
AALTO UNIVERSITY 
School of Engineering 

Department of Applied Mechanics 

 

 

 

 

 

 

 

 

 

 

 

Juhani Antero Hämäläinen 

SUBSTRUCTURE TOPOLOGY OPTIMIZATION 

OF AN ELECTRIC MACHINE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis in partial fulfilment of the requirements for the degree of  

Master of Science in Mechanical Engineering 

 

Espoo, Finland on June 3
rd

, 2013 

 

 

 

Supervisor of the Thesis  Professor  Jukka Tuhkuri 

Instructor of the Thesis M.Sc. Tech.  Petteri Kokkonen 

 

  



 

 



 
 

i 
 

 

 

AALTO-YLIOPISTO 
PL 12100, 00076 Aalto 
http://www.aalto.fi 

DIPLOMITYÖN TIIVISTELMÄ 

Tekijä: Juhani Hämäläinen 

Työn nimi: Sähkökoneen osarakenteen topologian optimointi 

Korkeakoulu: Insinööritieteiden korkeakoulu 

Laitos: Sovelletun mekaniikan laitos 

Professuuri: Lujuusoppi Koodi: Kul-49 

Työn valvoja: Professori Jukka Tuhkuri 

Työn ohjaaja: Diplomi-insinööri Petteri Kokkonen 

Työssä hyödynnetään rakenneoptimoinnin menetelmää, topologian optimointia, sähkökoneen 
osarakenteen uudelleensuunnitteluissa. Tavoitteena on lisätä rakenteen jäykkyyttä ennalta 
määrätyn tilavuusrajoitteen puitteissa. Topologian optimointi suoritetaan kaupallisella OptiStruct 
ohjelmistolla, joka hyödyntää n.k. SIMP-menetelmää.  
 
Alkuperäinen sähkökoneen osarakenne on hitsattu teräslevyistä, mutta optimointitulos koostuu 
perusaineesta ja siksi optimoidussa rakenteessa ei ole hitsejä. Tämän vaikutusta rakenteen 
väsymiskestävyyden nousuun tutkitaan lyhyesti. Topologian optimoinnin teoria esitellään ja käytetty 
ohjelmisto testataan kolmella alan kirjallisuudesta saadulla optimirakenteella. Topologian 
optimoinnin käyttöönottoa tuotteen suunnitteluprosessissa käsitellään ja annetaan esimerkkejä 
prosessista. 
 
Ohjelman validointitulosten mukaan OptiStruct tuottaa optimoituja ja läheisoptimaalisia rakenteita, ja 
ohjelmaa suositellaan käytettäväksi lopputyössä. Topologian optimointi lineaaristen elementtien 
malleilla paljasti tunnettuja SIMP-menetelmän ominaisuuksia, kuten n.k. shakkilautarakenteen 
muodostumisen ratkaisussa.  
 
Osarakenteen optimoinnissa käytetään erilaisia kuormitustapauksia. Reunaehdot annetaan ennalta 
määrättyinä staattisina siirtyminä, jotka saadaan erillisestä FE-analyysistä. Siirtymät edustavat 
alirakenteen käyttöympäristössään kokemia kuormia. Aluksi optimointi ratkaistaan jokaisessa 
kuormitustapauksessa erikseen, hyödyntäen lineaaristen elementtien mallia, ilman optimoinnin 
lisärajoitteita. Tulosrakenteiden piirteitä ja eroja tutkitaan ja tietoja hyödynnetään myöhemmissä 
analyyseissä. Tämän jälkeen suoritetaan yhdistetty, monen kuormitustapauksen optimointi, 
parabolisten elementtien mallilla. Tässä optimoinnissa hyödynnetään lisärajoitteina symmetriaa ja 
rakenneosien minimipaksuusehtoa. 
 
Uusi osarakenne on modifioitu topologian optimointitulos. Rakenteen staattinen jäykkyys nousi ja 
rakenteen paino lisääntyi n. 8 % verrattuna alkuperäiseen rakenteeseen. Optimoidun osarakenteen 
väsymiskestävyys parani, koska hitsit jäivät pois kuormitetuilta alueilta. Topologian optimointia 
ehdotetaan hyödynnettäväksi konseptivaiheessa, mutta menetelmä soveltuu myös tarkasti 
määriteltyjen rakenteiden optimointiin.  
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In the thesis a structural optimization method called topology optimization is applied to redesign a 
substructure of an electric machine. The objective is to increase the stiffness of this structure with a 
prescribed volume constraint. Topology optimization is performed with commercial software 
OptiStruct. The software utilizes the so called SIMP method.  
 
