010).
- ³⁶⁵W. Li, O. Auciello, R. N. Premnath, and B. Kabius, Appl. Phys. Lett. 96, 162907 (2010).
- ³⁶⁶B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Vande Walle, and P. C. McIntyre, Appl. Phys. Lett. 96, 152908 (2010).
- ³⁶⁷J.-T. Lee, F.-M. Wang, C.-S. Cheng, C.-C. Li, and C.-H. Lin, Electrochim. Acta 55, 4002 (2010).
- ³⁶⁸H. Feng, J. W. Elam, J. A. Libera, W. Setthapun, and P. C. Stair, Chem. Mater. 22, 3133 (2010).
- ³⁶⁹J. C. Spagnola, B. Gong, S. A. Arvidson, J. S. Jur, S. A. Khan, and G. N. Parsons, J. Mater. Chem. **20**, 4213 (2010).
- ³⁷⁰T.-C. Tien, F.-M. Pan, L.-P. Wang, F.-Y. Tsai, and C. Lin, J. Phys. Chem. C 114, 10048 (2010).
- ³⁷¹F. Mumm, M. Kemell, M. Leskelä, and P. Sikorski, Bioinsp. Biomim. 5, 026005 (2010).
- ³⁷²J. Dendoven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. **157**, G111 (2010).
- ³⁷³J. S. Jur, J. C. Spagnola, K. Lee, B. Gong, Q. Peng, and G. N. Parsons, Langmuir 26, 8239 (2010).
- ³⁷⁴J. Malm, E. Sahramo, M. Karppinen, and R. H. A. Ras, Chem. Mater. 22, 3349 (2010).
- ³⁷⁵S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, P66 (2010).
- ³⁷⁶M. Puttaswamy, K. B. Haugshøj, L. H. Christensen, and P. Kingshott, Chem.-Eur. J. 16, 13925 (2010).
- ³⁷⁷K. Gerasopoulos, M. McCarthy, P. Banerjee, X. Fan, J. N. Culver, and R. Ghodssi, Nanotechnology 21, 055304 (2010).
- ³⁷⁸D. J. Guo, A. I. Abdulagatov, D. M. Rourke, K. A. Bertness, S. M. George, Y. C. Lee, and W. Tan, Langmuir **26**, 18382 (2010).
- ³⁷⁹Q. Peng, Y.-C. Tseng, S. B. Darling, and J. W. Elam, Adv. Mater. 22, 5129 (2010).
- ³⁸⁰A. J. Niskanen, T. Ylinen-Hinkka, M. Pusa, S. Kulmala, and S. Franssila, Thin Solid Films **519**, 430 (2010).
- ³⁸¹S. Sarkar, J. H. Culp, J. T. Whyland, M. Garvan, and V. Misra, Org. Electron. **11**, 1896 (2010).
- ³⁸²K. M. Roth, K. G. Roberts, and G. K. Hyde, Text. Res. J. 80, 1970 (2010).
- ³⁸³F. Werner, B. Veith, V. Tiba, P. Poodt, F. Roozeboom, R. Brendel, and J. Schmidt, Appl. Phys. Lett. **97**, 162103 (2010).
- ³⁸⁴J. Y. Kim and S. M. George, J. Phys. Chem. C 114, 17597 (2010).
- ³⁸⁵J. W. Elam, J. A. Libera, T. H. Huynh, H. Feng, and M. J. Pellin, J. Phys. Chem. C 114, 17286 (2010).
- ³⁸⁶M. Laamanen, M. Blomberg, R. Puurunen, A. Miranto, and H. Kattelus, Sens. Actuators, A **162**, 210 (2010).
- ³⁸⁷D. Hojo and T. Adschiri, Chem. Vap. Deposition 16, 248 (2010).
- ³⁸⁸G. Gay, T. Baron, C. Agraffeil, B. Salhi, T. Chevolleau, G. Cunge, H. Grampeix, J.-H. Tortai, F. Martin, E. Jalaguier, and B. D. Salvo, Nano-technology **21**, 435301 (2010).
- ³⁸⁹T. Hirvikorpi, M. Vähä-Nissi, A. Harlin, J. Marles, V. Miikkulainen, and M. Karppinen, Appl. Surf. Sci. 257, 736 (2010).
- ³⁹⁰T. K. Minton, B. Wu, J. Zhang, N. F. Lindholm, A. I. Abdulagatov, J. O'Patchen, S. M. George, and M. D. Groner, ACS Appl. Mater. Interfaces 2, 2515 (2010).

- ³⁹¹Y. Xu, L. Chen, Q.-Q. Sun, J.-J. Gu, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D. W. Zhang, Solid State Commun. **150**, 1690 (2010).
- ³⁹²S. Smith, K. McAuliffe, and J. F. Conley, Jr., Solid-State Electron. 54, 1076 (2010).
- ³⁹³P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. **22**, 3564 (2010).
- ³⁹⁴J. C. Spagnola, B. Gong, and G. N. Parsons, J. Vac. Sci. Technol. A 28, 1330 (2010).
- ³⁹⁵A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gösele, and M. Knez, Small 6, 2701 (2010).
- ³⁹⁶J. Lu and P. C. Stair, Angew. Chem., Int. Ed. **49**, 2547 (2010).
- ³⁹⁷S. Y. No, D. Eom, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, F87 (2006).
- ³⁹⁸H. J. Kim, S. Y. No, D. Eom, and C. S. Hwang, J. Korean Phys. Soc. 49, 1271 (2006).
- ³⁹⁹J.-F. Fan, J. Sugioka, and K. Toyoda, Jpn. J. Appl. Phys., Part 2 30, L1139 (1991).
- ⁴⁰⁰J.-F. Fan and K. Toyoda, Appl. Surf. Sci. **60/61**, 765 (1992).
- ⁴⁰¹J.-F. Fan and K. Toyoda, Jpn. J. Appl. Phys., Part 2 **32**, L1349 (1993).
- ⁴⁰²H. Kumagai, K. Toyoda, M. Matsumoto, and M. Obara, Jpn. J. Appl. Phys., Part 1 32, 6137 (1993).
- ⁴⁰³H. Kumagai, M. Matsumoto, and Y. Kawamura, Jpn. J. Appl. Phys., Part 1 33, 7086 (1994).
- ⁴⁰⁴H. Kumagai and K. Toyoda, Appl. Surf. Sci. **82/83**, 481 (1994).
- ⁴⁰⁵H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, Appl. Phys. Lett. **70**, 2338 (1997).
- ⁴⁰⁶A. Szeghalmi, E. B. Kley, and M. Knez, J. Phys. Chem. C 114, 21150 (2010).
- ⁴⁰⁷A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, Adv. Funct. Mater. 20, 2053 (2010).
- ⁴⁰⁸J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, J. Appl. Phys. **92**, 6739 (2002).
- ⁴⁰⁹J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, Mater. Chem. Phys. **78**, 733 (2003).
- ⁴¹⁰S. K. Kim and C. S. Hwang, J. Appl. Phys. 96, 2323 (2004).
- ⁴¹¹T.-P. Lee, C. Jang, B. Haselden, M. Dong, S. Park, L. Bartholomew, H. Chatham, and Y. Senzaki, J. Vac. Sci. Technol. B 22, 2295 (2004).
- ⁴¹²S. K. Kim, S. W. Lee, C. S. Hwang, Y. S. Min, J. Y. Won, and J. Jeong, J. Electrochem. Soc. **153**, F69 (2006).
- ⁴¹³Y. Hwang, K. Heo, C. H. Chang, M. K. Joo, and M. Ree, Thin Solid Films **510**, 159 (2006).
- ⁴¹⁴M. Y. Li, Y. Y. Chang, H. C. Wu, C. S. Huang, J. C. Chen, J. L. Lue, and S. M. Chang, J. Electrochem. Soc. **154**, H967 (2007).
- ⁴¹⁵J. H. Kwon, M. Dai, M. D. Halls, and Y. J. Chabal, Chem. Mater. 20, 3248 (2008).
- ⁴¹⁶G. D. Zhan, X. H. Du, D. M. King, L. F. Hakim, X. H. Liang, J. A. McCormick, and A. W. Weimer, J. Am. Ceram. Soc. **91**, 831 (2008).
- ⁴¹⁷S. Diplas, M. Avice, A. Thøgersen, J. S. Christensen, U. Grossner, B. G. Svensson, O. Nilsen, H. Fjellvåg, S. Hinderc, and J. F. Watts, Surf. Interface Anal. 40, 822 (2008).
- ⁴¹⁸T. O. Kääriäinen, D. C. Cameron, and M. Tanttari, Plasma Processes Polym. 6, 631 (2009).
- ⁴¹⁹A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, Thin Solid Films **517**, 5779 (2009).
- ⁴²⁰A. Delabie, A. Alian, F. Bellenger, M. Caymax, T. Conard, A. Franquet, S. Sioncke, S. VanElshocht, M. M. Heyns, and M. Meuris, J. Electrochem. Soc. **156**, G163 (2009).
- ⁴²¹D. Tahir, H. L. Kwon, H. C. Shin, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Phys. D: Appl. Phys. 43, 255301 (2010).
- ⁴²²Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, Appl. Phys. Lett. 96, 133306 (2010).
- ⁴²³ A. Delabie, M. Caymax, S. Gielis, J. W. Maes, L. Nyns, M. Popovici, J. Swerts, H. Tielens, J. Peeters, and S. VanElshocht, Electrochem. Solid-State Lett. **13**, H176 (2010).
- ⁴²⁴J. Kwon, M. Dai, M. D. Halls, and Y. J. Chabal, Appl. Phys. Lett. 97, 162903 (2010).
- ⁴²⁵A. Pirkle, S. McDonnell, B. Lee, J. Kim, L. Colombo, and R. M. Wallace, Appl. Phys. Lett. **97**, 082901 (2010).
- ⁴²⁶V. R. Rai, V. Vandalon, and S. Agarwal, Langmuir **26**, 13732 (2010).
- ⁴²⁷B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, and J. Kim, Appl. Phys. Lett. 97, 043107 (2010).
- ⁴²⁸M. Rose, J. Niinistö, I. Endler, J. W. Bartha, P. Kücher, and M. Ritala, ACS Appl. Mater. Interfaces 2, 347 (2010).

- ⁴²⁹S. W. Choi, C. M. Jang, D. Y. Kim, J. S. Ha, H. S. Park, W. Koh, and C. S. Lee, J. Korean Phys. Soc. 42, S975 (2003).
- ⁴³⁰S. J. Yun, J. W. Lim, and J.-H. Lee, Electrochem. Solid-State Lett. 7, C13 (2004).
- ⁴³¹J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, F45 (2004).
- ⁴³²A. Niskanen, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 152, F90 (2005).
- ⁴³³J. W. Lim, S. J. Yun, and J. H. Lee, Electrochem. Solid-State Lett. 8, F25 (2005).
- ⁴³⁴E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. **89**, 081915 (2006).
- ⁴³⁵J. Koo, S. Kim, S. Jeon, H. Jeon, Y. Kim, and Y. Won, J. Korean Phys. Soc. 48, 131 (2006).
- ⁴³⁶B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
- ⁴³⁷S. B. S. Heil, P. Kudlacek, E. Langereis, R. Engeln, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. **89**, 131505 (2006).
- ⁴³⁸P. K. Park, E. S. Cha, and S. W. Kang, Appl. Phys. Lett. **90**, 232906 (2007).
- ⁴³⁹J. W. Lim, S. J. Yun, and H. T. Kim, J. Electrochem. Soc. **154**, G239 (2007).
- ⁴⁴⁰S. Kim, S. Woo, H. Hong, H. Kim, H. Jeon, and C. Bae, J. Electrochem. Soc. 154, H97 (2007).
- ⁴⁴¹J. Y. Kim, J. H. Ahn, S. W. Kang, and J. H. Kim, J. Appl. Phys. **101**, 073502 (2007).
- ⁴⁴²W. J. Jeon, H. S. Chung, D. Joo, and S. W. Kang, Electrochem. Solid-State Lett. 11, H19 (2008).
- ⁴⁴³S. J. Yun, A. Efremov, M. Kim, D. W. Kim, J. W. Lim, Y. H. Kim, C. H. Chung, D. J. Park, and K. H. Kwon, Vacuum 82, 1198 (2008).
- ⁴⁴⁴E. Langereis, J. Keijmel, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. **92**, 231904 (2008).
- ⁴⁴⁵S. B. S. Heil, J. L. van Hemmen, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **103**, 103302 (2008).
- ⁴⁴⁶M. T. Seman, D. N. Richards, P. Rowlette, and C. A. Wolden, Chem. Vap. Deposition 14, 296 (2008).
- ⁴⁴⁷B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **104**, 044903 (2008).
- ⁴⁴⁸J. W. Lim, S. J. Yun, and H. T. Kim, Jpn. J. Appl. Phys., Part 1 47, 6934 (2008).
- ⁴⁴⁹D. Hoogeland, K. B. Jinesh, F. Roozeboom, W. F. A. Besling, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **106**, 114107 (2009).
- ⁴⁵⁰T. O. Kääriäinen and D. C. Cameron, Plasma Processes Polym. 6, S237 (2009).
- ⁴⁵¹W.-S. Kim, D.-Y. Moon, B.-W. Kang, J.-W. Park, and J.-G. Park, J. Korean Phys. Soc. 55, 55 (2009).
- ⁴⁵²H.-S. Yun and K.-H. Kim, J. Korean Phys. Soc. 54, 707 (2009).
- ⁴⁵³A. J. M. Mackus, S. B. S. Heil, E. Langereis, H. C. M. Knoops, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 28, 77 (2010).
- ⁴⁵⁴D. J. Park, J. W. Lim, and B. O. Park, Solid-State Electron. 54, 323 (2010).
- ⁴⁵⁵H. Kim, S. Woo, J. Lee, H. Lee, and H. Jeon, J. Phys. D: Appl. Phys. 43, 505301 (2010).
- ⁴⁵⁶S. K. Lee, S. Y. Park, Y. S. Yi, and J. Moon, J. Phys. Chem. C 114, 13890 (2010).
- ⁴⁵⁷D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and L. M. Irving, Appl. Phys. Lett. **92**, 92101 (2008).
- ⁴⁵⁸D. A. Mourey, D. A. Zhao, J. Sun, and T. N. Jackson, IEEE Trans. Electron Devices 57, 530 (2010).
- ⁴⁵⁹V. E. Drozd and V. B. Aleskovskii, Appl. Surf. Sci. 82/83, 591 (1994).
- ⁴⁶⁰W.-S. Jeon, S. Yang, C.-S. Lee, and S.-W. Kang, J. Electrochem. Soc. 149, C306 (2002).
- ⁴⁶¹C. W. Cheng and E. A. Fitzgerald, Appl. Phys. Lett. **93**, 031902 (2008).
- ⁴⁶²K. Kukli, M. Ritala, M. Leskelä, and J. Jokinen, J. Vac. Sci. Technol. A 15, 2214 (1997).
- ⁴⁶³R. Matero, A. Rahtu, and M. Ritala, Langmuir 21, 3498 (2005).
- ⁴⁶⁴K. S. An, W. T. Cho, K. H. Sung, S. S. Lee, and Y. Kim, Bull. Korean Chem. Soc. 24, 1659 (2003).
- ⁴⁶⁵W. Cho, K. Sung, K. S. An, S. S. Lee, T. M. Chung, and Y. Kim, J. Vac. Sci. Technol. A 21, 1366 (2003).
- ⁴⁶⁶Y.-S. Min, Y. J. Cho, and C. S. Hwang, Chem. Mater. **17**, 626 (2005).
- ⁴⁶⁷H. Kim, W. S. Jeon, S. H. Jung, and B. T. Ahn, Electrochem. Solid-State Lett. 8, G294 (2005).

⁴⁶⁸R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, Appl. Phys. Lett. 89, 262906 (2006).

- ⁴⁶⁹R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Electrochem. Soc. **153**, C701 (2006).
- ⁴⁷⁰C. R. Wade, C. Silvernail, C. Banerjee, A. Soulet, J. Mcandrew, and J. A. Belot, Mater. Lett. 61, 5079 (2007).
- ⁴⁷¹R. Katamreddy, R. Inman, G. Jursich, A. Soulet, A. Nicholls, and C. Takoudis, Thin Solid Films **515**, 6931 (2007).
- ⁴⁷²R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Mater. Res. 22, 3455 (2007).
- ⁴⁷³P. Majumder, R. Katamreddy, and C. Takoudis, Electrochem. Solid-State Lett. **10**, H291 (2007).
- ⁴⁷⁴P. Majumder, R. Katamreddy, and C. Takoudis, J. Cryst. Growth 309, 12 (2007).
- ⁴⁷⁵R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, Acta Mater. 56, 710 (2008).
- ⁴⁷⁶A. L. Brazeau and S. T. Barry, Chem. Mater. 20, 7287 (2008).
- ⁴⁷⁷K.-E. Elers, M. Ritala, M. Leskelä, and L.-S. Johansson, J. Phys. IV France 5, C5/1021 (1995).
- ⁴⁷⁸J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihelä, and M. Leskelä, Thin Solid Films **289**, 159 (1996).
- ⁴⁷⁹Y. J. Lee and S.-W. Kang, Thin Solid Films **446**, 227 (2004).
- ⁴⁸⁰Y. J. Lee, J. Cryst. Growth 266, 568 (2004).
- ⁴⁸¹T. M. Mayer, J. W. Rogers, Jr., and T. A. Michalske, Chem. Mater. 3, 641 (1991).
- ⁴⁸²M. E. Bartram, T. A. Michalske, J. W. Rogers, Jr., and R. T. Paine, Chem. Mater. 5, 1424 (1993).
- ⁴⁸³H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. 340, 88 (1995).
- ⁴⁸⁴D. Riihelä, M. Ritala, R. Matero, M. Leskelä, J. Jokinen, and P. Haussalo, Chem. Vap. Deposition 2, 277 (1996).
- ⁴⁸⁵F. G. McIntosh, E. L. Piner, J. C. Roberts, M. K. Behbehani, M. E. Aumer, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 112, 98 (1997).
- ⁴⁸⁶R. L. Puurunen, A. Root, P. Sarv, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, Appl. Surf. Sci. 165, 193 (2000).
- ⁴⁸⁷R. L. Puurunen, A. Root, P. Sarv, M. M. Viitanen, H. H. Brongersma, M. Lindblad, and A. O. I. Krause, Chem. Mater. 14, 720 (2002).
- ⁴⁸⁸M. Badylevich, S. Shamuilia, V. V. Afanas'ev, A. Stesmans, Y. G. Fedorenko, and C. Zhao, J. Appl. Phys. **104**, 093713 (2008).
- ⁴⁸⁹L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, Appl. Phys. Lett. **93**, 122104 (2008).
- ⁴⁹⁰Y. Zhou, D. M. King, J. Li, K. S. Barrett, R. B. Goldfarb, and A. W. Weimer, Ind. Eng. Chem. Res. 49, 6964 (2010).
- ⁴⁹¹D. Eom, S. Y. No, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, C229 (2006).
- ⁴⁹²M. Bosund, P. Mattila, A. Aierken, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V.-M. Airaksinen, and H. Lipsanen, Appl. Surf. Sci. 256, 7434 (2010).
- ⁴⁹³S. Jeon and S. Park, J. Electrochem. Soc. **157**, II1101 (2010).
- ⁴⁹⁴K.-H. Kim, N.-W. Kwak, and S. H. Lee, Electron. Mater. Lett. **5**, 83 (2009).
- ⁴⁹⁵M. A. Khan, J. N. Kuznia, R. A. Skogman, and D. T. Olson, Appl. Phys. Lett. **61**, 2539 (1992).
- ⁴⁹⁶M. A. Khan, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 3470 (1993).
- ⁴⁹⁷H. Liu and J. W. Rogers, Jr., J. Vac. Sci. Technol. A **17**, 325 (1999).
- ⁴⁹⁸J. N. Kidder, Jr., J. S. Kuo, A. Ludviksson, T. P. Pearsall, J. W. Rogers, Jr., J. M. Grant, L. R. Allen, and S. T. Hsu, J. Vac. Sci. Technol. A 13, 711 (1995).
- ⁴⁹⁹A. Ludviksson, D. W. Robinson, and J. W. Rogers, Jr., Thin Solid Films 289, 6 (1996).
- ⁵⁰⁰J. N. Kidder, Jr., H. K. Yun, J. W. Rogers, Jr., and T. P. Pearsall, Chem. Mater. **10**, 777 (1998).
- ⁵⁰¹K. H. Kim, R. G. Gordon, A. Ritenour, and D. A. Antoniadis, Appl. Phys. Lett. **90**, 212104 (2007).
- ⁵⁰²M. Ishii, S. Iwai, H. Kawata, T. Ueki, and Y. Aoyagi, J. Cryst. Growth 180, 15 (1997).
- ⁵⁰³M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Appl. Phys. Lett. **71**, 1044 (1997).
- ⁵⁰⁴M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Thin Solid Films **318**, 6 (1998).
- ⁵⁰⁵S. Hirose, M. Yamaura, and H. Munekata, Appl. Surf. Sci. **150**, 89 (1999).

- ⁵⁰⁶R. Kobayashi, J. Cryst. Growth 113, 491 (1991).
- ⁵⁰⁷M. Akamatsu, S. Narahara, T. Kobayashi, and F. Hasegawa, Appl. Surf. Sci. 82/83, 228 (1994).
- ⁵⁰⁸S. M. Bedair, M. A. Tischler, T. Katsuyama, and N. A. El-Masry, Appl. Phys. Lett. 47, 51 (1985).
- ⁵⁰⁹M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, J. Vac. Sci. Technol. B **5**, 1184 (1987).
- ⁵¹⁰S. P. DenBaars, P. D. Dapkus, C. A. Beyler, A. Hariz, and K. M. Dzurko, J. Cryst. Growth **93**, 195 (1988).
- ⁵¹¹M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Thin Solid Films 174, 63 (1989).
- ⁵¹²T. Meguro, S. Iwai, Y. Aoyagi, K. Ozaki, Y. Yamamoto, T. Suzuki, Y. Okano, and A. Hirata, J. Cryst. Growth 99, 540 (1990).
- ⁵¹³N. Ohtsuka, K. Kitahara, M. Ozeki, and K. Kodama, J. Cryst. Growth 99, 346 (1990).
- ⁵¹⁴Y. Aoyagi, T. Meguro, S. Iwai, and A. Doi, Mater. Sci. Eng. B **10**, 121 (1991).
- ⁵¹⁵S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. **60**, 377 (1992).
- ⁵¹⁶K. Kitahara, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 1 32, 1051 (1993).
- ⁵¹⁷M. Ozeki and N. Ohtsuka, Appl. Surf. Sci. 82/83, 233 (1994).
- ⁵¹⁸N. Hayafuji, G. M. Eldallal, A. Dip, P. C. Colter, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 82/83, 18 (1994).
- ⁵¹⁹M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 30, L435 (1991).
- ⁵²⁰M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Thin Solid Films 225, 74 (1993).
- ⁵²¹H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Surf. Sci. 82/83, 57 (1994).
- ⁵²²S. Hirose, N. Kano, M. Deura, K. Hara, H. Munekata, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 34, L1436 (1995).
- ⁵²³S. Hirose, H. Ibuka, A. Yoshida, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth 208, 49 (2000).
- ⁵²⁴D. E. Aspnes, I. Karniya, H. Tanaka, R. Bhat, L. T. Florez, J. P. Harbison, W. E. Quinn, M. Tamargo, S. Gregory, M. A. A. Pudensi, S. A. Schwarz, M. J. S. P. Brasil, and R. E. Nahory, Thin Solid Films **225**, 26 (1993).
- ⁵²⁵K. Kitahara, N. Ohtsuka, T. Ashino, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 2 32, L236 (1993).
- ⁵²⁶ K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **62**, 1420 (1993).
- ⁵²⁷I. Suemune, Appl. Surf. Sci. 82/83, 149 (1994).
- ⁵²⁸M. Nagano, S. Iwai, K. Nemoto, and Y. Aoyagi, Jpn. J. Appl. Phys., Part 2 33, L1289 (1994).
- ⁵²⁹N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Phys. Lett. **65**, 1115 (1994).
- ⁵³⁰N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Surf. Sci. 82/83, 132 (1994).
- ⁵³¹S. Hirose, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth **172**, 13 (1997).
- ⁵³²S. Hirose, M. Yamaura, A. Yoshida, H. Ibuka, K. Hara, and H. Munekata, J. Cryst. Growth **194**, 16 (1998).
- ⁵³³S. Hirose, A. Yoshida, M. Yamaura, N. Kano, and H. Munekata, J. Mater. Sci.: Mater. Electron. 11, 7 (2000).
- ⁵³⁴V. Pore, K. Knapas, T. Hatanpää, T. Sarnet, M. Kemell, M. Ritala, M. Leskelä, and K. Mizohata, Chem. Mater. 23, 247 (2011).
- ⁵³⁵V. V. Brei, V. A. Kasperskii, and A. A. Chuiko, Zh. Prikl. Khim. **69**, 378 (1996) [Russ. J. Appl. Chem. **69**, 335 (1996)].
- ⁵³⁶X. Du, K. Zhang, K. Holland, T. Tombler, and M. Moskovits, Appl. Opt. **48**, 6470 (2009).
- ⁵³⁷L. Velleman, G. Triani, P. J. Evans, J. G. Shapter, and D. Losic, Microporous Mesoporous Mater. **126**, 87 (2009).
- ⁵³⁸V. E. Drozd, A. A. Tulub, V. B. Aleskovskii, and D. V. Korol'kov, Appl. Surf. Sci. 82/83, 587 (1994).
- ⁵³⁹J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Przybylak, P. R. Chalker, K. Black, H. O. Davies, P. Taechakumput, S. Taylor, and G. W. Critchlow, J. Mater. Chem. 16, 3854 (2006).
- ⁵⁴⁰J. M. Gaskell, S. Przybylak, A. C. Jones, H. C. Aspinall, P. R. Chalker, K. Black, R. J. Potter, P. Taechakumput, and S. Taylor, Chem. Mater. **19**, 4796 (2007).
- ⁵⁴¹S. Yokoyama, K. Ohba, and A. Nakajima, Appl. Phys. Lett. **79**, 617 (2001).
- ⁵⁴²J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Electrochem. Soc. 137, 1898 (1990).

- ⁵⁴³J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Cryst. Growth 99, 502 (1990).
- ⁵⁴⁴J. A. Yarmoff, D. K. Shuh, T. D. Durbin, C. W. Lo, D. A. Lapiano-Smith, F. R. McFreely, and F. J. Himpsel, J. Vac. Sci. Technol. A 10, 2303 (1992).
- ⁵⁴⁵S. Imai, T. Iizuka, O. Sugiura, and M. Matsumura, Thin Solid Films 225, 168 (1993).
- ⁵⁴⁶S. Imai and M. Matsumura, Appl. Surf. Sci. 82/83, 322 (1994).
- ⁵⁴⁷D. D. Koleske and S. M. Gates, Appl. Surf. Sci. 82/83, 344 (1994).
- ⁵⁴⁸D. D. Koleske and S. M. Gates, J. Appl. Phys. **76**, 1615 (1994).
- ⁵⁴⁹S. Sugahara, E. Hasunuma, S. Imai, and M. Matsumura, Appl. Surf. Sci. 107, 161 (1996).
- ⁵⁵⁰E. Hasunuma, S. Sugahara, S. Hoshino, S. Imai, K. Ikeda, and M. Matsumura, J. Vac. Sci. Technol. A 16, 679 (1998).
- ⁵⁵¹Y. Satoh, K. Ikeda, S. Sugahara, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 39, 5732 (2000).
- ⁵⁵²Y. Takahashi and T. Urisu, Jpn. J. Appl. Phys., Part 2 30, L209 (1991).
- ⁵⁵³H. Akazawa, Phys. Rev. B 54, 10917 (1996).
- ⁵⁵⁴H. Akazawa, J. Appl. Phys. 81, 3320 (1997).
- ⁵⁵⁵P. A. Coon, M. L. Wise, A. C. Dillon, M. B. Robinson, and S. M. George, J. Vac. Sci. Technol. B 10, 221 (1992).
- ⁵⁵⁶F. Hirose, M. Suemitsu, and N. Miyamoto, Appl. Surf. Sci. **60/61**, 592 (1992).
- ⁵⁵⁷J. Murota, M. Sakuraba, and S. Ono, Appl. Phys. Lett. 62, 2353 (1993).
 ⁵⁵⁸M. Sakuraba, J. Murota, T. Watanabe, Y. Sawada, and S. Ono, Appl.
- Surf. Sci. 82/83, 354 (1994).
 ⁵⁵⁹D. D. Koleske, S. M. Gates, and D. B. Beach, J. Appl. Phys. 72, 4073
- (1992).
 ⁵⁶⁰S. M. Gates, D. D. Koleske, J. R. Heath, and M. Copel, Appl. Phys. Lett.
 62, 510 (1993).
- ⁵⁶¹D. D. Koleske and S. M. Gates, Appl. Phys. Lett. **64**, 884 (1994).
- ⁵⁶²Y. Suda, D. Lubben, T. Motooka, and J. Greene, J. Vac. Sci. Technol. B 7, 1171 (1989).
- ⁵⁶³D. Lubben, R. Tsu, T. R. Bramblett, and J. E. Greene, J. Vac. Sci. Technol. A 9, 3003 (1991).
- ⁵⁶⁴D. Lin, T. Miller, and T. Chiang, Phys. Rev. B 47, 6543 (1993).
- ⁵⁶⁵Y. Suda, M. Ishida, M. Yamashita, and H. Ikeda, Appl. Surf. Sci. 82/83, 332 (1994).
- ⁵⁶⁶Y. Suda, Y. Misato, and D. Shiratori, Jpn. J. Appl. Phys., Part 1 38, 2390 (1999).
- ⁵⁶⁷J. Nishizawa, A. Murai, T. Ohizumi, T. Kurabayashi, K. Ohtsuka, and T. Yoshida, J. Cryst. Growth **209**, 327 (2000).
- ⁵⁶⁸J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 233, 161 (2001).
- ⁵⁶⁹J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 226, 39 (2001).
- ⁵⁷⁰Y. Suda, N. Hosoya, and K. Miki, Appl. Surf. Sci. 216, 424 (2003).
- ⁵⁷¹H. Akazawa, Y. Utsumi, T. Urisu, and M. Nagase, Phys. Rev. B 47, 15946 (1993).
- ⁵⁷²H. Akazawa, Appl. Surf. Sci. **82/83**, 394 (1994).
- ⁵⁷³H. Akazawa and Y. Utsumi, J. Appl. Phys. 78, 2725 (1995).
- ⁵⁷⁴M. Ishida, M. Yamashita, Y. Nagata, and Y. Suda, Jpn. J. Appl. Phys., Part 1 35, 4011 (1996).
- ⁵⁷⁵H. Akazawa, J. Cryst. Growth **173**, 343 (1997).
- ⁵⁷⁶Y. Suda, N. Hosoya, and D. Shiratori, J. Cryst. Growth 237, 1404 (2002).
- ⁵⁷⁷A. Mahajan, J. Irby, D. Kinosky, R. Qian, S. Thomas, S. Banerjee, A. Tasch, and T. Picraux, Thin Solid Films 225, 177 (1993).
- ⁵⁷⁸S. Imai, S. Takagi, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 30, 3646 (1991).
- ⁵⁷⁹G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **43**, 1150 (1970) [J. Appl. Chem. USSR **43**, 1155 (1970)].
- ⁵⁸⁰M. A. Eremeeva, A. P. Nechiporenko, G. N. Kuznetsova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **47**, 2332 (1974) [J. Appl. Chem. USSR **47**, 2390 (1974)].
- ⁵⁸¹L. V. Miroshnichenko, A. A. Malygin, and S. I. Kol'tsov, Ogneupory 26, 22 (1985) [Refractories 26, 82 (1985)].
- ⁵⁸²O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, Surf. Sci. 334, 135 (1995).
- ⁵⁸³J. W. Klaus, A. W. Ott, J. M. Johnson, and S. M. George, Appl. Phys. Lett. **70**, 1092 (1997).
- ⁵⁸⁴J. W. Klaus, A. W. Ott, and S. M. George, Surf. Rev. Lett. 6, 435 (1999).
 ⁵⁸⁵M. A. Cameron, I. P. Gartland, J. A. Smith, S. F. Diaz, and S. M. George, Langmuir 16, 7435 (2000).

- ⁵⁸⁶J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 12, 3472 (2000).
- ⁵⁸⁷Y. Fedorenko, J. Swerts, J. W. Maes, E. Tois, S. Haukka, C. G. Wang, G. Wilk, A. Delabie, W. Deweerd, and S. De Gendt, Electrochem. Solid-State Lett. **10**, H149 (2007).
- ⁵⁸⁸J. W. Klaus, O. Sneh, and S. M. George, Science **278**, 1934 (1997).
- ⁵⁸⁹J. W. Klaus and S. M. George, Surf. Sci. 447, 81 (2000).
- ⁵⁹⁰B. A. McCool and W. J. DeSisto, Ind. Eng. Chem. Res. 43, 2478 (2004).
 ⁵⁹¹B. A. McCool and W. J. DeSisto, Chem. Vap. Deposition 10, 190
- (2004).
- ⁵⁹²Y. Du, X. Du, and S. M. George, Thin Solid Films **491**, 43 (2005).
- ⁵⁹³L. K. Tan, A. S. M. Chong, X. S. E. Tang, and H. Gao, J. Phys. Chem. C 111, 4964 (2007).
- ⁵⁹⁴Y. Du, X. Du, and S. M. George, J. Phys. Chem. C 111, 219 (2007).
- ⁵⁹⁵S. W. Lee, K. Park, B. Han, S. H. Son, S. K. Rha, C. O. Park, and W. J. Lee, Electrochem. Solid-State Lett. 11, G23 (2008).
- ⁵⁹⁶S. I. Kol'tsov, Zh. Prikl. Khim. 38, 1384 (1965) [J. Appl. Chem. USSR 38, 1352 (1965)].
- ⁵⁹⁷S. I. Kol'tsov, G. N. Kuznetsova, and V. B. Aleskovskii, Zh. Prikl. Khim. **40**, 2774 (1967) [J. Appl. Chem. USSR **40**, 2644 (1967)].
- ⁵⁹⁸S. I. Kol'tsov, Zh. Obshch. Khim. **71**, 1616 (2001) [Russ. J. Gen. Chem. **71**, 1531 (2001)].
- ⁵⁹⁹J.-H. Lee, U.-J. Kim, C.-H. Han, S.-K. Rha, W.-J. Lee, and C.-O. Park, Jpn. J. Appl. Phys., Part 2 43, L328 (2004).
- ⁶⁰⁰W.-J. Lee, C.-H. Han, J.-K. Park, Y.-S. Lee, and S.-K. Rha, Jpn. J. Appl. Phys., Part 1 49, 071504 (2010).
- ⁶⁰¹T. Murata, Y. Miyagawa, Y. Nishida, Y. Yamamoto, T. Yamashita, M. Matsuura, K. Asai, and H. Miyatake, Jpn. J. Appl. Phys., Part 1 49, 04DB11 (2010).
- ⁶⁰²Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, J. Phys. Chem. C 112, 9448 (2008).
- ⁶⁰³B. Hatton, V. Kitaev, D. Perovic, G. Ozin, and J. Aizenberg, J. Mater. Chem. 20, 6009 (2010).
- ⁶⁰⁴J. D. Ferguson, E. R. Smith, A. W. Weimer, and S. M. George, J. Electrochem. Soc. **151**, G528 (2004).
- ⁶⁰⁵Y. K. Jeong, H.-J. Kim, H. G. Kim, and B.-H. Choi, Curr. Appl. Phys. 9, S249 (2009).
- ⁶⁰⁶Y. B. Jiang, N. G. Liu, H. Gerung, J. L. Cecchi, and C. J. Brinker, J. Am. Chem. Soc. **128**, 11018 (2006).
- ⁶⁰⁷J. W. Lim, S. J. Yun, and J. H. Kim, ETRI J. 31, 675 (2009).
- ⁶⁰⁸J. Bachmann, R. Zierold, Y. T. Chong, R. Hauert, C. Sturm, R. Schmidt-Grund, B. Rheinländer, M. Grundmann, U. Gösele, and K. Nielsch, Angew. Chem., Int. Ed. **47**, 6177 (2008).
- ⁶⁰⁹K. Pitzschel, J. M. M. Moreno, J. Escrig, O. Albrecht, K. Nielsch, and J. Bachmann, ACS Nano 3, 3463 (2009).
- ⁶¹⁰J. Lee, S. Farhangfar, R. Yang, R. Scholz, M. Alexe, U. Gösele, J. Lee, and K. Nielsch, J. Mater. Chem. **19**, 7050 (2009).
- ⁶¹¹D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Müller, J. Vogt, H. Hilmer, P. Löper, M. Künle, F. Munnik, K. Nielsch, and M. Zacharias, J. Appl. Phys. 107, 064314 (2010).
- ⁶¹²O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, and K. Nielsch, Phys. Status Solidi B 247, 1365 (2010).
- ⁶¹³B. B. Burton, M. P. Boleslawski, A. T. Desombre, and S. M. George, Chem. Mater. 20, 7031 (2008).
- ⁶¹⁴X. Liang, K. S. Barrett, Y.-B. Jiang, and A. W. Weimer, ACS Appl. Mater. Interfaces 2, 2248 (2010).
- ⁶¹⁵M. Lindblad and A. Root, in *Preparation of Catalysts VII, Proceedings of the 7th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, September 1–4, 1998*, Stud. Surf. Sci. Catal., edited by B. Delmon, P. A. Jacobs, R. Maggi, J. A. Martens, P. Grange, and G. Poncelet (Elsevier, Amsterdam, 1998), Vol. 118, pp. 817–826.
- ⁶¹⁶S. Kamiyama, T. Miura, and Y. Nara, Electrochem. Solid-State Lett. 8, F37 (2005).
- ⁶¹⁷S. Kamiyama, T. Miura, and Y. Nara, Thin Solid Films **515**, 1517 (2006).
- ⁶¹⁸P. S. Waggoner, C. P. Tan, and H. G. Craighead, J. Appl. Phys. **107**, 114505 (2010).
- ⁶¹⁹S.-J. Won, S. Suh, M. S. Huh, and H. J. Kim, IEEE Electron Device Lett. **31**, 857 (2010).
- ⁶²⁰S. Kamiyama, T. Miura, Y. Nara, and T. Arikado, Electrochem. Solid-State Lett. 8, G215 (2005).

- ⁶²¹Y. Kinoshita, F. Hirose, H. Miya, K. Hirahara, Y. Kimura, and M. Niwano, Electrochem. Solid-State Lett. 10, G80 (2007).
- ⁶²²F. Hirose, Y. Kinoshita, S. Shibuya, Y. Narita, Y. Takahashi, H. Miya, K. Hirahara, Y. Kimura, and M. Niwano, Thin Solid Films **519**, 270 (2010).
- ⁶²³B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, J. Phys. Chem. C 113, 8249 (2009).
- ⁶²⁴D. M. King, X. H. Liang, B. B. Burton, M. K. Akhtar, and A. W. Weimer, Nanotechnology 19, 255604 (2008).
- ⁶²⁵W. Gasser, Y. Uchida, and M. Matsumura, Thin Solid Films 250, 213 (1994).
- ⁶²⁶K. Yamaguchi, S. Imai, N. Ishitobi, M. Takemoto, H. Miki, and M. Matsumura, Appl. Surf. Sci. 130–132, 202 (1998).
- ⁶²⁷S. Morishita, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 5738 (1995).
- ⁶²⁸S. Morishita, W. Gasser, K. Usami, and M. Matsumura, J. Non-Cryst. Solids 187, 66 (1995).
- ⁶²⁹J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, Surf. Sci. 418, L14 (1998).
- ⁶³⁰M. Yokoyama, J. Korean Phys. Soc. 35, S71 (1999).
- ⁶³¹A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama, Appl. Phys. Lett. 79, 665 (2001).
- ⁶³²W. J. Lee, J. H. Lee, C. O. Park, Y. S. Lee, S. J. Shin, and S. K. Rha, J. Korean Phys. Soc. 45, 1352 (2004).
- ⁶³³S. Zhu and A. Nakajima, Jpn. J. Appl. Phys., Part 1 46, 7699 (2007).
- ⁶³⁴W. J. Lee, U. J. Kim, C. H. Han, M. H. Chun, and S. K. Rha, J. Korean Phys. Soc. 47, S598 (2005).
- ⁶³⁵H. Goto, K. Shibahara, and S. Yokoyama, Appl. Phys. Lett. **68**, 3257 (1996).
- ⁶³⁶S. Yokoyama, H. Goto, T. Miyamoto, N. Ikeda, and J. Shibahara, Appl. Surf. Sci. **112**, 75 (1997).
- ⁶³⁷S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci. 130–132, 352 (1998).
- ⁶³⁸S. Morishita, S. Sugahara, and M. Matsumura, Appl. Surf. Sci. 112, 198 (1997).
- ⁶³⁹K. Park, W.-D. Yun, B.-J. Choi, H.-D. Kim, W.-J. Lee, S.-K. Rha, and C. O. Park, Thin Solid Films **517**, 3975 (2009).
- ⁶⁴⁰H. Nagasawa and Y. Yamaguchi, Thin Solid Films **225**, 230 (1993).
- ⁶⁴¹H. Nagasawa and Y. Yamaguchi, Appl. Surf. Sci. 82/83, 405 (1994).
- ⁶⁴²E. Sadayuki, S. Imai, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 6166 (1996).
- ⁶⁴³J. Sumakeris, L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, Thin Solid Films **225**, 219 (1993).
- ⁶⁴⁴T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Cryst. Growth **95**, 461 (1989).
- ⁶⁴⁵S. Hara, Y. Aoyagi, M. Kawai, S. Misakawa, E. Sakuma, and S. Yoshida, Surf. Sci. 273, 437 (1992).
- ⁶⁴⁶T. Fuyuki, T. Yoshinobu, and H. Matsunami, Thin Solid Films **125**, 225 (1993).
- ⁶⁴⁷S. Hara, T. Meguro, Y. Aoyagi, and M. Kawai, Thin Solid Films 225, 240 (1993).
- ⁶⁴⁸S. Lee and K. Yong, Jpn. J. Appl. Phys., Part 1 46, 5259 (2007).
- ⁶⁴⁹S. Lee, J. Kim, and K. Yong, J. Nanosci. Nanotechnol. 8, 577 (2008).
- ⁶⁵⁰W. K. Kim, S. W. Kang, and S. W. Rhee, J. Vac. Sci. Technol. A **21**, L16 (2003).
- ⁶⁵¹W. K. Kim, S. W. Kang, S. W. Rhee, N. I. Lee, J. H. Lee, and H. K. Kang, J. Vac. Sci. Technol. A 20, 2096 (2002).
- ⁶⁵²J. Kim and K. Yong, Electrochem. Solid-State Lett. 7, F35 (2004).
- ⁶⁵³K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, R. I. Hegde, D. C. Gilmer, and P. J. Tobin, J. Electrochem. Soc. **151**, F98 (2004).
- ⁶⁵⁴R. G. Gordon, J. Becker, D. Hausmann, and S. Suh, Chem. Mater. 13, 2463 (2001).
- ⁶⁵⁵J. Kim and K. Yong, J. Electrochem. Soc. 152, F153 (2005).
- ⁶⁵⁶J. Kim and K. Yong, J. Electrochem. Soc. **152**, F45 (2005).
- ⁶⁵⁷J. Kim, S. Lee, and K. Yong, Jpn. J. Appl. Phys., Part 1 45, 7080 (2006).
- ⁶⁵⁸J. Kim and K. J. Yong, J. Vac. Sci. Technol. B 24, 1147 (2006).
- ⁶⁵⁹J. Kim and K. Yong, J. Appl. Phys. **100**, 044106 (2006).
- ⁶⁶⁰J. Liu, W. N. Lennard, L. V. Goncharova, D. Landheer, X. Wu, S. A. Rushworth, and A. C. Jones, J. Electrochem. Soc. **156**, G89 (2009).
- ⁶⁶¹S. Lee, D.-J. Yun, S.-W. Rhee, and K. Yong, J. Mater. Chem. **19**, 6857 (2009).
- ⁶⁶²J. Harjuoja, T. Hatanpää, M. Vehkamäki, S. Väyrynen, M. Putkonen, L. Niinistö, M. Ritala, M. Leskelä, and E. Rauhala, Chem. Vap. Deposition 11, 362 (2005).

- ⁶⁶³J. Harjuoja, S. Väyrynen, M. Putkonen, L. Niinistö, and E. Rauhala, J. Cryst. Growth 286, 376 (2006).
- ⁶⁶⁴S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Prikl. Khim. 42, 1028 (1969) [J. Appl. Chem. USSR 42, 980 (1969)].
- ⁶⁶⁵S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Fiz. Kihm. 46, 1292 (1972) [Russ. J. Phys. Chem. 46, 742 (1972)].
- ⁶⁶⁶S. I. Kol'tsov, V. B. Aleskovskii, A. N. Volkova, and V. M. Smirnov, Zh. Prikl. Khim. **47**, 1254 (1974) [J. Appl. Chem. USSR **47**, 1292 (1974)].
- ⁶⁶⁷A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **45**, 3 (1975) [J. Gen. Chem. USSR **45**, 1 (1975)].
- ⁶⁶⁸S. A. Trifonov, V. A. Lapikov, and A. A. Malygin, Zh. Prikl. Khim. 75, 986 (2002) [Russ. J. Appl. Chem. 75, 969 (2002)].
- ⁶⁶⁹A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **43**, 724 (1973) [J. Gen. Chem. USSR **43**, 723 (1973)].
- ⁶⁷⁰A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim.
 50, 2633 (1980) [J. Gen. Chem. USSR **50**, 2121 (1980)].
- ⁶⁷¹J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. 75, 33 (1994).
- ⁶⁷²O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films **450**, 240 (2004).
- ⁶⁷³M. Putkonen, T. Sajavaara, P. Rahkila, L. Xu, S. Cheng, L. Niinistö, and H. J. Whitlow, Thin Solid Films 517, 5819 (2009).
- ⁶⁷⁴K. Kukli, M. Ritala, T. Sajavaara, T. Hänninen, and M. Leskelä, Thin Solid Films 500, 322 (2006).
- ⁶⁷⁵M. Tammenmaa, H. Antson, M. Asplund, L. Hiltunen, M. Leskelä, L. Niinistö, and E. Ristolainen, J. Cryst. Growth 84, 151 (1987).
- ⁶⁷⁶J. Rautanen, M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Utriainen, Appl. Surf. Sci. 82/83, 553 (1994).
- ⁶⁷⁷P. Soininen, L. Niinistö, E. Nykänen, and M. Leskelä, Appl. Surf. Sci. 75, 99 (1994).
- ⁶⁷⁸T. Hänninen, I. Mutikainen, V. Saanila, M. Ritala, M. Leskelä, and J. C. Hanson, Chem. Mater. 9, 1234 (1997).
- ⁶⁷⁹S. Dey and S. J. Yun, Appl. Surf. Sci. **143**, 191 (1999).
- ⁶⁸⁰M. Ylilammi and T. Ranta-aho, J. Electrochem. Soc. 141, 1278 (1994).
- ⁶⁸¹T. Pilvi, K. Arstila, M. Leskelä, and M. Ritala, Chem. Mater. 19, 3387 (2007).
- ⁶⁸²M. Putkonen, M. Nieminen, J. Niinistö, and L. Niinistö, Chem. Mater. 13, 4701 (2001).
- ⁶⁸³P. de Rouffignac, A. P. Yousef, K. H. Kim, and R. G. Gordon, Electrochem. Solid-State Lett. 9, F45 (2006).
- ⁶⁸⁴A. Hardy, C. Adelmann, S. Van Elshocht, H. Van den Rul, M. K. Van Bael, S. De Gendt, M. D'Olieslaeger, M. Heyns, J. A. Kittl, and J. Mullens, Appl. Surf. Sci. 255, 7812 (2009).
- ⁶⁸⁵S. M. Rossnagel, A. Sherman, and F. Turner, J. Vac. Sci. Technol. B 18, 2016 (2000).
- ⁶⁸⁶H. Kim and S. M. Rossnagel, J. Vac. Sci. Technol. A 20, 802 (2002).
- ⁶⁸⁷V. Pore, T. Kivelä, M. Ritala, and M. Leskelä, Dalton Trans. 2008, 6467.
- ⁶⁸⁸S. I. Kol'tsov and V. B. Aleskovskii, Zh. Prikl. Khim. **40**, 907 (1967) [J. Appl. Chem. USSR **40**, 872 (1967)].
- ⁶⁸⁹ A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, in *Chemistry of High Temperature Materials, Proceedings of 2nd USSR Conference on High Temperature Chemistry of Oxides, Leningrad, USSR, 26-29 November 1965*, (Nauka, Leningrad, USSR, 1967), pp. 149–155 (in Russian).
- ⁶⁹⁰S. I. Kol'tsov and V. B. Aleskovskii, Zh. Fiz. Khim. **42**, 1210 (1968) [Russ. J. Phys. Chem. **42**, 630 (1968)].
- ⁶⁹¹S. I. Kol'tsov, Zh. Prikl. Khim. 42, 1023 (1969) [J. Appl. Chem. USSR 42, 975 (1969)].
- ⁶⁹²S. I. Kol'tsov, Zh. Prikl. Khim. 43, 1956 (1970) [J. Appl. Chem. USSR 43, 1976 (1970)].
- ⁶⁹³G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **43**, 430 (1970) [J. Appl. Chem. USSR **43**, 432 (1970)].
- ⁶⁹⁴V. N. Pak, Yu. P. Kostikov, S. I. Kol'tsov, and V. B. Aleskovskii, Kinet. Katal. **15**, 1358 (1974) [Kinet. Catal. **15**, 1205 (1974)].
- ⁶⁹⁵V. N. Pak, Zh. Fiz. Khim. **50**, 1266 (1976) [Russ. J. Phys. Chem. **50**, 758 (1976)].
- ⁶⁹⁶S. I. Kol'tsov, V. E. Drozd, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR **229**, 1145 (1976) [Dokl. Phys. Chem. **229**, 718 (1976)].
- ⁶⁹⁷S. I. Kol'tsov, V. E. Drozd, T. A. Redova, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR 235, 1090 (1977) [Dokl. Phys. Chem. 235, 794 (1977)].
- ⁶⁹⁸V. B. Aleskovskii, V. E. Drozd, V. F. Kiselev, S. N. Kozlov, S. I. Kol'tsov, A. S. Petrov, and G. S. Plotnikov, Fiz. Tekh. Poluprovodn. **13**, 1397 (1979) [Sov. Phys. Semicond. **13**, 817 (1979)].

- ⁶⁹⁹M. N. Tsvetkova, I. M. Yur'evskaya, A. A. Malygin, S. I. Kol'tsov, and Yu. I. Skorik, Zh. Prikl. Khim. **55**, 256 (1982) [J. Appl. Chem. USSR **55**, 229 (1982)].
- ⁷⁰⁰S. K. Gordeev, E. P. Smirnov, and S. I. Kol'tsov, Zh. Obshch. Khim. **52**, 1468 (1982) [J. Gen. Chem. USSR **52**, 1298 (1982)].
- ⁷⁰¹S. K. Gordeev and E. P. Smirnov, Zh. Obshch. Khim. **52**, 1464 (1982)
 [J. Gen. Chem. USSR **52**, 1294 (1982)].
- ⁷⁰²V. A. Tolmachev, Zh. Prikl. Khim. 55, 1410 (1982) [J. Appl. Chem. USSR 55, 1298 (1982)].
- ⁷⁰³V. A. Tolmachev and M. A. Okatov, Opt. Mekh. Prom-st. **50**, 38 (1983)
 [Sov. J. Opt. Techol. **50**, 706 (1983)].
- ⁷⁰⁴V. A. Tolmachev, M. A. Okatov, and V. V. Pal'chevskii, Opt. Mekh. Prom-st. **51**, 57 (1984) [Sov. J. Opt. Technol. **51**, 368 (1984)].
- ⁷⁰⁵M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Neorg. Mater. 20, 144 (1984) [Inorg. Mater. 20, 121 (1984)].
- ⁷⁰⁶ A. L. Egorov, K. Ezhovskii, S. I. Kol'tsov, and G. V. Anikeev, Zh. Prikl.
 Khim. 57, 2593 (1984) [J. Appl. Chem. USSR 57, 2395 (1984)].
- ⁷⁰⁷A. A. Seitmagzimov, V. N. Pak, and S. I. Kol'tsov, Zh. Prikl. Khim. 58, 92 (1985) [J. Appl. Chem. USSR 58, 85 (1985)].
- ⁷⁰⁸L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **59**, 1224 (1986) [J. Appl. Chem. USSR **59**, 1131 (1986)].
- ⁷⁰⁹L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **59**, 2277 (1986) [J. Appl. Chem. USSR **59**, 2093 (1986)].
- ⁷¹⁰A. B. Zhidkov and E. P. Smirnov, Kinet. Katal. **29**, 946 (1988) [Kinet. Catal. **29**, 813 (1988)].
- ⁷¹¹L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 64, 763 (1991) [J. Appl. Chem. USSR 64, 679 (1991)].
- ⁷¹²L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 64, 1435 (1991) [J. Appl. Chem. USSR 64, 1290 (1991)].
- ⁷¹³N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Zh. Prikl. Khim. **65**, 1117 (1992) [J. Appl. Chem. USSR **65**, 921 (1992)].
- ⁷¹⁴V. M. Smirnov, A. A. Malkov, and R. R. Rachovskii, Zh. Prikl. Khim.
 65, 2666 (1992) [J. Appl. Chem. USSR 65, 2213 (1992)].
- ⁷¹⁵N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Thin Solid Films **293**, 91 (1997).
- ⁷¹⁶V. N. Pak, I. Yu. Tikhomirova, T. M. Burkat, and B. I. Lobov, Zh. Fiz. Khim. **73**, 2024 (1999) [Russ. J. Phys. Chem. **73**, 1824 (1999)].
- ⁷¹⁷S. I. Kol'tsov and G. N. Kuznetsova, Zh. Prikl. Khim. **72**, 900 (1999) [Russ. J. Appl. Chem. **72**, 942 (1999)].
- ⁷¹⁸S. A. Morozov, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. **76**, 9 (2003) [Russ. J. Appl. Chem. **76**, 7 (2003)].
- ⁷¹⁹S. B. Desu, Mater. Sci. Eng. B 13, 299 (1992).
- ⁷²⁰E.-L. Lakomaa, S. Haukka, and T. Suntola, Appl. Surf. Sci. 60/61, 742 (1992).
- ⁷²¹S. Haukka, E.-L. Lakomaa, and A. Root, J. Phys. Chem. 97, 5085 (1993).
- ⁷²²S. Haukka, E.-L. Lakomaa, and T. Suntola, Thin Solid Films 225, 280 (1993).
- ⁷²³S. Haukka, E.-L. Lakomaa, O. Jylhä, J. Vilhunen, and S. Hornytzkyj, Langmuir 9, 3497 (1993).
- ⁷²⁴M. Ritala and M. Leskelä, Thin Solid Films **225**, 288 (1993).
- ⁷²⁵M. Ritala, M. Leskelä, L.-S. Johansson, and L. Niinistö, Thin Solid Films 228, 32 (1993).
- ⁷²⁶S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 82/83, 548 (1994).
- ⁷²⁷J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, J. Cryst. Growth 148, 268 (1995).
- ⁷²⁸J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, and T. Uustare, J. Cryst. Growth 169, 496 (1996).
- ⁷²⁹J. Aarik, A. Aidla, and T. Uustare, Philos. Mag. Lett. **73**, 115 (1996).
- ⁷³⁰A. Rosental, P. Adamson, A. Gerst, and A. Niilisk, Appl. Surf. Sci. **107**, 178 (1996).
- ⁷³¹V. E. Drozd, N. N. Kopilov, and V. B. Aleskovski, Appl. Surf. Sci. 112, 258 (1997).
- ⁷³²J. Aarik, A. Aidla, V. Sammelselg, and T. Uustare, J. Cryst. Growth 181, 259 (1997).
- ⁷³³J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films **305**, 270 (1997).
- ⁷³⁴H. Siimon and J. Aarik, J. Phys. D: Appl. Phys. 30, 1725 (1997).
- ⁷³⁵H. Siimon, J. Aarik, and T. Uustare, in *Proceedings of the Fourteenth International Conference of Chemical Vapor Deposition and EUROCVD-11*, Electrochem. Soc. Proceedings, edited by M. D. Allen-

dorf and C. Bernard (Electrochemical Society, Pennington, New Jersey, USA, 1997), Vol. 97-25, pp. 131–138.

- ⁷³⁶M. Lindblad, S. Haukka, A. Kytökivi, E.-L. Lakomaa, A. Rautiainen, and T. Suntola, Appl. Surf. Sci. **121/122**, 286 (1997).
- ⁷³⁷A. Rosental, P. Adamson, A. Gerst, H. Koppel, and A. Tarre, Appl. Surf. Sci. 112, 82 (1997).
- ⁷³⁸V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson, and T. Uustare, Appl. Surf. Sci. 134, 78 (1998).
- ⁷³⁹A. Suisalu, J. Aarik, H. Mändar, and I. Sildos, Thin Solid Films 336, 295 (1998).
- ⁷⁴⁰A. Rosental, A. Tarre, P. Adamson, A. Gerst, A. Kasikov, and A. Niilisk, Appl. Surf. Sci. **142**, 204 (1999).
- ⁷⁴¹V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, and L. Niinistö, J. Anal. At. Spectrom. 14, 523 (1999).
- ⁷⁴²K. Schrijnemakers, N. R. E. N. Impens, and E. F. Vansant, Langmuir 15, 5807 (1999).
- ⁷⁴³A. Turković, Mater. Sci. Eng. B **75**, 85 (2000).
- ⁷⁴⁴J. Aarik, A. Aidla, H. Mändar, and V. Sammelselg, J. Cryst. Growth **220**, 531 (2000).
- ⁷⁴⁵R. Matero, A. Rahtu, and M. Ritala, Chem. Mater. 13, 4506 (2001).
- ⁷⁴⁶J. Aarik, A. Aidla, H. Mändar, and T. Uustare, Appl. Surf. Sci. **172**, 148 (2001).
- ⁷⁴⁷A. Tarre, A. Rosental, V. Sammelselg, and T. Uustare, Appl. Surf. Sci. 175/176, 111 (2001).
- ⁷⁴⁸J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, and A. Hårsta, J. Cryst. Growth 242, 189 (2002).
- ⁷⁴⁹B. J. Ninness, D. W. Bousfield, and C. P. Tripp, Colloids Surf., A 214, 195 (2003).
- ⁷⁵⁰K. S. Finnie, G. Triani, K. T. Short, D. R. G. Mitchell, D. J. Attard, J. R. Bartlett, and C. J. Barbé, Thin Solid Films 440, 109 (2003).
- ⁷⁵¹D. R. G. Mitchell, D. J. Attard, and G. Triani, Thin Solid Films 441, 85 (2003).
- ⁷⁵²J. D. Ferguson, A. R. Yoder, A. W. Weimer, and S. M. George, Appl. Surf. Sci. 226, 393 (2004).
- ⁷⁵³X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
- ⁷⁵⁴M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Adv. Mater. 16, 2052 (2004).
- ⁷⁵⁵W. Gu and C. P. Tripp, Langmuir **21**, 211 (2005).
- ⁷⁵⁶X. D. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, Adv. Mater. **17**, 2103 (2005).
- ⁷⁵⁷D. R. G. Mitchell, D. J. Attard, and G. Triani, J. Cryst. Growth 285, 208 (2005).
- ⁷⁵⁸J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, Appl. Surf. Sci. 244, 511 (2005).
- ⁷⁵⁹J. S. King, E. Graugnard, and C. J. Summers, Adv. Mater. 17, 1010 (2005).
- ⁷⁶⁰S. Dueñas, H. Castán, H. García, E. San Andrés, M. Toledano-Luque, I. Mártil, G. González-Díaz, K. Kukli, T. Uustare, and J. Aarik, Semicond. Sci. Technol. 20, 1044 (2005).
- ⁷⁶¹D. H. Triyoso, R. I. Hegde, X. D. Wang, M. W. Stoker, R. Rai, M. E. Ramon, B. E. White, and P. J. Tobin, J. Electrochem. Soc. **153**, G834 (2006).
- ⁷⁶²G. Triani, P. J. Evans, D. J. Attard, K. E. Prince, J. Bartlett, S. Tan, and R. P. Burford, J. Mater. Chem. 16, 1355 (2006).
- ⁷⁶³A. Sinha, D. W. Hess, and C. L. Henderson, J. Electrochem. Soc. 153, G465 (2006).
- ⁷⁶⁴A. Sinha, D. W. Hess, and C. L. Henderson, J. Vac. Sci. Technol. B 24, 2523 (2006).
- ⁷⁶⁵M. Ritala, M. Kemell, M. Lautala, A. Niskanen, M. Leskelä, and S. Lindfors, Chem. Vap. Deposition 12, 655 (2006).
- ⁷⁶⁶V. Pore, M. Heikkilä, M. Ritala, M. Leskelä, and S. Areva, J. Photochem. Photobiol., A 177, 68 (2006).
- ⁷⁶⁷A. Niilisk, M. Moppel, M. Pärs, I. Sildos, T. Jantson, T. Avarmaa, R. Jaaniso, and J. Aarik, Cent. Eur. J. Phys. 4, 105 (2006).
- ⁷⁶⁸S. Mahurin, L. L. Bao, W. F. Yan, C. D. Liang, and S. Dai, J. Non-Cryst. Solids **352**, 3280 (2006).
- ⁷⁶⁹D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, and N. H. Voelcker, J. Mater. Chem. **16**, 4029 (2006).
- ⁷⁷⁰M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. D. Yang, J. Phys. Chem. B **110**, 22652 (2006).
- ⁷⁷¹J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, Adv. Mater. 18, 1561 (2006).

- ⁷⁷²A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and T. Uustare, J. Phys. D: Appl. Phys. **39**, 54 (2006).
- ⁷⁷³I. Jõgi, J. Aarik, M. Laan, J. Lu, K. Kukli, H. Käämbre, T. Sajavaara, and T. Uustare, Thin Solid Films **510**, 39 (2006).
- ⁷⁷⁴E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, Appl. Phys. Lett. 89, 181108 (2006).
- ⁷⁷⁵V. Pore, M. Ritala, M. Leskelä, S. Areva, M. Järn, and J. Järnström, J. Mater. Chem. **17**, 1361 (2007).
- ⁷⁷⁶B. A. Latella, G. Triani, Z. Zhang, K. T. Short, J. R. Bartlett, and M. Ignat, Thin Solid Films **515**, 3138 (2007).
- ⁷⁷⁷L. E. Greene, M. Law, B. D. Yuhas, and P. D. Yang, J. Phys. Chem. C 111, 18451 (2007).
- ⁷⁷⁸H. E. Cheng and C. C. Chen, J. Electrochem. Soc. **155**, D604 (2008).
- ⁷⁷⁹H. Kawakami, R. Ilola, L. Straka, S. Papula, J. Romu, H. Hänninen, R. Mahlberg, and M. Heikkilä, J. Electrochem. Soc. 155, C62 (2008).
- ⁷⁸⁰K. Fröhlich, M. Ťapajna, A. Rosová, E. Dobročka, K. Hušeková, J. Aarik, and A. Aidla, Electrochem. Solid-State Lett. **11**, G19 (2008).
- ⁷⁸¹L. K. Tan, M. A. S. Chong, and H. Gao, J. Phys. Chem. C 112, 69 (2008).
- ⁷⁸²I. Jõgi, M. Pärs, J. Aarik, A. Aidla, M. Laan, J. Sundqvist, L. Oberbeck, J. Heitmann, and K. Kukli, Thin Solid Films **516**, 4855 (2008).
- ⁷⁸³S. Dueñas, H. Castán, H. García, L. Bailón, K. Kukli, J. Lu, M. Ritala, and M. Leskelä, J. Non-Cryst. Solids 354, 404 (2008).
- ⁷⁸⁴L. K. Tan, H. Gao, Y. Zong, and W. Knoll, J. Phys. Chem. C 112, 17576 (2008).
- ⁷⁸⁵C. J. W. Ng, H. Gao, and T. T. Y. Tan, Nanotechnology **19**, 445604 (2008).
- ⁷⁸⁶D. Mitchell, G. Triani, and Z. Zhang, Thin Solid Films **516**, 8414 (2008).
- ⁷⁸⁷A. B. F. Martinson, J. W. Elam, J. Liu, M. J. Pellin, T. J. Marks, and J. T. Hupp, Nano Lett. 8, 2862 (2008).
- ⁷⁸⁸Z. Zhang, G. Triani, and L.-J. Fan, J. Mater. Res. 23, 2472 (2008).
- ⁷⁸⁹V. V. Antipov, A. P. Belyaev, A. A. Malygin, V. P. Rubets, and E. A. Sosnov, Russ. J. Appl. Chem. **81**, 2051 (2008).
- ⁷⁹⁰M.-L. Kääriäinen, T. O. Kääriäinen, and D. C. Cameron, Thin Solid Films 517, 6666 (2009).
- ⁷⁹¹J. Lu, K. M. Kosuda, R. P. Van Duyne, and P. C. Stair, J. Phys. Chem. C 113, 12412 (2009).
- ⁷⁹²R. J. Narayan, N. A. Monteiro-Riviere, R. L. Brigmon, M. J. Pellin, and J. W. Elam, JOM **61**, 12 (2009).
- ⁷⁹³S. Ghosal, T. F. Baumann, J. S. King, S. O. Kucheyev, Y. Wang, M. A. Worsley, J. Biener, S. F. Bent, and A. V. Hamza, Chem. Mater. 21, 1989 (2009).
- ⁷⁹⁴M. K. Kumar, L. K. Tan, N. N. Gosvami, and H. Gao, J. Phys. Chem. C 113, 6381 (2009).
- ⁷⁹⁵H.-E. Cheng, C.-M. Hsu, and Y.-C. Chen, J. Electrochem. Soc. 156, D275 (2009).
- ⁷⁹⁶K. Nevalainen, R. Suihkonen, P. Eteläaho, J. Vuorinen, P. Järvelä, N. Isomäki, C. Hintze, and M. Leskelä, J. Vac. Sci. Technol. A 27, 929 (2009).
- ⁷⁹⁷S. Vilhunen, M. Bosund, M.-L. Kääriäinen, D. Cameron, and M. Sillanpää, Sep. Purif. Technol. 66, 130 (2009).
- ⁷⁹⁸E. Santala, M. Kemell, M. Leskelä, and M. Ritala, Nanotechnology 20, 035602 (2009).
- ⁷⁹⁹K. Fröhlich, J. Aarik, M. Ťapajna, A. Rosová, A. Aidla, E. Dobročka, and K. Hušková, J. Vac. Sci. Technol. B 27, 266 (2009).
- ⁸⁰⁰A. P. Belyaev, A. A. Malygin, V. V. Antipov, and V. P. Rubets, Phys. Solid State 51, 495 (2009).
- ⁸⁰¹S.-Y. Lu, C.-W. Tang, Y.-H. Lin, H.-F. Kuo, Y.-C. Lai, M.-Y. Tsai, H. Ouyang, and W.-K. Hsu, Appl. Phys. Lett. **96**, 231915 (2010).
- ⁸⁰²R. Methaapanon and S. F. Bent, J. Phys. Chem. C 114, 10498 (2010).
- ⁸⁰³M. Kemell, E. Härkönen, V. Pore, M. Ritala, and M. Leskelä, Nanotechnology 21, 035301 (2010).
- ⁸⁰⁴G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, IEEE Photon. Technol. Lett. 22, 616 (2010).
- ⁸⁰⁵G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, Thin Solid Films **518**, 3182 (2010).
- ⁸⁰⁶W.-J. Lee and M.-H. Hon, J. Phys. Chem. C 114, 6917 (2010).
- ⁸⁰⁷H. Guo, M. Kemell, M. Heikkilä, and M. Leskelä, Appl. Catal. B 95, 358 (2010).
- ⁸⁰⁸Y.-H. Chang, C.-M. Liu, Y.-C. Tseng, C. Chen, C.-C. Chen, and H.-E. Cheng, Nanotechnology 21, 225602 (2010).
- ⁸⁰⁹H.-E. Cheng, S. H. Hsiao, and D.-M. Lu, Electrochem. Solid-State Lett. 13, D19 (2010).

- ⁸¹⁰A. A. Malkov, E. A. Sosnov, and A. A. Malygin, Russ. J. Appl. Chem. 83, 1511 (2010).
- ⁸¹¹S. K. Karuturi, L. Liu, L. T. Su, Y. Zhao, H. J. Fan, X. Ge, S. He, and A. T. I. Yoong, J. Phys. Chem. C 114, 14843 (2010).
- ⁸¹²H. Kumagai, Y. Tanaka, M. Murata, Y. Masuda, and T. Shinagawa, J. Phys.: Condens. Matter 22, 474008 (2010).
- ⁸¹³L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, ACS Appl. Mater. Interfaces **2**, 498 (2010).
- ⁸¹⁴R. L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, and M. Leskelä, J. Nanosci. Nanotechnol. 11, 8101 (2011).
- ⁸¹⁵H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, and M. Suzuki, Thin Solid Films 263, 47 (1995).
- ⁸¹⁶D. M. King, X. Du, A. S. Cavanagh, and A. Weimer, Nanotechnology 19, 445401 (2008).
- ⁸¹⁷V. Sammelselg, A. Tarre, J. Lu, J. Aarik, A. Niilisk, T. Uustare, I. Netšipailo, R. Rammula, R. Pärna, and A. Rosental, Surf. Coat. Technol. 204, 2015 (2010).
- ⁸¹⁸N. G. Kubala, P. C. Rowlette, and C. A. Wolden, J. Phys. Chem. C 113, 16307 (2009).
- ⁸¹⁹N. G. Kubala and C. A. Wolden, Thin Solid Films **518**, 6733 (2010).
- ⁸²⁰J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **193**, 277 (2002).
- ⁸²¹I. L. Soroka, M. Rooth, J. Lu, M. Boman, P. Svedlindh, J. O. Carlsson, and A. Hårsta, J. Appl. Phys. **106**, 084313 (2009).
- ⁸²²M. Rooth, R. A. Quinlan, E. Widenkvist, J. Lu, H. Grennberg, B. C. Holloway, A. Hårsta, and U. Jansson, J. Cryst. Growth **311**, 373 (2009).
- ⁸²³K. Kukli, M. Ritala, M. Schusky, M. Leskelä, T. Sajavaara, J. Keinonen, T. Uustare, and A. Hårsta, Chem. Vap. Deposition 6, 303 (2000).
- ⁸²⁴K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Hårsta, M. Ritala, and M. Leskelä, Langmuir 16, 8122 (2000).
- ⁸²⁵M. Schuisky, A. Hårsta, A. Aidla, K. Kukli, A.-A. Kiisler, and J. Aarik, J. Electrochem. Soc. 147, 3319 (2000).
- ⁸²⁶M. Schuisky, J. Aarik, K. Kukli, A. Aidla, and A. Hårsta, Langmuir 17, 5508 (2001).
- ⁸²⁷M. Schuisky, K. Kukli, J. Aarik, J. Lu, and A. Hårsta, J. Cryst. Growth 235, 293 (2002).
- ⁸²⁸M. Rose, J. Niinistö, P. Michalowski, L. Gerlich, L. Wilde, I. Endler, and J. W. Bartha, J. Phys. Chem. C 113, 21825 (2009).
- ⁸²⁹M. Rose, J. W. Bartha, and I. Endler, Appl. Surf. Sci. 256, 3778 (2010).
 ⁸³⁰V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, and J. Keinonen, Chem. Vap. Deposition 10, 143 (2004).
- ⁸³¹M. Kemell, V. Pore, M. Ritala, M. Leskelä, and M. Lindén, J. Am. Chem. Soc. **127**, 14178 (2005).
- ⁸³²M. Kemell, V. Pore, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 12, 419 (2006).
- ⁸³³P. Alén, M. Vehkamäki, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 153, G304 (2006).
- ⁸³⁴M. Kemell, V. Pore, J. Tupala, M. Ritala, and M. Leskelä, Chem. Mater. 19, 1816 (2007).
- ⁸³⁵E. Färm, M. Kemell, M. Ritala, and M. Leskelä, Thin Solid Films 517, 972 (2008).
- ⁸³⁶M. Heikkilä, E. Puukilainen, M. Ritala, and M. Leskelä, J. Photochem. Photobiol., A **204**, 200 (2009).
- ⁸³⁷A. Alekhin, S. Gudkova, A. Markeev, A. Mitiaev, A. Sigarev, and V. Toknova, Appl. Surf. Sci. **257**, 186 (2010).
- ⁸³⁸M. Popovici, S. Van Elshocht, N. Menou, J. Swerts, D. Pierreux, A. Delabie, B. Brijs, T. Conard, K. Opsomer, J. W. Maes, D. J. Wouters, and J. A. Kittl, J. Electrochem. Soc. **157**, G1 (2010).
- ⁸³⁹M. Ritala, M. Leskelä, and E. Rauhala, Chem. Mater. 6, 556 (1994).
- ⁸⁴⁰J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskelä, Thin Solid Films **370**, 163 (2000).
- ⁸⁴¹J. Aarik, J. Karlis, H. Mändar, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 181, 339 (2001).
- ⁸⁴²A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater. 13, 817 (2001).
- ⁸⁴³I.-D. Kim, H. L. Tuller, H.-S. Kim, and J.-S. Park, Appl. Phys. Lett. 85, 4705 (2004).
- ⁸⁴⁴J. J. Wang, X. G. Deng, R. Varghese, A. Nikolov, P. Sciortino, F. Liu, and L. Chen, Opt. Lett. **30**, 1864 (2005).
- ⁸⁴⁵A. P. Alekhin, G. I. Lapushkin, A. M. Markeev, A. A. Sigarev, and V. F. Toknova, J. Surf. Invest. 4, 379 (2010).
- ⁸⁴⁶H. Döring, K. Hashimoto, and A. Fujushima, Ber. Bunsen-Ges. Phys. Chem. 96, 620 (1992).

- ⁸⁴⁷M. Ritala, M. Leskelä, L. Niinistö, and P. Haussalo, Chem. Mater. 5, 1174 (1993).
- ⁸⁴⁸J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 161, 385 (2000).
- ⁸⁴⁹A. Rahtu and M. Ritala, Chem. Vap. Deposition 8, 21 (2002).
- ⁸⁵⁰H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004).
- ⁸⁵¹J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, H33 (2004).
 ⁸⁵²D. K. Jeong, N. H. Park, S. H. Jung, W. G. Jung, H. Shin, J. G. Lee, and
- J. Y. Kim, Mater. Sci. Forum 449-452, 1165 (2004).
 ⁸⁵³D. Jeong, J. Lee, H. Shin, J. Lee, J. Kim, and M. Sung, J. Korean Phys. Soc. 45, 1249 (2004).
- ⁸⁵⁴J. W. Lim, S. J. Yun, and J. H. Lee, Electrochem. Solid-State Lett. 7, F73 (2004).
- ⁸⁵⁵E. Seo, J. Lee, H. Sung-Suh, and M. Sung, Chem. Mater. 16, 1878 (2004).
- ⁸⁵⁶W. D. Kim, G. W. Hwang, O. S. Kwon, S. K. Kim, M. Cho, D. S. Jeong, S. W. Lee, M. H. Seo, C. S. Hwang, Y. S. Min, and Y. J. Cho, J. Electrochem. Soc. **152**, C552 (2005).
- ⁸⁵⁷A. Sinha, D. W. Hess, and C. L. Henderson, Electrochem. Solid-State Lett. 9, G330 (2006).
- ⁸⁵⁸K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, J. Am. Chem. Soc. 128, 858 (2006).
- ⁸⁵⁹S. K. Kim, G. W. Hwang, W. D. Kim, and C. S. Hwang, Electrochem. Solid-State Lett. 9, F5 (2006).
- ⁸⁶⁰T. Watanabe, S. Hoffmann-Eifert, L. Yang, A. Rudiger, C. Kugeler, C. S. Hwang, and R. Waser, J. Electrochem. Soc. **154**, G134 (2007).
- ⁸⁶¹S. H. Qiu and T. L. Starr, J. Electrochem. Soc. **154**, H472 (2007).
- ⁸⁶²B. H. Lee, M. K. Ryu, S. Y. Choi, K. H. Lee, S. Im, and M. M. Sung, J. Am. Chem. Soc. **129**, 16034 (2007).
- ⁸⁶³X. Chen, M. Knez, A. Berger, K. Nielsch, U. Gösele, and M. Steinhart, Angew. Chem., Int. Ed. 46, 6829 (2007).
- ⁸⁶⁴Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S. Van den Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, J. Electrochem. Soc. **155**, H688 (2008).
- ⁸⁶⁵C. Shan, X. Hou, K.-L. Choy, and P. Choquet, Surf. Coat. Technol. 202, 2147–2151 (2008).
- ⁸⁶⁶C. Shan, X. Hou, and K.-L. Choy, Surf. Coat. Technol. 202, 2399–2402 (2008).
- ⁸⁶⁷D. M. King, X. Liang, Y. Zhou, C. S. Carney, L. F. Hakim, P. Li, and A. W. Weimer, Powder Technol. **183**, 356 (2008).
- ⁸⁶⁸G.-M. Kim, S.-M. Lee, G. H. Michler, H. Roggendorf, U. Gösele, and M. Knez, Chem. Mater. 20, 3085 (2008).
- ⁸⁶⁹Y. M. Hua, W. P. King, and C. L. Henderson, Microelectron. Eng. 85, 934 (2008).
- ⁸⁷⁰T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, J. Phys. Chem. C **112**, 10303 (2008).
- ⁸⁷¹T. W. Hamann, O. K. Farha, and J. T. Hupp, J. Phys. Chem. C 112, 19756 (2008).
- ⁸⁷²A. Langner, M. Knez, F. Müller, and U. Gösele, Appl. Phys. A: Mater. Sci. Process. 93, 399 (2008).
- ⁸⁷³H. Kim, E. Pippel, U. Gösele, and M. Knez, Langmuir 25, 13284 (2009).
- ⁸⁷⁴S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C. V. Chandran, T. Braeuniger, G. Hause, and M. Knez, Science **324**, 488 (2009).
- ⁸⁷⁵Y. Lin, S. Zhou, X. Liu, S. Sheehan, and D. Wang, J. Am. Chem. Soc. 131, 2772 (2009).
- ⁸⁷⁶A. Kim, H. Park, K. Lee, K. Jeong, C. Kim, E. Lee, and J. Lee, Electron. Mater. Lett. 5, 35 (2009).
- ⁸⁷⁷Y. Yang, R. Scholz, H. J. Fan, D. Hesse, U. Gösele, and M. Zacharias, ACS Nano 3, 555 (2009).
- ⁸⁷⁸J. Joo and S. M. Rossnagel, J. Korean Phys. Soc. 54, 1048 (2009).
- ⁸⁷⁹H. Kwon, H.-H. Park, B.-H. Kim, and J. S. Ha, J. Electrochem. Soc. **156**, G13 (2009).
- ⁸⁸⁰Y. Luo, K.-D. Kim, H. O. Seo, M. J. Kim, W. S. Tai, K. H. Lee, D. C. Lim, and Y. D. Kim, Bull. Korean Chem. Soc. 31, 1661 (2010).
- ⁸⁸¹J. Lee, H. Ju, J. K. Lee, H. S. Kim, and J. Lee, Electrochem. Commun. **12**, 210 (2010).
- ⁸⁸²X. Liang, D. M. King, P. Li, and A. W. Weimer, J. Am. Ceram. Soc. 92, 649 (2009).
- ⁸⁸³H. Wang, S. Xu, and R. G. Gordon, Electrochem. Solid-State Lett. 13, G75 (2010).
- ⁸⁸⁴J. Keränen, E. Iiskola, C. Guimon, A. Auroux, and L. Niinistö, in Proceedings of the 8th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium,

- *9-12 September* 2002, Stud. Surf. Sci. Catal., edited by E. Gaigneaux, D. E. De Vos, P. Grange, P. A. Jacobs, J. A. Martens, P. Ruiz, and G. Poncelet (Elsevier, Amsterdam, 2002), Vol. 143, pp. 777–785.
- ⁸⁸⁵D.-S. Kil, J.-M. Lee, and J.-S. Roh, Chem. Vap. Deposition 8, 195 (2002).
- ⁸⁸⁶A. Niskanen, K. Arstila, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 13, 152 (2007).
- ⁸⁸⁷J. Y. Kim, J. H. Kim, J. H. Ahn, P. K. Park, and S. W. Kang, J. Electrochem. Soc. **154**, H1008 (2007).
- ⁸⁸⁸V. R. Rai and S. Agarwal, J. Phys. Chem. C 113, 12962 (2009).
- ⁸⁸⁹S.-W. Nam, M. J. Rooks, K.-B. Kim, and S. M. Rossnagel, Nano Lett. 9, 2044 (2009).
- ⁸⁹⁰G.-J. Choi, S. K. Kim, S.-J. Won, H. J. Kim, and C. S. Hwang, J. Electrochem. Soc. **156**, G138 (2009).
- ⁸⁹¹J.-S. Park, J. K. Jeong, Y.-G. Mo, and S. Kim, Appl. Phys. Lett. 94, 042105 (2009).
- ⁸⁹²D.-K. Joo, J.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. 12, H77 (2009).
- ⁸⁹³B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, J. Electrochem. Soc. **156**, H59 (2009).
- ⁸⁹⁴S.-W. Nam, M.-H. Lee, S.-H. Lee, D.-J. Lee, S. M. Rossnagel, and K.-B. Kim, Nano Lett. 10, 3324 (2010).
- ⁸⁹⁵H. Y. Jeong, J. Y. Lee, M.-K. Ryu, and S.-Y. Choi, Phys. Status Solidi RRL 4, 28 (2010).
- ⁸⁹⁶S.-W. Kim, T. H. Han, J. Kim, H. Gwon, H.-S. Moon, S.-W. Kang, S. O. Kim, and K. Kang, ACS Nano 3, 1085 (2009).
- ⁸⁹⁷T. H. Han, J. K. Oh, J. S. Park, S.-H. Kwon, S.-W. Kim, and S. O. Kim, J. Mater. Chem. **19**, 3512 (2009).
- ⁸⁹⁸T. H. Han, H.-S. Moon, J. O. Hwang, S. I. Seok, S. H. Im, and S. O. Kim, Nanotechnology **21**, 185601 (2010).
- ⁸⁹⁹S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
- ⁹⁰⁰S. K. Kim, K. M. Kim, O. S. Kwon, S. W. Lee, C. B. Jeon, W. Y. Park, C. S. Hwang, and J. Jeong, Electrochem. Solid-State Lett. 8, F59 (2005).
- ⁹⁰¹S. K. Kim, S. Y. Lee, M. Seo, G. J. Choi, and C. S. Hwang, J. Appl. Phys. **102**, 024109 (2007).
- ⁹⁰²S. K. Kim, G. J. Choi, and C. S. Hwang, Electrochem. Solid-State Lett. 11, G27 (2008).
- ⁹⁰³V. R. Rai and S. Agarwal, J. Phys. Chem. C 112, 9552 (2008).
- ⁹⁰⁴S. K. Kim, G. J. Choi, S. Y. Lee, M. Seo, S. W. Lee, J. H. Han, H. S. Ahn, S. Han, and C. S. Hwang, Adv. Mater. **20**, 1429 (2008).
- ⁹⁰⁵S. K. Kim, G. J. Choi, J. H. Kim, and C. S. Hwang, Chem. Mater. 20, 3723 (2008).
- ⁹⁰⁶G.-J. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, and C. S. Hwang, J. Electrochem. Soc. **156**, G71 (2009).
- ⁹⁰⁷S.-J. Won, S. Suh, S. W. Lee, G.-J. Choi, C. S. Hwang, and H. J. Kim, Electrochem. Solid-State Lett. **13**, G13 (2010).
- ⁹⁰⁸E. Rauwel, G. Clavel, M.-G. Willinger, P. Rauwel, and N. Pinna, Angew. Chem., Int. Ed. 47, 3592 (2008).
- ⁹⁰⁹E. Rauwel, M. G. Willinger, F. Ducroquet, P. Rauwel, I. Matko, D. Kiselev, and N. Pinna, J. Phys. Chem. C **112**, 12754 (2008).
- ⁹¹⁰M.-G. Willinger, G. Neri, A. Bonavita, G. Micali, E. Rauwel, T. Herntrich, and N. Pinna, Phys. Chem. Chem. Phys. **11**, 3615 (2009).
- ⁹¹¹E. Rauwel, F. Ducroquet, P. Rauwel, M. G. Willinger, I. Matko, and N. Pinna, J. Vac. Sci. Technol. B **27**, 230 (2009).
- ⁹¹²J. P. Lee, M. H. Park, T. M. Chung, Y. Kim, and M. M. Sung, Bull. Korean Chem. Soc. **25**, 475 (2004).
- ⁹¹³T. Watanabe, S. Hoffmann-Eifert, C. S. Hwang, and R. Waser, J. Electrochem. Soc. **153**, F199 (2006).
- ⁹¹⁴Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, G. P. Ru, B. Z. Li, and X. P. Qu, J. Appl. Phys. **102**, 083521 (2007).
- ⁹¹⁵T. Watanabe, S. Hoffmann-Eifert, F. Peter, S. Mi, C. Jia, C. S. Hwang, and R. Waser, J. Electrochem. Soc. **154**, G262 (2007).
- ⁹¹⁶S. K. Kim, S. Hoffmann-Eifert, S. Mi, and R. Waser, J. Electrochem. Soc. 156, D296 (2009).
- ⁹¹⁷L. I. Chernaya, P. E. Matkovskii, V. M. Rudakov, Yu. M. Shul'ga, I. V. Markov, V. I. Tomilo, and Z. G. Busheva, Zh. Obshch. Khim. **62**, 28 (1992) [J. Gen. Chem. USSR **62**, 21 (1992)].
- ⁹¹⁸W. J. Maeng and H. Kim, Electrochem. Solid-State Lett. 9, G191 (2006).
- ⁹¹⁹I. Alessandri, M. Zucca, M. Ferroni, E. Bontempi, and L. E. Depero, Small 5, 336 (2009).