The initial substructure of the electric machine is welded from steel plates. The optimization result 
consists of base material, thus no welds are found in the optimized structure. The influence of this 
to the fatigue life of the structure is briefly studied. Topology optimization theory is outlined and the 
software is validated with three optimal benchmark cases from the literature. The implementation of 
topology optimization in a product design process is discussed and examples of the procedure are 
provided.  
 
According to the software validation, OptiStruct delivers optimized and near optimal topologies. The 
software is recommended to be used in the thesis. Topology optimization with linear element 
models revealed known features of the SIMP method, like the formation of the so called 
checkerboarding in the optimization solution.  
 
In the optimization of the substructure various load cases, with prescribed static displacements, are 
used. These are extracted from a separate FEA and they represent loadings of the substructure in 
its operating environment. The topology optimization is initially performed in individual load cases 
with linear element models. No additional constraints of the software are used in this optimization. 
Defining features and differences of the resulting structures are studied. Finally a combined 
optimization of multiple load cases is performed with parabolic element models with symmetry and 
minimum member size constraints.  
 
The new substructure consists of topology optimization results, with modified features by the 
author. The stiffness of the structure was multiplied in specific load cases, with around 8% added 
weight, when compared to the original substructure. The fatigue strength of the structure was 
increased, as no welds are found in highly stressed regions of the structure. The implementation of 
the topology optimization method was recommended in the concept phase of product development, 
but it can be also used in cases where the initial structure is strictly defined.  
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Terminology 

Compliance The inverse of stiffness. C=1/k. Where k: stiffness. 

Checkerboarding Checkerboard-like pattern of elements in the topology 

optimization solution. Unwanted and virtually over stiff. 

Design space Elements in which the optimum is sought. 

Design variable Variable that is changed in the optimization. 

Excitation order The frequency of the vibration, excitation order 1 being the crank 

shaft rotating frequency of the diesel engine. 

Feasible point/set The points / a Set that satisfy all constraints of an optimization 

problem  

FE Finite Element 

FEM Finite Element Method 

FEA Finite Element Analysis 

Ground structure The initial set of nodal points in a FE-mesh, or connections of a 

truss structure. 

Homogenization 

approach 

Using composite material for describing varying material 

properties. 

MMA Method of Moving Asymptotes. Approximation method used to 

solve optimization problems. 

Non-design Space Elements that are not affected by the design variable. Typically at 

boundary condition areas. 

Penalty factor  

Relaxation Replacing integer valued and discrete constraints with a 

continuous variable. 

Relaxed constraint Discrete constraint functions reformulated to continuous 

functions. 

Relative density Is used as design variable in SIMP, denoted with ρ. 

Sensitivity analysis Finding gradients of obj./const. functions with respect to the 

design variable. 

State variable Variable that that is monitored during the optimization process. 

SIMP Solid Isotropic Material with Penalization 

Topology 

optimization 

 

Most general form of structural optimization. Material 

connectivity and distributions is determined. 

Objective function The function to be minimized/maximized. 
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List of Symbols 

´ Above a symbol, first derivative 

´´ Above a symbol, second derivative 
T 

Upper right corner of a symbol, transpose 
I 

Upper right corner of a symbol, inverse 

  Design Space 

  Stress 

  Strain 

λ  Lagrange Multiplier 

ρ  Density / relative density in SIMP 

ν  Poisson coefficient 

∊ Belongs to 

   Compliance of a load case 

   The weighted sum of the compliance of each individual load case 

    Admissible stiffness matrix 

E Young’s modulus 

   Elemental stiffness matrix 

FAT xx IIW Fatigue class 

F(x)  Vector of external global forces 

f Vector of External forces 

   Force vector of a load case 

  ̂( ) Nested formulation of the optimization problem 

  ̂( ) Subproblem of the approximate objective function 

  
   