- ⁹²⁰T. Gougousi and J. W. Lacis, Thin Solid Films **518**, 2006 (2010).
- ⁹²¹I. Alessandri and L. E. Depero, ACS Appl. Mater. Interfaces 2, 594 (2010).
- ⁹²²E. Bontempi, P. Zanola, M. Gelfi, M. Zucca, L. E. Depero, B. Girault, P. Goudeau, G. Geandier, E. Le Bourhis, and P.-O. Renault, Nucl. Instrum. Methods Phys. Res. B 268, 365 (2010).
- ⁹²³K. Gerasopoulos, X. Chen, J. Culver, C. Wang, and R. Ghodssi, Chem. Comm. 46, 7349 (2010).
- ⁹²⁴E. R. Cleveland, P. Banerjee, I. Perez, S. B. Lee, and G. W. Rubloff, ACS Nano 4, 4637 (2010).
- ⁹²⁵M. Rose and J. W. Bartha, Appl. Surf. Sci. 255, 6620 (2009).
- ⁹²⁶J.-J. Park, W.-J. Lee, G.-H. Lee, I.-S. Kim, B.-C. Shin, and S.-G. Yoon, Integr. Ferroelectr. 68, 129 (2004).
- ⁹²⁷C.-S. Lee, J. Kim, J. Y. Son, W. Choi, and H. Kim, Appl. Catal. B 91, 628 (2009).
- ⁹²⁸C.-S. Lee, J. Kim, J. Y. Son, W. J. Maeng, D.-H. Jo, W. Choi, and H. Kim, J. Electrochem. Soc. **156**, D188 (2009).
- ⁹²⁹B.-W. Kang, W.-S. Kim, C.-M. Hwang, D.-Y. Moon, J.-J. Kim, J.-G. Park, and J.-W. Park, Jpn. J. Appl. Phys., Part 1 49, 08JG05 (2010).
- ⁹³⁰C.-S. Lee, J. Kim, G. H. Gu, D.-H. Jo, C. G. Park, W. Choi, and H. Kim, Thin Solid Films **518**, 4757 (2010).
- ⁹³¹J. C. F. Rodríguez-Reyes and A. V. Teplyakov, J. Phys. Chem. C 112, 9695 (2008).
- ⁹³²Y. A. Wasslen, E. Tois, S. Haukka, K. A. Kreisel, G. P. A. Yap, M. D. Halls, and S. T. Barry, Inorg. Chem. 49, 1976 (2010).
- ⁹³³L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, and P. Soininen, Thin Solid Films 166, 149 (1988).
- ⁹³⁴M. Ritala, M. Leskelä, E. Rauhala, and P. Haussalo, J. Electrochem. Soc. 142, 2731 (1995).
- ⁹³⁵M. Ritala, T. Asikainen, M. Leskelä, J. Jokinen, R. Lappalainen, M. Utriainen, L. Niinistö, and E. Ristolainen, Appl. Surf. Sci. 120, 199 (1997).
- ⁹³⁶P. Mårtensson, M. Juppo, M. Ritala, M. Leskelä, and J.-O. Carlsson, J. Vac. Sci. Technol. B 17, 2122 (1999).
- ⁹³⁷J. Uhm, S. Lee, J. Lee, Y. D. Kim, H. Jeon, T. Cha, and K. Yi, J. Korean Phys. Soc. 35, S765 (1999).
- ⁹³⁸H. Jeon, J.-W. Lee, Y.-D. Kim, D.-S. Kim, and K.-S. Yi, J. Vac. Sci. Technol. A 18, 1595 (2000).
- ⁹³⁹C. H. Ahn, S. G. Cho, H. J. Lee, K. H. Park, and S. H. Jeong, Met. Mater. Int. 7, 621 (2001).
- ⁹⁴⁰J. Uhm and H. Jeon, Jpn. J. Appl. Phys., Part 1 40, 4657 (2001).
- ⁹⁴¹M. Juppo, A. Rahtu, and M. Ritala, Chem. Mater. 14, 281 (2002).
- ⁹⁴²A. Sata, J. Schuhmacher, C. M. Whelan, W. Vandervorst, S. H. Brongersma, G. P. Beyer, K. Maex, A. Vantomme, M. M. Viitanen, H. H. Brongersma, and W. F. A. Besling, J. Appl. Phys. 92, 7641 (2002).
- ⁹⁴³S. Li, Z. L. Dong, B. K. Lim, M. H. Liang, C. Q. Sun, W. Gao, H. S. Park, and T. White, J. Phys. Chem. B **106**, 12797 (2002).
- ⁹⁴⁴K.-E. Elers, V. Saanila, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Chem. Vap. Deposition 8, 149 (2002).
- ⁹⁴⁵K.-E. Elers, V. Saanila, W.-M. Li, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Thin Solid Films 434, 94 (2003).
- ⁹⁴⁶J. Kim, H. Hong, S. Ghosh, K.-Y. Oh, and C. Lee, Jpn. J. Appl. Phys., Part 1 42, 1375 (2003).
- 947J. Kim, H. Hong, K. Oh, and C. Lee, Appl. Surf. Sci. 210, 231 (2003).
- ⁹⁴⁸A. Satta, A. Vantomme, J. Schuhmacher, C. M. Whelan, V. Sutcliffe, and K. Maex, Appl. Phys. Lett. 84, 4571 (2004).
- ⁹⁴⁹S. C. Song, B. H. Lee, Z. Zhang, K. Choi, S. H. Bae, and P. Zeitzoff, Electrochem. Solid-State Lett. 8, G261 (2005).
- ⁹⁵⁰K. E. Elers, J. Winkler, K. Weeks, and S. Marcus, J. Electrochem. Soc. 152, G589 (2005).
- ⁹⁵¹K. Choi, P. Lysaght, H. Alshareef, C. Huffman, H. C. Wen, R. Harris, H. Luan, P. Y. Hung, C. Sparks, M. Cruz, K. Matthews, P. Majhi, and B. H. Lee, Thin Solid Films 486, 141 (2005).
- ⁹⁵²H. E. Cheng, W. J. Lee, and C. M. Hsu, Thin Solid Films **485**, 59 (2005).
- ⁹⁵³H. Tiznado and F. Zaera, J. Phys. Chem. B **110**, 13491 (2006).
- ⁹⁵⁴M. Q. Snyder, B. A. McCool, J. DiCarlo, C. P. Tripp, and W. J. DeSisto, Thin Solid Films **514**, 97 (2006).
- ⁹⁵⁵H. E. Cheng and W. J. Lee, Mater. Chem. Phys. **97**, 315 (2006).
- ⁹⁵⁶M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp, and W. J. DeSisto, J. Power Sources 165, 379 (2007).
- ⁹⁵⁷M. Bosund, A. Aierken, J. Tiilikainen, T. Hakkarainen, and H. Lipsanen, Appl. Surf. Sci. 254, 5385 (2008).

- J. Appl. Phys. **113**, 021301 (2013)
- ⁹⁵⁸J. S. Park and S. W. Kang, Electrochem. Solid-State Lett. 7, C87 (2004).
- ⁹⁵⁹S. B. S. Heil, E. Langereis, A. Kemmeren, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 23, L5 (2005).
- ⁹⁶⁰S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 153, G956 (2006).
- ⁹⁶¹E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **100**, 023534 (2006).
- ⁹⁶²J. S. Park, S. W. Kang, and H. Kim, J. Vac. Sci. Technol. B 24, 1327 (2006).
- ⁹⁶³S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 25, 1357 (2007).
- ⁹⁶⁴H. C. M. Knoops, L. Baggetto, E. Langereis, M. C. M. van de Sanden, J. H. Klootwijk, F. Roozeboom, R. A. H. Niessen, P. H. L. Notten, and W. M. M. Kessels, J. Electrochem. Soc. **155**, G287 (2008).
- ⁹⁶⁵J.-D. Kwon and J.-S. Park, J. Korean Phys. Soc. **57**, 806 (2010).
- ⁹⁶⁶M. Juppo, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **147**, 3377 (2000).
- ⁹⁶⁷M. Juppo, P. Alén, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Electrochem. Solid-State Lett. 5, C4 (2002).
- ⁹⁶⁸M. Ritala, M. Leskelä, E. Rauhala, and J. Jokinen, J. Electrochem. Soc. 145, 2914 (1998).
- ⁹⁶⁹J.-S. Min, H.-S. Park, and S.-W. Kang, Appl. Phys. Lett. 75, 1521 (1999).
- ⁹⁷⁰J.-W. Lim, J.-S. Park, and S.-W. Kang, J. Appl. Phys. 87, 4632 (2000).
- ⁹⁷¹J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Appl. Phys. 88, 6327 (2000).
- ⁹⁷²J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 148, C403 (2001).
- ⁹⁷³J. H. Yun, E. S. Choi, C. M. Jang, and C. S. Lee, Jpn. J. Appl. Phys., Part 2 41, L418 (2002).
- ⁹⁷⁴J. Y. Kim, H. K. Kim, Y. Kim, Y. D. Kim, W. M. Kim, and H. Jeon, J. Korean Phys. Soc. 40, 176 (2002).
- ⁹⁷⁵H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, J. Korean Phys. Soc. **41**, 739 (2002).
- ⁹⁷⁶J. W. Elam, M. Schuisky, J. D. Ferguson, and S. M. George, Thin Solid Films **436**, 145 (2003).
- ⁹⁷⁷J. Y. Kim, G. H. Choi, Y. D. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 **42**, 4245 (2003).
- ⁹⁷⁸S. G. Park and D.-H. Kim, Jpn. J. Appl. Phys., Part 1 43, 303 (2004).
- ⁹⁷⁹Y. J. Lee, Mater. Lett. **59**, 615 (2005).
- ⁹⁸⁰F. Fillot, T. Morel, S. Minoret, I. Matko, S. Maitrejean, B. Guillaumot, B. Chenevier, and T. Billon, Microelectron. Eng. 82, 248 (2005).
- ⁹⁸¹A. Dube, M. Sharma, P. F. Ma, and J. R. Engstrom, Appl. Phys. Lett. 89, 164106 (2006).
- ⁹⁸²J. C. F. Rodríguez-Reyes and A. V. Teplyakov, J. Phys. Chem. C 111, 4800 (2007).
- ⁹⁸³J. C. F. Rodríguez-Reyes and A. V. Teplyakov, J. Phys. Chem. C 111, 16498 (2007).
- ⁹⁸⁴A. Dube, M. Sharma, P. F. Ma, P. A. Ercius, D. A. Muller, and J. R. Engstrom, J. Phys. Chem. C 111, 11045 (2007).
- ⁹⁸⁵G. K. Hyde, S. D. McCullen, S. Jeon, S. M. Stewart, H. Jeon, E. G. Loboa, and G. N. Parsons, Biomed. Mater. 4, 025001 (2009).
- ⁹⁸⁶J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R. L. Van Meirhaeghe, and C. Detavernier, <u>Microelectron. Eng. 86</u>, 72 (2009).
- ⁹⁸⁷T. Hayashida, K. Endo, Y. Liu, T. Kamei, T. Matsukawa, S.-i. O'uchi, K. Sakamoto, J. Tsukada, Y. Ishikawa, H. Yamauchi, A. Ogura, and M. Masahara, Jpn. J. Appl. Phys., Part 1 49, 04DA16 (2010).
- ⁹⁸⁸J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Korean Phys. Soc. **45**, 1639 (2004).
- ⁹⁸⁹J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Electrochem. Soc. **152**, G29 (2005).
- ⁹⁹⁰S. Jeon and S. Park, J. Electrochem. Soc. **157**, H930 (2010).
- ⁹⁹¹J. Y. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 2 42, L414 (2003).
- ⁹⁹²D.-H. Kim, Y. J. Kim, J.-H. Park, and J. H. Kim, Mater. Sci. Eng. C 24, 289 (2004).
- ⁹⁹³J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, J. Vac. Sci. Technol. A 22, 8 (2004).
- ⁹⁹⁴S. H. Kwon, O. K. Kwon, J. S. Min, and S. W. Kang, J. Electrochem. Soc. 153, G578 (2006).
- ⁹⁹⁵P. Caubet, T. Blomberg, R. Benaboud, C. Wyon, E. Blanquet, J. P. Gonchond, M. Juhel, P. Bouvet, M. Gros-Jean, J. Michailos, C. Richard, and B. Iteprat, J. Electrochem. Soc. **155**, H625 (2008).

- ⁹⁹⁶J.-S. Min, Y.-W. Son, W.-G. Kang, S.-S. Chun, and S.-W. Kang, Jpn. J. Appl. Phys., Part 1 37, 4999 (1998).
- ⁹⁹⁷D.-J. Kim, Y.-B. Jung, M.-B. Lee, Y.-H. Lee, J.-H. Lee, and J.-H. Lee, Thin Solid Films **372**, 276 (2000).
- ⁹⁹⁸B.-C. Kan, J.-H. Boo, I. Lee, and F. Zaera, J. Phys. Chem. A 113, 3946 (2009).
- ⁹⁹⁹ V. Pore, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 13, 163 (2007).
- ¹⁰⁰⁰A. Rahtu, M. Ritala, and M. Leskelä, Chem. Mater. **13**, 1528 (2001).
- ¹⁰⁰¹A. Rahtu and M. Ritala, Langmuir 18, 10046 (2002).
- ¹⁰⁰²A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and A. A. Aleskovskii, Zh. Obshch. Khim. **43**, 1436 (1972) [J. Gen. Chem. USSR **43**, 1426 (1973)].
- ¹⁰⁰³W. Hanke, R. Bienert, and H.-G. Jerschkewitz, Z. Anorg. Allg. Chem. 414, 109 (1975).
- ¹⁰⁰⁴W. Hanke, K. Heise, H.-G. Jerschkewitz, G. Lischke, G. Öhlmann, and B. Parlitz, Z. Anorg. Allg. Chem. 438, 176 (1978).
- ¹⁰⁰⁵I. Povey, M. Bardosova, F. Chalvet, M. Pemble, and H. Yates, Surf. Coat. Technol. 201, 9345 (2007).
- ¹⁰⁰⁶J. C. Badot, S. Ribes, E. B. Yousfi, V. Vivier, J. P. Pereira-Ramos, N. Baffier, and D. Lincot, Electrochem. Solid-State Lett. 3, 485 (2000).
- ¹⁰⁰⁷J. C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, and D. Lincot, J. Mater. Chem. 14, 3411 (2004).
- ¹⁰⁰⁸K. Le Van, H. Groult, A. Mantoux, L. Perrigaud, F. Lantelme, R. Lindström, R. Badour-Hadjean, S. Zanna, and D. Lincot, J. Power Sources 160, 592 (2006).
- ¹⁰⁰⁹H. Groult, E. Balnois, A. Mantoux, K. Le Van, and D. Lincot, Appl. Surf. Sci. 252, 5917 (2006).
- ¹⁰¹⁰J. Musschoot, D. Deduytsche, H. Poelman, J. Haemers, R. L. Van Meirhaeghe, S. Van den Berghe, and C. Detavernier, J. Electrochem. Soc. **156**, P122 (2009).
- ¹⁰¹¹J. W. Elam, G. Xiong, C. Y. Han, H. H. Wang, J. P. Birrell, U. Welp, J. N. Hryn, M. J. Pellin, T. F. Baumann, J. F. Poco, and J. H. Satcher, J. Nanomater **2006**, 64501.
- ¹⁰¹²J. Keränen, C. Guimon, E. Iiskola, A. Auroux, and L. Niinistö, J. Phys. Chem. B **107**, 10773 (2003).
- ¹⁰¹³J. Keränen, C. Guimon, A. Auroux, E. I. Iiskola, and L. Niinistö, Phys. Chem. Chem. Phys. 5, 5333 (2003).
- ¹⁰¹⁴J. Keränen, C. Guimon, E. Iiskola, A. Auroux, and L. Niinistö, Catal. Today 78, 149 (2003).
- ¹⁰¹⁵M.-G. Willinger, G. Neri, E. Rauwel, A. Bonavita, G. Micali, and N. Pinna, Nano Lett. 8, 4201 (2008).
- ¹⁰¹⁶S. Santangelo, G. Messina, G. Faggio, M. G. Willinger, N. Pinna, A. Donato, A. Arena, N. Donato, and G. Neri, Diamond Relat. Mater. **19**, 590 (2010).
- ¹⁰¹⁷J. Keränen, A. Auroux, S. Ek, and L. Niinistö, Appl. Catal., A 228, 213 (2002).
- ¹⁰¹⁸A. Gervasini, P. Carniti, J. Keränen, L. Niinistö, and A. Auroux, Catal. Today 96, 187 (2004).
- ¹⁰¹⁹P. Dagur, A. U. Mane, and S. Shivashankar, J. Cryst. Growth **275**, e1223 (2005).
- ¹⁰²⁰A. N. Volkova, A. A. Malygin, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **42**, 1431 (1972) [J. Gen. Chem. USSR **42**, 1422 (1972)].
- ¹⁰²¹A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **42**, 2373 (1972) [J. Gen. Chem. USSR **42**, 2368 (1972)].
- ¹⁰²²A. P. Nechiporenko, T. M. Sukhareva, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. **51**, 2447 (1978) [J. Appl. Chem. USSR **51**, 2333 (1978)].
- ¹⁰²³S. I. Kol'tsov, A. A. Malygin, and V. B. Aleskovskii, Zh. Fiz. Khim. 54, 2331 (1980) [Russ. J. Phys. Chem. 54, 2331 (1980)].
- ¹⁰²⁴A. P. Nechiporenko, G. K. Shevchenko, and S. I. Kol'tsov, Zh. Prikl. Khim. **55**, 1239 (1982) [J. Appl. Chem. USSR **55**, 1133 (1982)].
- ¹⁰²⁵G. N. Kuznetsova, T. V. Shakina, A. A. Malygin, and S. I. Kol'tsov, Kolloidn. Zh. 45, 574 (1983) [Colloid J. USSR 45, 503 (1983)].
- ¹⁰²⁶Y. K. Ezhovskii and M. A. Kirillova, Inorg. Mater. 43, 1318 (2007).
 ¹⁰²⁷E. A. Sosnov, V. P. Dorofeev, A. A. Malkov, A. A. Malygin, N. A. Kuli-
- kov, and G. L. Brusilovsky, Semiconductors 41, 498 (2007).
 ¹⁰²⁸Y. K. Ezhovskii and V. Y. Kholkin, Russ. J. Phys. Chem. A 82, 1154
- (2008).
- ¹⁰²Y. K. Ezhovskii and A. L. Egorov, Inorg. Mater. **42**, 368 (2006).
- ¹⁰³⁰H. Mändar, T. Uustare, J. Aarik, A. Tarre, and A. Rosental, Thin Solid Films **515**, 4570 (2007).
- ¹⁰³¹A. Tarre, J. Aarik, H. Mändar, A. Niilisk, R. Pärna, R. Rammula, T. Uustare, A. Rosental, and V. Sammelselg, Appl. Surf. Sci. 254, 5149 (2008).

- ¹⁰³²S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 75, 220 (1994).
- ¹⁰³³A. Kytökivi, J.-P. Jacobs, A. Hakuli, J. Meriläinen, and H. H. Brongersma, J. Catal. 162, 190 (1996).
- ¹⁰³⁴A. Hakuli, A. Kytökivi, and A. O. I. Krause, Appl. Catal., A **190**, 219 (2000).
- ¹⁰³⁵J. M. Kanervo and A. O. I. Krause, J. Phys. Chem. B 105, 9778 (2001).
- ¹⁰³⁶R. L. Puurunen, S. M. K. Airaksinen, and A. O. I. Krause, J. Catal. 213, 281 (2003).
- ¹⁰³⁷B. B. Burton, F. H. Fabreguette, and S. M. George, Thin Solid Films **517**, 5658 (2009).
- ¹⁰³⁸O. Nilsen, M. Peussa, H. Fjellvåg, L. Niinistö, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).
- ¹⁰³⁹O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 444, 44 (2003).
- ¹⁰⁴⁰O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekshus, Thin Solid Films **468**, 65 (2004).
- ¹⁰⁴¹S. Foss, O. Nilsen, A. Olsen, and J. Tafto, Philos. Mag. 85, 2689 (2005).
- ¹⁰⁴²M. A. Herman, O. Jylhä, and M. Pessa, J. Cryst. Growth **66**, 480 (1984).
- ¹⁰⁴³M. Pessa and O. Jylhä, Appl. Phys. Lett. **45**, 646 (1984).
- ¹⁰⁴⁴W. Faschinger, F. Hauzenberger, P. Juza, A. Pesek, and H. Sitter, J. Electron. Mater. 22, 497 (1993).
- ¹⁰⁴⁵W. Faschinger, Phys. Scr., T 49, 492 (1993).
- ¹⁰⁴⁶J. M. Hartmann, G. Feuillet, M. Charleux, and H. Mariette, J. Appl. Phys. **79**, 3035 (1996).
- ¹⁰⁴⁷J. M. Hartmann, M. Charleux, J. L. Rouvière, and H. Mariette, Appl. Phys. Lett. **70**, 1113 (1997).
- ¹⁰⁴⁸S. Kuroda, Y. Terai, K. Takita, T. Okuno, and Y. Masumoto, J. Cryst. Growth **184/185**, 274 (1998).
- ¹⁰⁴⁹F. Kany, J. M. Hartmann, H. Ulmer-Tuffigo, and H. Mariette, Superlattices Microstruct. 23, 1359 (1998).
- ¹⁰⁵⁰J. M. Hartmann, F. Kany, M. Charleux, Y. Samson, J. L. Rouvière, and H. Mariette, J. Appl. Phys. 84, 4300 (1998).
- ¹⁰⁵¹J. M. Hartmann, F. Kany, F. Chautain, J. L. Rouvière, A. Wasiela, and H. Mariette, J. Cryst. Growth 184/185, 279 (1998).
- ¹⁰⁵²M. Ozeki, T. Haraguchi, and A. Fujita, J. Cryst. Growth **298**, 90 (2007).
- ¹⁰⁵³B. S. Lim, A. Rahtu, and R. G. Gordon, Nature Mater. 2, 749 (2003).
- ¹⁰⁵⁴M. Aronniemi, J. Saino, and J. Lahtinen, Thin Solid Films **516**, 6110 (2008).
- ¹⁰⁵⁵M. de Ridder, P. C. van de Ven, R. G. van Welzenis, H. H. Brongersma, S. Helfensteyn, C. Creemers, P. Van Der Voort, M. Baltes, M. Mathieu, and E. F. Vansant, J. Phys. Chem. B **106**, 13146 (2002).
- ¹⁰⁵⁶K. Zhou, J.-Q. Huang, Q. Zhang, and F. Wei, Nanoscale Res. Lett. 5, 1555 (2010).
- ¹⁰⁵⁷O. Nilsen, M. Lie, S. Foss, H. Fjellvåg, and A. Kjekshus, Appl. Surf. Sci. 227, 40 (2004).
- ¹⁰⁵⁸M. Lie, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 488, 74 (2005).
- ¹⁰⁵⁹L. Hannevold, O. Nilsen, A. Kjekshus, and H. Fjellvåg, Appl. Catal., A 284, 177 (2005).
- ¹⁰⁶⁰M. Lie, K. B. Klepper, O. Nilsen, H. Fjellvåg, and A. Kjekshus, Dalton Trans. 2008, 253.
- ¹⁰⁶¹J. A. Libera, J. W. Elam, N. F. Sather, T. Rajh, and N. M. Dimitrijevic, Chem. Mater. 22, 409 (2010).
- ¹⁰⁶²M. Rooth, A. Johansson, K. Kukli, J. Aarik, M. Boman, and A. Hårsta, Chem. Vap. Deposition 14, 67 (2008).
- ¹⁰⁶³J. R. Scheffe, A. Frances, D. M. King, X. Liang, B. A. Branch, A. S. Cavanagh, S. M. George, and A. W. Weimer, Thin Solid Films **517**, 1874 (2009).
- ¹⁰⁶⁴J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, and K. Nielsch, Phys. Rev. B 77, 214421 (2008).
- ¹⁰⁶⁵J. Bachmann, J. Escrig, K. Pitzschel, J. M. Montero Moreno, J. Jing, D. Goerlitz, D. Altbir, and K. Nielsch, J. Appl. Phys. **105**, 07B521 (2009).
- ¹⁰⁶⁶J. Bachmann, J. Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gösele, and K. Nielsch, J. Am. Chem. Soc. **129**, 9554 (2007).
- ¹⁰⁶⁷Z. W. Li, R. G. Gordon, D. B. Farmer, Y. B. Lin, and J. Vlassak, Electrochem. Solid-State Lett. 8, G182 (2005).
- ¹⁰⁶⁸H.-B.-R. Lee, W.-H. Kim, J. W. Lee, J.-M. Kim, K. Heo, I. C. Hwang, Y. Park, S. Hong, and H. Kim, J. Electrochem. Soc. **157**, D10 (2010).
- ¹⁰⁶⁹H.-B.-R. Lee, J. Kim, H. Kim, W.-H. Kim, J. W. Lee, and I. Hwang, J. Korean Phys. Soc. 56, 104 (2010).
- ¹⁰⁷⁰J.-M. Kim, H.-B.-R. Lee, C. Lansalot, C. Dussarrat, J. Gatineau, and H. Kim, Jpn. J. Appl. Phys., Part 1 49, 05FA10 (2010).
- ¹⁰⁷¹H. B. R. Lee, J. Y. Son, and H. Kim, Appl. Phys. Lett. **90**, 213509 (2007).

- ¹⁰⁷²H.-B.-R. Lee, G. H. Gu, J. Y. Son, C. G. Park, and H. Kim, Small 4, 2247 (2008).
- ¹⁰⁷³H. B. R. Lee and H. Kim, Electrochem. Solid-State Lett. 9, G323 (2006).
- ¹⁰⁷⁴K. Lee, K. Kim, H. Jeon, Y. Lee, J. Kim, and S. Yeom, J. Korean Phys. Soc. 50, 1141 (2007).
- ¹⁰⁷⁵K. Kim, K. Lee, S. Han, T. Park, Y. Lee, J. Kim, S. Yeom, and H. Jeon, Jpn. J. Appl. Phys., Part 2 46, L173 (2007).
- ¹⁰⁷⁶K. Lee, K. Kim, T. Park, H. Jeon, Y. Lee, J. Kim, and S. Yeom, J. Electrochem. Soc. **154**, H899 (2007).
- ¹⁰⁷⁷K. Kim, K. Lee, S. Han, W. Jeong, and H. Jeon, J. Electrochem. Soc. 154, H177 (2007).
- ¹⁰⁷⁸M. Rooth, E. Lindahl, and A. Hårsta, Chem. Vap. Deposition **12**, 209 (2006).
- ¹⁰⁷⁹L. B. Backman, A. Rautiainen, M. Lindblad, and A. O. I. Krause, Appl. Catal., A **191**, 55 (2000).
- ¹⁰⁸⁰A. Rautiainen, M. Lindblad, L. B. Backman, and R. L. Puurunen, Phys. Chem. Chem. Phys. 4, 2466 (2002).
- ¹⁰⁸¹L. B. Backman, A. Rautiainen, M. Lindblad, and A. O. I. Krause, Appl. Catal., A **360**, 183 (2009).
- ¹⁰⁸²L. B. Backman, A. Rautiainen, A. O. I. Krause, and M. Lindblad, Catal. Today 43, 11 (1998).
- ¹⁰⁸³L. B. Backman, A. Rautiainen, M. Lindblad, O. Jylhä, and A. O. I. Krause, Appl. Catal., A 208, 223 (2001).
- ¹⁰⁸⁴V. G. Milt, M. A. Ulla, and E. A. Lombardo, Catal. Lett. **65**, 67 (2000).
- ¹⁰⁸⁵V. G. Milt, M. A. Ulla, and E. A. Lombardo, J. Catal. **200**, 241 (2001).
- ¹⁰⁸⁶V. G. Milt, E. A. Lombardo, and M. A. Ulla, Appl. Catal., B **37**, 63 (2002).
- ¹⁰⁸⁷R. L. Puurunen, T. A. Zeelie, and A. O. I. Krause, Catal. Lett. 83, 27 (2002).
- ¹⁰⁸⁸H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, and L.-S. Johansson, Appl. Surf. Sci. **112**, 243 (1997).
- ¹⁰⁸⁹K. B. Klepper, O. Nilsen, and H. Fjellvåg, Thin Solid Films **515**, 7772 (2007).
- ¹⁰⁹⁰K. B. Klepper, O. Nilsen, and H. Fjellvåg, J. Cryst. Growth **307**, 457 (2007).
- ¹⁰⁹¹H.-B.-R. Lee and H. Kim, J. Cryst. Growth **312**, 2215 (2010).
- ¹⁰⁹²M. Utriainen, M. Kröger-Laukkanen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 157, 151 (2000).
- ¹⁰⁹³H.-B.-R. Lee, S.-H. Bang, W.-H. Kim, G. H. Gu, Y. K. Lee, T.-M. Chung, C. G. Kim, C. G. Park, and H. Kim, Jpn. J. Appl. Phys., Part 1 49, 05FA11 (2010).
- ¹⁰⁹⁴C.-M. Yang, S.-W. Yun, J.-B. Ha, K.-I. Na, H.-I. Cho, H.-B. Lee, J.-H. Jeong, S.-H. Kong, S.-H. Hahm, and J.-H. Lee, Jpn. J. Appl. Phys., Part 1 46, 1981 (2007).
- ¹⁰⁹⁵J.-B. Ha, S.-W. Yun, and J.-H. Lee, Curr. Appl. Phys. **10**, 41 (2010).
- ¹⁰⁹⁶J. Chae, H.-S. Park, and S. W. Kang, Electrochem. Solid-State Lett. 5, C64 (2002).
- ¹⁰⁹⁷H. L. Lu, G. Scarel, M. Alia, M. Fanciulli, S. J. Ding, and D. W. Zhang, Appl. Phys. Lett. **92**, 22907 (2008).
- ¹⁰⁹⁸S. Spiga, A. Lamperti, C. Wiemer, M. Perego, E. Cianci, G. Tallarida, H. L. Lu, M. Alia, F. G. Volpe, and M. Fanciulli, Microelectron. Eng. 85, 2414 (2008).
- ¹⁰⁹⁹A. Lamperti, S. Spiga, H. L. Lu, C. Wiemer, M. Perego, E. Cianci, M. Alia, and M. Fanciulli, Microelectron. Eng. 85, 2425 (2008).
- ¹¹⁰⁰H. L. Lu, G. Scarel, C. Wiemer, M. Perego, S. Spiga, M. Fanciulli, and G. Pavia, J. Electrochem. Soc. 155, H807 (2008).
- ¹¹⁰¹B. S. So, Y. H. You, K. H. Kim, J. Hwang, W. Cho, S. S. Lee, T. M. Chung, Y. K. Lee, C. G. Kim, K. S. An, Y. C. Kim, Y. H. Lee, and W. S. Seo, Electrochem. Solid-State Lett. **10**, J61 (2007).
- ¹¹⁰²T. S. Yang, W. T. Cho, M. Kim, K. S. An, T. M. Chung, C. G. Kim, and Y. Kim, J. Vac. Sci. Technol. A 23, 1238 (2005).
- ¹¹⁰³J. H. Yang, S. Y. Lee, W. S. Song, Y. S. Shin, C. Y. Park, H. J. Kim, W. Cho, and K. S. An, J. Vac. Sci. Technol. B **26**, 1021 (2008).
- ¹¹⁰⁴M. Lindblad, L. P. Lindfors, and T. Suntola, Catal. Lett. **27**, 323 (1994).
- ¹¹⁰⁵J. P. Jacobs, L. P. Lindfors, J. G. H. Reintjes, O. Jylhä, and H. H. Brongersma, Catal. Lett. 25, 315 (1994).
- ¹¹⁰⁶P. Mäki-Arvela, L. P. Tiainen, M. Lindblad, K. Demirkan, R. S. N. Kumar, T. Ollonqvist, J. Väyrynen, T. Salmi, and D. Yu. Murzin, Appl. Catal., A 241, 271 (2003).
- ¹¹⁰⁷M. Utriainen, M. Kröger-Laukkanen, and L. Niinistö, Mater. Sci. Eng., B 54, 98 (1998).
- ¹¹⁰⁸E. Lindahl, M. Ottosson, and J.-O. Carlsson, Chem. Vap. Deposition 15, 186 (2009).
- ¹¹⁰⁹E. Lindahl, J. Lu, M. Ottosson, and J. O. Carlsson, J. Cryst. Growth **311**, 4082 (2009).

- ¹¹¹⁰E. Lindahl, M. Ottosson, and J.-O. Carlsson, Surf. Coat. Technol. 205, 710 (2010).
- ¹¹¹¹H. Seim, H. Mölsä, M. Nieminen, H. Fjellvåg, and L. Niinistö, J. Mater. Chem. 7, 449 (1997).
- ¹¹¹²P. Mårtensson and J.-O. Carlsson, Chem. Vap. Deposition 3, 45 (1997).
- ¹¹¹³T. Törndahl, M. Ottosson, and J.-O. Carlsson, Thin Solid Films **458**, 129 (2004).
- ¹¹¹⁴A. Johansson, T. Törndahl, L. M. Ottosson, M. Boman, and J.-O. Carlsson, Mater. Sci. Eng., C 23, 823 (2003).
- ¹¹¹⁵M. Juppo, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. A **15**, 2330 (1997).
- ¹¹¹⁶A. Niskanen, A. Rahtu, T. Sajavaara, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **152**, G25 (2005).
- ¹¹¹⁷L. Wu and E. Eisenbraun, J. Vac. Sci. Technol. B 25, 2581 (2007).
- ¹¹¹⁸L. Wu and E. Eisenbraun, Electrochem. Solid-State Lett. **11**, H107 (2008).
- ¹¹¹⁹P. Martensson and J.-O. Carlsson, J. Electrochem. Soc. **145**, 2926 (1998).
- ¹¹²⁰A. U. Mane and S. A. Shivashankar, Mater. Sci. Semicond. Process. 7, 343 (2004).
- ¹¹²¹R. Gupta and B. G. Willis, Appl. Phys. Lett. 90, 253102 (2007).
- ¹¹²²I. J. Hsu, B. E. McCandless, C. Weiland, and B. G. Willis, J. Vac. Sci. Technol. A 27, 660 (2009).
- ¹¹²³C. Jezewski, W. A. Lanford, C. J. Wiegand, J. P. Singh, P. I. Wang, J. J. Senkevich, and T. M. Lu, J. Electrochem. Soc. **152**, C60 (2005).
- ¹¹²⁴R. Solanki and B. Pathangey, Electrochem. Solid-State Lett. **3**, 479 (2000).
- ¹¹²⁵S.-W. Kang, J.-Y. Yun, and Y. H. Chang, Chem. Mater. **22**, 1607 (2010).
- ¹¹²⁶D.-Y. Moon, W.-S. Kim, T.-S. Kim, B.-W. Kang, J.-W. Park, S. J. Yeom, and J. H. Kim, J. Korean Phys. Soc. 54, 1330 (2009).
- ¹¹²⁷Z. W. Li, A. Rahtu, and R. G. Gordon, J. Electrochem. Soc. **153**, C787 (2006).
- ¹¹²⁸S. Kucheyev, J. Biener, T. Baumann, Y. Wang, A. Hamza, Z. Li, D. Lee, and R. Gordon, Langmuir 24, 943 (2008).
- ¹¹²⁹O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, J. Am. Chem. Soc. **131**, 18159 (2009).
- ¹¹³⁰Q. Ma, H. Guo, R. G. Gordon, and F. Zaera, Chem. Mater. **22**, 352 (2010).
- ¹¹³¹M. Dai, J. Kwon, M. D. Halls, R. G. Gordon, and Y. J. Chabal, Langmuir **26**, 3911 (2010).
- ¹¹³²B. H. Lee, J. K. Hwang, J. W. Nam, S. U. Lee, J. T. Kim, S.-M. Koo, A. Baunemann, R. A. Fischer, and M. M. Sung, Angew. Chem., Int. Ed. 48, 4536 (2009).
- ¹¹³³K. H. Park, A. Z. Bradley, J. S. Thompson, and W. J. Marshall, Inorg. Chem. 45, 8480 (2006).
- ¹¹³⁴R. G. van Welzenis, R. A. M. Bink, and H. H. Brongersma, Appl. Surf. Sci. 107, 255 (1996).
- ¹¹³⁵S. Haukka and T. Suntola, Interface Sci. **75**, 119 (1997).
- ¹¹³⁶A. M. Molenbroek, S. Haukka, and B. S. Clausen, J. Phys. Chem. B **102**, 10680 (1998).
- ¹¹³⁷S. Haukka, E.-L. Lakomaa, and T. Suntola, in *Adsorption and its Applications in Industry and Environmental Protection*, Studies in Surface Science and Catalysis, edited by A. Dabrowski (Elsevier, Amsterdam, 1999), Vol. 120A, pp. 715–750.
- ¹¹³⁸J. S. Huo, R. Solanki, and J. McAndrew, J. Mater. Res. **17**, 2394 (2002).
- ¹¹³⁹T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, and M. Hietschold, J. Electrochem. Soc. **156**, H453 (2009).
- ¹¹⁴⁰Z. W. Li and R. G. Gordon, Chem. Vap. Deposition **12**, 435 (2006).
- ¹¹⁴¹T. Törndahl, M. Ottosson, and J. O. Carlsson, J. Electrochem. Soc. **153**, C146 (2006).
- ¹¹⁴²L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, J. Phys. IV 11, Pr3/1103 (2001).
- ¹¹⁴³B. Meester, L. Reijnen, A. Goossens, and J. Schoonman, J. Phys. IV 11, Pr3/1147 (2001).
- ¹¹⁴⁴J. Johansson, J. Kostamo, M. Karppinen, and L. Niinistö, J. Mater. Chem. **12**, 1022 (2002).
- ¹¹⁴⁵L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, Chem. Vap. Deposition 9, 15 (2003).
- ¹¹⁴⁶L. Reijnen, B. Meester, F. de Lange, J. Schoonman, and A. Goossens, Chem. Mater. **17**, 2724 (2005).
- ¹¹⁴⁷A. B. F. Martinson, J. W. Elam, and M. J. Pellin, Appl. Phys. Lett. **94**, 123107 (2009).