MMA MMA approximation of the objective function 

  Stiffness matrix of an FE-entity 

   Elemental stiffness matrix 

  
  Moving asymptote 

  
  Moving asymptote 

  Displacement vector 

   Displacement vector of a load case 

  Specified volume/vol.fraction constraint value 

   Weighting factor of a load case 

x
k
 Design variable at iteration k 

x0 Design variable at iteration 0 

 ̅ New design 

 ( ) Relative density 

  
  Move limit 

  
  Move limit 

 (   )  Lagrange function 

 ( )  Dual Objective function  
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1 Introduction 

ABB’s main areas are power and automation technologies and the company is a 

global market leader in the branches of industrial motors and drives, wind turbine 

generators and power grids world-wide. ABB’s headquarters is based in 

Switzerland, and the company employs around 145,000 people and operates in 

circa 100 countries. The company was created in 1988, but the history of the 

Helsinki factory dates back to 1883 and 1889 to the Elektriska Aktiebolaget in 

Sweden and Ab Strömberg Oy in Finland. The abbreviation ABB comes for the 

words Asea Brown Boveri. [ABB Finland] 

This thesis is about the topology optimization of an attachment region of an 

industrial generator from ABB that is exposed to cyclic loading. The generator is 

a part of a generator set also called genset. A genset consists of an engine 

connected to a generator via a flexible coupling. The engine and generator are 

mounted on a common base frame, which is dynamically isolated from the 

concrete foundation by steel springs. Generator sets produce electricity for various 

purposes, e.g. on off-shore facilities, for ship propulsion or as power plants. An 

example of a generator set is shown in the Figure 1. The generator is attached 

from its sides by a bolt joint and this area is considered in the thesis. This 

attachment area is illustrated with the Figure 2, which shows a steel frame similar 

to the considered generator frame, with the stator winding shown in red. The 

original structure consists of welded steel plates. Future plans for increasing the 

electric output require more strength and rigidity of the generator frame. In the 

thesis topology optimization is used to achieve this. Over the last decade topology 

optimization has evolved to an important tool for finding optimized connectivity 

and material distribution of load carrying structures. 

The objective of this thesis is to increase the stiffness of the attachment region 

using topology optimization approach. A Finite Element based topology 

optimization software called OptiStruct is used for optimization. The loadings of 

the structure are taken from an earlier computational simulation of the electric 

device in its operating environment. The theoretical background of topology 

optimization, and its computational applications, is reviewed. The used software 

is validated by benchmarking it with optimal topologies found in the literature. 

In the optimization a stiffness maximization problem with a prescribed volume 

constraint is considered. The structure is optimized inside a fixed design space 

according to loadings, boundary conditions, objectives and constraints. To 

facilitate the comparison of stiffnesses between the original and optimized 

structure, the optimization is constrained to have approximately the same amount 

of material available, as in the original attachment area. The optimized attachment 

will consist of base material, thus no welds are needed in highly stressed region. 

Significant fatigue strength increase is expected by removing welds in critically 

loaded regions.  

The outcome of the optimization will be a new material distribution in the 

optimization area, i.e. a new concept for the generator attachment area. The post-

processing of the optimized design to a ready functional part is not in the scope of 

this thesis. However, the required workflow to achieve this is presented and 

illustrated.   
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Figure 1. Wärtsilä 18V50 gensets with ABB generators in a power plant configuration [Wärtsilä Power 

Plants]. 

 

 

Figure 2. ABB electric machine frame. [ABB Borchure]. 
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2 Optimization 

This chapter introduces some basic definitions terminology in optimization. A 

common separation in optimization is made between linear and nonlinear 

optimization. In linear optimization the objective function and all constraints are 

linear, i.e. they can be expressed e.g. in the form Ax=b or Ax<b. This, however, 

does not restrict the terms in the vector or matrix x to be linear, but quadratic or of 

other order. A benefit of linear optimization problems is that they are always 

convex. Convexity is explained later on in the text, but in short convex problems 

are guaranteed to have a global optimum, which otherwise is not so obvious.  

Nonlinear optimization problems deal with nonlinear constraints and objectives 

respectively. Nonlinearities, i.e. functions of second order, are common in science 

and engineering, as many relations can only be described with nonlinear 

functions, e.g. energy dissipation, force-displacement relations etc. [Griva et al. 