- ¹¹⁴⁸V. Pore, T. Hatanpää, M. Ritala, and M. Leskelä, J. Am. Chem. Soc. 131, 3478 (2009).
- ¹¹⁴⁹J. A. Libera, J. W. Elam, and M. J. Pellin, Thin Solid Films 516, 6158 (2008).
- ¹¹⁵⁰K. Kopalko, M. Godlewski, E. Guziewicz, E. Łusakowska, W. Paszkowicz, J. Domagała, E. Dynowska, A. Szczerbakow, A. Wójcik, and M. R. Phillips, Vacuum 74, 269 (2004).
- ¹¹⁵¹K. S. A. Butcher, P. Afifuddin, P.-T. Chen, M. Godlewski, A. Szczerbakow, E. M. Goldys, T. L. Tansley, and J. A. Freitas, Jr., J. Cryst. Growth 246, 237 (2002).
- ¹¹⁵²N. A. Stepanova, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. 50, 465 (1977) [J. Appl. Chem. USSR 50, 450 (1977)].
- ¹¹⁵³K. Kaiya, N. Yoshii, N. Takahashi, and T. Nakamura, J. Mater. Sci. Lett. 19. 2089 (2000).
- ¹¹⁵⁴K. Kaiya, N. Yoshii, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H. Yamamoto, Chem. Mater. 13, 1952 (2001).
- ¹¹⁵⁵K. Kopalko, M. Godlewski, J. Z. Domagała, E. Łusakowska, R. Minikayev, W. Paszkowicz, and A. Szczerbakow, Chem. Mater. 16, 1447 (2004).
- ¹¹⁵⁶B. W. Sanders and A. Kitai, Chem. Mater. 4, 1005 (1992).
- ¹¹⁵⁷V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, Appl. Surf. Sci. 82/ 83, 34 (1994).
- ¹¹⁵⁸M. Godlewski, E. Guziewicz, J. Szade, A. Wójcik-Glodowska, L. Wachnicki, T. Krajewski, K. Kopalko, R. Jakiela, S. Yatsunenko, E. Przezdziecka, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, Microelectron. Eng. 85, 2434 (2008).
- ¹¹⁵⁹G. Łuka, T. Krajewski, L. Wachnicki, A. Szczepanik, J. D. Fidelus, A. Szczerbakow, E. Łusakowska, K. Kopalko, E. Guziewicz, and M. Godlewski, Acta Phys. Pol. A 114, 1229 (2008).
- ¹¹⁶⁰E. Guziewicz, M. Godlewski, T. Krajewski, L. Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Glodowska, E. Przezdziecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, J. Appl. Phys. 105, 122413 (2009).
- ¹¹⁶¹H. Makino, A. Miyake, T. Yamada, N. Yamamoto, and T. Yamamoto, Thin Solid Films 517, 3138 (2009).
- ¹¹⁶²L. Wachnicki, M. Łukasiewicz, B. Witkowski, T. Krajewski, G. Łuka, K. Kopalko, R. Minikayev, E. Przezdziecka, J. Z. Domagała, M. Godlewski, and E. Guziewicz, Phys. Status Solidi B 247, 1699 (2010).
- ¹¹⁶³P. C. Rowlette, C. G. Allen, O. B. Bromley, and C. A. Wolden, J. Vac. Sci. Technol. A 27, 761 (2009).
- ¹¹⁶⁴P. C. Rowlette, C. G. Allen, O. B. Bromley, A. E. Dubetz, and C. A. Wolden, Chem. Vap. Deposition 15, 15 (2009).
- 1165K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, J. Nanosci. Nanotechnol. 8, 4856 (2008).
- ¹¹⁶⁶B. Sang and M. Konagai, Jpn. J. Appl. Phys., Part 2 35, L602 (1996).
- ¹¹⁶⁷K. Saito, Y. Watanabe, K. Takahashi, T. Matsuzawa, B. Sang, and M. Konagai, Sol. Energy Mater. Sol. Cells 49, 187 (1997).
- ¹¹⁶⁸A. Yamada, B. Sang, and M. Konagai, Appl. Surf. Sci. 112, 216 (1997).
- ¹¹⁶⁹B. Sang, A. Yamada, and M. Konagai, Sol. Energy Mater. Sol. Cells 49, 19 (1997).
- ¹¹⁷⁰B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 2 37, L1125 (1998).
- ¹¹⁷¹B. Sang, K. Dairiki, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 38, 4983 (1999).
- ¹¹⁷²S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 38, 4989 (1999).
- ¹¹⁷³A. Yamada and M. Konagai, Solid State Phenom. **67/68**, 237 (1999).
- ¹¹⁷⁴A. W. Ott and R. P. H. Chang, Mater. Chem. Phys. 58, 132 (1999).
- ¹¹⁷⁵A. Shimizu, S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Thin Solid Films 361/362, 193 (2000).
- ¹¹⁷⁶E. B. Yousfi, J. Fouache, and D. Lincot, Appl. Surf. Sci. 153, 223 (2000).
- ¹¹⁷⁷E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla, and D. Lincot, Thin Solid Films 361/362, 183 (2000).
- ¹¹⁷⁸E. B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, and D. Lincot, Thin Solid Films 387, 29 (2001).
- 1179Y. Yamamoto, K. Saito, K. Takahashi, and M. Konagai, Sol. Energy Mater. Sol. Cells 65, 125 (2001).
- ¹¹⁸⁰C. H. Liu, M. Yan, X. Liu, E. Seelig, and R. P. H. Chang, Chem. Phys. Lett. 355, 43 (2002).
- ¹¹⁸¹C. H. Liu and R. P. H. Chang, J. Chem. Phys. **116**, 8139 (2002).
- ¹¹⁸²J. Sterner, J. Kessler, and L. Stolt, J. Vac. Sci. Technol. A 20, 278 (2002).
- ¹¹⁸³M. Schuisky, J. W. Elam, and S. M. George, Appl. Phys. Lett. 81, 180 (2002).

- ¹¹⁸⁴J. Lim, K. Shin, K. W. Kim, and C. Lee, Mater. Sci. Eng., B 107, 301 (2004).
- ¹¹⁸⁵J. Lim, K. Shin, H. W. Kim, and C. Lee, J. Lumin. **109**, 181 (2004).
- ¹¹⁸⁶S.-H. K. Park and Y. E. Lee, J. Mater. Sci. 39, 2195 (2004).
- ¹¹⁸⁷J. Lim, K. Shin, H. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).
- ¹¹⁸⁸J. D. Ferguson, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol. A 23, 118 (2005).
- ¹¹⁸⁹S. H. K. Park, J. I. Lee, C. S. Hwang, and H. Y. Chu, Jpn. J. Appl. Phys., Part 2 44, L242 (2005).
- ¹¹⁹⁰S. J. Kwon, Jpn. J. Appl. Phys., Part 1 44, 1062 (2005).
- ¹¹⁹¹M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005).
- ¹¹⁹²S. O. Kucheyev, J. Biener, Y. M. Wang, T. F. Baumann, K. J. Wu, T. van Buuren, A. V. Hamza, J. H. Satcher, J. W. Elam, and M. J. Pellin, Appl. Phys. Lett. 86, 083108 (2005).
- ¹¹⁹³S. K. Kim, C. S. Hwang, S. -H. K. Park, and S. J. Yun, Thin Solid Films 478, 103 (2005).
- ¹¹⁹⁴C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, and L. Stolt, J. Appl. Phys. 100, 044506 (2006).
- ¹¹⁹⁵C. Lee and J. Lim, J. Vac. Sci. Technol. A 24, 1031 (2006).
- ¹¹⁹⁶H. W. Kim and S. H. Shim, J. Korean Phys. Soc. 49, 241 (2006).
- ¹¹⁹⁷H. C. Liao, P. C. Kuo, C. C. Lin, and S. Y. Chen, J. Vac. Sci. Technol. B 24, 2198 (2006).
- 1198Y. S. Min, E. J. Bae, J. B. Park, U. J. Kim, W. Park, J. Song, C. S. Hwang, and N. Park, Appl. Phys. Lett. 90, 263104 (2007).
- ¹¹⁹⁹S. J. Lim, S. J. Kwon, H. Kim, and J. S. Park, Appl. Phys. Lett. 91, 183517 (2007).
- ¹²⁰⁰J. Lim and C. Lee, Thin Solid Films **515**, 3335 (2007).
- A. Wójcik, V. Osinniy, T. Krajewski, T. Story, E. Łusakowska, and W. Paszkowicz, Acta Phys. Pol. A 112, 401 (2007).
- 1202C.-W. Lin, D.-J. Ke, Y.-C. Chao, L. Chang, M.-H. Liang, and Y.-T. Ho, J. Cryst. Growth 298, 472 (2007).
- ¹²⁰³E. H. Kim, D. H. Lee, B. H. Chung, H. S. Kim, Y. Kim, and S. J. Noh, J. Korean Phys. Soc. 50, 1716 (2007).
- ¹²⁰⁴S. H. K. Park, C. S. Hwang, H. Y. Jeong, H. Y. Chu, and K. I. Cho, Electrochem. Solid-State Lett. 11, H10 (2008).
- ¹²⁰⁵J. Sun, D. A. Mourey, D. L. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. Cowdery-Corvan, L. Tutt, and T. N. Jackson, IEEE Electron Device Lett. 29, 721 (2008).
- ¹²⁰⁶R. H. A. Ras, E. Sahramo, J. Malm, J. Raula, and M. Karppinen, J. Am. Chem. Soc. 130, 11252 (2008).
- ¹²⁰⁷S. J. Lim, S. J. Kwon, and H. Kim, Thin Solid Films **516**, 1523 (2008).
- 1208D. M. King, X. Liang, C. S. Carney, L. F. Hakim, P. Li, and A. W. Weimer, Adv. Funct. Mater. 18, 607 (2008).
- ¹²⁰⁹H. W. Kim, S. H. Shim, and J. W. Lee, Nanotechnology 19, 145601 (2008).
- ¹²¹⁰H. W. Kim, J. W. Lee, and S. H. Shim, J. Phys. Chem. Solids 69, 1491 (2008).
- ¹²¹¹T. Y. Shvareva, S. V. Ushakov, A. Navrotsky, J. A. Libera, and J. W. Elam, J. Mater. Res. 23, 1907 (2008).
- ¹²¹²T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, Adv. Funct. Mater. 20, 1560 (2008).
- ¹²¹³E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, and M. Guziewicz, J. Appl. Phys. 103, 033515 (2008).
- ¹²¹⁴H. C. Chen, M. J. Chen, M. K. Wu, Y. C. Cheng, and F. Y. Tsai, IEEE J. Sel. Top. Quantum Electron. 14, 1053 (2008).
- ¹²¹⁵S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H. J. Chang, and H.-H. Park, J. Korean Phys. Soc. 53, 3287 (2008).
- ¹²¹⁶E. Guziewicz, M. Godlewski, K. Kopalko, I. A. Kowalik, S. Yatsunenko, V. Osinnyi, W. Paszkowicz, E. Łusakowska, and P. Dluzewski, J. Korean Phys. Soc. 53, 2880 (2008).
- ¹²¹⁷J.-S. Hur, S. Jang, D. Kim, D. Byun, and C.-S. Son, J. Korean Phys. Soc. 53, 3033 (2008).
- ¹²¹⁸L. Dunlop, A. Kursumovic, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 93, 172111 (2008).
- 1219 E. Przezdziecka, T. Krajewski, L. Wachnicki, A. Szczepanik, A. Wójcik-Glodowska, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, E. Guziewicz, and M. Godlewski, Acta Phys. Pol. A 114, 1303 (2008).
- ¹²²⁰S.-Y. Pung, K.-L. Choy, X. Hou, and C. Shan, Nanotechnology 19, 435609 (2008).
- 1221 M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M. Shiojiri, IEEE Photon. Technol. Lett. 20, 1772 (2008).

¹²⁰¹I. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, M. Godlewski,

- ¹²²²H. Makino, S. Kishimoto, T. Yamada, A. Miyake, N. Yamamoto, and T. Yamamoto, Phys. Status Solidi A 205, 1971 (2008).
- ¹²²³D. M. King, X. Liang, P. Li, and A. W. Weimer, Thin Solid Films **516**, 8517 (2008).
- ¹²²⁴S. Park, H. Kim, J. W. Lee, H. W. Kim, and C. Lee, J. Korean Phys. Soc. **53**, 657 (2008).
- ¹²²⁵E. Guziewicz, M. Godlewski, T. A. Krajewski, L. Wachnicki, G. Łuka, W. Paszkowicz, J. Z. Domagała, E. Przezdziecka, E. Łusakowska, and B. S. Witkowski, Acta Phys. Pol. A **116**, 814 (2009).
- ¹²²⁶S. Yang, B. H. Lin, W. R. Liu, J. H. Lin, C. S. Chang, C. H. Hsu, and W. F. Hsieh, Cryst. Growth Des. 9, 5184 (2009).
- ¹²²⁷T. A. Krajewski, G. Łuka, L. Wachnicki, R. Jakiela, B. Witkowski, E. Guziewicz, M. Godlewski, N. Huby, and G. Tallarida, Opt. Appl. **39**, 865 (2009).
- ¹²²⁸M. Godlewski, E. Guziewicz, G. Łuka, T. Krajewski, M. Łukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, and B. Dalati, Thin Solid Films **518**, 1145 (2009).
- ¹²²⁹C.-S. Ku, J.-M. Huang, C.-M. Lin, and H.-Y. Lee, Thin Solid Films **518**, 1373 (2009).
- ¹²³⁰S. Bang, S. Lee, J. Park, S. Park, W. Jeong, and H. Jeon, J. Phys. D: Appl. Phys. 42, 235102 (2009).
- ¹²³¹J. Y. Park, S.-W. Choi, J.-W. Lee, C. Lee, and S. S. Kim, J. Am. Ceram. Soc. **92**, 2551 (2009).
- ¹²³²S.-W. Choi, J. Y. Park, and S. S. Kim, Nanotechnology 20, 465603 (2009).
- ¹²³³E. Przezdziecka, L. Wachnicki, W. Paszkowicz, E. Łusakowska, T. Krajewski, G. Łuka, E. Guziewicz, and M. Godlewski, Semicond. Sci. Technol. 24, 105014 (2009).
- ¹²³⁴Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri, and M. J. Chen, Nanotechnology **20**, 165201 (2009).
- ¹²³⁵I. A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wójcik-Glodowska, M. Godlewski, P. Dluzewski, E. Łusakowska, and W. Paszkowicz, J. Cryst. Growth **311**, 1096 (2009).
- ¹²³⁶C. X. Shan, J. Y. Zhang, B. Yao, D. Z. Shen, X. W. Fan, and K. L. Choy, J. Vac. Sci. Technol. B 27, 1765 (2009).
- ¹²³⁷I. Alessandri, M. Zucca, M. Ferroni, E. Bontempi, and L. E. Depero, Cryst. Growth Des. 9, 1258 (2009).
- ¹²³⁸T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I. A. Kowalik, A. Wójcik-Glodowska, M. Łukasiewicz, K. Kopalko, V. Osinniy, and M. Guziewicz, Microelectron. J. 40, 293 (2009).
- ¹²³⁹S. Park, J. Jun, H. W. Kim, and C. Lee, Solid State Commun. **149**, 315 (2009).
- ¹²⁴⁰A. Pourret, P. Guyot-Sionnest, and J. W. Elam, Adv. Mater. **21**, 232 (2009).
- ¹²⁴¹K. Grigoras, V. M. Airaksinen, and S. Franssila, J. Nanosci. Nanotechnol. 9, 3763 (2009).
- ¹²⁴²L. Wachnicki, T. Krajewski, G. Łuka, B. Witkowski, B. Kowalski, K. Kopalko, J. Z. Domagała, M. Guziewicz, M. Godlewski, and E. Guziewicz, Thin Solid Films **518**, 4556 (2010).
- ¹²⁴³E. Janik, A. Wachnicka, E. Guziewicz, M. Godlewski, S. Kret, W. Zaleszczyk, E. Dynowska, A. Presz, G. Karczewski, and T. Wojtowicz, Nanotechnology **21**, 015302 (2010).
- ¹²⁴⁴H.-C. Chen, M.-J. Chen, M.-K. Wu, W.-C. Li, H.-L. Tsai, J.-R. Yang, H. Kuan, and M. Shiojiri, IEEE J. Quantum Electron. 46, 265 (2010).
- ¹²⁴⁵S. J. Lim, J.-M. Kim, D. Kim, S. Kwon, J.-S. Park, and H. Kim, J. Electrochem. Soc. **157**, H214 (2010).
- ¹²⁴⁶C.-S. Ku, H.-Y. Lee, J.-M. Huang, and C.-M. Lin, Cryst. Growth Des. 10, 1460 (2010).
- ¹²⁴⁷C.-S. Ku, H.-Y. Lee, J.-M. Huang, and C.-M. Lin, Mater. Chem. Phys. **120**, 236 (2010).
- ¹²⁴⁸E. Guziewicz, M. Godlewski, T. A. Krajewski, L. Wachnicki, G. Łuka, J. Z. Domagała, W. Paszkowicz, B. J. Kowalski, B. S. Witkowski, A. Dużyńska, and A. Suchocki, *Phys. Status Solidi B* **247**, 1611 (2010).
- ¹²⁴⁹M. Ceh, H.-C. Chen, M.-J. Chen, J.-R. Yang, and M. Shiojiri, Mater. Trans. **51**, 219 (2010).
- ¹²⁵⁰Y.-S. Min, C. J. An, S. K. Kim, J. Song, and C. S. Hwang, Bull. Korean Chem. Soc. **31**, 2503 (2010).
- ¹²⁵¹H. Chen, M. Chen, T. Liu, J. Yang, and M. Shiojiri, Thin Solid Films 519, 536 (2010).
- ¹²⁵²D. D. Fong, J. A. Eastman, S. K. Kim, T. T. Fister, M. J. Highland, P. M. Baldo, and P. H. Fuoss, Appl. Phys. Lett. **97**, 191904 (2010).
- ¹²⁵³F. L. Kuo, M.-T. Lin, B. A. Mensah, T. W. Scharf, and N. D. Shepherd, Phys. Status Solidi A 207, 2487 (2010).
- ¹²⁵⁴J. Y. Park, S.-W. Choi, and S. S. Kim, Nanotechnology **21**, 475601 (2010).

- ¹²⁵⁵X. Li, C. Li, Y. Zhang, D. Chu, W. Milne, and H. Fan, Nanoscale Res. Lett. 5, 1836 (2010).
- ¹²⁵⁶H.-Y. Lee, C. J. An, S. J. Piao, D. Y. Ahn, M.-T. Kim, and Y.-S. Min, J. Phys. Chem. C **114**, 18601 (2010).
- ¹²⁵⁷G. Łuka, P. Stakhira, V. Cherpak, D. Volynyuk, Z. Hotra, M. Godlewski, E. Guziewicz, B. Witkowski, W. Paszkowicz, and A. Kostruba, J. Appl. Phys. **108**, 064518 (2010).
- ¹²⁵⁸S. Lee, S. Bang, J. Park, S. Park, W. Jeong, and H. Jeon, Phys. Status Solidi A 207, 1845 (2010).
- ¹²⁵⁹Y.-M. Chang, S.-R. Jian, H.-Y. Lee, C.-M. Lin, and J.-Y. Juang, Nanotechnology 21, 385705 (2010).
- ¹²⁶⁰C. H. Ahn, C. H. Woo, S. Hwang, J. Y. Lee, H. K. Cho, H. J. Cho, and G. Y. Yeom, Surf. Interface Anal. 42, 955 (2010).
- ¹²⁶¹G. Łuka, T. Krajewski, L. Wachnicki, B. Witkowski, E. Łusakowska, W. Paszkowicz, E. Guziewicz, and M. Godlewski, Phys. Status Solidi A 207, 1568 (2010).
- ¹²⁶²Y.-H. Chang, S.-M. Wang, C.-M. Liu, and C. Chen, J. Electrochem. Soc. 157, K236 (2010).
- ¹²⁶³Y. T. Shih, C. Y. Chiu, C. W. Chang, J. R. Yang, M. Shiojiri, and M. J. Chen, J. Electrochem. Soc. 157, II879 (2010).
- ¹²⁶⁴R. J. Narayan, S. P. Adiga, M. J. Pellin, L. A. Curtiss, A. J. Hryn, S. Stafslien, B. Chisholm, C.-C. Shih, C.-M. Shih, S.-J. Lin, Y.-Y. Su, C. Jin, J. Zhang, N. A. Monteiro-Riviere, and J. W. Elam, Philos. Trans. R. Soc. London, Ser. A **368**, 2033 (2010).
- ¹²⁶⁵J. Malm, E. Sahramo, J. Perälä, T. Sajavaara, and M. Karppinen, Thin Solid Films **519**, 5319 (2011).
- ¹²⁶⁶S.-K. Kwon, D.-W. Kim, Y.-H. Jung, and B.-J. Lee, J. Korean Phys. Soc. 55, 999 (2009).
- ¹²⁶⁷K. H. Lee, A. Park, S. Im, Y. Park, S. H. Kim, M. M. Sung, and S. Lee, Electrochem. Solid-State Lett. 13, H261 (2010).
- ¹²⁶⁸D. M. King, J. Li, X. Liang, S. I. Johnson, M. M. Channel, and A. W. Weimer, Cryst. Growth Des. 9, 2828 (2009).
- ¹²⁶⁹D. M. King, S. I. Johnson, J. Li, X. Du, X. Liang, and A. W. Weimer, Nanotechnology **20**, 195401 (2009).
- ¹²⁷⁰S. H. K. Park, C. S. Hwang, H. S. Kwack, J. H. Lee, and H. Y. Chu, Electrochem. Solid-State Lett. 9, G299 (2006).
- ¹²⁷¹C. R. Kim, J. Y. Lee, C. M. Shin, J. Y. Leem, H. Ryu, J. H. Chang, H. C. Lee, C. S. Son, W. J. Lee, W. G. Jung, S. T. Tan, J. L. Zhao, and X. W. Sun, Solid State Commun. **148**, 395 (2008).
- ¹²⁷²S. -H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, Adv. Mater. 21, 678 (2009).
- ¹²⁷³W.-S. Choi, J. Korean Phys. Soc. 54, 678 (2009).
- ¹²⁷⁴S. J. Lim, J.-M. Kim, D. Kim, C. Lee, J.-S. Park, and H. Kim, Electrochem. Solid-State Lett. **13**, H151 (2010).
- ¹²⁷⁵J. Y. Lee, C. M. Shin, J. H. Heo, C. R. Kim, J. H. Park, T. M. Lee, H. Ryu, C. S. Son, B. C. Shin, and W. J. Lee, Curr. Appl. Phys. **10**, S290 (2010).
- ¹²⁷⁶P. Y. Lin, J. R. Gong, P. C. Li, T. Y. Lin, D. Y. Lyu, D. Y. Lin, H. J. Lin, T. C. Li, K. J. Chang, and W. J. Lin, J. Cryst. Growth **310**, 3024 (2008).
- ¹²⁷⁷Y.-T. Lin, P.-H. Chung, H.-W. Lai, H.-L. Su, D.-Y. Lyu, K.-Y. Yen, T.-Y. Lin, C.-Y. Kung, and J.-R. Gong, Appl. Surf. Sci. 256, 819 (2009).
- ¹²⁷⁸K.-Y. Yen, K.-P. Liu, J.-R. Gong, K.-Y. Tsai, D.-Y. Lyu, T.-Y. Lin, G.-Y. Ni, and F.-W. Jih, J. Mater. Sci.: Mater. Electron. 20, 1255 (2009).
- ¹²⁷⁹M. Tammenmaa, T. Koskinen, L. Hiltunen, L. Niinistö, and M. Leskelä, Thin Solid Films **124**, 125 (1985).
- ¹²⁸⁰K. Kobayashi and S. Okudaira, Chem. Lett. 26, 511 (1997).
- ¹²⁸¹A. Wójcik, K. Kopalko, M. Godlewski, E. Łusakowska, W. Paszkowicz, K. Dybko, J. Domagała, A. Szczerbakow, and E. Kamińska, Acta Phys. Pol. A **105**, 667 (2004).
- ¹²⁸²A. Wójcik, K. Kopalko, M. Godlewski, E. Łusakowska, E. Guziewicz, R. Minikayev, W. Paszkowicz, K. Świątek, M. Klepka, R. Jakiela, M. Kiecana, M. Sawicki, K. Dybko, and M. R. Phillips, Opt. Appl. **35**, 413 (2005).
- ¹²⁸³A. Wójcik, M. Kiecana, K. Kopalko, M. Godlewski, E. Guziewicz, S. Yatsunenko, E. Łusakowska, R. Minikayev, W. Paszkowicz, and K. Świątek, Acta Phys. Pol. A **108**, 915 (2005).
- ¹²⁸⁴A. Wójcik, K. Kopalko, M. Godlewski, E. Guziewicz, R. Jakiela, R. Minikayev, and W. Paszkowicz, Appl. Phys. Lett. 89, 051907 (2006).
- ¹²⁸⁵A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, J. Cryst. Growth **310**, 284 (2008).
- ¹²⁸⁶T. Suntola and J. Antson, U.S. patent 4,058,430 (15 November, 1977).
- ¹²⁸⁷W. Faschinger, P. Juza, S. Ferreira, H. Zajicek, A. Pesek, H. Sitter, and K. Lischka, Thin Solid Films **225**, 270 (1993).

- ¹²⁸⁸T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth 148, 223 (1995).
- ¹²⁸⁹A. Koukitu, T. Miyazawa, H. Ikeda, and H. Seki, J. Cryst. Growth **123**, 95 (1992).
- ¹²⁹⁰N. A. Stepanova, V. D. Kupriyanov, and A. A. Malygin, Neorg. Mater. 23, 377 (1987) [Inorg. Mater. 23, 331 (1987)].
- ¹²⁹¹M. Pessa, R. Mäkelä, and T. Suntola, Appl. Phys. Lett. **38**, 131 (1981).
- ¹²⁹²J. A. Lahtinen, A. Lu, T. Tuomi, and M. Tammenmaa, J. Appl. Phys. 58, 1851 (1985).
- ¹²⁹³M. Oikkonen, J. Appl. Phys. 62, 1385 (1987).
- ¹²⁹⁴J. Hyvärinen, M. Sonninen, and R. Törnqvist, J. Cryst. Growth **86**, 695 (1988).
- ¹²⁹⁵M. Oikkonen, M. Tammenmaa, and M. Asplund, Mater. Res. Bull. 23, 133 (1988).
- ¹²⁹⁶M. Oikkonen, T. Tuomi, and M. Luomajärvi, J. Appl. Phys. 63, 1070 (1988).
- ¹²⁹⁷V. Balek, J. Fusek, O. Kříž, M. Leskelä, L. Niinistö, E. Nykänen, J. Rautanen, and P. Soininen, J. Mater. Res. 9, 119 (1994).
- ¹²⁹⁸J. Ihanus, M. Ritala, M. Leskelä, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. **120**, 43 (1997).
- ¹²⁹⁹J. Ihanus, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. **112**, 154 (1997).
- ¹³⁰⁰A. Szczerbakow, M. Godlewski, E. Dynowska, V. Yu. Ivanov, K. Świątek, E. M. Goldys, and M. R. Phillips, Acta Phys. Pol. A 97, 579 (1998).
- ¹³⁰¹A. Szczerbakow, E. Dynowska, M. Godlewski, and K. Świątek, J. Cryst. Growth 183, 708 (1998).
- ¹³⁰²S. J. Yun, S. Dey, and K. S. Nam, J. Korean Phys. Soc. **33**, S454 (1998).
- ¹³⁰³J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, and D. Morton, Appl. Phys. Lett. 83, 2566 (2003).
- ¹³⁰⁴B. Soenen, J. Ihanus, G. Stuyven, P. De Visschere, M. Ritala, and M. Leskelä, SID Int. Symp. Digest Tech. Papers Suppl. 1, 33 (2000).
- ¹³⁰⁵J. Ihanus, M. P. Lankinen, M. Kemell, M. Ritala, and M. Leskelä, J. Appl. Phys. 98, 113526 (2005).
- ¹³⁰⁶A. Hunter and A. H. Kitai, J. Cryst. Growth **91**, 111 (1988).
- ¹³⁰⁷M. D. Bhise, B. Sanders, N. Dalacu, and A. H. Kitai, J. Mater. Sci. 24, 3164 (1989).
- ¹³⁰⁸Y.-H. Wu, T. Toyoda, Y. Kawakami, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 2 29, L727 (1990).
- ¹³⁰⁹S. Yamaga and A. Yoshikawa, J. Cryst. Growth **117**, 152 (1992).
- ¹³¹⁰C. H. Liu, M. Yokoyama, and Y. K. Su, Jpn. J. Appl. Phys., Part 1 35, 5416 (1996).
- ¹³¹¹C. H. Liu, M. Yokoyama, Y. K. Su, and N. C. Lee, Jpn. J. Appl. Phys., Part 1 35, 2749 (1996).
- ¹³¹²C.-T. Hsu, M. Yokoyama, and Y. K. Su, Mater. Chem. Phys. 51, 102 (1997).
- ¹³¹³C. T. Hsu, Thin Solid Films **335**, 284 (1998).
- ¹³¹⁴M. Yokoyama and N.-T. Chen, J. Cryst. Growth **223**, 369 (2001).
- ¹³¹⁵R. A. Bisengaliev, B. V. Novikov, V. B. Aleskovskii, V. E. Drozd, D. A. Ageev, V. I. Gubaidullin, and A. P. Savchenko, Fiz. Tverd. Tela **40**, 820 (1998) [Phys. Solid State **40**, 754 (1998)].
- ¹³¹⁶G. Stuyven, P. De Visschere, A. Hikavyy, and K. Neyts, J. Cryst. Growth 234, 690 (2002).
- ¹³¹⁷Y. S. Kim and S. J. Yun, Appl. Surf. Sci. 229, 105 (2004).
- ¹³¹⁸E. Soininen, G. Härkönen, and K. Vasama, SID Int. Symp. Digest Tech. Papers Suppl. 1, 77 (2000).
- ¹³¹⁹S. Farhangfar, R. B. Yang, M. Pelletier, and K. Nielsch, Nanotechnology 20, 325602 (2009).
- ¹³²⁰J. R. Bakke, J. S. King, H. J. Jung, R. Sinclair, and S. F. Bent, Thin Solid Films **518**, 5400 (2010).
- ¹³²¹H. Fujiwara, H. Kiryu, and I. Shimizu, J. Appl. Phys. **77**, 3927 (1995).
- ¹³²²M. Oikkonen, M. Blomberg, T. Tuomi, and M. Tammenmaa, Thin Solid Films **124**, 317 (1985).
- ¹³²³T. Yao and T. Takeda, Appl. Phys. Lett. 48, 160 (1986).
- ¹³²⁴T. Yao, T. Takeda, and R. Watanuki, Appl. Phys. Lett. 48, 1615 (1986).
- ¹³²⁵T. Yao, Jpn. J. Appl. Phys., Part 2 25, L544 (1986).
- ¹³²⁶T. Takeda, T. Kurosu, M. Lida, and T. Yao, Surf. Sci. **174**, 548 (1996).
- ¹³²⁷T. Yao, Jpn. J. Appl. Phys., Part 2 25, L942 (1986).
- ¹³²⁸S. Dosho, Y. Takemura, M. Konagai, and K. Takahashi, J. Cryst. Growth 95, 580 (1989).
- ¹³²⁹Y. Takemura, M. Konagai, K. Yamasaki, C. H. Lee, and K. Takahashi, J. Electron. Mater. 22, 437 (1993).
- ¹³³⁰M. Konagai, Y. Takemura, K. Yamasaki, and K. Takahashi, Thin Solid Films **225**, 256 (1993).

- ¹³³¹H. Akinaga and K. Tanaka, Appl. Surf. Sci. 82/83, 298 (1994).
- ¹³³²Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 34, 5949 (1995).
- ¹³³³K. Arai, Z. Q. Zhu, T. Sekiguchi, T. Yasuda, F. Lu, N. Kuroda, Y. Segawa, and T. Yao, J. Cryst. Growth **184/185**, 254 (1998).
- ¹³³⁴A. Szczerbakow, E. Dynowska, K. Świątek, and M. Godlewski, J. Cryst. Growth **207**, 148 (1999).
- ¹³³⁵A. Ohtake, T. Hanada, T. Yasuda, K. Arai, and T. Yao, Phys. Rev. B 60, 8326 (1999).
- ¹³³⁶A. Ohtake, T. Hanada, K. Arai, T. Komura, S. Miwa, K. Kimura, T. Yasuda, C. Jin, and T. Yao, J. Cryst. Growth **201/202**, 490 (1999).
- ¹³³⁷E. Guziewicz, M. Godlewski, K. Kopalko, E. Łusakowska, E. Dynowska, M. Guziewicz, M. M. Godlewski, and M. Phillips, Thin Solid Films 446, 172 (2004).
- ¹³³⁸J. Y. Lee, J. H. Chang, M. Yang, H. S. Ahn, S. N. Yi, K. Goto, K. Godo, H. Makino, M. Cho, T. Yao, and J. S. Song, Curr. Appl. Phys. 4, 611 (2004).
- ¹³³⁹E. M. Larramendi, Z. -B. K. Gutierrez, C. Arens, U. Woggon, D. Schikora, and K. Lischka, J. Appl. Phys. **107**, 103510 (2010).
- ¹³⁴⁰A. Koukitu, A. Saegusa, M. Kitho, H. Ikeda, and H. Seki, Jpn. J. Appl. Phys., Part 2 31, L2165 (1992).
- ¹³⁴¹R. Kimura, M. Konagai, and K. Takahashi, J. Cryst. Growth **116**, 283 (1992).
- ¹³⁴²C. D. Lee, B. H. Lim, C. Lim, H. L. Park, C. H. Chung, and S. K. Chang, J. Cryst. Growth **117**, 148 (1992).
- ¹³⁴³C. D. Lee, B. K. Kim, J. W. Kim, S. K. Chang, and S. H. Suh, J. Appl. Phys. **76**, 928 (1994).
- ¹³⁴⁴C. D. Lee, B. K. Kim, J. W. Kim, H. L. Park, C. H. Chung, S. K. Chang, J. I. Lee, and S. K. Noh, J. Cryst. Growth **138**, 136 (1994).
- ¹³⁴⁵A. Yoshikawa, T. Okamoto, H. Yasuda, S. Yamaga, and H. Kasai, J. Cryst. Growth **101**, 86 (1990).
- ¹³⁴⁶A. Yoshikawa, M. Kobayashi, and S. Tokita, Appl. Surf. Sci. **82/83**, 316 (1994).
- ¹³⁴⁷I. Bhat and S. Akram, J. Cryst. Growth **138**, 127 (1994).
- ¹³⁴⁸C. D. Lee, S. I. Min, and S. K. Chang, J. Korean Phys. Soc. 28, S136 (1995).
- ¹³⁴⁹C. D. Lee, S. I. Min, and S. K. Chang, J. Cryst. Growth **159**, 108 (1996).
- ¹³⁵⁰C.-T. Hsu, Jpn. J. Appl. Phys., Part 1 35, 4476 (1996).
- ¹³⁵¹C.-T. Hsu, J. Cryst. Growth 193, 33 (1998).
- ¹³⁵²C.-T. Hsu, Mater. Chem. Phys. **52**, 240 (1998).
- ¹³⁵³C. T. Hsu, Mater. Chem. Phys. 58, 6 (1999).
- ¹³⁵⁴M. Yokoyama, N. T. Chen, and H. Y. Ueng, J. Cryst. Growth 212, 97 (2000).
 ¹³⁵⁵Y. G. Kim, Y. S. Joh, J. H. Song, K. S. Baek, S. K. Chang, and E. D.
- Sim, Appl. Phys. Lett. **83**, 2656 (2003).
- ¹³⁵⁶W. S. Rees, D. M. Green, T. J. Anderson, E. Bretschneider, B. Pathangey, C. Park, and J. Kim, J. Electron. Mater. **21**, 361 (1992).
- ¹³⁵⁷M. Ahonen, M. Pessa, and T. Suntola, Thin Solid Films **65**, 301 (1980).
- ¹³⁵⁸Y. Takemura, H. Nakanishi, M. Konagai, and K. Takahashi, Jpn. J. Appl. Phys., Part 2 **30**, L246 (1991).
- ¹³⁵⁹Y. Takemura, M. Konagai, H. Nakanishi, and K. Takahashi, J. Cryst. Growth 117, 144 (1992).
- ¹³⁶⁰F. Hauzenberger, W. Faschinger, P. Juza, A. Pesek, K. Lischka, and H. Sitter, Thin Solid Films **225**, 265 (1993).
- ¹³⁶¹B. Daudin, S. Tatarenko, and D. Brun-Le Cunff, Phys. Rev. B 52, 7822 (1995).
- ¹³⁶²J. T. Sadowski and M. A. Herman, Appl. Surf. Sci. **112**, 148 (1997).
- ¹³⁶³E. M. Larramendi, E. Purón, L. C. Hernández, M. Sánchez, S. De Roux, O. de Melo, G. Romero-Paredes, R. Peña-Sierra, and M. Tamura, J. Cryst. Growth **223**, 447 (2001).
- ¹³⁶⁴E. M. Larramendi, E. López-Luna, O. De Melo, and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1725 (2002).
- ¹³⁶⁵O. de Melo, E. M. Larramendi, J. M. M. Duart, M. H. Velez, J. Stangl, and H. Sitter, J. Cryst. Growth **307**, 253 (2007).
- ¹³⁶⁶Y. K. Ezhovskii and D. V. Pavlov, Inorg. Mater. 43, 692 (2007).
- ¹³⁶⁷W.-S. Wang, H. Ehsani, and I. Bhat, J. Electron. Mater. 22, 873 (1993).
- ¹³⁶⁸M. Nieminen, L. Niinistö, and E. Rauhala, J. Mater. Chem. **6**, 27 (1996).
- ¹³⁶⁹M. Utriainen, S. Lehto, L. Niinistö, C. Dücso, N. Q. Khanh, Z. E. Horváth, I. Bársony, and B. Pécz, Thin Solid Films **297**, 39 (1997).
- ¹³⁷⁰F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, J. Appl. Phys. **98**, 023504 (2005).
- ¹³⁷¹N. J. Seong, E. T. Kim, and S. G. Yoon, Integr. Ferroelectr. **74**, 181 (2005).
- ¹³⁷²G. X. Liu, F. K. Shan, W. J. Lee, B. C. Shin, S. C. Kim, H. S. Kim, and C. R. Cho, Integr. Ferroelectr. 94, 11 (2007).

- ¹³⁷³C. L. Dezelah IV, J. Niinistö, K. Arstila, L. Niinistö, and C. H. Winter, Chem. Mater. 18, 471 (2006).
- ¹³⁷⁴C. Adelmann, E. Martinez-Guerrero, J. Barjon, J. Brault, L. S. Dang, H. Mariette, G. Mula, and B. Daudin, Phys. Status Solidi A 188, 673 (2001).
- ¹³⁷⁵C. Adelmann, J. Brault, J.-L. Rouvière, H. Mariette, G. Mula, and B. Daudin, J. Appl. Phys. **91**, 5498 (2002).
- ¹³⁷⁶A. Koukitu, Y. Kumagai, T. Taki, and H. Seki, Jpn. J. Appl. Phys., Part 1 38, 4980 (1999).
- ¹³⁷⁷Y. Kumagai, M. Mayumi, A. Koukitu, and H. Seki, Appl. Surf. Sci. **159**/ **160**, 427 (2000).
- ¹³⁷⁸H. Tsuchiya, M. Akamatsu, M. Ishida, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 35, L748 (1996).
- ¹³⁷⁹O. H. Kim, D. Kim, and T. Anderson, J. Vac. Sci. Technol. A **27**, 923 (2009).
- ¹³⁸⁰N. H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina, N. El-Masry, and S. M. Bedair, Appl. Phys. Lett. 67, 94 (1995).
- ¹³⁸¹K. S. Boutros, F. G. McIntosh, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. El-Masry, Appl. Phys. Lett. **67**, 1856 (1995).
- ¹³⁸²E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, Appl. Phys. Lett. **70**, 461 (1997).
- ¹³⁸³S.-C. Huang, H.-Y. Wang, C.-J. Hsu, J.-R. Gong, C.-I. Chiang, S.-L. Tu, and H. Chang, J. Mater. Sci. Lett. **17**, 1281 (1998).
- ¹³⁸⁴H. Y. Wang, S. C. Huang, T. Y. Yan, J. R. Gong, T. Y. Lin, and Y. F. Chen, Mater. Sci. Eng., B **57**, 218 (1999).
- ¹³⁸⁵M. Asif Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. **60**, 1366 (1992).
- ¹³⁸⁶M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992).
 ¹³⁸⁷J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F. Davis,
- ¹³⁰/J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F. Davis, Thin Solid Films **225**, 244 (1993).
- ¹³⁸⁸A. Usui, H. Sunakawa, F. J. Stützler, and K. Ishida, Appl. Phys. Lett. 56, 289 (1990).
- ¹³⁸⁹B. T. McDermott, K. G. Reid, N. A. El-Masry, S. M. Bedair, W. M. Duncan, X. Yin, and F. H. Pollak, Appl. Phys. Lett. 56, 1172 (1990).
- ¹³⁹⁰Y. Sakuma, M. Ozeki, N. Ohtsuka, and K. Kodama, J. Appl. Phys. 68, 55660 (1990).
- ¹³⁹¹B. T. McDermott, N. A. El-Masry, B. L. Jiang, F. Hyuga, S. M. Bedair, and W. M. Duncan, J. Cryst. Growth **107**, 96 (1991).
- ¹³⁹²J. R. Gong, S. Nakamura, M. Leonard, S. M. Bedair, and N. A. El-Masry, J. Electron. Mater. 21, 965 (1992).
- ¹³⁹³H. Isshiki, Y. Aoyagi, and T. Sugano, Microelectron. Eng. **43/44**, 301 (1998).
- ¹³⁹⁴M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Maeda, J. Cryst. Growth 276, 374 (2005).
- ¹³⁹⁵E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, Appl. Phys. Lett. 89, 211102 (2006).
- ¹³⁹⁶M. Yoshimoto, A. Kajimoto, and H. Matsunami, Thin Solid Films **225**, 70 (1993).
- ¹³⁹⁷A. Usui and H. Sunakawa, Jpn. J. Appl. Phys., Part 2 25, L212 (1986).
- ¹³⁹⁸A. Koukitu, H. Nakai, A. Saegusa, T. Suzuki, O. Nomura, and H. Seki, Jpn. J. Appl. Phys., Part 2 27, L744 (1988).
- ¹³⁹⁹J. Ahopelto, H. P. Kattelus, J. Saarilahti, and I. Suni, J. Cryst. Growth 99, 550 (1990).
- ¹⁴⁰⁰A. Koukitu, H. Ikeda, H. Suzuki, and H. Seki, Jpn. J. Appl. Phys., Part 2 30, L1712 (1991).
- ¹⁴⁰¹A. Koukitu, H. Ikeda, H. Yasutake, and H. Seki, Jpn. J. Appl. Phys., Part 2 30, L1847 (1991).
- ¹⁴⁰²C. Sasaoka, Y. Kato, and A. Usui, Jpn. J. Appl. Phys., Part 2 30, L1756 (1991).
- ¹⁴⁰³C. Sasaoka, Y. Kato, and A. Usui, J. Cryst. Growth 115, 94 (1991).
- ¹⁴⁰⁴K. Nishi, A. Usui, and H. Sakaki, Appl. Phys. Lett. **61**, 31 (1992).
- ¹⁴⁰⁵A. Usui, Thin Solid Films **225**, 53 (1993).
- ¹⁴⁰⁶K. Nishi, A. Usui, and H. Sakaki, Thin Solid Films **225**, 47 (1993).
- ¹⁴⁰⁷Y. Takahashi, M. Yagi, A. Koukitu, and H. Seki, Jpn. J. Appl. Phys., Part 2 32, L1277 (1993).
- ¹⁴⁰⁸A. Koukitu, N. Takahashi, Y. Miura, and H. Seki, Jpn. J. Appl. Phys., Part 2 33, L613 (1994).
- ¹⁴⁰⁹A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth **146**, 467 (1995).
- ¹⁴¹⁰A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth 163, 180 (1996).
- ¹⁴¹¹H. P. Kattelus, J. Ahopelto, and I. Suni, Acta Polytech. Scand., Electr. Eng. Ser. 64, 155 (1989).

- ¹⁴¹²Y. Jin, R. Kobayashi, K. Fujii, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 29, L1350 (1990).
- ¹⁴¹³K. Ishikawa, R. Kobayashi, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 31, 1716 (1992).
- ¹⁴¹⁴R. Kobayashi, K. Ishikawa, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 31, L1730 (1992).
- ¹⁴¹⁵R. Kobayashi, S. Narahara, K. Ishikawa, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 32, L164 (1993).
- ¹⁴¹⁶T. Taki and A. Koukitu, Appl. Surf. Sci. 112, 127 (1997).
- ¹⁴¹⁷J. Nishizawa, H. Abe, and T. Kurabayashi, J. Electrochem. Soc. 132, 1197 (1985).
- ¹⁴¹⁸A. Doi, Y. Aoyagi, and S. Namba, Appl. Phys. Lett. 49, 785 (1986).
- ¹⁴¹⁹M. A. Tischler and S. M. Bedair, J. Cryst. Growth 77, 89 (1986).
- ¹⁴²⁰M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. 48, 1681 (1986).
- ¹⁴²¹M. A. Tischler, N. G. Anderson, and S. M. Bedair, Appl. Phys. Lett. 49, 1199 (1986).
- ¹⁴²²S. P. DenBaars, C. A. Beyler, A. Hariz, and P. D. Dapkus, Appl. Phys. Lett. 51, 1530 (1987).
- ¹⁴²³M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Appl. Phys. Lett. 53, 1509 (1988).
- ¹⁴²⁴K. Mochizuki, M. Ozeki, K. Kodama, and N. Ohtsuka, J. Cryst. Growth **93**, 557 (1988).
- ¹⁴²⁵Y. Ide, B. T. McDermott, M. Hashemi, S. M. Bedair, and W. D. Goodhue, Appl. Phys. Lett. **53**, 2314 (1988).
- ¹⁴²⁶K. Kitahara, N. Ohtsuka, and M. Ozeki, J. Vac. Sci. Technol. B 7, 700 (1989).
- ¹⁴²⁷K. Kodama, M. Ozeki, K. Mochizuki, and N. Ohtsuka, Appl. Phys. Lett. 54, 656 (1989).
- ¹⁴²⁸P. D. Dapkus, S. P. DenBaars, Q. Chen, W. G. Jeong, and B. Y. Maa, Prog. Cryst. Growth Charact. Mater. 19, 137 (1989).
- ¹⁴²⁹E. Colas, R. Bhat, B. J. Skromme, and G. C. Nihous, Appl. Phys. Lett. **55**, 2769 (1989).
- ¹⁴³⁰Y. Kawakyu, H. Ishikawa, M. Sasaki, and M. Mashita, Jpn. J. Appl. Phys., Part 2 28, L1439 (1989).
- ¹⁴³¹A. Watanabe, T. Isu, M. Hata, T. Kamijoh, and Y. Katayama, Jpn. J. Appl. Phys., Part 2 28, L1080 (1989).
- ¹⁴³²M. L. Yu, U. Memmert, and T. F. Kuech, Appl. Phys. Lett. **55**, 1011 (1989).
- ¹⁴³³T. H. Chiu, Appl. Phys. Lett. **55**, 1244 (1989).
- ¹⁴³⁴B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **19**, 289 (1990).
- ¹⁴³⁵M. Hashemi, J. Ramdani, B. T. McDermott, K. Reid, and S. M. Bedair, Appl. Phys. Lett. 56, 964 (1990).
- ¹⁴³⁶K. Kodama, M. Ozeki, Y. Sakuma, K. Mochizuki, and N. Ohtsuka, J. Cryst. Growth **99**, 535 (1990).
- ¹⁴³⁷J. R. Creighton, K. R. Lykke, V. A. Shamamian, and B. D. Kay, Appl. Phys. Lett. 57, 279 (1990).
- ¹⁴³⁸T. H. Chiu, J. E. Cunningham, A. Robertson, Jr., and D. L. Malm, J. Cryst. Growth **105**, 155 (1990).
- ¹⁴³⁹K. Kitahara, N. Ohtsuka, O. Ueda, M. Funagura, and M. Ozeki, Jpn. J. Appl. Phys., Part 2 29, L2457 (1990).
- ¹⁴⁴⁰A. Watanabe, T. Kamijoh, M. Hata, T. Isu, and Y. Katayama, Vacuum 41, 965 (1990).
- ¹⁴⁴¹M. de Keijser and C. van Opdorp, Appl. Phys. Lett. 58, 1187 (1991).
- ¹⁴⁴²J. R. Gong, P. S. Colter, D. Jung, S. A. Hussien, C. A. Parker, A. Dip, F. Huyga, W. M. Duncam, and S. M. Bedair, J. Cryst. Growth **107**, 83 (1991).
- ¹⁴⁴³S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. **59**, 2148 (1991).
- ¹⁴⁴⁴S. Yokoyama, M. Shinohara, and N. Inoue, J. Cryst. Growth **115**, 89 (1991).
- ¹⁴⁴⁵K. G. Reid, H. M. Urdianyk, and S. M. Bedair, Appl. Phys. Lett. **59**, 2397 (1991).
- ¹⁴⁴⁶M. Sasaki, Y. Kawakyu, H. Ishikawa, and M. Mashita, Jpn. J. Appl. Phys., Part 2 31, L1313 (1992).
- ¹⁴⁴⁷J. P. Simko, T. Meguro, S. Iwai, K. Ozasa, A. Hirata, Y. Aoyagi, and T. Sugano, Jpn. J. Appl. Phys., Part 2 31, L1518 (1992).
- ¹⁴⁴⁸D. E. Aspnes, I. Kamiya, and R. Bhat, J. Vac. Sci. Technol. B **10**, 1725 (1992).
- ¹⁴⁴⁹N. Kobayashi and Y. Kobayashi, Thin Solid Films **225**, 32 (1993).
- ¹⁴⁵⁰M. L. Yu, J. Appl. Phys. 73, 716 (1993).
- ¹⁴⁵¹M. L. Yu, Thin Solid Films **225**, 7 (1993).
- ¹⁴⁵²J. R. Creighton and B. A. Bansenauer, Thin Solid Films 225, 17 (1993).
- ¹⁴⁵³K. G. Reid, A. F. Myers, N. A. El-Masry, and S. M. Bedair, Thin Solid Films **225**, 59 (1993).

- ¹⁴⁵⁴A. Dip, G. M. Eldallal, P. C. Colter, N. Hayafuji, and S. M. Bedair, Appl. Phys. Lett. **62**, 2378 (1993).
- ¹⁴⁵⁵H. Liu, P. A. Zawadzki, and P. E. Norris, Thin Solid Films **225**, 105 (1993).
- ¹⁴⁵⁶M. Mashita, M. Sasaki, Y. Kawakyu, and H. Ishikawa, J. Cryst. Growth 131, 61 (1993).
- ¹⁴⁵⁷H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Phys. Lett. 63, 1528 (1993).
- ¹⁴⁵⁸C. A. Wang and D. M. Tracy, J. Electron. Mater. 23, 185 (1994).
- ¹⁴⁵⁹S. J. Park, J. S. Ha, J. R. Ro, J. K. Sim, E. H. Lee, and C. Jeon, J. Vac. Sci. Technol. B **12**, 1623 (1994).
- ¹⁴⁶⁰H. Yokoyama, M. Tanimoto, M. Shinohara, and N. Inoue, Jpn. J. Appl. Phys., Part 2 33, L1292 (1994).
- ¹⁴⁶¹J. Nishizawa and T. Kurabayashi, Appl. Surf. Sci. 106, 11 (1996).
- ¹⁴⁶²J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, Appl. Surf. Sci. **103**, 275 (1996).
- ¹⁴⁶³J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, J. Cryst. Growth **160**, 21 (1996).
- ¹⁴⁶⁴K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, Appl. Surf. Sci. 112, 102 (1997).
- ¹⁴⁶⁵S. Hirose, A. Yoshida, M. Yamaura, and H. Munekata, Appl. Phys. Lett. 74, 964 (1999).
- ¹⁴⁶⁶K. Kono, T. Kurabayashi, J. Nishizawa, and M. Esashi, Jpn. J. Appl. Phys., Part 1 39, 5737 (2000).
- ¹⁴⁶⁷I. M. Povey, D. Whitehead, K. Thomas, M. E. Pemble, M. Bardosova, and J. Renard, Appl. Phys. Lett. 89, 104103 (2006).
- ¹⁴⁶⁸B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. 58, 1762 (1991).
- ¹⁴⁶⁹B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. **58**, 2261 (1991).
- ¹⁴⁷⁰B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **20**, 589 (1991).
- ¹⁴⁷¹Q. Chen, C. A. Beyler, P. D. Dapkus, J. J. Alwan, and J. J. Coleman, Appl. Phys. Lett. **60**, 2418 (1992).
- ¹⁴⁷²B. Y. Maa and P. D. Dapkus, Thin Solid Films **225**, 12 (1993).
- ¹⁴⁷³B. Y. Maa, P. D. Dapkus, P. Chen, and A. Madhukar, Appl. Phys. Lett. 62, 2551 (1993).
- ¹⁴⁷⁴M. Y. Jow, B. Y. Maa, T. Morishita, and P. D. Dapkus, J. Electron. Mater. 24, 25 (1995).
- ¹⁴⁷⁵E. Arès, S. P. Watkins, P. Yeo, G. A. Horley, P. O'Brien, and A. C. Jones, J. Appl. Phys. 83, 3390 (1998).
- ¹⁴⁷⁶J. A. Gupta, J. C. Woicik, S. P. Watkins, K. E. Miyano, J. G. Pellegrino, and E. D. Crozier, J. Cryst. Growth **195**, 34 (1998).
- ¹⁴⁷⁷T. Meguro, T. Suzuki, K. Ozaki, Y. Okano, A. Hirata, Y. Yamamoto, S. Iwai, Y. Aoyagi, and S. Namba, J. Cryst. Growth **93**, 190 (1988).
- ¹⁴⁷⁸H. Ohno, S. Ohtsuka, H. Ishii, Y. Matsubara, and H. Hasegawa, Appl. Phys. Lett. 54, 2000 (1989).
- ¹⁴⁷⁹Q. Chen and P. D. Dapkus, Thin Solid Films **225**, 115 (1993).
- ¹⁴⁸⁰M. Ozeki, Mater. Sci. Rep. 8, 97 (1992).
- ¹⁴⁸¹T. Kurabayashi, K. Kono, H. Kikuchi, J. Nishizawa, and M. Esashi, J. Cryst. Growth 229, 152 (2001).
- ¹⁴⁸²Y. Oyama, K. Tezuka, K. Suto, and J.-I. Nishizawa, J. Cryst. Growth 246, 15 (2002).
- ¹⁴⁸³J. Nishizawa, T. Kurabayashi, P. Płotka, H. Kikuchi, and T. Hamano, J. Cryst. Growth 244, 236 (2002).
- ¹⁴⁸⁴J. Nishizawa, T. Kurabayashi, P. Plotka, H. Kikuchi, and T. Hamano, Mater. Sci. Semicond. Process. 6, 429 (2003).
- ¹⁴⁸⁵T. Ohno, Y. Oyama, K. Saito, K. Suto, and J. Nishizawa, Thin Solid Films 464/465, 123 (2004).
- ¹⁴⁸⁶M. Aït-Lhouss, J. L. Castaño, B. J. García, and J. Piqueras, J. Appl. Phys. 78, 5834 (1995).
- ¹⁴⁸⁷K. Fujii, I. Suemune, T. Koui, and M. Yamanishi, Appl. Phys. Lett. 60, 1498 (1992).
- ¹⁴⁸⁸K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **61**, 2577 (1992).
- ¹⁴⁸⁹C. Sasaoka, M. Yoshida, and A. Usui, Jpn. J. Appl. Phys., Part 2 27, L490 (1988).
- ¹⁴⁹⁰K. Mori, M. Yoshida, A. Usui, and H. Terao, Appl. Phys. Lett. 52, 27 (1988).
- ¹⁴⁹¹P. Yeo, R. Arès, S. P. Watkins, G. A. Horley, P. O'Brien, and A. C. Jones, J. Electron. Mater. 26, 1174 (1997).
- ¹⁴⁹²S. Sugahara, Y. Uchida, T. Kitamura, T. Nagai, M. Matsuyama, T. Hattori, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 36, 1609 (1997).
- ¹⁴⁹³M. Matsuyama, S. Sugahara, K. Ikeda, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys. **39**, 2536 (2000).
- ¹⁴⁹⁴S. Sugahara, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. **82/83**, 380 (1994).

- J. Appl. Phys. 113, 021301 (2013)
- ¹⁴⁹⁵S. Sugahara, M. Kadoshima, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. 90, 349 (1995).
- ¹⁴⁹⁶S. Sugahara, K. Hosaka, and M. Matsumura, Appl. Surf. Sci. **132**, 327 (1998).
- ¹⁴⁹⁷Y. Takahashi, H. Ishii, and K. Fujinaga, J. Electrochem. Soc. **136**, 1826 (1989).
- ¹⁴⁹⁸Y. Takahashi, Y. Sese, and T. Urisu, Jpn. J. Appl. Phys., Part 1 28, 2387 (1989).
- ¹⁴⁹⁹M. Sakuraba, J. Murota, N. Mikoshiba, and S. Ono, J. Cryst. Growth 115, 79 (1991).
- ¹⁵⁰⁰K. H. Huang, T. S. Ku, and D. S. Lin, Phys. Rev. B 56, 4878 (1997).
- ¹⁵⁰¹D.-S. Lin, J.-L. Wu, S.-Y. Pan, and T.-C. Chiang, Phys. Rev. Lett. 90, 046102 (2003).
- ¹⁵⁰²S. I. Kol'tsov, V. B. Aleskovskii, G. N. Kuznetsova, and N. G. Roslyakova, Neorg. Mater. **3**, 1509 (1967) [Inorg. Mater. **3**, 1318 (1967)].
- ¹⁵⁰³M. Perego, G. Scarel, I. L. Fedushkin, and A. A. Skatova, Appl. Phys. Lett. **90**, 162115 (2007).
- ¹⁵⁰⁴K. Knapas, T. Hatanpää, M. Ritala, and M. Leskelä, Chem. Mater. 22, 1386 (2010).
- ¹⁵⁰⁵M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, E. Rauhala, and J. Keinonen, Chem. Vap. Deposition 7, 75 (2001).
- ¹⁵⁰⁶A. Rahtu, T. Hänninen, and M. Ritala, J. Phys. IV **11**, Pr3/923 (2001).
- ¹⁵⁰⁷T. P. Holme and F. B. Prinz, J. Phys. Chem. A **111**, 8147 (2007).
- ¹⁵⁰⁸A. Kosola, M. Putkonen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 211, 102 (2003).
- ¹⁵⁰⁹J. Ihanus, T. Hänninen, T. Hatanpää, T. Aaltonen, I. Mutikainen, T. Sajavaara, J. Keinonen, M. Ritala, and M. Leskelä, Chem. Mater. 14, 1937 (2002).
- ¹⁵¹⁰J. Ihanus, T. Hänninen, T. Hatanpää, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 151, H221 (2004).
- ¹⁵¹¹J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, J. Mater. Chem. 4, 1239 (1994).
- ¹⁵¹²P. Soininen, E. Nykänen, L. Niinistö, and M. Leskelä, Chem. Vap. Deposition 2, 69 (1996).
- ¹⁵¹³R. Lappalainen, M. Karjalainen, R. Serimaa, S. Sevanto, and M. Leskelä, J. Appl. Phys. 87, 1153 (2000).
- ¹⁵¹⁴W.-C. Shin, S.-O. Ryu, I.-K. You, B.-G. Yu, W.-J. Lee, K.-J. Choi, and S.-G. Yoon, J. Electrochem. Soc. **151**, C292 (2004).
- ¹⁵¹⁵J. Niinistö, M. Putkonen, and L. Niinistö, Chem. Mater. 16, 2953 (2004).
 ¹⁵¹⁶C. N. Ginestra, R. Sreenivasan, A. Karthikeyan, S. Ramanathan, and P.
- C. McIntyre, Electrochem. Solid-State Lett. **10**, B161 (2007).
- ¹⁵¹⁷J. H. Shim, C. C. Chao, H. Huang, and F. B. Prinz, Chem. Mater. 19, 3850 (2007).
- ¹⁵¹⁸C.-C. Chao, Y. B. Kim, and F. B. Prinz, Nano Lett. 9, 3626 (2009).
- ¹⁵¹⁹J. H. Shim, J. S. Park, J. An, T. M. Guer, S. Kang, and F. B. Prinz, Chem. Mater. 21, 3290 (2009).
- ¹⁵²⁰T. Roessler, J. Gluch, M. Albert, and J. W. Bartha, Thin Solid Films 518, 4680 (2010).
- ¹⁵²¹J. Niinistö, K. Kukli, T. Sajavaara, M. Ritala, M. Leskelä, L. Oberbeck, J. Sundqvist, and U. Schröder, Electrochem. Solid-State Lett. **12**, G1 (2009).
- ¹⁵²²P. Majumder, G. Jursich, and C. Takoudis, J. Appl. Phys. **105**, 104106 (2009).
- ¹⁵²³Q. Tao, G. Jursich, P. Majumder, M. Singh, W. Walkosz, P. Gu, R. Klie, and C. Takoudis, Electrochem. Solid-State Lett. **12**, G50 (2009).
- ¹⁵²⁴H. Mölsä, L. Niinistö, and M. Utriainen, Adv. Mater. Opt. Electron. 4, 389 (1994).
- ¹⁵²⁵M. Putkonen, T. Sajavaara, L.-S. Johansson, and L. Niinistö, Chem. Vap. Deposition 7, 44 (2001).
- ¹⁵²⁶M. Håkansson, M. Helin, M. Putkonen, Q. Jiang, A. Kotiranta, J. Suomi, A. J. Niskanen, T. Ala-Kleme, and S. Kulmala, Anal. Chim. Acta 541, 135 (2005).
- ¹⁵²⁷T. T. Van and J. P. Chang, Appl. Phys. Lett. 87, 011907 (2005).
- ¹⁵²⁸T. T. Van and J. P. Chang, Appl. Surf. Sci. **246**, 250 (2005).
- ¹⁵²⁹T. T. Van and J. P. Chang, Surf. Sci. **596**, 1 (2005).
- ¹⁵³⁰T. T. Van, J. Hoang, R. Ostroumov, K. L. Wang, J. R. Bargar, J. Lu, H. O. Blom, and J. P. Chang, J. Appl. Phys. **100**, 073512 (2006).
- ¹⁵³¹T. T. Van, J. R. Bargar, and J. P. Chang, J. Appl. Phys. **100**, 023115 (2006).
- ¹⁵³²J. Hoang, T. T. Van, M. S.-Mathur, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, J. Appl. Phys. **101**, 123116 (2007).
- ¹⁵³³P. de Rouffignac, J. S. Park, and R. G. Gordon, Chem. Mater. **17**, 4808 (2005).

- ¹⁵³⁴T. Pilvi, E. Puukilainen, F. Munnik, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 15, 27 (2009).
- ¹⁵³⁵K. Kukli, M. Peussa, L.-S. Johansson, E. Nykänen, and L. Niinistö, Mater. Sci. Forum **315–317**, 216 (1999).
- ¹⁵³⁶M. Ritala and M. Leskelä, Appl. Surf. Sci. 75, 333 (1994).
- ¹⁵³⁷A. Kytökivi, E.-L. Lakomaa, and A. Root, Langmuir 12, 4395 (1996).
- ¹⁵³⁸A. Kytökivi, E.-L. Lakomaa, A. Root, H. Österholm, J.-P. Jacobs, and H. H. Brongersma, Langmuir 13, 2717 (1997).
- ¹⁵³⁹K. Kukli, M. Ritala, and M. Leskelä, Nanostruct. Mater. 8, 785 (1997).
- ¹⁵⁴⁰M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. **76**, 436 (2000).
- ¹⁵⁴¹H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, J. Appl. Phys. 87, 1921 (2000).
- ¹⁵⁴²M. Cassir, F. Goubina, C. Bernay, P. Vernoux, and D. Lincot, Appl. Surf. Sci. 193, 120 (2002).
- ¹⁵⁴³A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, Nature Mater. 1, 241 (2002).
- ¹⁵⁴⁴J. Aarik, A. Aidla, H. Mändar, T. Uustare, and V. Sammelselg, Thin Solid Films 408, 97 (2002).
- ¹⁵⁴⁵K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, J. Appl. Phys. 92, 1833 (2002).
- ¹⁵⁴⁶A. Rahtu and M. Ritala, J. Mater. Chem. **12**, 1484 (2002).
- ¹⁵⁴⁷H. Kim, C. O. Chui, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. 83, 2647 (2003).
- ¹⁵⁴⁸E. Bonera, G. Scarel, and M. Fanciulli, J. Non-Cryst. Solids **322**, 105 (2003).
- ¹⁵⁴⁹G. Scarel, S. Ferrari, S. Spiga, C. Wiemer, G. Tallarida, and M. Fanciulli, J. Vac. Sci. Technol. A 21, 1359 (2003).
- ¹⁵⁵⁰S.-Y. Lee, H. Kim, P. C. McIntyre, K. C. Saraswat, and J.-S. Byun, Appl. Phys. Lett. 82, 2874 (2003).
- ¹⁵⁵¹S. Ferrari, M. Modreanu, G. Scarel, and M. Fanciulli, Thin Solid Films 450, 124 (2004).
- ¹⁵⁵²J. Lee, J. Koo, H. S. Sim, H. Jeon, and Y. Won, J. Korean Phys. Soc. 44, 915 (2004).
- ¹⁵⁵³J. Okabayashi, S. Toyoda, H. Kumigashira, M. Oshima, K. Usuda, M. Niwa, and G. L. Liu, Appl. Phys. Lett. 85, 5959 (2004).
- ¹⁵⁵⁴H. S. Kim, P. C. McIntyre, and K. C. Saraswat, J. Mater. Res. **19**, 643 (2004).
- ¹⁵⁵⁵H. Kim, K. C. Saraswat, and P. C. McIntyre, J. Mater. Res. **20**, 3125 (2005).
- ¹⁵⁵⁶S. N. Tkachev, M. H. Manghnani, A. Niilisk, J. Aarik, and H. Mändar, Spectrochim. Acta, Part A 61, 2434 (2005).
- ¹⁵⁵⁷S. N. Tkachev, M. H. Manghnani, A. Niilisk, J. Aarik, and H. Mändar, J. Mater. Sci. 40, 4293 (2005).
- ¹⁵⁵⁸H. Kim and P. C. McIntyre, J. Korean Phys. Soc. 48, 5 (2006).
- ¹⁵⁵⁹J. Aarik, A. Aidla, A. Kasikov, H. Mändar, R. Rammula, and V. Sammelselg, Appl. Surf. Sci. 252, 5723 (2006).
- ¹⁵⁶⁰A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, and M. Meuris, Appl. Phys. Lett. **91**, 082904 (2007).
- ¹⁵⁶¹S. Bang, S. Lee, S. Jeon, S. Kwon, W. Jeong, S. Kim, and H. Jeon, J. Electrochem. Soc. **155**, H633 (2008).
- ¹⁵⁶²S. Lee, S. Bang, S. Jeon, S. Kwon, W. Jeong, S. Kim, and H. Jeon, J. Electrochem. Soc. **155**, H516 (2008).
- ¹⁵⁶³I. Jõgi, K. Kukli, M. Ritala, M. Leskelä, J. Aarik, A. Aidla, and J. Lu, Microelectron. Eng. 87, 144 (2010).
- ¹⁵⁶⁴N. Yoshii, N. Takahashi, T. Nakamura, and M. Yoshioka, Electrochem. Solid-State Lett. 5, C85 (2002).
- ¹⁵⁶⁵N. Takahashi, N. Yoshii, S. Nonobe, T. Nakamura, and M. Yoshioka, J. Electron. Mater. **32**, 1107 (2003).
- ¹⁵⁶⁶K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Thin Solid Films 416, 72 (2002).
- ¹⁵⁶⁷K. Kukli, K. Forsgren, J. Aarik, T. Uustare, A. Aidla, A. Niskanen, M. Ritala, M. Leskelä, and A. Hårsta, J. Cryst. Growth 231, 262 (2001).
- ¹⁵⁶⁸K. Kukli, K. Forsgren, M. Ritala, M. Leskelä, J. Aarik, and A. Hårsta, J. Electrochem. Soc. **148**, F227 (2001).
- ¹⁵⁶⁹K. Kukli, M. Ritala, T. Uustare, J. Aarik, K. Forsgren, T. Sajavaara, M. Leskelä, and A. Hårsta, Thin Solid Films **410**, 53 (2002).
- ¹⁵⁷⁰K. Forsgren, J. Westlinder, J. Lu, J. Olsson, and A. Hårsta, Chem. Vap. Deposition 8, 105 (2002).
- ¹⁵⁷¹M. Putkonen and L. Niinistö, J. Mater. Chem. **11**, 3141 (2001).
- ¹⁵⁷²M. Kröger-Laukkanen, M. Peussa, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. 183, 290 (2002).
- ¹⁵⁷³C. Brahim, A. Ringuede, M. Cassir, M. Putkonen, and L. Niinistö, Appl. Surf. Sci. 253, 3962 (2007).

- J. Appl. Phys. 113, 021301 (2013)
- ¹⁵⁷⁴M. Putkonen, J. Niinistö, K. Kukli, T. Sajavaara, M. Karppinen, H. Yamauchi, and L. Niinistö, Chem. Vap. Deposition 9, 207 (2003).
- ¹⁵⁷⁵J. Niinistö, A. Rahtu, M. Putkonen, M. Ritala, M. Leskelä, and L. Niinistö, Langmuir 21, 7321 (2005).
- ¹⁵⁷⁶J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. 95, 84 (2004).
- ¹⁵⁷⁷K. B. Jinesh, W. F. A. Besling, E. Tois, J. H. Klootwijk, R. Wolters, W. Dekkers, M. Kaiser, F. Bakker, M. Tuominen, and F. Roozeboom, Appl. Phys. Lett. **93**, 062903 (2008).
- ¹⁵⁷⁸K. Kukli, J. Niinistö, A. Tamm, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. B **27**, 226 (2009).
- ¹⁵⁷⁹C. L. Dezelah IV, J. Niinistö, K. Kukli, F. Munnik, J. Lu, M. Ritala, M. Leskelä, and L. Niinistö, Chem. Vap. Deposition 14, 358 (2008).
- ¹⁵⁸⁰J. Niinistö, K. Kukli, A. Tamm, M. Putkonen, C. L. Dezelah IV, L. Niinistö, J. Lu, F. Song, P. Williams, P. N. Heys, M. Ritala, and M. Leskelä, J. Mater. Chem. 18, 3385 (2008).
- ¹⁵⁸¹S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, J. Niinistö, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. B 27, 389 (2009).
- ¹⁵⁸²K. Knapas and M. Ritala, Chem. Mater. **20**, 5698 (2008).
- ¹⁵⁸³I. Jõgi, A. Tamm, K. Kukli, M. Kemell, J. Lu, T. Sajavaara, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **157**, G202 (2010).
- ¹⁵⁸⁴A. Tamm, M. Heikkilä, M. Kemell, J. Kozlova, K. Kukli, V. Sammelselg, M. Ritala, and M. Leskelä, Thin Solid Films **519**, 666 (2010); special section: Romanian Conference on Advanced Materials 2009.
- ¹⁵⁸⁵K. Black, H. C. Aspinall, A. C. Jones, K. Przybylak, J. Bacsa, P. R. Chalker, S. Taylor, C. Z. Zhao, S. D. Elliott, A. Zydor, and P. N. Heys, J. Mater. Chem. 18, 4561 (2008).
- ¹⁵⁸⁶C. Nistorica, J. F. Liu, I. Gory, G. D. Skidmore, F. M. Mantiziba, B. E. Gnade, and J. Kim, J. Vac. Sci. Technol. A 23, 836 (2005).
- ¹⁵⁸⁷R. Matero, M. Ritala, M. Leskelä, T. Sajavaara, A. C. Jones, and J. L. Roberts, Chem. Mater. **16**, 5630 (2004).
- ¹⁵⁸⁸K. Kukli, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 6, 297 (2000).
- ¹⁵⁸⁹A. Nakajima, T. Kidera, H. Ishii, and S. Yokoyama, Appl. Phys. Lett. 81, 2824 (2002).
- ¹⁵⁹⁰J. Park, B. Choi, N. Park, H. J. Shin, J. G. Lee, and J. Kim, Integr. Ferroelectr. **48**, 23 (2002).
- ¹⁵⁹¹H. Ishii, A. Nakajima, and S. Yokoyama, J. Appl. Phys. **95**, 536 (2004).
- ¹⁵⁹²D. Jeong, J. Lee, and J. Kim, Integr. Ferroelectr. **67**, 41 (2004).
- ¹⁵⁹³B. H. Lee, K. K. Im, K. H. Lee, S. Im, and M. M. Sung, Thin Solid Films 517, 4056 (2009).
- ¹⁵⁹⁴B. H. Lee, S. Cho, J. K. Hwang, S. H. Kim, and M. M. Sung, Thin Solid Films **518**, 6432 (2010).
- ¹⁵⁹⁵J. Koo, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 41, 3043 (2002).
- ¹⁵⁹⁶Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C.-G. Park, J. Appl. Phys. 92, 5443 (2002).
- ¹⁵⁹⁷K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 42, L685 (2003).
- ¹⁵⁹⁸K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 43, L1296 (2004).
- ¹⁵⁹⁹R. Matero, M. Ritala, M. Leskelä, A. C. Jones, P. A. Williams, J. F. Bickley, A. Steiner, T. J. Leedham, and H. O. Davies, J. Non-Cryst. Solids **303**, 24 (2002).
- ¹⁶⁰⁰Y. Tak and K. Yong, Surf. Rev. Lett. **12**, 215 (2005).
- ¹⁶⁰¹D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002).
- ¹⁶⁰²D. M. Hausmann and R. G. Gordon, J. Cryst. Growth 249, 251 (2003).
- ¹⁶⁰³T. C. Li, M. S. Goes, F. Fabregat-Santiago, J. Bisquert, P. R. Bueno, C. Prasittichai, J. T. Hupp, and T. J. Marks, J. Phys. Chem. C 113, 18385 (2009).
- ¹⁶⁰⁴W. Lee and F. B. Prinz, J. Electrochem. Soc. **156**, G125 (2009).
- ¹⁶⁰⁵D. Gu, H. Baumgart, G. Namkoong, and T. M. Abdel-Fattah, Electrochem. Solid-State Lett. 12, K25 (2009).
- ¹⁶⁰⁶S. Abermann, G. Pozzovivo, J. Kuzmik, C. Ostermaier, C. Henkel, O. Bethge, G. Strasser, D. Pogany, J. F. Carlin, N. Grandjean, and E. Bertagnolli, Electron. Lett. 45, 570 (2009).
- ¹⁶⁰⁷S. Abermann, C. Henkel, O. Bethge, G. Pozzovivo, P. Klang, and E. Bertagnolli, Appl. Surf. Sci. **256**, 5031 (2010).
- ¹⁶⁰⁸J. Y. Kim, S. H. Kim, H. Seo, J. H. Kim, and H. Jeon, Electrochem. Solid-State Lett. 8, G82 (2005).
- ¹⁶⁰⁹B. Lee, K. J. Choi, A. Hande, M. J. Kim, R. M. Wallace, J. Kim, Y. Senzaki, D. Shenai, H. Li, M. Rousseau, and J. Suydam, Microelectron. Eng. 86, 272 (2009).
- ¹⁶¹⁰D. H. Triyoso, R. I. Hegde, and R. Gregory, Electrochem. Solid-State Lett. 10, H354 (2007).

¹⁶¹²S. K. Kim and C. S. Hwang, Electrochem. Solid-State Lett. 11, G9 (2008).

- ¹⁶¹³J. H. Kim, V. A. Ignatova, J. Heitmann, and L. Oberbeck, J. Phys. D: Appl. Phys. 41, 172005 (2008).
- ¹⁶¹⁴W. Weinreich, V. A. Ignatova, L. Wilde, S. Teichert, M. Lemberger, A. J. Bauer, R. Reiche, E. Erben, J. Heitmann, L. Oberbeck, and U. Schröder, J. Appl. Phys. **106**, 034107 (2009).
- ¹⁶¹⁵M.-Y. Li, B.-S. Tsai, P.-C. Jiang, H.-C. Wu, Y.-H. Wu, and Y.-J. Lin, Thin Solid Films **518**, 5272 (2010).
- ¹⁶¹⁶S. J. Yun, J. W. Lim, and J. H. Lee, Electrochem. Solid-State Lett. 7, F81 (2004).
- ¹⁶¹⁷S. J. Yun, J. W. Lim, and J. H. Lee, Electrochem. Solid-State Lett. 8, F47 (2005).
- ¹⁶¹⁸S.-J. Won, J.-Y. Kim, G.-J. Choi, J. Heo, C. S. Hwang, and H. J. Kim, Chem. Mater. 21, 4374 (2009).
- ¹⁶¹⁹D.-Y. Cho, H.-S. Jung, and C. S. Hwang, Phys. Rev. B **82**, 094104 (2010).
- ¹⁶²⁰W.-H. Nam and S.-W. Rhee, Chem. Vap. Deposition **10**, 201 (2004).
- ¹⁶²¹S. E. Potts, C. J. Carmalt, C. S. Blackman, F. Abou-Chahine, N. Leick, W. M. M. Kessels, H. O. Davies, and P. N. Heys, Inorg. Chim. Acta 363, 1077 (2010).
- ¹⁶²²J. S. Becker, E. Kim, and R. G. Gordon, Chem. Mater. **16**, 3497 (2004).
- ¹⁶²³S. Cho, K. Lee, P. Song, H. Jeon, and Y. Kim, Jpn. J. Appl. Phys., Part 1 46, 4085 (2007).
- ¹⁶²⁴S. V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M. A. Leskelä, P. Fejes, A. Demkov, C. Wang, B.-Y. Nguyen, D. Triyoso, and P. Tobin, Phys. Status Solidi B 241, 2268 (2004).
- ¹⁶²⁵J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Taylor, P. Taechakumput, P. R. Chalker, P. N. Heys, and R. Odedra, Appl. Phys. Lett. **91**, 112912 (2007).
- ¹⁶²⁶K. Kukli, M. Ritala, M. Leskelä, and R. Lappalainen, Chem. Vap. Deposition 4, 29 (1998).
- ¹⁶²⁷K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. 86, 5656 (1999).
- ¹⁶²⁸K. Knapas, A. Rahtu, and M. Ritala, Chem. Vap. Deposition 15, 269 (2009).
- ¹⁶²⁹K. Knapas, A. Rahtu, and M. Ritala, Langmuir **26**, 848 (2010).
- ¹⁶³⁰K.-E. Elers, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. 82/ 83, 468 (1994).
- ¹⁶³¹P. Alén, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, Thin Solid Films **491**, 235 (2005).
- ¹⁶³²N. Van Hoornick, H. De Witte, T. Witters, C. Zhao, T. Conard, H. Huotari, J. Swerts, T. Schram, J. W. Maes, S. De Gendt, and M. Heyns, J. Electrochem. Soc. **153**, G437 (2006).
- ¹⁶³³J. Hinz, A. J. Bauer, and L. Frey, Semicond. Sci. Technol. **25**, 075009 (2010).
- ¹⁶³⁴M. Juppo, M. Vehkamäki, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. A 16, 2845 (1998).
- ¹⁶³⁵P. Alén, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, J. Electrochem. Soc. 152, G361 (2005).
- ¹⁶³⁶V. Miikkulainen, M. Suvanto, and T. Pakkanen, Chem. Mater. 19, 263 (2007).
- ¹⁶³⁷V. Miikkulainen, M. Suvanto, and T. A. Pakkanen, Thin Solid Films 516, 6041 (2008).
- ¹⁶³⁸V. Miikkulainen, M. Suvanto, and T. Pakkanen, Chem. Vap. Deposition 14, 71 (2008).
- ¹⁶³⁹V. Miikkulainen, M. Suvanto, T. A. Pakkanen, S. Siitonen, P. Karvinen, M. Kuittinen, and H. Kisonen, Surf. Coat. Technol. 202, 5103 (2008).
- ¹⁶⁴⁰V. Miikkulainen, "Molybdenum nitride thin films on micro- and nanopatterned substrates: Atomic layer deposition and applications," Ph.D. dissertation (University of Joensuu, Finland, 2008).
- ¹⁶⁴¹T.-K. Eom, W. Sari, K.-J. Choi, W.-C. Shin, J. H. Kim, D.-J. Lee, K.-B. Kim, H. Sohn, and S.-H. Kim, Electrochem. Solid-State Lett. **12**, D85 (2009).
- ¹⁶⁴²T. Aaltonen, A. Rahtu, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett. 6, C130 (2003).
- ¹⁶⁴³T. Aaltonen, P. Alén, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 9, 45 (2003).
- ¹⁶⁴⁴T. Aaltonen, M. Ritala, Y. L. Tung, Y. Chi, K. Arstila, K. Meinander, and M. Leskelä, J. Mater. Res. 19, 3353 (2004).
- ¹⁶⁴⁵M. Zhang, W. Chen, S. J. Ding, X. P. Wang, D. W. Zhang, and L. K. Wang, J. Vac. Sci. Technol. A 25, 775 (2007).
- ¹⁶⁴⁶K. J. Park, D. B. Terry, S. M. Stewart, and G. N. Parsons, Langmuir 23, 6106 (2007).

- ¹⁶⁴⁷J. Biener, T. F. Baumann, Y. M. Wang, E. J. Nelson, S. O. Kucheyev, A. V. Hamza, M. Kemell, M. Ritala, and M. Leskelä, Nanotechnology 18, 055303 (2007).
- ¹⁶⁴⁸M. Zhang, W. Chen, S. J. Ding, Z. Y. Liu, Y. Huang, Z. W. Liao, and D. W. Zhang, J. Phys. D: Appl. Phys. 41, 032007 (2008).
- ¹⁶⁴⁹S. J. Park, W. H. Kim, H. B. R. Lee, W. J. Maeng, and H. Kim, Microelectron. Eng. 85, 39 (2008).
- ¹⁶⁵⁰S.-J. Park, W.-H. Kim, W. Maeng, Y. Yang, C. Park, H. Kim, K.-N. Lee, S.-W. Jung, and W. Seong, Thin Solid Films **516**, 7345 (2008).
- ¹⁶⁵¹X, Jiang, T. N. Guer, F. B. Prinz, and S. F. Bent, Chem. Mater. **22**, 3024 (2010).
- ¹⁶⁵²O.-K. Kwon, J.-H. Kim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 151, G109 (2004).
- ¹⁶⁵³K. J. Park, J. M. Doub, T. Gougousi, and G. N. Parsons, Appl. Phys. Lett. 86, 051903 (2005).
- ¹⁶⁵⁴S. H. Kwon, O. K. Kwon, J. H. Kim, S. J. Jeong, S. W. Kim, and S. W. Kang, J. Electrochem. Soc. **154**, H773 (2007).
- ¹⁶⁵⁵D. J. Lee, S. S. Yim, K. S. Kim, S. H. Kim, and K. B. Kim, Electrochem. Solid-State Lett. **11**, K61 (2008).
- ¹⁶⁵⁶S. S. Yim, D. J. Lee, K. S. Kim, M. S. Lee, S. H. Kim, and K. B. Kim, Electrochem. Solid-State Lett. **11**, K89 (2008).
- ¹⁶⁵⁷S. S. Yim, D. J. Lee, K. S. Kim, S. H. Kim, T. S. Yoon, and K. B. Kim, J. Appl. Phys. **103**, 113509 (2008).
- ¹⁶⁵⁸S.-H. Park, S. Kim, D.-J. Lee, S. Yun, Z. G. Khim, and K.-B. Kim, J. Electrochem. Soc. **156**, K181 (2009).
- ¹⁶⁵⁹D.-J. Lee, S.-S. Yim, K.-S. Kim, S.-H. Kim, and K.-B. Kim, J. Appl. Phys. **107**, 013707 (2010).
- ¹⁶⁶⁰J. H. Kim, S. G. Yoon, S. J. Yeom, H. K. Woo, D. S. Kil, J. S. Roh, and H. C. Sohn, Electrochem. Solid-State Lett. 8, F17 (2005).
- ¹⁶⁶¹O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. 7, C46 (2004).
- ¹⁶⁶²O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 151, C753 (2004).
- ¹⁶⁶³S. S. Yim, M. S. Lee, K. S. Kim, and K. B. Kim, Appl. Phys. Lett. **89**, 093115 (2006).
- ¹⁶⁶⁴S. H. Kwon, O. K. Kwon, J. H. Kim, H. R. Oh, K. H. Kim, and S. W. Kang, J. Electrochem. Soc. 155, H296 (2008).
- ¹⁶⁶⁵M.-G. Ko, W.-S. Kim, S.-K. Park, H.-D. Kim, and J.-W. Park, J. Korean Phys. Soc. 53, 2123 (2008).
- ¹⁶⁶⁶Q. Xie, Y.-L. Jiang, J. Musschoot, D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, S. Van den Berghe, G.-P. Ru, B.-Z. Li, and X.-P. Qu, Thin Solid Films **517**, 4689 (2009).
- ¹⁶⁶⁷J. Y. Son, W. J. Maeng, W.-H. Kim, Y. H. Shin, and H. Kim, Thin Solid Films **517**, 3892 (2009).
- ¹⁶⁶⁸S. Kumar, D. Greenslit, T. Chakraborty, and E. T. Eisenbraun, J. Vac. Sci. Technol. A 27, 572 (2009).
- ¹⁶⁶⁹B. H. Choi, Y. H. Lim, J. H. Lee, Y. B. Kim, H.-N. Lee, and H. K. Lee, Microelectron. Eng. 87, 1391 (2010).
- ¹⁶⁷⁰J. Musschoot, Q. Xie, D. Deduytsche, K. De Keyser, D. Longrie, J. Haemers, S. Van den Berghe, R. L. Van Meirhaeghe, J. D'Haen, and C. Detavernier, Microelectron. Eng. 87, 1879 (2010).
- ¹⁶⁷¹S.-W. Kim, S.-H. Kwon, S.-J. Jeong, and S.-W. Kang, J. Electrochem. Soc. 155, H885 (2008).
- ¹⁶⁷²S. K. Kim, S. Y. Lee, S. W. Lee, G. W. Hwang, C. S. Hwang, J. W. Lee, and J. Jeong, J. Electrochem. Soc. **154**, D95 (2007).
- ¹⁶⁷³W.-H. Kim, S.-J. Park, J.-Y. Son, and H. Kim, Nanotechnology **19**, 045302 (2008).
- ¹⁶⁷⁴J. Heo, S. J. Won, D. Eom, S. Y. Lee, Y. B. Ahn, C. S. Hwang, and H. J. Kim, Electrochem. Solid-State Lett. **11**, H210 (2008).
- ¹⁶⁷⁵J. Heo, D. Eom, S. Y. Lee, S.-J. Won, S. Park, C. S. Hwang, and H. J. Kim, Chem. Mater. **21**, 4006 (2009).
- ¹⁶⁷⁶S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair, and J. W. Elam, Nano Lett. **10**, 3047 (2010).
- ¹⁶⁷⁷S. K. Kim, J. H. Han, G. H. Kim, and C. S. Hwang, Chem. Mater. **22**, 2850 (2010).
- ¹⁶⁷⁸K. M. Thom and J. G. Ekerdt, Surf. Sci. **603**, 921 (2009).
- ¹⁶⁷⁹L. Wu and E. Eisenbraun, J. Electrochem. Soc. **156**, H734 (2009).
- ¹⁶⁸⁰K. Kukli, M. Ritala, M. Kemell, and M. Leskelä, J. Electrochem. Soc. 157, D35 (2010).
- ¹⁶⁸¹N. Leick, R. O. F. Verkuijlen, E. Langereis, S. Rushworth, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, in *Proceedings* of the 56th international American Vacuum Society Symposium & Exhibition (AVS 56), 8–13 November 2009, San Jose, California (AVS, New York, NY, 2009), p. TF2-MoM1-20.