(2009) p.3-7, 9-15].  

In the thesis continuous nonlinear optimization is regarded because topology 

optimization falls into this branch of mathematical optimization and its basic 

concepts are outlined later in the text. The field is approached with simple 

equations and a truss example. An example is provided to demonstrate how a 

nonlinear topology optimization problem is solved utilizing convexity and 

gradient based algorithms, like the Method of Moving Asymptotes (MMA). 

Optimization problems involving multiple and complex functions are facilitated 

for using Lagrangian Duality principle.  

From mathematical point of view optimization is a process of finding the 

maximum or minimum of an objective function and its optimal points are called 

optima. The minimization or maximization is performed with respect to a design 

variable and subject to some limiting functions called constraint functions. 

Optima are either local or global, which is illustrated in the Figure 3, where the 

function y(x) is evaluated in an interval [x1, x5], which is called the design domain. 

For 3D structures like in the scope of this thesis the design domain is called 

design space. The points x1 and x5 are the global minimum and maximum, x4 is a 

local minimum, x2 and x3 are stationary points and not optimal. [Christensen 

(2008) p.3, 37] 

 

 

Figure 3. Global and local optima. 
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Typically global optimum is the most wanted, but hard to find or it might not 

exists. Especially in nonlinear optimization the non-existence of global optima is a 

common problem. Thus many optimization methods only seek for local optima 

and global optima are sought via solutions of sub-problems or with other search 

methods. Global optima are guaranteed for the convex problems, as for these 

problems local optima are also global optima. [Griva et al. (2009) p.9-15] In the 

optimizations of this thesis the following compliance and volume fraction are 

central conceptions. Compliance, C, is the inverse of stiffness, k 

  
 

 
 ( 2.1 ) 

and this is often used as objective. Volume faction is a perceptual value of 

material and it is used as constraint in most of the cases.  

2.1 Optimization Problem Formulation 

The function to be minimized or maximized is called the objective function, and 

the variable that is changed in the optimization is called the design variable. The 

limitations of the optimization are called constraints. The response of the 

optimization system is represented by a state variable. In a mechanical structure 

the response means displacement, stress, strain of force for example. An example 

of nonlinear optimization problem with one linear constraint function is shown 

below. The point   =(1,1) is the global optimum for this optimization problem. 

[Griva et. Al. (2009) p. 3-4] 

        ( )  (    )   (    )  ( 2.2 ) 

 

Subject to (s.t.):  

 ( )          ( 2.3 ) 

 

 

Figure 4. Global optimum of a nonlinear problem with a linear constraint. [Grivat et. al. (2009) p.4.] 
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Where f(x) is the objective function and c(x) is the constraint function. Another 

representation of a nonlinear optimization problem with a constraint on a vector 

set of design variables: 

    ( )       [           ]
  ( 2.4 ) 

  ( )                  ( 2.5 ) 

  ( )              ( 2.6 ) 

                       ( 2.7 ) 

where: g(x) is the objective function of the design variables in x. cj(x) and lj(x) are 

constraint functions, and the design variables are bound in the last inequality 

statement [Singresu (2009) p.6]. The points that satisfy all constraints of an 

optimization problem belong to a feasible set and individual points are called 

feasible [Grivat et. al. (2009) p.43-44]. 

2.2 Convexity 

Convexity is illustrated in the Figure 5. In the Figure first function is strictly 

convex, middle one is convex and left one is non-convex. A set defined by a 

linear system of constraints is a convex set; this is illustrated in the Figure 6. For 

convex problems local optima are also global optima. An optimization problem is 

convex if the objective function is convex and the constraints are concave. [Griva 

et al. (2009) p.7.]  

It is sometimes possible to formulate nonconvex constraint or objective functions 

as convex combinations using approximation methods. Convexity can also be 

examined by differentiation. A twice differentiable function is convex if 

   ( )                 , ( 2.8 ) 

where x is the design variable. For problems with multiple dimensions the 

Hessian matrix of second derivatives has to be positive semi definite or all 

eigenvalues of the Hessian matrix are greater than or equal zero [Griva et al. 

(2009) p.48-52]. 