¹⁶¹¹D. H. Triyoso, R. Gregory, M. Park, K. Wang, and S. I. Lee, J. Electrochem. Soc. 155, H43 (2008).

- ¹⁶⁸²S. K. Park, R. Kanjolia, J. Anthis, R. Odedra, N. Boag, L. Wielunski, and Y. J. Chabal, Chem. Mater. 22, 4867 (2010).
- ¹⁶⁸³Y.-S. Min, E. J. Bae, K. S. Jeong, Y. J. Cho, J.-H. Lee, W. B. Choi, and G.-S. Park, Adv. Mater. 15, 1019 (2003).
- ¹⁶⁸⁴M. Lashdaf, T. Hatanpää, A. O. I. Krause, J. Lahtinen, M. Lindblad, and M. Tiitta, Appl. Catal., A 241, 51 (2003).
- ¹⁶⁸⁵T. Aaltonen, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition **10**, 215 (2004).
- ¹⁶⁸⁶S. K. Kim, S. Hoffmann-Eifert, and R. Waser, J. Phys. Chem. C 113, 11329 (2009).
- ¹⁶⁸⁷W.-H. Kim, S.-J. Park, D. Y. Kim, and H. Kim, J. Korean Phys. Soc. 55, 32 (2009).
- ¹⁶⁸⁸H. Wang, R. G. Gordon, R. Alvis, and R. M. Ulfig, Chem. Vap. Deposition **15**, 312 (2009).
- ¹⁶⁸⁹H. Li, D. B. Farmer, R. G. Gordon, Y. Lin, and J. Vlassak, J. Electrochem. Soc. **154**, D642 (2007).
- ¹⁶⁹⁰D. B. Farmer and R. G. Gordon, J. Appl. Phys. **101**, 124503 (2007).
- ¹⁶⁹¹J. Gatineau, K. Yanagita, and C. Dussarrat, Microelectron. Eng. 83, 2248 (2006).
- ¹⁶⁹²J. H. Kim, D. S. Kil, S. J. Yeom, J. S. Roh, N. J. Kwak, and J. W. Kim, Appl. Phys. Lett. **91**, 052908 (2007).
- ¹⁶⁹³K. Hušeková, E. Dobročka, A. Rosová, J. Šoltýs, A. Šatka, F. Fillot, and K. Fröhlich, Thin Solid Films **518**, 4701 (2010).
- ¹⁶⁹⁴T. Aaltonen, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett. 8, C99 (2005).
- ¹⁶⁹⁵J. Hämäläinen, F. Munnik, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **156**, D418 (2009).
- ¹⁶⁹⁶J. J. Senkevich, F. Tang, D. Rogers, J. T. Drotar, C. Jezewski, W. A. Lanford, G. C. Wang, and T. M. Lu, Chem. Vap. Deposition 9, 258 (2003).
- ¹⁶⁹⁷Y. Kim, G. A. Ten Eyck, D. X. Ye, C. Jezewski, T. Karabacak, H. S. Shin, J. J. Senkevich, T. M. Lu, J. Electrochem. Soc. **152**, C376 (2005).
- ¹⁶⁹⁸G. A. Ten Eyck, S. Pimanpang, H. Bakhru, T. M. Lu, and G. C. Wang, Chem. Vap. Deposition **12**, 290 (2006).
- ¹⁶⁹⁹Y. S. Kim, J. Shin, J. H. Cho, G. A. Ten Eyck, D. L. Liu, S. Pimanpang, T. M. Lu, J. J. Senkevich, and H. S. Shin, Surf. Coat. Technol. 200, 5760 (2006).
- ¹⁷⁰⁰N. E. Lay, G. A. T. Eyck, D. J. Duquette, and T. M. Lu, Electrochem. Solid-State Lett. **10**, D13 (2007).
- ¹⁷⁰¹G. A. Ten Eyck, S. Pimanpang, J. S. Juneja, H. Bakhru, T. M. Lu, and G. C. Wang, Chem. Vap. Deposition **13**, 307 (2007).
- ¹⁷⁰²J. Elam, A. Zinovev, C. Han, H. Wang, U. Welp, J. Hryn, and M. Pellin, Thin Solid Films 515, 1664 (2006).
- ¹⁷⁰³D. N. Goldstein and S. M. George, Appl. Phys. Lett. 95, 143106 (2009).
- ¹⁷⁰⁴J. Lu and P. C. Stair, Langmuir **26**, 16486 (2010).
- ¹⁷⁰⁵A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 13, 408 (2007).
- ¹⁷⁰⁶P. R. Chalker, S. Romani, P. A. Marshall, M. J. Rosseinsky, S. Rushworth, and P. A. Williams, Nanotechnology **21**, 405602 (2010).
- ¹⁷⁰⁷T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth **130**, 29 (1993).
- ¹⁷⁰⁸Yu. K. Ezhovskii and A. I. Klyuikov, Zh. Prikl. Khim. **73**, 881 (2000) [Russ. J. Appl. Chem. **73**, 933 (2000)].
- ¹⁷⁰⁹Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Appl. Phys. Lett. **71**, 3799 (1997).
- ¹⁷¹⁰Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Langmuir 14, 1493 (1998).
- ¹⁷¹¹M. Han, Y. Luo, J. E. Moryl, R. M. Osgood, Jr., and J. G. Chen, Surf. Sci. 415, 251 (1998).
- ¹⁷¹²M. Han, Y. Luo, J. E. Moryl, and R. M. Osgood, Jr., Surf. Sci. **425**, 259 (1999).
- ¹⁷¹³Y. Luo, M. Han, D. A. Slater, and R. M. Osgood, Jr., J. Vac. Sci. Technol. A **18**, 438 (2000).
- ¹⁷¹⁴J. R. Bakke, H. J. Jung, J. T. Tanskanen, R. Sinclair, and S. F. Bent, Chem. Mater. **22**, 4669 (2010).
- ¹⁷¹⁵Y. Z. Feng and S. P. Guo, J. Mater. Sci. Lett. 15, 1824 (1996).
- ¹⁷¹⁶M. Y. Shen, T. Goto, E. Kurtz, Z. Zhu, and T. Yao, J. Phys.: Condens. Matter 10, L171 (1998).
- ¹⁷¹⁷E. Kurtz, H. D. Jung, T. Hanada, Z. Zhu, T. Sekiguchi, and T. Yao, J. Cryst. Growth 184/185, 242 (1998).
- ¹⁷¹⁸E. Kurtz, T. Sekiguchi, Z. Zhu, T. Yao, J. X. Shen, Y. Oka, M. Y. Shen, and T. Goto, Superlattices Microstruct. 25, 119 (1999).
- ¹⁷¹⁹D. P. Mikhaevich and Yu. K. Ezhovskii, Zh. Prikl. Khim. 76, 1238 (2003) [Russ. J. Appl. Chem. 76, 1197 (2003)].

- ¹⁷²⁰I. Hernández-Calderón, M. García-Rocha, and P. Díaz-Arencibia, Phys. Status Solidi B 241, 558 (2004).
- ¹⁷²¹Yu. K. Ezhovskii and D. P. Mikhaevich, Neorg. Mater. 40, 1043 (2004) [Inorg. Mater. 40, 909 (2004)].
- ¹⁷²²E. M. Larramendi, Z. B. K. Gutierrez, O. de Melo, U. Woggon, D. Schikora, and K. Lischka, J. Cryst. Growth **312**, 1807 (2010).
- ¹⁷²³M. Pessa, P. Huttunen, and M. A. Herman, J. Appl. Phys. 54, 6047 (1983).
- ¹⁷²⁴M. Pessa, O. Jylhä, P. Huttunen, and M. A. Herman, J. Vac. Sci. Technol. A **2**, 418 (1984).
- ¹⁷²⁵M. Pessa, O. Jylhä, and M. A. Herman, J. Cryst. Growth **67**, 255 (1984).
- ¹⁷²⁶M. A. Herman, M. Vulli, and M. Pessa, J. Cryst. Growth **73**, 403 (1985).
- ¹⁷²⁷M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. **21**, 969 (1986).
- ¹⁷²⁸M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. **21**, 841 (1986).
- ¹⁷²⁹M. A. Herman, P. Juza, W. Faschinger, and H. Sitter, Cryst. Res. Technol. 23, 307 (1988).
- ¹⁷³⁰W. Faschinger, H. Sitter, and P. Juza, Appl. Phys. Lett. **53**, 2519 (1988).
- ¹⁷³¹W. Faschinger and H. Sitter, J. Cryst. Growth **99**, 566 (1990).
- ¹⁷³²W. Faschinger, P. Juza, and H. Sitter, J. Cryst. Growth **115**, 692 (1991).
- ¹⁷³³P. Juza, W. Faschinger, and H. Sitter, Microchim. Acta **107**, 265 (1992).
- ¹⁷³⁴H. Sitter and W. Faschinger, Thin Solid Films **225**, 250 (1993).
- ¹⁷³⁵V. B. Veron, A. Arnoult, B. Daudin, and S. Tatarenko, Phys. Rev. B 54, R5267 (1996).
- ¹⁷³⁶J. T. Sadowski and M. A. Herman, Thin Solid Films **306**, 266 (1997).
- ¹⁷³⁷L. Marsal, H. Mariette, Y. Samson, J. L. Rouviere, and E. Picard, Appl.
 Phys. Lett. **73**, 2974 (1998).
- ¹⁷³⁸J. M. Hartmann, M. Charleux, J. Cibert, and H. Mariette, Appl. Phys. Lett. **72**, 3151 (1998).
- ¹⁷³⁹T. Taliercio, P. Lefebvre, N. Magnea, J. Allègre, and H. Mathieu, J. Cryst. Growth 184/185, 288 (1998).
- ¹⁷⁴⁰L. Carbonell, S. Tatarenko, J. Cibert, J. M. Hartmann, G. Mula, V. H. Etgens, and A. Arnoult, Appl. Surf. Sci. **123/124**, 283 (1998).
- ¹⁷⁴¹L. Marsal, Y. Samson, J. L. Rouviere, and H. Mariette, J. Cryst. Growth 201/202, 1226 (1999).
- ¹⁷⁴²H. Mariette, M. Charleux, J. M. Hartmann, F. Kany, D. Martrou, L. Marsal, N. Magnèa, and J. L. Rouviére, Microelectron. J. **30**, 329 (1999).
- ¹⁷⁴³H. Mariette, L. Marsal, L. Besombes, F. Tinjod, B. Gilles, K. Kheng, and J. L. Rouvière, J. Cryst. Growth 237/239, 227 (2002).
- ¹⁷⁴⁴M. García-Rocha and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1667 (2002).
- ¹⁷⁴⁵T. Volkmann, M. Ahr, and M. Biehl, Phys. Rev. B **69**, 165303 (2004).
- ¹⁷⁴⁶E. M. Larramendi, O. de Melo, M. Hernández Vélez, and M. C. Tamargo, J. Appl. Phys. 96, 7164 (2004).
- ¹⁷⁴⁷H. S. Lee, H. L. Park, and T. W. Kim, Appl. Phys. Lett. **85**, 5598 (2004).
- ¹⁷⁴⁸I. Bhat, H. Ehsani, W. S. Wang, S. K. Ghandhi, and N. H. Karam, J. Vac. Sci. Technol. B **10**, 1376 (1992).
- ¹⁷⁴⁹W.-S. Wang, H. E. Ehsani, and I. B. Bhat, J. Cryst. Growth **124**, 670 (1992).
- ¹⁷⁵⁰N. H. Karam, R. G. Wolfson, I. B. Bhat, H. Ehsani, and S. K. Gandhi, Thin Solid Films **225**, 261 (1993).
- ¹⁷⁵¹R. M. Emerson, J. L. Hoyt, and J. F. Gibbons, Appl. Phys. Lett. **65**, 1103 (1994).
- ¹⁷⁵²S. Dakshinamurthy and I. Bhat, J. Electron. Mater. **27**, 521 (1998).
- ¹⁷⁵³T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **141**, 3210 (1994).
- ¹⁷⁵⁴T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **142**, 3538 (1995).
- ¹⁷⁵⁵T. Asikainen, M. Ritala, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. 99, 91 (1996).
- ¹⁷⁵⁶T. Asikainen, M. Ritala, W.-M. Li, R. Lappalainen, and M. Leskelä, Appl. Surf. Sci. **112**, 231 (1997).
- ¹⁷⁵⁷M. Ritala, T. Asikainen, and M. Leskelä, Electrochem. Solid-State Lett. 1, 156 (1997).
- ¹⁷⁵⁸A. W. Ott, J. M. Johnson, J. W. Klaus, and S. M. George, Appl. Surf. Sci. 112, 205 (1997).
- ¹⁷⁵⁹J. W. Elam, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, Chem. Mater. 18, 3571 (2006).
- ¹⁷⁶⁰J. Elam, D. Baker, A. Martinson, M. Pellin, and J. Hupp, J. Phys. Chem. C 112, 1938 (2008).
- ¹⁷⁶¹O. Nilsen, R. Balasundaraprabhu, E. V. Monakhov, N. Muthukumarasamy, H. Fjellvåg, and B. G. Svensson, Thin Solid Films **517**, 6320 (2009).

- ¹⁷⁶²T. Inushima, T. Shiraishi, and V. Yu. Davydov, Solid State Commun. 110, 491 (1989).
- ¹⁷⁶³T. Asikainen, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 82/83, 122 (1994)
- ¹⁷⁶⁴M. Nanu, J. Schoonman, and A. Goossens, Adv. Funct. Mater. 15, 95 (2005).
- ¹⁷⁶⁵J.-F. Guillemoles, B. Canava, E. B. Yousfi, P. Cowache, A. Galtayries, T. Asikainen, M. Powalla, D. Hariskos, H.-W. Schock, and D. Lincot, Jpn. J. Appl. Phys., Part 1 40, 6065 (2001).
- ¹⁷⁶⁶N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, Prog. Photovoltaics 11, 437 (2003).
- ¹⁷⁶⁷S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Thin Solid Films 431/432, 359 (2003).
- ¹⁷⁶⁸N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, Appl. Surf. Sci. 222, 65 (2004).
- ¹⁷⁶⁹J. Sterner, J. Malmström, and L. Stolt, Prog. Photovoltaics 13, 179 (2005).
- ¹⁷⁷⁰S. Spiering, D. Hariskos, S. Schröder, and M. Powalla, Thin Solid Films 480, 195 (2005).
- ¹⁷⁷¹D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, J. Appl. Phys. 97, 084908 (2005).
- 1772S. K. Sarkar, J. Y. Kim, D. N. Goldstein, N. R. Neale, K. Zhu, C. M. Elliot, A. J. Frank, and S. M. George, J. Phys. Chem. C 114, 8032 (2010).
- ¹⁷⁷³W. K. Chen, J. C. Chen, L. Anthony, and P. L. Liu, Appl. Phys. Lett. 55, 987 (1989).
- ¹⁷⁷⁴D. Bertone, J. Electron. Mater. **21**, 265 (1992).
- ¹⁷⁷⁵C. A. Tran, R. A. Masut, J. L. Brebner, and R. Leonelli, Appl. Phys. Lett. 62, 2375 (1993).
- ¹⁷⁷⁶C. A. Tran, R. A. Masut, J. L. Brebner, M. Jouanne, L. Salamanca-Riba, C. C. Shen, B. Sieber, and A. Miri, J. Cryst. Growth 145, 332 (1994).
- ¹⁷⁷⁷C. A. Tran, R. A. Masut, J. L. Brebner, and M. Jouanne, J. Appl. Phys. 75, 2398 (1994).
- ¹⁷⁷⁸D. G. Patrikarakos, N. Shukla, and M. E. Pemble, J. Cryst. Growth 170, 215 (1997).
- ¹⁷⁷⁹Y. Kobayashi and N. Kobayashi, Jpn. J. Appl. Phys., Part 2 31, L71 (1992).
- ¹⁷⁸⁰T. W. Lee, H. Hwang, Y. Moon, E. Yoon, and Y. D. Kim, J. Korean Phys. Soc. 34, S25 (1999).
- ¹⁷⁸¹Y. D. Kim, M. S. Lee, T.-W. Lee, H. Hwang, S. Yoon, Y. Moon, and E. Yoon, Microelectron. Eng. 51/52, 43 (2000).
- ¹⁷⁸²N. Pan, J. Carter, S. Hein, D. Howe, L. Goldman, L. Kupferberg, S. Brierley, and K. C. Hsieh, Thin Solid Films 225, 64 (1993).
- ¹⁷⁸³N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth 205, 253 (1999).
- ¹⁷⁸⁴N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth 209, 252 (2000).
- ¹⁷⁸⁵N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Vac. Sci. Technol. A 17, 3008 (1999).
- ¹⁷⁸⁶W. G. Jeong, E. P. Menu, and P. D. Dapkus, Appl. Phys. Lett. 55, 244 (1989).
- ¹⁷⁸⁷D. Jung and S. M. Bedair, J. Mater. Res. 9, 3022 (1994).
- ¹⁷⁸⁸C. A. Tran, R. Ares, S. P. Watkins, G. Soerensen, and Y. Lacroix, J. Electron. Mater. 24, 1597 (1995).
- ¹⁷⁸⁹R. Arès, J. Hu, P. Yeo, and S. P. Watkins, J. Cryst. Growth 195, 234 (1998).
- ¹⁷⁹⁰K. Mori, S. Sugou, Y. Kato, and A. Usui, Appl. Phys. Lett. 60, 1717 (1992).
- ¹⁷⁹¹M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. 49, 274 (1986).
- ¹⁷⁹²B. T. McDermott, N. A. El-Masry, M. A. Tischler, and S. M. Bedair, Appl. Phys. Lett. 51, 1830 (1987).
- ¹⁷⁹³P. E. Thompson, J. L. Davis, J. Waterman, R. J. Wagner, D. Gammon, D. K. Gaskill, and R. Stahlbush, J. Appl. Phys. 69, 7166 (1991).
- ¹⁷⁹⁴G. S. Lee, P. E. Thompson, J. L. Davis, J. P. Omaggio, and W. A. Schmidt, Solid-State Electron. 36, 387 (1993).
- 1795R. R. Rachkovskii, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Neorg. Khim. 15, 3158 (1970) [Russ. J. Inorg. Chem. 15, 1646 (1970)].
- ¹⁷⁹⁶H. Viirola and L. Niinistö, Thin Solid Films 249, 144 (1994).
- ¹⁷⁹⁷H. Viirola and L. Niinistö, Thin Solid Films **251**, 127 (1994).
- ¹⁷⁹⁸C. Dücsö, N. Q. Khanh, Z. Horváth, I. Bársony, M. Utriainen, S. Lehto, M. Nieminen, and L. Niinistö, J. Electrochem. Soc. 143, 683 (1996).
- ¹⁷⁹⁹M. Utriainen, K. Kovács, J. M. Campbell, L. Niinistö, and F. Réti, J. Electrochem. Soc. 146, 189 (1999).
- ¹⁸⁰⁰M. Utriainen, L. Niinistö, and R. Matero, Appl. Phys. A 68, 339 (1999).

- ¹⁸⁰¹M. Utriainen, H. Lattu, H. Viirola, L. Niinistö, R. Resch, and G. Friedbacher, Mikrochim. Acta 133, 119 (2000).
- ¹⁸⁰²A. Rosental, A. Tarre, A. Gerst, T. Uustare, and V. Sammelselg, Sens. Actuators B 77, 297 (2001).
- ¹⁸⁰³T. Takeuchi, K. Shoji, T. Tadano, I. Doteshita, and S. Onodera, Thin Solid Films 442, 98 (2003).
- ¹⁸⁰⁴J. Lu, J. Sundqvist, M. Ottosson, A. Tarre, A. Rosental, J. Aarik, and A. Hårsta, J. Cryst. Growth 260, 191 (2004).
- ¹⁸⁰⁵T. Takeuchi, I. Doteshita, and S. Asami, Surf. Interface Anal. 36, 1133 (2004).
- ¹⁸⁰⁶V. V. Antipov, V. P. Dorofeev, A. A. Malkov, A. A. Malygin, S. V. Mikhailovsky, and E. A. Sosnov, Glass Phys. Chem. 34, 534 (2008).
- ¹⁸⁰⁷G. Natarajan and D. C. Cameron, Appl. Phys. A **95**, 621 (2009).
- ¹⁸⁰⁸K. Baek, C. Jin, J. Lee, B.-Y. Jeong, W. I. Lee, and C. Lee, J. Mater. Sci. 45, 3851 (2010).
- ¹⁸⁰⁹A. J. Niskanen, A. Varpula, M. Utriainen, G. Natarajan, D. C. Cameron, S. Novikov, V.-M. Airaksinen, J. Sinkkonen, and S. Franssila, Sens. Actuators B 148, 227 (2010).
- ¹⁸¹⁰X. Meng, D. Geng, J. Liu, M. N. Banis, Y. Zhang, R. Li, and X. Sun, J. Phys. Chem. C 114, 18330 (2010).
- ¹⁸¹¹C. Jin, K. Baek, S. Park, H. W. Kim, W. I. Lee, and C. Lee, Solid State Commun. 150, 1812 (2010).
- ¹⁸¹²C. Jin, H. Kim, K. Baek, H. W. Kim, and C. Lee, Cryst. Res. Technol. 45, 199 (2010).
- ¹⁸¹³A. Tarre, A. Rosental, A. Aidla, J. Aarik, J. Sundqvist, and A. Hårsta, Vacuum 67, 571 (2002).
- ¹⁸¹⁴A. Rosental, A. Tarre, A. G. J. Sundqvist, A. Hårsta, A. Aidla, J. Aarik, V. Sammelselg, and T. Uustare, Sens. Actuators B 93, 552 (2003).
- ¹⁸¹⁵J. D. Ferguson, K. J. Buechler, A. W. Weimer, and S. M. George, Powder Technol. 156, 154 (2005).
- ¹⁸¹⁶X. Du, Y. Du, and S. M. George, J. Vac. Sci. Technol. A 23, 581 (2005).
- ¹⁸¹⁷X. Du and S. M. George, Sens. Actuators B 135, 152 (2008).
- ¹⁸¹⁸X. Du, Y. Du, and S. M. George, J. Phys. Chem. A **112**, 9211 (2008).
- ¹⁸¹⁹A. Tarre, A. Rosental, J. Sundqvist, A. Hårsta, T. Uustare, and V. Sammelselg, Surf. Sci. 532, 514 (2003).
- ¹⁸²⁰J. Sundqvist, A. Tarre, A. Rosental, and A. Hårsta, Chem. Vap. Deposition 9, 21 (2003).
- ¹⁸²¹J. Sundqvist, J. Lu, M. Ottosson, and A. Hårsta, Thin Solid Films 514, 63 (2006).
- ¹⁸²²W. Lee, Y. Choi, K. Hong, N. H. Kim, Y. Park, and J. Park, J. Korean Phys. Soc. 46, L756 (2005).
- ¹⁸²³G. Choi, L. Satyanarayana, and J. Park, Appl. Surf. Sci. 252, 7878 (2006).
- 1824W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, and S.-H. Hong, Nanotechnology 21, 245605 (2010).
- ¹⁸²⁵D. H. Kim, W.-S. Kim, S. B. Lee, and S.-H. Hong, Sens. Actuators B 147, 653 (2010).
- ¹⁸²⁶J. W. Elam, D. A. Baker, A. J. Hryn, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, J. Vac. Sci. Technol. A 26, 244 (2008).
- ¹⁸²⁸J. Heo, A. S. Hock, and R. G. Gordon, Chem. Mater. 22, 4964 (2010).
- ¹⁸²⁹R. Bin Yang, J. Bachmann, M. Reiche, J. W. Gerlach, U. Gösele, and K. Nielsch, Chem. Mater. 21, 2586 (2009).
- ¹⁸³⁰M. Vehkamäki, T. Hatanpää, M. Ritala, M. Leskelä, S. Väyrynen, and E. Rauhala, Chem. Vap. Deposition 13, 239 (2007).
- ¹⁸³¹V. Saanila, J. Ihanus, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 4, 227 (1998).
- ¹⁸³²M. J. Saly, F. Munnik, R. J. Baird, and C. H. Winter, Chem. Mater. 21, 3742 (2009).
- ¹⁸³³M. Nieminen, M. Putkonen, and L. Niinistö, Appl. Surf. Sci. 174, 155 (2001).
- ¹⁸³⁴R. Haugsrud, A. E. Gunnaes, and O. Nilsen, Oxid. Met. **59**, 215 (2003).
- ¹⁸³⁵X. L. Li, D. Tsoutsou, G. Scarel, C. Wiemer, S. C. Capelli, S. N. Volkos, L. Lamagna, and M. Fanciulli, J. Vac. Sci. Technol. A 27, L1 (2009).
- ¹⁸³⁶N. K. Park, D. K. Kang, B. H. Kim, S. J. Jo, and J. S. Ha, Appl. Surf. Sci. 252, 8506 (2006).
- ¹⁸³⁷S. J. Jo, J. S. Ha, N. K. Park, D. K. Kang, and B. H. Kim, Thin Solid Films 513, 253 (2006).
- ¹⁸³⁸W. He, S. Schuetz, R. Solanki, J. Belot, and J. McAndrew, Electrochem. Solid-State Lett. 7, G131 (2004).
- 1839D. H. Triyoso, R. I. Hegde, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, D. Werho, R. Rai, L. B. La, J. Baker, C. Garza, T. Guenther, J. B. E. White, and P. J. Tobin, J. Vac. Sci. Technol. B 22, 2121 (2004).
- ¹⁸⁴⁰K. Kukli, M. Ritala, V. Pore, M. Leskelä, T. Sajavaara, R. I. Hegde, D. C. Gilmer, P. J. Tobin, A. C. Jones, and H. C. Aspinall, Chem. Vap. Deposition 12, 158 (2006).

¹⁸²⁷C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett. 1, 1611 (2010).

- ¹⁸⁴¹R. Inman, S. A. Schuetz, C. M. Silvernail, S. Balaz, P. A. Dowben, G. Jursich, J. McAndrew, and J. A. Belot, Mater. Chem. Phys. **104**, 220 (2007).
- ¹⁸⁴²T. Wang and J. G. Ekerdt, Chem. Mater. **22**, 3798 (2010).
- ¹⁸⁴³J. Kwon, M. Dai, M. D. Halls, E. Langereis, Y. J. Chabal, and R. G. Gordon, J. Phys. Chem. C 113, 654 (2009).
- ¹⁸⁴⁴B. Lee, T. J. Park, A. Hande, M. J. Kim, R. M. Wallace, J. Kim, X. Liu, J. H. Yi, H. Li, M. Rousseau, D. Shenai, and J. Suydam, Microelectron. Eng. 86, 1658 (2009).
- ¹⁸⁴⁵G. Scarel, A. Debernardi, D. Tsoutsou, S. Spiga, S. C. Capelli, L. Lamagna, S. N. Volkos, M. Alia, and M. Fanciulli, Appl. Phys. Lett. **91**, 102901 (2007).
- ¹⁸⁴⁶D. Tsoutsou, G. Scarel, A. Debernardi, S. C. Capelli, S. N. Volkos, L. Lamagna, S. Schamm, P. E. Coulon, and M. Fanciulli, Microelectron. Eng. 85, 2411 (2008).
- ¹⁸⁴⁷B. Y. Kim, M. G. Ko, E. J. Lee, M. S. Hong, Y. J. Jeon, and J. W. Park, J. Korean Phys. Soc. 49, 1303 (2006).
- ¹⁸⁴⁸E. J. Lee, M. G. Ko, B. Y. Kim, S. K. Park, H. D. Kim, and J. W. Park, J. Korean Phys. Soc. 49, 1243 (2006).
- ¹⁸⁴⁹W. He, D. S. H. Chan, S.-J. Kim, Y.-S. Kim, S.-T. Kim, and B. J. Cho, J. Electrochem. Soc. **155**, G189 (2008).
- ¹⁸⁵⁰W.-H. Kim, W. Maeng, K.-J. Moon, J.-M. Myoung, and H. Kim, Thin Solid Films **519**, 362 (2010).
- ¹⁸⁵¹S. Kamiyama, E. Kurosawa, and Y. Nara, J. Electrochem. Soc. 155, H373 (2008).
- ¹⁸⁵²L. Lamagna, C. Wiemer, M. Perego, S. N. Volkos, S. Baldovino, D. Tsoutsou, S. Schamm-Chardon, P. E. Coulon, and M. Fanciulli, J. Appl. Phys. **108**, 084108 (2010).
- ¹⁸⁵³W.-S. Kim, S.-K. Park, D.-Y. Moon, T.-S. Kim, B.-W. Kang, J.-K. Seo, H.-D. Kim, and J.-W. Park, J. Korean Phys. Soc. 53, 3334 (2008).
- ¹⁸⁵⁴W.-S. Kim, S.-K. Park, D.-Y. Moon, B.-W. Kang, H.-D. Kim, and J.-W. Park, J. Korean Phys. Soc. 55, 590 (2009).
- ¹⁸⁵⁵Y. Kim, S. Woo, H. Kim, J. Lee, H. Kim, H. Lee, and H. Jeon, J. Mater. Res. 25, 1898 (2010).
- ¹⁸⁵⁶H. Kim, S. Woo, J. Lee, H. Kim, Y. Kim, H. Lee, and H. Jeon, J. Electrochem. Soc. **157**, H479 (2010).
- ¹⁸⁵⁷K. Kukli, H. Heikkinen, E. Nykänen, and L. Niinistö, J. Alloys Compd. 275–277, 10 (1998).
- ¹⁸⁵⁸T. Pilvi, E. Puukilainen, K. Arstila, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 14, 85 (2008).
- ¹⁸⁵⁹J. Päiväsaari, M. Putkonen, and L. Niinistö, J. Mater. Chem. **12**, 1828 (2002).
- ¹⁸⁶⁰P. R. Chalker, M. Werner, S. Romani, R. J. Potter, K. Black, H. C. Aspinall, A. C. Jones, C. Z. Zhao, S. Taylor, and P. N. Heys, Appl. Phys. Lett. 93, 182911 (2008).
- ¹⁸⁶¹K. Kukli, M. Ritala, T. Pilvi, T. Sajavaara, M. Leskelä, A. C. Jones, H. C. Aspinall, D. C. Gilmer, and P. J. Tobin, Chem. Mater. 16, 5162 (2004).
- ¹⁸⁶²A. C. Jones, H. C. Aspinall, R. R. Chalker, R. J. Potter, K. Kukli, A. Rahtu, M. Ritala, and M. Leskelä, Mater. Sci. Eng., B 118, 97 (2005).
- ¹⁸⁶³P. de Rouffignac and R. G. Gordon, Chem. Vap. Deposition **12**, 152 (2006).
- ¹⁸⁶⁴J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films **472**, 275 (2005).
- ¹⁸⁶⁵A. Kosola, J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films 479, 152 (2005).
- ¹⁸⁶⁶J. Niinistö, N. Petrova, M. Putkonen, L. Niinistö, K. Arstila, and T. Sajavaara, J. Cryst. Growth 285, 191 (2005).
- ¹⁸⁶⁷R. J. Potter, P. R. Chalker, T. D. Manning, H. C. Aspinall, Y. F. Loo, A. C. Jones, L. M. Smith, G. W. Critchlow, and M. Schumacher, Chem. Vap. Deposition **11**, 159 (2005).
- ¹⁸⁶⁸K. Kukli, T. Hatanpää, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 13, 546 (2007).
- ¹⁸⁶⁹S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, T. Hatanpää, J. Lu, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 154, G207 (2007).
- ¹⁸⁷⁰H. García, S. Dueñas, H. Castán, A. Gómez, L. Bailón, R. Barquero, K. Kukli, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. B 27, 416 (2009).
- ¹⁸⁷¹A. P. Milanov, R. A. Fischer, and A. Devi, Inorg. Chem. 47, 11405 (2008).
- ¹⁸⁷²R. Ranjith, A. Laha, E. Bugiel, H. J. Osten, K. Xu, A. P. Milanov, and A. Devi, Semicond. Sci. Technol. 25, 105001 (2010).

- ¹⁸⁷³A. P. Milanov, K. Xu, A. Laha, E. Bugiel, R. Ranjith, D. Schwendt, H. J. Osten, H. Parala, R. A. Fischer, and A. Devi, J. Am. Chem. Soc. **132**, 36 (2010).
- ¹⁸⁷⁴J. Päiväsaari, M. Putkonen, T. Sajavaara, and L. Niinistö, J. Alloys Compd. **374**, 124 (2004).
- ¹⁸⁷⁵J. Päiväsaari, J. Niinistö, K. Arstila, K. Kukli, M. Putkonen, and L. Niinistö, Chem. Vap. Deposition 11, 415 (2005).
- ¹⁸⁷⁶J. Päiväsaari, C. L. Dezelah IV, D. Back, H. M. El-Kaderi, M. Heeg, M. Putkonen, L. Niinistö, and C. H. Winter, J. Mater. Chem. **15**, 4224 (2005).
- ¹⁸⁷⁷M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, Appl. Surf. Sci. 256, 847 (2009).
- ¹⁸⁷⁸H. L. Lu, G. Scarel, L. Lamagna, M. Fanciulli, S.-J. Ding, and D. W. Zhang, Appl. Phys. Lett. **93**, 152906 (2008).
- ¹⁸⁷⁹G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Yu. Lebedinskii, and A. Zenkevich, Appl. Phys. Lett. 85, 630 (2004).
- ¹⁸⁸⁰E. Bonera, G. Scarel, M. Fanciulli, P. Delugas, and V. Fiorentini, Phys. Rev. Lett. **94**, 027602 (2005).
- ¹⁸⁸¹G. Scarel, C. Wiemer, G. Tallarida, S. Spiga, G. Seguini, E. Bonera, M. Fanciulli, Y. Lebedinskii, A. Zenkevich, G. Pavia, I. L. Fedushkin, G. K. Fukin, and G. A. Domrachev, J. Electrochem. Soc. **153**, F271 (2006).
- ¹⁸⁸²G. Scarel, C. Wiemer, M. Fanciulli, I. L. Fedushkin, G. K. Fukin, G. A. Domrachev, Y. Lebedinskii, A. Zenkevich, and G. Pavia, Z. Anorg. Allg. Chem. 633, 2097 (2007).
- ¹⁸⁸³H. Kattelus, M. Ylilammi, J. Salmi, T. Ranta-Aho, E. Nykänen, and I. Suni, in *Amorphous Insulating Thin Films*, Mater. Res. Soc. Symp. Proc., edited by J. Kanicki, W. L. Warren, R. A. B. Devine, and M. Matsumura (Materials Research Society, Warrendale, USA, 1993), Vol. 284, pp. 511–516.
 ¹⁸⁸⁴M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M.
- ¹⁸⁸⁴M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Thin Solid Films 250, 72 (1994).
- ¹⁸⁸⁵K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, Appl. Phys. Lett. 68, 3737 (1996).
- ¹⁸⁸⁶J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films **340**, 110 (1999).
- ¹⁸⁸⁷J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, and T. Uustare, J. Cryst. Growth 220, 105 (2000).
- ¹⁸⁸⁸J. Aarik, A. Aidla, H. Mändar, T. Uustare, K. Kukli, and M. Schuisky, Appl. Surf. Sci. **173**, 15 (2001).
- ¹⁸⁸⁹M. Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeong, and K. S. Hyun, Appl. Phys. Lett. **81**, 334 (2002).
- ¹⁸⁹⁰M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Appl. Phys. Lett. **81**, 472 (2002).
- ¹⁸⁹¹M. L. Green, M. Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Räisanen, D. Muller, M. Bude, and J. Grazul, J. Appl. Phys. **92**, 7168 (2002).
- ¹⁸⁹²E. P. Gusev, C. Cabral, Jr., M. Copel, C. D'Emic, and M. Gribelyuk, Microelectron. Eng. 69, 145 (2003).
- ¹⁸⁹³M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri, and P. I. Räisänen, J. Appl. Phys. 93, 1477 (2003).
- ¹⁸⁹⁴G. D. Wilk and D. A. Muller, Appl. Phys. Lett. 83, 3984 (2003).
- ¹⁸⁹⁵J.-F. Damlencourt, O. Renault, D. Samour, A.-M. Papon, C. Leroux, F. Martin, S. Marthon, M.-N. Séméria, and X. Garros, Solid-State Electron. 47, 1613 (2003).
- ¹⁸⁹⁶K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, D. C. Gilmer, R. Hedge, R. Rai, and L. Prabhu, J. Mater. Sci.: Mater. Electron. 14, 361 (2003).
- ¹⁸⁹⁷H. B. Park, M. Cho, J. Park, S. W. Lee, C. S. Hwang, J.-P. Kim, J.-H. Lee, N.-I. Lee, H.-K. Kang, J.-C. Lee, and S.-J. Oh, J. Appl. Phys. 94, 3641 (2003).
- ¹⁸⁹⁸T. Lee, J. Ahn, J. Oh, Y. Kim, Y. B. Kim, D. K. Choi, and J. Jung, J. Korean Phys. Soc. 42, 272 (2003).
- ¹⁸⁹⁹R. L. Puurunen, J. Appl. Phys. **95**, 4777 (2004).
- ¹⁹⁰⁰C. Wiemer, S. Ferrari, M. Fanciulli, G. Pavia, and L. Lutterotti, Thin Solid Films 450, 134 (2004).
- ¹⁹⁰¹J. Aarik, A. Aidla, A. Kikas, T. Käämbre, R. Rammula, P. Ritslaid, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 230, 292 (2004).
- ¹⁹⁰²J.-J. Ganem, I. Trimaille, I. C. Vickridge, D. Blin, and F. Martin, Nucl. Instrum. Methods Phys. Res. B 219/220, 856 (2004).
- ¹⁹⁰³J.-F. Damlencourt, O. Weber, O. Renault, J.-M. Hartmann, C. Poggi, F. Ducroquet, and T. Billon, J. Appl. Phys. 96, 5478 (2004).

- ¹⁹⁰⁴K. Nakajima, S. Joumori, M. Suzuki, K. Kimura, T. Osipowicz, K. L. Tok, J. Z. Zheng, A. See, and B. C. Zhang, Appl. Surf. Sci. 237, 416 (2004).
- ¹⁹⁰⁵D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.-D. Wang, L. B. La, C. Hobbs, R. Garcia, J. Baker, J. B. E. White, and P. Tobin, J. Electrochem. Soc. 151, F220 (2004).
- ¹⁹⁰⁶K. Kukli, J. Aarik, M. Ritala, T. Uustare, T. Sajavaara, J. Lu, J. Sundqvist, A. Aidla, L. Pung, A. Hårsta, and M. Leskelä, J. Appl. Phys. 96, 5298 (2004).
- ¹⁹⁰⁷H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, and M.-H. Cho, Appl. Phys. Lett. 85, 2902 (2004).
- ¹⁹⁰⁸J. Aarik, H. Mändar, M. Kirm, and L. Pung, Thin Solid Films **466**, 41 (2004).
- ¹⁹⁰⁹E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D'Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett. 85, 2334 (2004).
- ¹⁹¹⁰P. S. Lysaght, J. J. Peterson, B. Foran, C. D. Young, G. Bersuker, and H. R. Huff, Mater. Sci. Semicond. Process. 7, 259 (2004).
- ¹⁹¹¹G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari, and M. Fanciulli, Mater. Sci. Eng., B 109, 11 (2004).
- ¹⁹¹²S. Dueñas, H. Castán, H. García, J. Barbolla, K. Kukli, M. Ritala, and M. Leskelä, Thin Solid Films 474, 222 (2005).
- ¹⁹¹³R. Chen, H. Kim, P. C. McIntyre, and S. F. Bent, Chem. Mater. **17**, 536 (2005).
- ¹⁹¹⁴R. L. Puurunen, A. Delabie, S. Van Elshocht, M. Caymax, M. L. Green, B. Brijs, O. Richard, H. Bender, T. Conard, I. Hoflijk, W. Vandervorst, D. Hellin, D. Vanhaeren, C. Zhao, S. De Gendt, and M. Heyns, Appl. Phys. Lett. 86, 073116 (2005).
- ¹⁹¹⁵A. Delabie, R. L. Puurunen, B. Brijs, M. Caymax, T. Conard, B. Onsia, O. Richard, W. Vandervorst, C. Zhao, M. M. Viitanen, H. H. Brongersma, M. de Ridder, L. V. Goncharova, E. Garfunkel, T. Gustafsson, W. Tsai, M. M. Heyns, and M. Meuris, J. Appl. Phys. 97, 064104 (2005).
- ¹⁹¹⁶D. H. Triyoso, M. Ramon, R. I. Hegde, D. Roan, R. Garcia, J. Baker, X. D. Wang, P. Fejes, B. E. White, and P. J. Tobin, J. Electrochem. Soc. **152**, G203 (2005).
- ¹⁹¹⁷S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini, and M. Fanciulli, Appl. Phys. Lett. 87, 112904 (2005).
- ¹⁹¹⁸K. Kukli, J. Aarik, T. Uustare, J. Lu, M. Ritala, A. Aidla, L. Pung, A. Hårsta, M. Leskelä, A. Kikas, and V. Sammelselg, Thin Solid Films **479**, 1 (2005).
- ¹⁹¹⁹K. Kukli, T. Aaltonen, J. Aarik, J. Lu, M. Ritala, S. Ferrari, A. Hårsta, and M. Leskelä, J. Electrochem. Soc. 152, F75 (2005).
- ¹⁹²⁰H. Jin, S. K. Oh, H. J. Kang, S. W. Lee, Y. S. Lee, and K. Y. Lim, J. Korean Phys. Soc. 46, S52 (2005).
- ¹⁹²¹D. Hellin, A. Delabie, R. L. Puurunen, P. Beaven, T. Conard, B. Brijs, S. De Gendt, and C. Vinckier, Anal. Sci. 21, 845 (2005).
- ¹⁹²²M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).
- ¹⁹²³J. F. Damlencourt, O. Renault, F. Martin, M. N. Séméria, T. Billon, and F. Bedu, Appl. Phys. Lett. 86, 141913 (2005).
- ¹⁹²⁴M. H. Cho, K. B. Chung, C. N. Whang, D. H. Ko, and H. S. Kim, Appl. Phys. Lett. 87, 262906 (2005).
- ¹⁹²⁵N. V. Nguyen, S. Sayan, I. Levin, J. R. Ehrstein, I. J. R. Baumvol, C. Driemeier, C. Krug, L. Wielunski, R. Y. Hung, and A. Diebold, J. Vac. Sci. Technol. A 23, 1706 (2005).
- ¹⁹²⁶H. S. Chang, H. Hwang, M. H. Cho, and D. W. Moon, Appl. Phys. Lett. 86, 031906 (2005).
- ¹⁹²⁷M. P. Agustin, L. R. C. Fonseca, J. C. Hooker, and S. Stemmer, Appl. Phys. Lett. 87, 121909 (2005).
- ¹⁹²⁸D. W. Abraham, M. M. Frank, and S. Guha, Appl. Phys. Lett. 87, 252502 (2005).
- ¹⁹²⁹L. A. Ragnarsson, S. Severi, L. Trojman, K. D. Johnson, D. P. Brunco, M. Aoulaiche, M. Houssa, T. Kauerauf, R. Degraeve, A. Delabie, V. S. Kaushik, S. De Gendt, W. Tsai, G. Groeseneken, K. De Meyer, and M. Heyns, IEEE Trans. Electron Devices 53, 1657 (2006).
- ¹⁹³⁰D. H. Triyoso, P. J. Tobin, B. E. White, R. Gregory, and X. D. Wang, Appl. Phys. Lett. 89, 132903 (2006).
- ¹⁹³¹D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, D. Roan, P. J. Tobin, S. B. Samavedam, B. E. White, R. Gregory, and X. D. Wang, Appl. Phys. Lett. 88, 222901 (2006).
- ¹⁹³²R. Sreenivasan, P. C. McIntyre, H. Kim, and K. C. Saraswat, Appl. Phys. Lett. 89, 112903 (2006).

- ¹⁹³³M. Perego, G. Seguini, and M. Fanciulli, J. Appl. Phys. **100**, 093718 (2006).
- ¹⁹³⁴L. Nyns, L. Hall, T. Conard, A. Delabie, W. Deweerd, M. Heyns, S. Van Elshocht, N. Van Hoornick, C. Vinckier, and S. De Gendt, J. Electrochem. Soc. **153**, F205 (2006).
- ¹⁹³⁵D. Mitchell, A. Aidla, and J. Aarik, Appl. Surf. Sci. **253**, 606 (2006).
- ¹⁹³⁶Y. Liang, N. D. Theodore, J. Curless, and C. Tracy, J. Appl. Phys. 99, 066110 (2006).
- ¹⁹³⁷L. Miotti, C. Driemeier, F. Tatsch, C. Radtke, and I. J. R. Baumvol, Appl. Phys. Lett. 89, 012904 (2006).
- ¹⁹³⁸P. D. Kirsch, M. A. Quevedo-Lopez, H. J. Li, Y. Senzaki, J. J. Peterson, S. C. Song, S. A. Krishnan, N. Moumen, J. Barnett, G. Bersuker, P. Y. Hung, B. H. Lee, T. Lafford, Q. Wang, D. Gay, and J. G. Ekerdt, J. Appl. Phys. **99**, 023508 (2006).
- ¹⁹³⁹A. Martin Hoyas, J. Schuhmacher, C. M. Whelan, T. F. Landaluce, D. Vanhaeren, and K. Maex, J. Appl. Phys. **100**, 114903 (2006).
- ¹⁹⁴⁰M. L. Green, A. J. Allen, X. Li, J. Wang, J. Ilavsky, A. Delabie, R. L. Puurunen, and B. Brijs, Appl. Phys. Lett. 88, 032907 (2006).
- ¹⁹⁴¹N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, Appl. Phys. Lett. 89, 163517 (2006).
- ¹⁹⁴²M. M. Frank, S. J. Koester, M. Copel, J. A. Ott, V. K. Paruchuri, H. L. Shang, and R. Loesing, Appl. Phys. Lett. 89, 112905 (2006).
- ¹⁹⁴³E. O. Filatova, P. Jonnard, and J. M. Andre, Thin Solid Films **500**, 219 (2006).
- ¹⁹⁴⁴S. Ferrari and M. Fanciulli, J. Phys. Chem. B **110**, 14905 (2006).
- ¹⁹⁴⁵A. Delabie, M. Caymax, B. Brijs, D. P. Brunco, T. Conard, E. Sleeckx, S. Van Elshocht, L. A. Ragnarsson, S. De Gendt, and M. M. Heyns, J. Electrochem. Soc. **153**, F180 (2006).
- ¹⁹⁴⁶D. H. Triyoso, Z. Yu, R. Gregory, K. Moore, P. Fejes, and S. Schauer, J. Mater. Res. 22, 2856 (2007).
- ¹⁹⁴⁷A. Stesmans and V. V. Afanas'ev, Physica B **401**, 550 (2007).
- ¹⁹⁴⁸S. Shaimeev, V. Gritsenko, K. Kukli, H. Wong, E. H. Lee, and C. Kim, Microelectron. Reliab. 47, 36 (2007).
- ¹⁹⁴⁹D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, R. Gregory, X. D. Wang, M. Canonico, D. Roan, E. A. Hebert, K. Kim, J. Jiang, R. Rai, V. Kaushik, S. B. Samavedam, and N. Rochat, J. Vac. Sci. Technol. B 25, 845 (2007).
- ¹⁹⁵⁰G. K. Dalapati, Y. Tong, W. Y. Loh, H. K. Mun, and B. J. Cho, IEEE Trans. Electron Devices 54, 1831 (2007).
- ¹⁹⁵¹S. Baldovino, S. Spiga, G. Scarel, and M. Fanciulli, Appl. Phys. Lett. 91, 172905 (2007).
- ¹⁹⁵²K. B. Chung, C. N. Whang, H. S. Chang, D. W. Moon, and M. H. Cho, J. Vac. Sci. Technol. A 25, 141 (2007).
- ¹⁹⁵³L. Nyns, L. A. Ragnarsson, L. Hall, A. Delabie, M. Heyns, S. Van Elshocht, C. Vinckier, P. Zimmerman, and S. De Gendt, J. Electrochem. Soc. 155, G9 (2008).
- ¹⁹⁵⁴M. Perego, G. Seguini, and M. Fanciulli, Mater. Sci. Semicond. Process. 11, 221 (2008).
- ¹⁹⁵⁵D. H. Hill, R. A. Bartynski, N. V. Nguyen, A. C. Davydov, D. Chandler-Horowitz, and M. M. Frank, J. Appl. Phys. **103**, 093712 (2008).
- ¹⁹⁵⁶F. T. Docherty, M. MacKenzie, A. J. Craven, D. W. McComb, S. De Gendt, S. McFadzean, and C. M. McGilvery, Microelectron. Eng. 85, 61 (2008).
- ¹⁹⁵⁷F. S. Aguirre-Tostado, M. Milojevic, K. J. Choi, H. C. Kim, C. L. Hinkle, E. M. Vogel, J. Kim, T. Yang, Y. Xuan, P. D. Ye, and R. M. Wallace, Appl. Phys. Lett. **93**, 061907 (2008).
- ¹⁹⁵⁸V. Afanas'ev, A. Stesmans, A. Delabie, F. Bellenger, M. Houssa, R. Lieten, C. Merckling, J. Penaud, D. Brunco, and M. Meuris, Mater. Sci. Semicond. Process. 11, 230 (2008).
- ¹⁹⁵⁹X. Luo, A. A. Demkov, D. Triyoso, P. Fejes, R. Gregory, and S. Zollner, Phys. Rev. B 78, 245314 (2008).
- ¹⁹⁶⁰V. V. Afanas'ev, M. Badylevich, A. Stesmans, G. Brammertz, A. Delabie, S. Sionke, A. O'Mahony, I. M. Povey, M. E. Pemble, E. O'Connor, P. K. Hurley, and S. B. Newcomb, Appl. Phys. Lett. **93**, 212104 (2008).
- ¹⁹⁶¹L. Nyns, A. Delabie, M. Caymax, M. M. Heyns, S. Van Elshocht, C. Vinckier, and S. De Gendt, J. Electrochem. Soc. **155**, G269 (2008).
- ¹⁹⁶²A. Delabie, D. P. Brunco, T. Conard, P. Favia, H. Bender, A. Franquet, S. Sioncke, W. Vandervorst, S. Van Elshocht, M. Heyns, M. Meuris, E. Kim, P. C. McIntyre, K. C. Saraswat, J. M. LeBeau, J. Cagnon, S. Stemmer, and W. Tsai, J. Electrochem. Soc. **155**, H937 (2008).
- ¹⁹⁶³M. Tallarida, K. Karavaev, and D. Schmeisser, J. Appl. Phys. **104**, 064116 (2008).
- ¹⁹⁶⁴H. S. Chang, Electron. Mater. Lett. **5**, 187 (2009).
- ¹⁹⁶⁵D. Schmeisser, M. Tallarida, K. Henkel, K. Müller, D. Mandal, D. Chumakov, and E. Zschech, Mater. Sci. (Poland) 27, 141 (2009).

- ¹⁹⁶⁶M. L. Green, A. J. Allen, J. L. Jordan-Sweet, and J. Ilavsky, J. Appl. Phys. **105**, 103522 (2009).
- ¹⁹⁶⁷K. Karavaev, K. Kolanek, M. Tallarida, D. Schmeisser, and E. Zschech, Adv. Eng. Mater. 11, 265 (2009).
- ¹⁹⁶⁸L.-A. Ragnarsson, D. P. Brunco, K. Yamamoto, Z. Toekei, G. Pourtois, A. Delabie, B. Parmentier, T. Conard, P. Roussel, S. De Gendt, and M. M. Heyns, J. Electrochem. Soc. **156**, H416 (2009).
- ¹⁹⁶⁹M. Tallarida, K. Karavaev, and D. Schmeisser, J. Vac. Sci. Technol. B 27, 300 (2009).
- ¹⁹⁷⁰C. Jorel, C. Vallee, E. Gourvest, B. Pelissier, M. Kahn, M. Bonvalot, and P. Gonon, J. Vac. Sci. Technol. B 27, 378 (2009).
- ¹⁹⁷¹P. Gonon, M. Mougenot, C. Vallee, C. Jorel, V. Jousseaume, H. Grampeix, and F. El Kamel, J. Appl. Phys. **107**, 074507 (2010).
- ¹⁹⁷²A. A. Sokolov, A. A. Ovchinnikov, K. M. Lysenkov, D. E. Marchenko, and E. O. Filatova, Tech. Phys. 55, 1045 (2010).
- ¹⁹⁷³E. Filatova, A. Sokolov, A. Ovchinnikov, S. Tveryanovich, E. Savinov, D. Marchenko, V. Afanas'ev, and A. Shulakov, J. Electron Spectrosc. Relat. Phenom. **181**, 206 (2010).
- ¹⁹⁷⁴R. Rammula, J. Aarik, H. Mändar, P. Ritslaid, and V. Sammelselg, Appl. Surf. Sci. 257, 1043 (2010).
- ¹⁹⁷⁵S. Nonobe, N. Takahashi, and T. Nakamura, Solid State Sci. 6, 1217 (2004).
- ¹⁹⁷⁶N. Takahashi, S. Nonobe, and T. Nakamura, J. Solid State Chem. 177, 3944 (2004).
- ¹⁹⁷⁷M. S. Akbar, J. C. Lee, N. Moumen, and J. Peterson, Appl. Phys. Lett. 88, 082901 (2006).
- ¹⁹⁷⁸K.-T. Kim, G.-H. Kim, J.-C. Woo, and C.-I. Kim, J. Vac. Sci. Technol. A 26, 1178 (2008).
- ¹⁹⁷⁹C. Dallera, F. Fracassi, L. Braicovich, G. Scarel, C. Wiemer, M. Fanciulli, G. Pavia, and B. C. C. Cowie, Appl. Phys. Lett. 89, 183521 (2006).
- ¹⁹⁸⁰S.-W. Kang, S.-W. Rhee, and S. M. George, J. Vac. Sci. Technol. A 22, 2392 (2004).
- ¹⁹⁸¹K. Forsgren, A. Hårsta, J. Aarik, A. Aidla, J. Westlinder, and J. Olsson, J. Electrochem. Soc. **149**, F139 (2002).
- ¹⁹⁸²M. Wolborski, M. Rooth, M. Bakowski, and A. Hallen, J. Appl. Phys. 101, 124105 (2007).
- ¹⁹⁸³J. Aarik, J. Sundqvist, A. Aidla, J. Lu, T. Sajavaara, K. Kukli, and A. Hårsta, Thin Solid Films **418**, 69 (2002).
- ¹⁹⁸⁴K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskelä, and A. Hårsta, J. Appl. Phys. 92, 5698 (2002).
- ¹⁹⁸⁵J. Sundqvist, A. Hårsta, J. Aarik, K. Kukli, and A. Aidla, Thin Solid Films **427**, 147 (2003).
- ¹⁹⁸⁶J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Hårsta, and J.-O. Carlsson, J. Cryst. Growth 273, 510 (2005).
- ¹⁹⁸⁷J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Hårsta, and J. O. Carlsson, J. Cryst. Growth 273, 510 (2005).
- ¹⁹⁸⁸A. Sandell, P. G. Karlsson, J. H. Richter, J. Blomquist, and P. Uvdal, Surf. Sci. **601**, 917 (2007).
- ¹⁹⁸⁹J. Niinistö, M. Putkonen, L. Niinistö, S. L. Stoll, K. Kukli, T. Sajavaara, M. Ritala, and M. Leskelä, J. Mater. Chem. 15, 2271 (2005).
- ¹⁹⁹⁰J. Niinistö, M. Putkonen, L. Niinistö, K. Arstila, T. Sajavaara, J. Lu, K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **153**, F39 (2006).
- ¹⁹⁹¹J. Niinistö, M. Putkonen, L. Niinistö, F. Q. Song, P. Williams, P. N. Heys, and R. Odedra, Chem. Mater. **19**, 3319 (2007).
- ¹⁹⁹²C. Wiemer, L. Lamagna, S. Baldovino, M. Perego, S. Schamm-Chardon, P. E. Coulon, O. Salicio, G. Congedo, S. Spiga, and M. Fanciulli, Appl. Phys. Lett. **96**, 182901 (2010).
- ¹⁹⁹³R. O'Kane, J. Gaskell, A. C. Jones, P. R. Chalker, K. Black, M. Werner, P. Taechakumput, S. Taylor, P. N. Heys, and R. Odedra, Chem. Vap. Deposition 13, 609 (2007).
- ¹⁹⁹⁴J. Niinistö, M. Mäntymäki, K. Kukli, L. Costelle, E. Puukilainen, M. Ritala, and M. Leskelä, J. Cryst. Growth **312**, 245 (2010).
- ¹⁹⁹⁵J. C. Kim, J. S. Heo, Y. S. Cho, and S. H. Moon, Thin Solid Films **517**, 5695 (2009).
- ¹⁹⁹⁶J. Liu, Y. Mao, E. Lan, D. R. Banatao, G. J. Forse, J. Lu, H.-O. Blom, T. O. Yeates, B. Dunn, and J. P. Chang, J. Am. Chem. Soc. **130**, 16908 (2008).
- ¹⁹⁹⁷H. S. Chang, S.-K. Baek, H. Park, H. Hwang, J. H. Oh, W. S. Shin, J. H. Yeo, K. H. Hwang, S. W. Nam, H. D. Lee, C. L. Song, D. W. Moon, and M.-H. Cho, Electrochem. Solid-State Lett. 7, F42 (2004).
- ¹⁹⁹⁸Y. Senzaki, S. Park, H. Chatham, L. Bartholomew, and W. Nieveen, J. Vac. Sci. Technol. A 22, 1175 (2004).
- ¹⁹⁹⁹H. B. Park, M. Cho, J. Park, S. W. Lee, T. J. Park, and C. S. Hwang, Electrochem. Solid-State Lett. 7, G254 (2004).

- ²⁰⁰⁰C. M. Tanner, J. Choi, and J. P. Chang, J. Appl. Phys. **101**, 034108 (2007).
- ²⁰⁰¹K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Vap. Deposition 9, 315 (2003).
- ²⁰⁰²M. Seo, Y.-S. Min, S. K. Kim, T. J. Park, J. H. Kim, K. D. Na, and C. S. Hwang, J. Mater. Chem. **18**, 4324 (2008).
- ²⁰⁰³M. Seo, S. K. Kim, J. H. Han, and C. S. Hwang, Chem. Mater. **22**, 4419 (2010).
- ²⁰⁰⁴K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Mater. 15, 1722 (2003).
- ²⁰⁰⁵W. Cho, K.-S. An, T.-M. Chung, C. Kim, B.-S. So, Y.-H. You, J.-H. Hwang, D. Jung, and Y. Kim, Chem. Vap. Deposition **12**, 665 (2006).
- ²⁰⁰⁶S. Kim, J. Kim, J. Choi, H. Kang, H. Jeon, W. Cho, K. S. An, T. M. Chung, Y. Kim, and C. Bae, Electrochem. Solid-State Lett. 9, G200 (2006).
- ²⁰⁰⁷K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and N. L. Tobin, Chem. Vap. Deposition **10**, 91 (2004).
- ²⁰⁰⁸M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwanga, G. H. Jang, and J. Jeong, Appl. Phys. Lett. 83, 5503 (2003).
- ²⁰⁰⁹M. Cho, D. S. Jeong, J. Park, H. B. Park, S. W. Lee, T. J. Park, and C. S. Hwang, Appl. Phys. Lett. **85**, 5953 (2004).
- ²⁰¹⁰N. Terasawa, K. Akimoto, Y. Mizuno, A. Ichimiya, K. Sumitani, T. Takahashi, X. W. Zhang, H. Sugiyama, H. Kawata, T. Nabatame, and A. Toriumi, Appl. Surf. Sci. 244, 16 (2005).
- ²⁰¹¹K. Kukli, T. Pilvi, M. Ritala, T. Sajavaara, J. Lu, and M. Leskelä, Thin Solid Films **491**, 328 (2005).
- ²⁰¹²Y. R. Lu, S. Bangsaruntip, X. R. Wang, L. Zhang, Y. Nishi, and H. J. Dai, J. Am. Chem. Soc. **128**, 3518 (2006).
- ²⁰¹³R. Chen and S. F. Bent, Chem. Mater. **18**, 3733 (2006).
- ²⁰¹⁴D. Shahrjerdi, D. I. Garcia-Gutierrez, T. Akyol, S. R. Bank, E. Tutuc, J. C. Lee, and S. K. Banerjee, Appl. Phys. Lett. **91**, 193503 (2007).
- ²⁰¹⁵J. Hong, D. W. Porter, R. Sreenivasan, P. C. McIntyre, and S. F. Bent, Langmuir 23, 1160 (2007).
- ²⁰¹⁶D. Gu, K. Tapily, P. Shrestha, M. Y. Zhu, G. Celler, and H. Baumgart, J. Electrochem. Soc. 155, G129 (2008).
- ²⁰¹⁷E. O'Connor, R. D. Long, K. Cherkaoui, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, P. K. Hurley, B. Brennan, G. Hughes, and S. B. Newcomb, Appl. Phys. Lett. **92**, 022902 (2008).
- ²⁰¹⁸J. C. Hackley, J. D. Demaree, and T. Gougousi, Appl. Phys. Lett. 92, 162902 (2008).
- ²⁰¹⁹J. C. Hackley, J. D. Demaree, and T. Gougousi, J. Vac. Sci. Technol. A 26, 1235 (2008).
- ²⁰²⁰X.-H. Zhang, S. P. Tiwari, S.-J. Kim, and B. Kippelen, Appl. Phys. Lett. 95, 223302 (2009).
- ²⁰²¹M. Shandalov and P. C. McIntyre, J. Appl. Phys. 106, 084322 (2009).
- ²⁰²²R. D. Long, E. O'Connor, S. B. Newcomb, S. Monaghan, K. Cherkaoui, P. Casey, G. Hughes, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, and P. K. Hurley, J. Appl. Phys. **106**, 084508 (2009).
- ²⁰²³J. C. Hackley and T. Gougousi, Thin Solid Films **517**, 6576 (2009).
- ²⁰²⁴D. Wheeler, L. E. Wernersson, L. Froberg, C. Thelander, A. Mikkelsen, K. J. Weststrate, A. Sonnet, E. M. Vogel, and A. Seabaugh, Microelectron. Eng. 86, 1561 (2009).
- ²⁰²⁵Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, Appl. Phys. Lett. 94, 183102 (2009).
- ²⁰²⁶Z. Chen, S. Sarkar, N. Biswas, and V. Misra, J. Electrochem. Soc. 156, H561 (2009).
- ²⁰²⁷Y. Morita, A. Hirano, S. Migita, H. Ota, T. Nabatame, and A. Toriumi, Appl. Phys. Express 2, 011201 (2009).
- ²⁰²⁸J. Sun, M. Larsson, I. Maximov, H. Hardtdegen, and H. Q. Xu, Appl. Phys. Lett. **94**, 042114 (2009).
- ²⁰²⁹A. O'Mahony, M. E. Pemble, and I. M. Povey, J. Mol. Struct. **976**, 324 (2010).
- ²⁰³⁰N. Moriyama, Y. Ohno, T. Kitamura, S. Kishimoto, and T. Mizutani, Nanotechnology **21**, 165201 (2010).
- ²⁰³¹K. Kolanek, M. Tallarida, K. Karavaev, and D. Schmeisser, Thin Solid Films **518**, 4688 (2010).
- ²⁰³²K. Li, S. Li, N. Li, D. A. Dixon, and T. M. Klein, J. Phys. Chem. C 114, 14061 (2010).
- ²⁰³³L. Nyns, A. Delabie, J. Swerts, S. Van Elshocht, and S. De Gendt, J. Electrochem. Soc. 157, G225 (2010).
- ²⁰³⁴J. Park, M. Cho, S. K. Kim, T. J. Park, S. W. Lee, S. H. Hong, and C. S. Hwang, Appl. Phys. Lett. 86, 112907 (2005).
- ²⁰³⁵J. Park, T. J. Park, M. J. Cho, S. K. Kim, S. H. Hong, J. H. Kim, M. Seo, C. S. Hwang, J. Y. Won, R. Jeong, and J. H. Choi, J. Appl. Phys. **99**, 094501 (2006).

- ²⁰³⁶T. J. Park, J. H. Kim, M. H. Seo, J. H. Jang, and C. S. Hwang, Appl. Phys. Lett. **90**, 152906 (2007).
- ²⁰³⁷M. Cho, J. H. Kim, C. S. Hwang, H. S. Ahn, S. Han, and J. Y. Won, Appl. Phys. Lett. **90**, 182907 (2007).
- ²⁰³⁸T. J. Park, J. H. Kim, J. H. Jang, K. D. Na, C. S. Hwang, and J. Y. Won, J. Appl. Phys. **103**, 084117 (2008).
- ²⁰³⁹T. J. Park, K. J. Chung, H.-C. Kim, J. Ahn, R. M. Wallace, and J. Kim, Electrochem. Solid-State Lett. **13**, G65 (2010).
- ²⁰⁴⁰J. C. Kim, Y. S. Cho, and S. H. Moon, Jpn. J. Appl. Phys., Part 1 48, 066515 (2009).
- ²⁰⁴¹W. J. Maeng and H. Kim, J. Electrochem. Soc. **155**, H267 (2008).
- ²⁰⁴²W. J. Maeng, G. H. Gu, C. G. Park, K. Lee, T. Lee, and H. Kim, J. Electrochem. Soc. **156**, G109 (2009).
- ²⁰⁴³W. J. Maeng, J. Y. Son, and H. Kim, J. Electrochem. Soc. **156**, G33 (2009).
- ²⁰⁴⁴C. L. Platt, N. Li, K. Li, and T. M. Klein, Thin Solid Films **518**, 4081 (2010).
- ²⁰⁴⁵A. Deshpande, R. Inman, G. Jursich, and C. Takoudis, J. Vac. Sci. Technol. A 22, 2035 (2004).
- ²⁰⁴⁶D. Wang, Y.-L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon, and H. Dai, J. Am. Chem. Soc. **126**, 11602 (2004).
- ²⁰⁴⁷M. J. Kelly, J. H. Han, C. B. Musgrave, and G. N. Parsons, Chem. Mater. 17, 5305 (2005).
- ²⁰⁴⁸R. Chen, H. Kim, P. C. McIntyre, D. W. Porter, and S. F. Bent, Appl. Phys. Lett. 86, 191910 (2005).
- ²⁰⁴⁹Y. Yokoyama, S. Y. Zhu, and A. Nakajima, Jpn. J. Appl. Phys., Part 1 45, 7091 (2006).
- ²⁰⁵⁰A. Deshpande, R. Inman, G. Jursich, and C. G. Takoudis, J. Appl. Phys. 99, 094102 (2006).
- ²⁰⁵¹A. Deshpande, R. Inman, G. Jursich, and C. Takoudis, Microelectron. Eng. 83, 547 (2006).
- ²⁰⁵²X. D. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, Appl. Phys. Lett. 91, 161114 (2007).
- ²⁰⁵³P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, J. Appl. Phys. **103**, 034106 (2008).
- ²⁰⁵⁴Y. Oshima, Y. Sun, D. Kuzum, T. Sugawara, K. C. Saraswat, P. Pianetta, and P. C. McIntvrea, J. Electrochem. Soc. **155**, G304 (2008).
- ²⁰⁵⁵T.-L. Chen, A. Kou, A. Ofan, O. Gaathon, R. M. Osgood, Jr., O. Gang, L. Vanamurthy, S. Bakhru, and H. Bakhru, Thin Solid Films **518**, 269 (2009).
- ²⁰⁵⁶Q. Tao, G. Jursich, and C. Takoudis, Appl. Phys. Lett. **96**, 192105 (2010).
- ²⁰⁵⁷C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, Appl. Phys. Lett. **96**, 081107 (2010).
- ²⁰⁵⁸S. Choi, J. Koo, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 44, 35 (2004).
- ²⁰⁵⁹J. Kim, S. Kim, H. Kang, J. Choi, H. Jeon, M. Cho, K. Chung, S. Back, K. Yoo, and C. Bae, J. Appl. Phys. 98, 094504 (2005).
- ²⁰⁶⁰Y. Won, S. Park, J. Koo, S. Kim, J. Kim, and H. Jeon, Appl. Phys. Lett. 87, 262901 (2005).
- ²⁰⁶¹J. Kim, S. Kim, H. Jeon, M. H. Cho, K. B. Chung, and C. Bae, Appl. Phys. Lett. 87, 053108 (2005).
- ²⁰⁶²S. Kim, J. Kim, J. Choi, H. S. Kang, H. Jeon, and C. Bae, J. Vac. Sci. Technol. B 24, 1088 (2006).
- ²⁰⁶³H. Kang, S. Kim, J. Choi, J. Kim, H. Jeon, and C. Bae, Electrochem. Solid-State Lett. 9, G211 (2006).
- ²⁰⁶⁴J. Choi, S. Kim, J. Kim, H. Kang, H. Jeon, and C. Bae, J. Vac. Sci. Technol. A 24, 900 (2006).
- ²⁰⁶⁵S. Kim, S. Woo, H. Kim, W. Jeong, T. Park, H. Kim, S. B. Kim, and H. Jeon, J. Vac. Sci. Technol. B 25, 1922 (2007).
- ²⁰⁶⁶I. Kim, S. Kuk, S. Kim, J. Kim, H. Jeon, M. H. Cho, and K. B. Chung, Appl. Phys. Lett. **90**, 222101 (2007).
- ²⁰⁶⁷S. Kim, S. Woo, H. Kim, I. Kim, K. Lee, W. Jeong, T. Park, and H. Jeon, J. Korean Phys. Soc. **52**, 1103 (2008).
- ²⁰⁶⁸H. Hong, S. Kim, S. Woo, H. Kim, H. Kim, W. Jeong, S. Jeon, S. Bang, S. Lee, and H. Jeon, J. Korean Phys. Soc. **52**, 1114 (2008).
- ²⁰⁶⁹S. Woo, H. Hong, S. Kim, H. Kim, J. Kim, H. Jeon, C. Bae, T. Okada, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys., Part 1 47, 6196 (2008).
- ²⁰⁷⁰Y. Lee, S. Kim, J. Koo, I. Kim, J. Choi, H. Jeon, and Y. Won, J. Electrochem. Soc. **153**, G353 (2006).
- ²⁰⁷¹K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition 8, 199 (2002).

- J. Appl. Phys. 113, 021301 (2013)
- ²⁰⁷²K. Kukli, M. Ritala, J. Lu, A. Hårsta, and M. Leskelä, J. Electrochem. Soc. 151, F189 (2004).
- ²⁰⁷³T. Lee, H.-K. Ko, Y. Kim, J. Ahn, Y. B. Kim, K. S. Kim, and D. K. Choi, J. Korean Phys. Soc. 45, 1308 (2004).
- ²⁰⁷⁴M. T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005).
- ²⁰⁷⁵B. Lee, T. Moon, T. G. Kim, D. K. Choi, and B. Park, Appl. Phys. Lett. 87, 012901 (2005).
- ²⁰⁷⁶C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006).
- ²⁰⁷⁷T. Lee, H. K. Ko, J. Ahn, I. S. Park, H. Sim, H. Park, and H. Hwang, Jpn. J. Appl. Phys., Part 1 45, 6993 (2006).
- ²⁰⁷⁸J. C. Hackley, T. Gougousi, and J. D. Demaree, J. Appl. Phys. **102**, 034101 (2007).
- ²⁰⁷⁹K. B. Chung, M. H. Cho, D. W. Moon, D. C. Suh, D. H. Ko, U. Hwang, and H. J. Kang, Electrochem. Solid-State Lett. **10**, G1 (2007).
- ²⁰⁸⁰Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo, and Y. H. Wang, Appl. Phys. Lett. **90**, 232904 (2007).
- ²⁰⁸¹Y. K. Chiou, C. H. Chang, and T. B. Wu, J. Mater. Res. 22, 1899 (2007).
- ²⁰⁸²I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, and G. W. Rubloff, Small 4, 1223 (2008).
- ²⁰⁸³D. W. McNeill, S. Bhattacharya, H. Wadsworth, F. H. Ruddell, S. J. N. Mitchell, B. M. Armstrong, and H. S. Gamble, J. Mater. Sci.: Mater. Electron. 19, 119 (2008).
- ²⁰⁸⁴C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. **92**, 071901 (2008).
- ²⁰⁸⁵C. Y. Kim, S. W. Cho, M. H. Cho, K. B. Chung, C. H. An, H. Kim, H. J. Lee, and D. H. Ko, Appl. Phys. Lett. **93**, 192902 (2008).
- ²⁰⁸⁶R. Suri, B. Lee, D. J. Lichtenwalner, N. Biswas, and V. Misra, Appl. Phys. Lett. **93**, 193504 (2008).
- ²⁰⁸⁷R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, Thin Solid Films **516**, 8498 (2008).
- ²⁰⁸⁸Y. Lee, K. Park, K. T. Im, J. Y. Lee, S. Im, J. H. Lee, Y. Yi, and S. Lim, Appl. Surf. Sci. 255, 7179 (2009).
- ²⁰⁸⁹B. A. Sperling, W. A. Kimes, and J. E. Maslar, Appl. Surf. Sci. 256, 5035 (2010).
- ²⁰⁹⁰B. A. Sperling, W. A. Kimes, J. E. Maslar, and P. M. Chu, J. Vac. Sci. Technol. A 28, 613 (2010).
- ²⁰⁹¹T. Gougousi, J. C. Hackley, J. D. Demaree, and J. W. Lacis, J. Electrochem. Soc. **157**, H551 (2010).
- ²⁰⁹²K. Park, Y. Lee, K. T. Im, J. Y. Lee, and S. Lim, Thin Solid Films **518**, 4126 (2010).
- ²⁰⁹³Y. Nakashima, Y. Ohno, S. Kishimoto, M. Okochi, H. Honda, and T. Mizutani, J. Nanosci. Nanotechnol. **10**, 3805 (2010).
- ²⁰⁹⁴Y. S. Kang, C. Y. Kim, M. H. Cho, K. B. Chung, C. H. An, H. Kim, H. J. Lee, C. S. Kim, and T. G. Lee, Appl. Phys. Lett. **97**, 172108 (2010).
- ²⁰⁹⁵J. Swerts, N. Peys, L. Nyns, A. Delabie, A. Franquet, J. W. Maes, S. Van Elshocht, and S. De Gendt, J. Electrochem. Soc. **157**, G26 (2010).
- ²⁰⁹⁶X. Y. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T. Barton, D. Pang, and R. G. Gordon, J. Electrochem. Soc. 152, G213 (2005).
- ²⁰⁹⁷S. Kamiyama, T. Miura, and Y. Nara, Appl. Phys. Lett. 87, 132904 (2005).
- ²⁰⁹⁸S. Kamiyama, T. Miura, and Y. Nara, Electrochem. Solid-State Lett. 8, G367 (2005).
- ²⁰⁹⁹S. Kamiyama, T. Miura, and Y. Nara, Electrochem. Solid-State Lett. 9, G285 (2006).
- ²¹⁰⁰H. Jin, S. K. Oh, H. J. Kang, and M. H. Cho, Appl. Phys. Lett. 89, 122901 (2006).
- ²¹⁰¹Y. Wang, M. Dai, M. T. Ho, L. S. Wielunski, and Y. J. Chabal, Appl. Phys. Lett. **90**, 022906 (2007).
- ²¹⁰²P. S. Lysaght, J. Barnett, G. I. Bersuker, J. C. Woicik, D. A. Fischer, B. Foran, H. H. Tseng, and R. Jammy, J. Appl. Phys. **101**, 024105 (2007).
- ²¹⁰³D. Lee, D. Suh, D. H. Ko, K. Park, M. S. Lee, and H. Kim, J. Korean Phys. Soc. **51**, 168 (2007).
- ²¹⁰⁴Y. W. Kim, Y. Roh, J. B. Yoo, and H. Kim, Thin Solid Films **515**, 2984 (2007).
- ²¹⁰⁵H. Jin, S. K. Oh, Y. J. Cho, H. J. Kang, and S. Tougaard, J. Appl. Phys. 102, 053709 (2007).
- ²¹⁰⁶S. Y. Son, P. Kumar, H. Cho, K. J. Min, C. J. Kang, and R. K. Singh, Appl. Phys. Lett. **92**, 172106 (2008).

- ²¹⁰⁷E. Bersch, M. Di, S. Consiglio, R. D. Clark, G. J. Leusink, and A. C. Diebold, J. Appl. Phys. **10**, 043702 (2010).
- ²¹⁰⁸K. D. Na, J. H. Kim, T. J. Park, J. Song, C. S. Hwang, and J.-H. Choi, Thin Solid Films **518**, 5326 (2010).
- ²¹⁰⁹P. K. Park, J. S. Roh, B. H. Choi, and S. W. Kang, Electrochem. Solid-State Lett. 9, F34 (2006).
- ²¹¹⁰W.-S. Kim, S.-K. Park, D.-Y. Moon, B.-W. Kang, H.-D. Kim, and J.-W. Park, Thin Solid Films **517**, 3900 (2009).
- ²¹¹¹H.-S. Jung, H. K. Kim, J. H. Kim, S.-J. Won, D.-Y. Cho, J. Lee, S. Y. Lee, C. S. Hwang, J.-M. Park, W.-H. Kim, M.-W. Song, N.-I. Lee, and S. Heo, J. Electrochem. Soc. **157**, G121 (2010).
- ²¹¹²W.-H. Nam and S.-W. Rhee, Electrochem. Solid-State Lett. 7, C55 (2004).
- ²¹¹³J. Conley, J. F., Y. Ono, W. Zhuang, D. J. Tweet, W. Gao, S. K. Mohammed, and R. Solanki, Electrochem. Solid-State Lett. 5, C57 (2002).
- ²¹¹⁴J. Conley, J. F., Y. Ono, D. J. Tweet, W. Zhuang, and R. Solanki, J. Appl. Phys. **93**, 712 (2003).
- ²¹¹⁵J. F. Conley, Y. Ono, R. Solanki, G. Stecker, and W. Zhuang, Appl. Phys. Lett. 82, 3508 (2003).
- ²¹¹⁶L. J. Zhong, W. L. Daniel, Z. H. Zhang, S. A. Campbell, and W. L. Gladfelter, Chem. Vap. Deposition 12, 143 (2006).
- ²¹¹⁷E. J. Kim and D. H. Kim, Electrochem. Solid-State Lett. 9, C123 (2006).
- ²¹¹⁸S. Consiglio, W. X. Zeng, N. Berliner, and E. T. Eisenbraun, J. Electrochem. Soc. 155, H196 (2008).
- ²¹¹⁹W. Jeong, Y. Ko, S. Bang, S. Lee, and H. Jeon, J. Korean Phys. Soc. 56, 905 (2010).
- ²¹²⁰K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, D. C. Gilmer, and P. J. Tobin, Mater. Sci. Eng., B 109, 2 (2004).
- ²¹²¹W.-K. Kim, S.-W. Rhee, N.-I. Lee, J.-H. Lee, and H.-K. Kang, J. Vac. Sci. Technol. A 22, 1285 (2004).
- ²¹²²M. S. Kim, S. A. Rogers, Y. S. Kim, J. H. Lee, and H. K. Kang, J. Korean Phys. Soc. 45, 1317 (2004).
- ²¹²³J. Kim and K. Yong, Jpn. J. Appl. Phys., Part 1 45, 5174 (2006).
- ²¹²⁴H. Kim and S. M. Rossnagel, Thin Solid Films 441, 311 (2003).
- ²¹²⁵J. D. Kwon, J. S. Park, H. C. Lee, and S. W. Kang, Electrochem. Solid-State Lett. 9, G282 (2006).
- ²¹²⁶J.-D. Kwon, S.-J. Jeong, J.-W. Kang, D.-G. Kim, J.-K. Kim, J.-J. Rha, K.-S. Nam, and S.-H. Kwon, J. Electrochem. Soc. **156**, H832 (2009).
- ²¹²⁷J.-D. Kwon, J. Yun, and S.-W. Kang, Jpn. J. Appl. Phys., Part 1 48, 025504 (2009).
- ²¹²⁸A. M. Lemonds, J. M. White, and J. G. Ekerdt, Surf. Sci. 538, 191 (2003).
- ²¹²⁹J. Aarik, A. Aidla, K. Kukli, and T. Uustare, J. Cryst. Growth **144**, 116 (1994).
- ²¹³⁰K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, Thin Solid Films **260**, 135 (1995).
- ²¹³¹H. Siimon and J. Aarik, J. Phys IV France **5**(C5) 277 (1995).
- ²¹³²J. Aarik, K. Kukli, A. Aidla, and L. Pung, Appl. Surf. Sci. **103**, 331 (1996).
- ²¹³³K. Kukli, M. Ritala, R. Matero, and M. Leskelä, J. Cryst. Growth **212**, 459 (2000).
- ²¹³⁴Y. S. Kim and S. J. Yun, Jpn. J. Appl. Phys., Part 1 44, 4848 (2005).
- ²¹³⁵K. Kukli, M. Ritala, and M. Leskelä, Chem. Mater. 12, 1914 (2000).
 ²¹³⁶C. W. Hill, G. J. Derderian, and G. Sandhu, J. Electrochem. Soc. 152,
- ²¹³⁷K. Kukli, J. Aarik, A. Aidla, K. Forsgren, J. Sundqvist, A. Hårsta, T. Uustare, H. Mändar, and A. A. Kiisler, Chem. Mater. **13**, 122 (2001).
- ²¹³⁸J. Sundqvist, H. Högberg, and A. Hårsta, Chem. Vap. Deposition 9, 245 (2003).
- ²¹³⁹K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **142**, 1670 (1995).
- ²¹⁴⁰K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **112**, 236 (1997).
- ²¹⁴¹Y. S. Kim, S. H. K. Park, S. J. Yun, and J. S. Kang, J. Korean Phys. Soc. **37**, 975 (2000).
- ²¹⁴²J.-C. Kwak, Y.-H. Lee, and B.-H. Choi, Appl. Surf. Sci. 230, 249 (2004).
- ²¹⁴³D. F. Gu, J. Li, S. K. Dey, H. De Waard, and S. Marcus, J. Vac. Sci. Technol. B **24**, 2230 (2006).
- ²¹⁴⁴L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, Chem. Vap. Deposition 15, 221 (2009).
- ²¹⁴⁵A. L. Salaün, A. Mantoux, E. Blanquet, and E. Djurado, J. Electrochem. Soc. **156**, H311 (2009).
- ²¹⁴⁶A. Lintanf-Salaün, A. Mantoux, E. Djurado, and E. Blanquet, Microelectron. Eng. **87**, 373 (2010).