 
Figure 5. Strictly convex, convex and non-convex functions. [Christensen (2008) p. 38] 

 

 
Figure 6. Convex and non-convex sets. [Griva et al. (2009) p. 48] 
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2.3 Solving Large Optimization Problems 

Practical optimization problems of mechanics typically involve many design 

variables and constraints. In such a case it might be impossible to determine 

which constraints are active and where in the design domain. Typically in large 

problems objective and constraint functions cannot be written as explicit functions 

of the design variables. The remedy is to solve these problems in a sequence of 

explicit sub-problems that are approximations of the original optimization 

problem and typically simpler to solve. [Christensen (2008) p.57]  

When the optimization deals with simplifications of the objective function, the 

problem formulation is based on limited information of the original function. In 

such a case the information is only valid in the vicinity of the approximation and 

the global optimum is tedious to find. Thus conditions for optimality are typically 

introduced to facilitate finding the optimum. Especially in nonlinear optimization 

the optimality constraints are important, as they form the basis of the solution for 

these problems.  On the other hand the type of the optimal points can be validated 

with derivatives of the objective function. For example stationary points are 

expressed by first derivatives and second derivatives express maxima or minima. 

For nonlinear problems the derivation involves multiple techniques such as 

Karush-Kuhn-Tucker conditions (KKT), with Lagrange multipliers [Griva et. al. 

(2009) p.44-46, 503-504]. 

Topology optimization software utilize typically one of the following methods to 

solve the optimization problem; optimality criteria method involving the so called 

Karus-Kuhn-Tucker (KKT) conditions or Mathematical programming utilizing 

sensitivity analysis methods. The latter is also called gradient based optimization 

in the topology optimization literature. [Bendsøe (2003) p.9-22] Software utilized 

in the thesis applies a gradient based optimization and thus an approach of this 

method is reviewed. [Appendix A] 

2.4 Gradient Based Optimization 

OptiStruct uses a gradient based optimization method to solve the topology 

optimization problem. The method is called a “local approximation method” in 

OptiStruct, but it is probably just a reformulation of the so called “Method of 

Moving Asymptotes” (MMA), as move limits of the design variable are used to 

control the convergence, as in MMA. In general the method is about solving a 

large scale optimization problem in a sequence of smaller sub-problems that are 

approximations of the original optimization problem.  

Due to the formulation, the MMA leads to a convex optimization problem, even 

though the original optimization problem is nonconvex. The update of the 

structure between iterations is generated by solving the MMA approximate 

problem, which is based on information on the gradients of the objective and 

constraint functions with respect to the desing variable. The extraction of this 

information is also called sensitivity analysis. The so called “Lagrangian Duality” 

method is utilized to solve the MMA approximation. The method is highly 

efficient for design problems involving a very large number of design variables 

but much less constraints. This is common to topology optimization. [HW Help] 
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Based on [Christensen (2008) p.57], let us consider a structural optimization of an 

FE-discretized elastic body, with a finite number of degrees of freedom (dof). Let 

us minimize deflection g(u,x) with constraints on the displacement. x is the design 

variable, e.g. total length of the structure The solution is bound to a given area of 

the structure given by bounds on the design variable x: 

    (   ) ( 2.9 ) 

       ( )   ( ) ( 2.10 ) 

  (   )                ( 2.11 ) 

 ∊     ∊       
         

             ( 2.12 ) 

Where g(x,u) is the objective function, and gi(x,u) is the i:th constraint function.  

K(x) is the stiffness matrix of the structure, u is the global displacement vector, 

F(x) is the vector of external global forces. An Equilibrium equation u(x)=K
-

1
(x)F(x) is used to implicitly define the displacement vector of a given design. It 

is possible to solve u( ̅)  numerically using equilibrium equations in FEA for 

example for any given design  ̅. Now the optimization problem is rewritten: 

     ̂( ) ( 2.13 ) 

        ̂( )                  ( 2.14 ) 

where 

  ̂( )    (   ( ))  ( 2.15 ) 

and  

  ̂    (   ( ))         ( 2.16 ) 

 

This is a nested formulation of the optimization problem formulation in ( 2.9 ), i.e. 

all functions are expressed with respect to the design variable. Using MMA it is 

solved in a sequence involving multiple sub-problems. The procedure for solving 

the above structural optimization is described as follows [Christensen (2008) 

p.58]: 

1. Initial design x0. Iteration k=0 

2. FEA to calculate the displacement vector u(x
k
). 

3. For the design x
k
 calculate the objective function   ̂( 

 ) and the constraint 

functions and their gradients, ∇gi(xk) (sensitivity analysis). 

4. Formulate an explicit, convex approximation of the nested formulation at 

x
k
. 

5. Solve the approximation by nonlinear algorithm to give a new design x
k+1

. 

6. Set iteration k+1 and return to step 2 and start a new iteration, unless 

convergence criterion is satisfied. 

FEA is here used as an automated design optimization framework.  
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Typically used methods to obtain this explicit approximation of the original 

optimization problem are Sequential Linear Programming (SLP), Sequential 

Quadratic Programming (SQP), Convex Linearization (COLIN) and Method of 

Moving Asymptotes (MMA) used in OptiStruct.  The introduction of the MMA 

later on provides an example how the topology optimization problem is solved.  

2.4.1 Method of Moving Asymptotes 

The Method of Moving Asymptotes (MMA) is an iterative solution first order 

method for non-linear programming in mathematical optimization. “In each step 

of the iterative process, a strictly convex approximating subproblem is generated 

and solved. The generation of these sub-problems is controlled by so called 

‘moving asymptotes’, which may both stabilize and speed up the convergence of 

the general process.” [Svanbeg (1987)].  

To form the approximating optimization subproblem MMA uses intervening 

variables, which include the moving asymptotes. The asymptotes are changed 

during the iterations. An MMA approximation of a function gi, i=0,…,n at the 

design x
k
 at iteration k is [Svanberg (1987)]: 

  
     ( )    

  ∑(
    

 

  
    

 
    

 

     
 )

 

   

 ( 2.17 ) 

Where Lj and Uj are the moving asymptotes, i is the index of a function, j is the 

index of the intervening variables,     
 ,      

  involve derivatives of the original 

function g(x) with respect to the design variable the term r is:  

  
    ( 

 )  ∑ (
    

 

  
    

 
    

 

     
 )

 
   . ( 2.18 ) 

The moving asymptotes satisfy 

  
    

    
  ( 2.19 ) 

These are presented in more detail in [Svanberg (1987)]. Differentiating   
   ( ) 

twice gives: 

   
     ( )

   
 

   
 

(  
    ) 

 
   

 

(     
 ) 

 ( 2.20 ) 

    
     ( )

   
  

    
 

(  
    ) 

 
    

 

(     
 ) 

 ( 2.21 ) 

    
     ( )

      
  , if j≠p. ( 2.22 ) 
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The MMA approximation of the original optimization problem (14) at iteration k 

is: 

   {

     
     ( )                           

      
     ( )            

  
       

          

 ( 2.23 ) 

Where α and β are move limits. This problem is solved using Lagrangian duality. 

The conservatism of the approximation may be controlled by moving the 

asymptotes during the iteration [Christensen (2008) p.68]. 

2.4.2 Lagrangian Duality 

The duality principle in mathematical optimization states that optimization 

problems can be considered from viewpoints; the primal problem or the dual 

problem and they are related. The following relationships facilitate many 

optimization problems. The dual problem might have a simpler solution than the 

primal problem. Even an estimation of the solution of the dual problem may 

facilitate finding a good approximate solution for the primal problem. [Griva et al. 

(2009) s 522 – 523]. The principle uses the Lagrangian function, which is a 

function that combines the objective and constraint functions. It is a central 

concept in structural optimization [Griva et al. (2009) p.484]. The prima dual 

principle: 

(i) If the primal is a minimization problem the dual is a maximization 

problem and vice versa. 

(ii) The dual of the dual problem is the primal problem. 

(iii)The objective value for any feasible solution to the dual maximization 

problem is a lower bound on the objective value for any feasible solution 

to the primal minimization problem.  

(iv) If either optimization problem has an optimal solution then so does the 

other. These optimal objective values of the two problems are equal. 

In the following, the dual problem is used to find the optimum of the primal 

problem in equation ( 2.23 ). Due to the features of the MMA algorithm the 

objective function of the optimization problem in equation ( 2.23 ) is continuously 

differentiable, strictly convex and the constraint functions are convex and 

separable. The separability of the constraint functions gives advantages when 

Lagrangian duality is used.  