- ²¹⁴⁷H.-J. Song, C.-S. Lee, and S.-W. Kang, Electrochem. Solid-State Lett. 4, F13 (2001).
- ²¹⁴⁸A. Niskanen, U. Kreissig, M. Leskelä, and M. Ritala, Chem. Mater. 19, 2316 (2007).
- ²¹⁴⁹Y.-H. Lee, J.-C. Kwak, B.-S. Gang, H.-C. Kim, B.-H. Choi, B.-K. Jeong, S.-H. Park, and K.-H. Lee, J. Electrochem. Soc. **151**, C52 (2004).
- ²¹⁵⁰K. H. Min, R. Sinclair, I. S. Park, S. T. Kim, and U. I. Chung, Philos. Mag. 85, 2049 (2005).
- ²¹⁵¹A. Rugge, J. S. Park, R. G. Gordon, and S. H. Tolbert, J. Phys. Chem. B 109, 3764 (2005).
- ²¹⁵²W. J. Maeng, S. J. Park, and H. Kim, J. Vac. Sci. Technol. B **24**, 2276 (2006).
- ²¹⁵³W. J. Maeng, S. J. Lim, S. J. Kwon, and H. Kim, Appl. Phys. Lett. **90**, 062909 (2007).
- ²¹⁵⁴H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T. S. Kim, J. Hahn, S. Lee, Y. Yi, and M.-H. Cho, Org. Electron. 9, 1140 (2008).
- ²¹⁵⁵S. B. S. Heil, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 26, 472 (2008).
- ²¹⁵⁶D. M. Hausmann, P. de Rouffignac, A. Smith, R. Gordon, and D. Monsma, Thin Solid Films 443, 1 (2003).
- ²¹⁵⁷C. L. Dezelah IV, M. K. Wiedmann, K. Mizohata, R. J. Baird, L. Niinistö, and C. H. Winter, J. Am. Chem. Soc. **129**, 12370 (2007).
- ²¹⁵⁸M. K. Wiedmann, M. C. Karunarathne, R. J. Baird, and C. H. Winter, Chem. Mater. **22**, 4400 (2010).
- ²¹⁵⁹T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. McIntyre, Appl. Phys. Lett. **90**, 112912 (2007).
- ²¹⁶⁰M. Ritala, P. Kalsi, D. Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, Chem. Mater. 11, 1712 (1999).
- ²¹⁶¹J. Liu, M. Scharnberg, J. Bao, J. Im, and P. S. Ho, J. Vac. Sci. Technol. B 23, 1422 (2005).
- ²¹⁶²J. Liu, J. Bao, M. Scharnberg, W. C. Kim, P. S. Ho, and R. Laxman, J. Vac. Sci. Technol. A 23, 1107 (2005).
- ²¹⁶³P. Alén, M. Juppo, M. Ritala, M. Leskelä, T. Sajavaara, and J. Keinonen, J. Mater. Res. 17, 107 (2002).
- ²¹⁶⁴H. Kim, A. J. Kellock, and S. M. Rossnagel, J. Appl. Phys. 92, 7080 (2002).
- ²¹⁶⁵H. Kim, J. C. Cabral, C. Lavoie, and S. M. Rossnagel, J. Vac. Sci. Technol. B **20**, 1321 (2002).
- ²¹⁶⁶H. Kim, C. Lavoie, M. Copel, V. Narayanan, D.-G. Park, and S. M. Rossnagel, J. Appl. Phys. **95**, 5848 (2004).
- ²¹⁶⁷C.-C. Chang, F.-M. Pan, and C.-W. Chen, Microelectron. Eng. **86**, 2241 (2009).
- ²¹⁶⁸C.-C. Chang, F.-M. Pan, and C.-W. Chen, J. Electrochem. Soc. 157, G62 (2010).
- ²¹⁶⁹D. Schmidt, M. Knaut, C. Hossbach, M. Albert, C. Dussarrat, B. Hintze, and J. W. Bartha, J. Electrochem. Soc. **157**, H638 (2010).
- ²¹⁷⁰H. S. Chung, J. D. Kwon, and S. W. Kang, J. Electrochem. Soc. **153**, C751 (2006).
- ²¹⁷¹Y. Y. Wu, A. Kohn, and M. Eizenberg, J. Appl. Phys. 95, 6167 (2004).
- ²¹⁷²W. F. Besling, M.-L. Ignacimouttou, A. Humbert, M. Mellier, and J. Torres, Microelectron. Eng. 76, 60 (2004).
- ²¹⁷³Y. Travaly, J. Schuhmacher, A. Martin Hoyas, M. Van Hove, K. Maex, T. Abell, V. Sutcliffe, and A. M. Jonas, J. Appl. Phys. **97**, 084316 (2005).
- ²¹⁷⁴Y. Travaly, J. Schuhmacher, A. Martin Hoyas, T. Abell, V. Sutcliffe, A. M. Jonas, M. Van Hove, and K. Maex, Microelectron. Eng. 82, 639 (2005).
- ²¹⁷⁵Y. Travaly, J. Schuhmacher, M. R. Baklanov, S. Giangrandi, O. Richard, B. Brijs, M. Van Hove, K. Maex, T. Abell, K. R. F. Somers, M. F. A. Hendrickx, L. G. Vanquickenborne, A. Ceulemans, and A. M. Jonas, J. Appl. Phys. 98, 083515 (2005).
- ²¹⁷⁶A. Furuya, N. Ohtsuka, K. Misawa, M. Shimada, and S. Ogawa, J. Appl. Phys. **98**, 094902 (2005).
- ²¹⁷⁷A. Furuya, E. Soda, M. Shimada, and S. Ogawa, Jpn. J. Appl. Phys., Part 1 44, 7430 (2005).
- ²¹⁷⁸Y. Y. Wu and M. Eizenberg, Thin Solid Films **514**, 33 (2006).
- ²¹⁷⁹Y. Y. Wu and M. Eizenberg, Mater. Chem. Phys. 101, 269 (2007).
- ²¹⁸⁰C. K. Hu, L. Gignac, E. Liniger, S. Grunow, J. J. Demarest, B. Redder, A. Simon, and S. L. Liew, J. Electrochem. Soc. **154**, H755 (2007).
- ²¹⁸¹Q. Xie, J. Musschoot, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, S. Van den Berghe, Y.-L. Jiang, G.-P. Ru, B.-Z. Li, and X.-P. Qu, Microelectron. Eng. 85, 2059 (2008).
- ²¹⁸²H. Kim, C. Detavenier, O. van der Straten, S. M. Rossnagel, A. J. Kellock, and D. G. Park, J. Appl. Phys. **98**, 014308 (2005).
- ²¹⁸³E. Langereis, H. C. M. Knoops, A. J. M. Mackus, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **102**, 083517 (2007).

- ²¹⁸⁴N. J. Bae, K. I. Na, H. I. Cho, K. Y. Park, E. Boo, J. H. Bae, and J. H. Lee, Jpn. J. Appl. Phys., Part 1 **45**, 9072 (2006).
- ²¹⁸⁵R. Sreenivasan, T. Sugawara, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. **90**, 102101 (2007).
- ²¹⁸⁶J. Y. Kim, K. W. Lee, H. O. Park, Y. D. Kim, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 45, 1069 (2004).
- ²¹⁸⁷O. van der Straten, Y. Zhu, K. Dunn, E. T. Eisenbraun, and A. E. Kaloyeros, J. Mater. Res. **19**, 447 (2004).
- ²¹⁸⁸B. B. Burton, A. R. Lavoie, and S. M. George, J. Electrochem. Soc. 155, D508 (2008).
- ²¹⁸⁹D. Schmidt, S. Strehle, M. Albert, W. Hentsch, and J. W. Bartha, Microelectron. Eng. **85**, 527 (2008).
- ²¹⁹⁰A. C. Anacleto, A. Zauner, D. Cany-Canian, J. Gatineau, and M.-C. Hugon, Thin Solid Films **519**, 367 (2010).
- ²¹⁹¹J.-S. Park, M.-J. Lee, C.-S. Lee, and S.-W. Kang, Electrochem. Solid-State Lett. 4, C17 (2001).
- ²¹⁹²J.-S. Park, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **149**, C28 (2002).
- ²¹⁹³G. B. Rayner, Jr. and S. M. George, J. Vac. Sci. Technol. A 27, 716 (2009).
- ²¹⁹⁴S.-H. Kim, M.-K. Song, and S.-W. Rhee, J. Electrochem. Soc. 157, H652 (2010).
- ²¹⁹⁵M.-K. Song and S.-W. Rhee, Chem. Vap. Deposition 14, 334 (2008).
- ²¹⁹⁶C. Hossbach, S. Teichert, J. Thomas, L. Wilde, H. Wojcik, D. Schmidt, B. Adolphi, M. Bertram, U. Muehle, M. Albert, S. Menzel, B. Hintze, and J. W. Bartha, J. Electrochem. Soc. **156**, H852 (2009).
- ²¹⁹⁷G.-H. Cho and S.-W. Rhee, Electrochem. Solid-State Lett. **13**, H426 (2010).
- ²¹⁹⁸M.-K. Song and S.-W. Rhee, J. Electrochem. Soc. **155**, H823 (2008).
- ²¹⁹⁹T. J. Park, J. H. Kim, J. H. Jang, K. D. Na, C. S. Hwang, J. H. Kim, G. M. Kim, J. H. Choi, K. J. Choi, and J. H. Jeong, Appl. Phys. Lett. **91**, 252106 (2007).
- ²²⁰⁰A. M. Lemonds, T. Bolom, W. J. Ahearn, D. C. Gay, J. M. White, and J. G. Ekerdt, Thin Solid Films 488, 9 (2005).
- ²²⁰¹S. H. Kim, E. S. Hwang, B. M. Kim, J. W. Lee, H. J. Sun, T. E. Hong, J. K. Kim, H. Sohn, J. Kim, and T. S. Yoon, Electrochem. Solid-State Lett. 8, C155 (2005).
- ²²⁰²S. H. Kim, N. Kwak, J. Kim, and H. Sohn, J. Electrochem. Soc. 153, G887 (2006).
- ²²⁰³W. Lei, L. Henn-Lecordier, M. Anderle, G. W. Rubloff, M. Barozzi, and M. Bersani, J. Vac. Sci. Technol. B 24, 780 (2006).
- ²²⁰⁴L. Henn-Lecordier, W. Lei, M. Anderle, and G. W. Rubloff, J. Vac. Sci. Technol. B 25, 130 (2007).
- ²²⁰⁵A. Yutani, K. Ichinose, K. Maekawa, K. Asai, and M. Kojima, Jpn. J. Appl. Phys., Part 1 47, 2464 (2008).
- ²²⁰⁶T. Luoh, C.-T. Su, T.-H. Yang, K.-C. Chen, and C.-Y. Lu, Microelectron. Eng. 85, 1739 (2008).
- ²²⁰⁷J. W. Klaus, S. J. Ferro, and S. M. George, Appl. Surf. Sci. **162–163**, 479 (2000).
- ²²⁰⁸J. W. Klaus, S. J. Ferro, and S. M. George, Thin Solid Films **360**, 145 (2000).
- ²²⁰⁹J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Thin Solid Films **386**, 41 (2001).
- ²²¹⁰J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Surf. Sci. 479, 121 (2001).
- ²²¹¹R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, Science 303, 989 (2004).
- ²²¹²R. K. Grubbs, N. J. Steinmetz, and S. M. George, J. Vac. Sci. Technol. B 22, 1811 (2004).
- ²²¹³F. H. Fabreguette, Z. A. Sechrist, J. W. Elam, and S. M. George, Thin Solid Films 488, 103 (2005).
- ²²¹⁴N. N. Naguib, J. W. Elam, J. Birrell, J. Wang, D. S. Grierson, B. Kabius, J. M. Hiller, A. V. Sumant, R. W. Carpick, O. Auciello, and J. A. Carlisle, Chem. Phys. Lett. **430**, 345 (2006).
- ²²¹⁵C. Y. Kim, J. W. Elam, M. J. Pellin, D. K. Goswami, S. T. Christensen, M. C. Hersam, P. C. Stair, and M. J. Bedzyk, J. Phys. Chem. B 110, 12616 (2006).
- ²²¹⁶J. W. Elam, J. A. Libera, M. J. Pellin, A. V. Zinovev, J. P. Greene, and J. A. Nolen, Appl. Phys. Lett. **89**, 053124 (2006).
- ²²¹⁷T. F. Baumann, J. Biener, Y. M. M. Wang, S. O. Kucheyev, E. J. Nelson, J. H. Satcher, J. W. Elam, M. J. Pellin, and A. V. Hamza, Chem. Mater. 18, 6106 (2006).
- ²²¹⁸C. A. Wilson, D. N. Goldstein, J. A. McCormick, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol. A 26, 430 (2008).

- ²²¹⁹C. Wilson, J. McCormick, A. Cavanagh, D. Goldstein, A. Weimer, and S. George, Thin Solid Films 516, 6175 (2008).
- ²²²⁰P. Tägtström, P. Mårtensson, U. Jansson, and J.-O. Carlsson, J. Electrochem. Soc. 146, 3139 (1999).
- ²²²¹Z. Feng, C.-Y. Kim, J. W. Elam, Q. Ma, Z. Zhang, and M. J. Bedzyk, J. Am. Chem. Soc. **131**, 18200 (2009).
- ²²²²M. Lindblad and L. P. Lindfors, in *Proceedings of the 10th International Congress on Catalysis: New Frontiers in Catalysis, Budapest, Hungary, 19-24 July 1992*, Stud. Surf. Sci. Catal., edited by L. Guczi (Elsevier, Amsterdam, 1993), Vol. 75, pp. 1763–1770.
- ²²²³C. L. Dezelah IV, O. M. El-Kadri, I. M. Szilágyi, J. M. Campbell, K. Arstila, L. Niinistö, and C. H. Winter, J. Am. Chem. Soc. **128**, 9638 (2006).
- ²²²⁴J. W. Klaus, S. J. Ferro, and S. M. George, J. Electrochem. Soc. **147**, 1175 (2000).
- ²²²⁵S. Bystrova, A. A. I. Aarnink, J. Holleman, and R. A. M. Wolters, J. Electrochem. Soc. **152**, G522 (2005).
- ²²²⁶C. W. Lee and Y. T. Kim, J. Vac. Sci. Technol. B 24, 1432 (2006).
- ²²²⁷H. S. Sim, S.-I. Kim, H. Jeon, and Y. T. Kim, Jpn. J. Appl. Phys., Part 1 42, 6359 (2003).
- ²²²⁸H. S. Sim, S.-I. Kim, and Y. T. Kim, J. Vac. Sci. Technol. B **21**, 1411 (2003).
- ²²²⁹H. S. Sim, J. H. Park, and Y. T. Kim, Phys. Status Solidi A 201, R92 (2004).
- ²²³⁰S. H. Kim, J. K. Kim, J. H. Lee, N. Kwak, J. Kim, S. H. Jung, M. R. Hong, S. H. Lee, J. Collins, and H. Sohn, J. Electrochem. Soc. 154, D435 (2007).
- ²²³¹J. S. Becker, S. Suh, S. Wang, and R. G. Gordon, Chem. Mater. 15, 2969 (2003).
- ²²³²J. S. Becker and R. G. Gordon, Appl. Phys. Lett. **82**, 2239 (2003).
- ²²³³A. Rugge, J. S. Becker, R. G. Gordon, and S. H. Tolbert, Nano Lett. 3, 1293 (2003).
- ²²³⁴K. H. Kim, D. B. Farmer, J. S. M. Lehn, P. V. Rao, and R. G. Gordon, Appl. Phys. Lett. 89, 133512 (2006).
- ²²³⁵C. L. Dezelah IV, O. M. El-Kadri, K. Kukli, K. Arstila, R. J. Baird, J. Lu, L. Niinistö, and C. H. Winter, J. Mater. Chem. 17, 1109 (2007).
- ²²³⁶D.-H. Kim, Y. J. Kim, Y. S. Song, B.-T. Lee, J. H. Kim, S. Suh, and R. Gordon, J. Electrochem. Soc. **150**, C740 (2003).
- ²²³⁷W. X. Zeng, X. D. Wang, S. Kumar, D. W. Peters, and E. T. Eisenbraun, J. Mater. Res. 22, 703 (2007).
- ²²³⁸T. W. Scharf, S. V. Prasad, T. M. Mayer, R. S. Goeke, and M. T. Dugger, J. Mater. Res. **19**, 3443 (2004).
- ²²³⁹T. W. Scharf, S. V. Prasad, M. T. Dugger, P. G. Kotula, R. S. Goeke, and R. K. Grubbs, Acta Mater. 54, 4731 (2006).
- ²²⁴⁰T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, J. Electrochem. Soc. 151, G489 (2004).
- ²²⁴¹E. Färm, M. Kemell, M. Ritala, and M. Leskelä, Chem. Vap. Deposition **12**, 415 (2006).
- ²²⁴²T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, J. Opt. Soc. Am. B 26, 1450 (2009).
- ²²⁴³S. T. Christensen and J. W. Elam, Chem. Mater. **22**, 2517 (2010).
- ²²⁴⁴D. J. Comstock, S. T. Christensen, J. W. Elam, M. J. Pellin, and M. C. Hersam, Electrochem. Commun. **12**, 1543 (2010).
- ²²⁴⁵D. J. Comstock, S. T. Christensen, J. W. Elam, M. J. Pellin, and M. C. Hersam, Adv. Funct. Mater. 20, 3099 (2010).
- ²²⁴⁶J. Hämäläinen, E. Puukilainen, M. Kemell, L. Costelle, M. Ritala, and M. Leskelä, Chem. Mater. 21, 4868 (2009).
- ²²⁴⁷H. Vuori, R. J. Silvennoinen, M. Lindblad, H. Österholm, and A. O. I. Krause, Catal. Lett. **131**, 7 (2009).
- ²²⁴⁸S. W. Kim, S. H. Kwon, D. K. Kwak, and S. W. Kang, J. Appl. Phys. 103, 023517 (2008).
- ²²⁴⁹S.-W. Kim, S.-H. Kwon, S.-J. Jeong, J.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. **11**, H303 (2008).
- ²²⁵⁰J. Hämäläinen, T. Hatanpää, E. Puukilainen, L. Costelle, T. Pilvi, M. Ritala, and M. Leskelä, J. Mater. Chem. 20, 7669 (2010).
- ²²⁵¹S. Choi, Y. K. Cha, B. S. Seo, S. Park, J. H. Park, S. Shin, K. S. Seol, J. B. Park, Y. S. Jung, Y. Park, Y. Park, I. K. Yoo, and S. H. Choi, J. Phys. D: Appl. Phys. **40**, 1426 (2007).
- ²²⁵²J. Hämäläinen, M. Kemell, F. Munnik, U. Kreissig, M. Ritala, and M. Leskelä, Chem. Mater. 20, 2903 (2008).
- ²²⁵³T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Mater. 15, 1924 (2003).
- ²²⁵⁴R. Chen and S. F. Bent, Adv. Mater. 18, 1086 (2006).
- ²²⁵⁵Y. Zhu, K. A. Dunn, and A. E. Kaloyeros, J. Mater. Res. **22**, 1292 (2007).

- ²²⁵⁶X. Jiang and S. F. Bent, J. Electrochem. Soc. **154**, D648 (2007).
- ²²⁵⁷X. Jiang, H. Huang, F. B. Prinz, and S. F. Bent, Chem. Mater. **20**, 3897 (2008).
- ²²⁵⁸J. S. King, A. Wittstock, J. Biener, S. O. Kucheyev, Y. M. Wang, T. F. Baumann, S. K. Giri, A. V. Hamza, M. Baeumer, and S. F. Bent, Nano Lett. 8, 2405 (2008).
- ²²⁵⁹W. M. M. Kessels, H. C. M. Knoops, S. A. F. Dielissen, A. J. M. Mackus, and M. C. M. van de Sanden, Appl. Phys. Lett. **95**, 013114 (2009).
- ²²⁶⁰H. C. M. Knoops, A. J. M. Mackus, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, Electrochem. Solid-State Lett. **12**, G34 (2009).
- ²²⁶¹C. Liu, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh, and T.-P. Perng, Small 5, 1535 (2009).
- ²²⁶²S. T. Christensen, J. W. Elam, F. A. Rabuffetti, Q. Ma, S. J. Weigand, B. Lee, S. Seifert, P. C. Stair, K. R. Poeppelmeier, M. C. Hersam, and M. J. Bedzyk, Small 5, 750 (2009).
- ²²⁶³S. T. Christensen, J. W. Elam, B. Lee, Z. Feng, M. J. Bedzyk, and M. C. Hersam, Chem. Mater. **21**, 516 (2009).
- ²²⁶⁴J. Li, X. Liang, D. M. King, Y.-B. Jiang, and A. W. Weimer, Appl. Catal. B **97**, 220 (2010).
- ²²⁶⁵A. J. M. Mackus, J. J. L. Mulders, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **107**, 116102 (2010).
- ²²⁶⁶W. Setthapun, W. D. Williams, S. M. Kim, H. Feng, J. W. Elam, F. A. Rabuffetti, K. R. Poeppelmeier, P. C. Stair, E. A. Stach, F. H. Ribeiro, J. T. Miller, and C. L. Marshall, J. Phys. Chem. C 114, 9758 (2010).
- ²²⁶⁷J. H. Shim, X. Jiang, S. F. Bent, and F. B. Prinz, J. Electrochem. Soc. 157, B793 (2010).
- ²²⁶⁸S. Novak, B. Lee, X. Yang, and V. Misra, J. Electrochem. Soc. **157**, H589 (2010).
- ²²⁶⁹Y. Zhou, D. M. King, X. Liang, J. Li, and A. W. Weimer, Appl. Catal., B 101, 54 (2010).
- ²²⁷⁰Y.-H. Lin, Y.-C. Hsueh, P.-S. Lee, C.-C. Wang, J.-R. Chen, J.-M. Wu, T.-P. Perng, and H. C. Shih, J. Electrochem. Soc. **157**, K206 (2010).
- ²²⁷¹M. N. Mullings, H. -B.-R. Lee, N. Marchack, X. Jiang, Z. Chen, Y. Gorlin, K.-P. Lin, and S. F. Bent, J. Electrochem. Soc. **157**, D600 (2010).
- ²²⁷²R. R. Hoover and Y. V. Tolmachev, J. Electrochem. Soc. **156**, A37 (2009).
- ²²⁷³J. Hämäläinen, F. Munnik, M. Ritala, and M. Leskelä, Chem. Mater. **20**, 6840 (2008).
- ²²⁷⁴T. Watanabe, S. Hoffmann-Eifert, S. B. Mi, C. L. Jia, R. Waser, and C. S. Hwang, J. Appl. Phys. **101**, 014114 (2007).
- ²²⁷⁵J. Harjuoja, M. Putkonen, and L. Niinistö, Thin Solid Films **497**, 77 (2006).
- ²²⁷⁶H. J. Lee, G. H. Kim, K. Lee, and C. S. Hwang, Electrochem. Solid-State Lett. **10**, G89 (2007).
- ²²⁷⁷M. Leskelä, L. Niinistö, P. Niemelä, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, Vacuum 41, 1457 (1990).
- ²²⁷⁸E. Nykänen, J. Laine-Ylijoki, P. Soininen, L. Niinistö, M. Leskelä, and L. G. Hubert-Pfalzgraf, J. Mater. Chem. 4, 1409 (1994).
- ²²⁷⁹N. P. Dasgupta, W. Lee, and F. B. Prinz, Chem. Mater. **21**, 3973 (2009).
- ²²⁸⁰W. Lee, N. P. Dasgupta, H. J. Jung, J.-R. Lee, R. Sinclair, and F. B. Prinz, Nanotechnology **21**, 485402 (2010).
- ²²⁸¹W. Lee, N. P. Dasgupta, O. Trejo, J.-R. Lee, J. Hwang, T. Usui, and F. B. Prinz, Langmuir **26**, 6845 (2010).
- ²²⁸²M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, J. Mater. Chem. 14, 3191 (2004).
- ²²⁸³T. Hatanpää, M. Vehkamäki, M. Ritala, and M. Leskelä, Dalton Trans. 39, 3219 (2010).
- ²²⁸⁴M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen, and L. Niinistö, J. Mater. Chem. **11**, 2340 (2001).
- ²²⁸⁵B. S. Lim, A. Rahtu, P. de Rouffignac, and R. G. Gordon, Appl. Phys. Lett. 84, 3957 (2004).
- ²²⁸⁶Z. M. Rittersma, F. Roozeboom, M. A. Verheijen, J. G. M. van Berkum, T. Dao, J. H. M. Snijders, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, and S. Haukka, J. Electrochem. Soc. **151**, C716 (2004).
- ²²⁸⁷P. Myllymäki, M. Roeckerath, J. M. J. Lopes, J. Schubert, K. Mizohata, M. Putkonen, and L. Niinistö, J. Mater. Chem. **20**, 4207 (2010).
- ²²⁸⁸P. Myllymäki, M. Nieminen, J. Niinistö, M. Putkonen, K. Kukli, and L. Niinistö, J. Mater. Chem. 16, 563 (2006).
- ²²⁸⁹M. Vehkamäki, T. Hatanpää, T. Hänninen, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett. 2, 504 (1999).
- ²²⁹⁰S. W. Lee, O. S. Kwon, J. H. Han, and C. S. Hwang, Appl. Phys. Lett. 92, 22903 (2008).

- ²²⁹¹M. Vehkamäki, T. Hatanpää, M. Kemell, M. Ritala, and M. Leskelä, Chem. Mater. 18, 3883 (2006).
- ²²⁹²J. Harjuoja, A. Kosola, M. Putkonen, and L. Niinistö, Thin Solid Films 496, 346 (2006).
- ²²⁹³G. W. Hwang, H. J. Lee, K. Lee, and C. S. Hwang, J. Electrochem. Soc. 154, G69 (2007).
- ²²⁹⁴M. Nieminen, S. Lehto, and L. Niinistö, J. Mater. Chem. **11**, 3148 (2001).
- ²²⁹⁵J. Harjuoja, S. Väyrynen, M. Putkonen, L. Niinistö, and E. Rauhala, Appl. Surf. Sci. **253**, 5228 (2007).
- ²²⁹⁶M. Roeckerath, T. Heeg, J. Lopes, J. Schubert, S. Mantl, A. Besmehn, P. Myllymäki, and L. Niinistö, Thin Solid Films **517**, 201 (2008).
- ²²⁹⁷M. Vehkamäki, M. Ritala, M. Leskelä, A. C. Jones, H. O. Davies, T. Sajavaara, and E. Rauhala, J. Electrochem. Soc. **151**, F69 (2004).
- ²²⁹⁸H. Otoma, T. Honda, K. Hara, J. Yoshino, and H. Kukimoto, J. Cryst. Growth **115**, 807 (1991).
- ²²⁹⁹O. S. Kwon, S. K. Kim, M. Cho, C. S. Hwang, and J. Jeong, J. Electrochem. Soc. **152**, C229 (2005).
- ²³⁰⁰T. Hatanpää, M. Vehkamäki, I. Mutikainen, J. Kansikas, M. Ritala, and M. Leskelä, Dalton Trans. 1181 (2004).
- ²³⁰¹M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, Chem. Vap. Deposition 6, 139 (2000).
- ²³⁰²G. W. Hwang, W. D. Kim, Y. S. Min, and C. S. Hwang, J. Electrochem. Soc. 153, F20 (2006).
- ²³⁰³B. A. Latella, G. Triani, and P. J. Evans, Scr. Mater. 56, 493 (2007).
- ²³⁰⁴H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 87, 182904 (2005).
- ²³⁰⁵G. Scarel, G. K. Hyde, D. Hojo, and G. N. Parsons, J. Appl. Phys. 104, 094314 (2008).
- ²³⁰⁶C. Lee, S. Y. No, N. I. Eom, C. S. Hwang, and H. J. Kim, J. Electron. Mater. 34, 1104 (2005).
- ²³⁰⁷R. Bankras, J. Holleman, J. Schmitz, M. Sturm, A. Zinine, H. Wormeester, and B. Poelsema, Chem. Vap. Deposition 12, 275 (2006).
- ²³⁰⁸J. Song, H. C. Oh, T. J. Park, C. S. Hwang, S. -H. K. Park, S. M. Yoon, and C.-S. Hwang, J. Electrochem. Soc. **155**, H858 (2008).
- ²³⁰⁹M. Avice, U. Grossner, I. Pintilie, B. G. Svensson, M. Servidori, R. Nipoti, O. Nilsen, and H. Fjellvåg, J. Appl. Phys. **102**, 054513 (2007).
- ²³¹⁰R. Katamreddy, B. Feist, and C. Takoudis, J. Electrochem. Soc. 155, G163 (2008).
- ²³¹¹P. Ardalan, E. R. Pickett, J. S. Harris, A. F. Marshall, and S. F. Bent, Appl. Phys. Lett. **92**, 252902 (2008).
- ²³¹²H. E. Cheng, W. J. Lee, C. M. Hsu, M. H. Hon, and C. L. Huang, Electrochem. Solid-State Lett. **11**, D81 (2008).
- ²³¹³S. H. Vilhunen and M. E. T. Sillanpää, Water Sci. Technol. 60, 2471 (2009).
- ²³¹⁴S. Won, S. Go, W. Lee, K. Jeong, H. Jung, C. Lee, E. Lee, and J. Lee, Met. Mater. Int. 14, 759 (2008).
- ²³¹⁵B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. **98**, 033715 (2005).
- ²³¹⁶M.-K. Wu, M.-J. Chen, F.-Y. Tsai, J.-R. Yang, and M. Shiojiri, Mater. Trans. **51**, 253 (2010).
- ²³¹⁷A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, Nano Lett. 7, 2183 (2007).
- ²³¹⁸Q. Q. Sun, C. Zhang, L. Dong, Y. Shi, S. J. Ding, and D. W. Zhang, J. Appl. Phys. **103**, 114102 (2008).
- ²³¹⁹J. M. Gaskell, A. C. Jones, K. Black, P. R. Chalker, T. Leese, A. Kingsley, R. Odedra, and P. N. Heys, Surf. Coat. Technol. 201, 9095 (2007).
- ²³²⁰K. Kukli, M. Ritala, T. Pilvi, T. Aaltonen, J. Aarik, M. Lautala, and M. Leskelä, Mater. Sci. Eng., B 118, 112 (2005).
- ²³²¹K. Kukli, J. Aarik, M. Ritala, T. Uustare, T. Sajavaara, J. Lu, J. Sundqvist, A. Aidla, L. Pung, A. Hårsta, and M. Leskelä, J. Appl. Phys. 97, 099903 (2005).
- ²³²²Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, Appl. Phys. Lett. 81, 2041 (2002).
- ²³²³Y. Wang, M. T. Ho, L. V. Goncharova, L. S. Wielunski, S. Rivillon-Amy, Y. J. Chabal, T. Gustafsson, N. Moumen, and M. Bolesławski, Chem. Mater. **19**, 3127 (2007).
- ²³²⁴C. M. Tanner, J. Lu, H.-O. Blom, and J. P. Chang, Mater. Res. Soc. Symp. Proc. **911**, 341 (2006).
- ²³²⁵S. Dueñas, H. Castán, H. García, L. Bailón, K. Kukli, M. Ritala, M. Leskelä, M. Rooth, O. Wilhelmsson, and A. Hårsta, J. Appl. Phys. 100, 094107 (2006).
- ²³²⁶D. P. Thompson, A. M. Dickins, and J. S. Thorp, J. Mater. Sci. 27, 2267 (1992).

- ²³²⁷R. C. Garvie, J. Phys. Chem. 82, 218 (1978).
- ²³²⁸J. M. Leger, P. E. Tomaszewski, A. Atouf, and A. S. Pereira, Phys. Rev. B 47, 14075 (1993).
- ²³²⁹R. C. Garvie, J. Phys. Chem. **69**, 1238 (1965).
- ²³³⁰R. C. Garvie and M. F. Goss, J. Mater. Sci. **21**, 1253 (1986).
- ²³³¹A. Christensen and E. A. Carter, Phys. Rev. B 58, 8050 (1998).
- ²³³²R. Srinivasan, T. Watkins, C. Hubbard, and B. H. Davis, Chem. Mater. 7, 725 (1995).
- ²³³³H. M. Cheng, L. J. Wu, J. M. Ma, Z. G. Zhao, and L. M. Qi, J. Mater. Sci. Lett. 15, 895 (1996).
- ²³³⁴M. Amberg and J. R. Günter, Solid State Ionics 84, 313 (1996).
- ²³³⁵X. Bokhimi, A. Morales, O. Novaro, T. López, R. Gómez, T. Xiao, and P. Strutt, Nanostruct. Mater. **12**, 593 (1999).
- ²³³⁶S. Roy and J. Ghose, Mater. Res. Bull. 35, 1195 (2000).
- ²³³⁷P. Bouvier, E. Djurado, C. Ritter, A. J. Dianoux, and G. Lucazeau, Int. J. Inorg. Mater. 3, 647 (2001).
- ²³³⁸S. Tsunekawa, K. Asami, S. Ito, M. Yashima, and T. Sugimoto, Appl. Surf. Sci. 252, 1651 (2005).
- ²³³⁰C.-H. Lu, J. M. Raitano, S. Khalid, L. Zhang, and S.-W. Chan, J. Appl. Phys. **103**, 124303 (2008).
- ²³⁴⁰P. E. D. Morgan, J. Am. Ceram. Soc. 67, C204 (1984).
- ²³⁴¹J. C. Valmalette and M. Isa, Chem. Mater. **14**, 5098 (2002).
- ²³⁴²E. H. Kisi and C. J. Howard, J. Am. Ceram. Soc. **72**, 1757 (1989).
- ²³⁴³S. Ram and A. Mondal, Phys. Status Solidi A **201**, 696 (2004).
- ²³⁴⁴J. P. Holgado, J. P. Espins, F. Yubero, A. Justo, M. Ocaa, J. Bentez, and A. R. Gonzlez-Elipe, Thin Solid Films **389**, 34 (2001).
- ²³⁴⁵S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay, and Z. Rahman, Nano Lett. 2, 989 (2002).
- ²³⁴⁶S. Li, W. Zheng, and Q. Jiang, Scr. Mater. 54, 2091 (2006).
- ²³⁴⁷M. Putkonen, T. Sajavaara, J. Niinistö, L.-S. Johansson, and L. Niinistö, J. Mater. Chem. **12**, 442 (2002).
- ²³⁴⁸K. Jinesh, Y. Lamy, E. Tois, R. Forti, M. Kaiser, F. Bakker, H. Wondergem, W. Besling, and F. Roozeboom, J. Mater. Res. 25, 1629 (2010).
- ²³⁴⁹C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Haukka, and M. Tuominen, Appl. Phys. Lett. 78, 2357 (2001).
- ²³⁵⁰E. Wisotzki, A. G. Balogh, H. Hahn, J. T. Wolan, and G. B. Hoflund, J. Vac. Sci. Technol. A **17**, 14 (1999).
- ²³⁵¹U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
- ²³⁵²J. Q. Xu, Q. Y. Pan, Y. A. Shun, and Z. Z. Tian, Sens. Actuators B 66, 277 (2000).
- ²³⁵³Wang, J. Zhou, Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 2768 (2006).
- ²³⁵⁴B. Mazumder and A. L. Hector, J. Mater. Chem. **19**, 4673 (2009).
- ²³⁵⁵H. Kim, J. Vac. Sci. Technol. B **21**, 2231 (2003).
- ²³⁵⁶S. H. Kim, J. K. Kim, N. Kwak, H. Sohn, J. Kim, S. H. Jung, M. R. Hong, S. H. Lee, and J. Collins, Electrochem. Solid-State Lett. 9, C54 (2006).
- ²³⁵⁷H. Tiznado, M. Bouman, B.-C. Kang, I. Lee, and F. Zaera, J. Mol. Catal. A: Chem. **281**, 35–43 (2008).
- ²³⁵⁸M. Juppo, P. Alén, A. Rahtu, and M. Ritala, Chem. Vap. Deposition 5, 211 (2001).
- ²³⁵⁹H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgina, J. Electrochem. Soc. **158**, H214 (2011).
- ²³⁶⁰S. Logothetidis, E. I. Meletis, G. Stergioudis, and A. A. Adjaottor, Thin Solid Films **338**, 304 (1999).
- ²³⁶¹C. Ernsberger, J. Nickerson, and T. Smith, J. Vac. Sci. Technol. A 4, 2784 (1986).

- ²³⁶²T. Suntola and J. Antson, Finnish patent 52,359 (10 September, 1977).
- ²³⁶³R. Törnqvist and S. Korpela, J. Cryst. Growth **59**, 395 (1982).
- ²³⁶⁴M. Tammenmaa, M. Leskelä, T. Koskinen, and L. Niinistö, J. Less-Common Met. **126**, 209 (1986).
- ²³⁶⁵M. Leskelä and M. Tammenmaa, Mater. Chem. Phys. 16, 349 (1987).
- ²³⁶⁶R. B. Yang, N. Zakharov, O. Moutanabbir, K. Scheerschmidt, L.-M. Wu, U. Gösele, J. Bachmann, and K. Nielsch, J. Am. Chem. Soc. 132, 7592 (2010).
- ²³⁶⁷M. Leskelä and L. Niinistö, in *Atomic Layer Epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 1–39.
- ²³⁶⁸J. T. Tanskanen, J. R. Bakke, T. A. Pakkanen, and S. F. Bent, J. Vac. Sci. Technol. A 29, 031507/1 (2011).
- ²³⁶⁹L. Hiltunen, M. Leskelä, M. Mäkelä, and L. Niinistö, Acta Chem. Scand., Ser. A 41, 548 (1987).
- ²³⁷⁰V.-P. Tanninen, M. Oikkonen, and T. O. Tuomi, Phys. Status Solidi A 67, 573 (1981).
- ²³⁷¹V.-P. Tanninen, M. Oikkonen, and T. Tuomi, Thin Solid Films 109, 283 (1983).
- ²³⁷²P. Jaszczyn-Kopec, J. Pinceaux, M. Zigone, J. Kennedy, and A. Stadtmuller, Solid State Commun. **32**, 473 (1979).
- ²³⁷³D. Theis, H. Oppolzer, G. Ebbinghaus, and S. Schild, J. Cryst. Growth **63**, 47 (1983).
- ²³⁷⁴T. Törndahl, J. Lu, M. Ottosson, and J. O. Carlsson, J. Cryst. Growth 276, 102 (2005).
- ²³⁷⁵G. A. Ten Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, Chem. Vap. Deposition 11, 60 (2005).
- ²³⁷⁶D. Seghete, G. B. Rayner, Jr., A. S. Cavanagh, V. R. Anderson, and S. M. George, Chem. Mater. 23, 1668 (2011).
- ²³⁷⁷A. Usui, Proc. IEEE **80**, 1641 (1992).
- ²³⁷⁸T. Pilvi, "Atomic layer deposition for optical applications: metal fluoride thin films and novel devices," Ph.D. dissertation (University of Helsinki, 2008).
- ²³⁷⁹H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. **158**, G88 (2011).
- ²³⁸⁰O. Nilsen, C. E. Mohn, A. Kjekshus, and H. Fjellvåg, J. Appl. Phys. **102**, 024906 (2007).
- ²³⁸¹R. L. Puurunen, Chem. Vap. Deposition 11, 79 (2005).
- ²³⁸²A. B. Mukhopadhyay and C. B. Musgrave, Chem. Phys. Lett. **421**, 215 (2006).
- ²³⁸³V. Pore, M. Ritala, M. Leskelä, T. Saukkonen, and M. Järn, Cryst. Growth Des. 9, 2974 (2009).
- ²³⁸⁴A. Martin Hoyas, J. Schuhmacher, D. Shamiryan, J. Waeterloos, W. Besling, J. P. Celis, and K. Maex, J. Appl. Phys. 95, 381 (2004).
- ²³⁸⁵W. Koh, D. Kumar, W. M. Li, H. Sprey, and I. J. Raaijmakers, Solid State Technol. 48, 54 (2005).
- ²³⁸⁶A. Martin Hoyas, C. Whelan, J. Schuhmacher, K. Maex, and J. P. Celis, Microelectron. Eng. 83, 2068 (2006).
- ²³⁸⁷A. Martin Hoyas, Y. Travaly, J. Schuhmacher, T. Sajavaara, C. M. Whelan, B. Eyckens, O. Richard, S. Giangrandi, B. Brijs, W. Vandervorst, K. Maex, J. P. Celis, A. M. Jonas, and A. Vantomme, J. Appl. Phys. 99, 063515 (2006).
- ²³⁸⁸A. Martin Hoyas, J. Schuhmacher, C. M. Whelan, T. F. Landaluce, D. Vanhaeren, K. Maex, and J. P. Celis, J. Appl. Phys. **100**, 114903 (2006).
- ²³⁸⁹H. Volders, Z. Tokei, H. Bender, Bender B. Brijs, R. Caluwaerts, L. Carbonell, T. Conard, C. Drijbooms, A. Franquet, S. Garaud, I. Hoflijk, A. Moussa, F. Sinapi, Y. Travaly, D. Vanhaeren, G. Vereecke, C. Zhao, W.-M. Li, H. Sprey, and A. M. Jonas, Microlectron. Eng. 84, 2460 (2007).