  

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
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The Lagrangian function   of the optimization problem ( 2.23 ) at iteration k is 

 (   )    
     ( )  ∑    

     ( )

 

   

 ( 2.24 ) 

 ∑   
   (  )  ∑  (∑   

   (  )
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 ( 2.25 ) 

 ∑(   
   (  )  ∑     

   (  )

 

   

)

 

   

 ( 2.26 ) 

Where λi ≤ 0, i=1,…,l. The dual objective function is 

 ( )      ∊  (   )      ∊ ∑  

 

   

(    ) ( 2.27 ) 

∑    
  

         
   

 

   

  (    )       ∑    
  

       
 

 

   

  (    ) ( 2.28 ) 

 

Minimizing the Lagrangian inside the dual objective funtion  ( ) is straight 

forward as the optimization is minimizations of functions of a single variable. The 

solution of the original optimization problem is found by maximizing  ( ) for 

λ≤0.  
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3 Topology Optimization 

Structural optimization is commonly divided into three subclasses, which are 

sizing optimization, shape optimization and topology optimization. Topology 

optimization is the most general form of structural optimization. The method 

involves determination of material connectivity and the size and shape of holes in 

a structure. Known quantities are boundary conditions, applied loads, prescribed 

restrictions and for example the volume of the end structure. [Bendsøe (2003) p.1]  

Figure 7 illustrates the differences of the three optimization classes. Starting from 

the top most structure the optimized quantities in the figure are sizes of the truss 

members, the boundary shape and in the last the connectivity of the trusses, i.e. 

topology. [Christensen (2008) p. 4-7]  

 
Sizing optimizaition 

 

 
Shape optimization 

 

 
Topology optimization 

Figure 7. Classes of structural optimization. [Christensen (2008) p. 5-6] 

The first publication in the field of topology optimization considered low volume 

fractions and appeared in 1904 by A.G.M. Michell. This paper presented 

optimality criteria for the least weight layout of truss structures, similar to the one 

in Figure 8.  

 

Figure 8. Long cantilever problem and the exact optimal truss layout by Lewiński et. al. [Springer 

Images] 
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The structures are often referred to as Mitchell’s trusses. [Rozvany (2007) & 

(2001)]. Mitchell recognized that the theoretically optimal least weight truss 

structure is an infinitely dense, but discrete system of tension and compression 

members. The continuous curvature of the truss members is possible, as they are 

supported by a continuum of connections with other intersecting truss members. 

The solution is a structure with a dense discrete–continuous network of support 

members. Michell proved that an optimal truss must follow the orthogonal 

network of lines of maximum and minimum strain, in a constant-magnitude strain 

field. This facilitated the optimization problem, as finding optimal node positions 

of the truss structure was reduced to finding an orthogonal network of layout 

curves, on which the nodes should lie [Taggart, Dewhurst (2010)].  

 

This theory was extended to grillages, i.e. beam like structures in the 1970’s by 

Rozvany and the first general theory of topology optimization was released in 

1977 and it was called “optimal layout theory”. [Rozvany (2007)] Topology 

optimization for higher volume fractions also termed Generalized Shape 

Optimization (GSO) or Variable Topology Shape Optimization. In GSO the 

topology and shape of internal boundaries in porous and composite continua is 

optimized simultaneously.  

 

Development of the numerical finite element (FE) based methods of topology 

optimization has been intensive since the late 1980’s. Bendsøe, Kikuchi, Diaz 

presented the so called homogenization approach over the decade. The so called 

Solid Isotropic Microstructure (or Material) with Penalization for intermediate 

densities-method (SIMP) was presented in the late eighties. The method is 

sometimes also called material interpolation, artificial material, power law, or 

density method.  The method is most popular at the moment. It was suggested by 

Bensøe in 1989 and presented for the first time by Zhou and Rozvany in 1990. 

Xie and Steven presented the Evolutionary Structural Optimization ESO in 1992. 

The method is also referred to as Sequential Element Rejections and Admissions 

(SERA) [Rozvany (2001) & (2007)]. 

 

Computational topology optimization software uses typically one of the presented 

methods; the Homogenization Method, Evolutionary Structural Optimization 

(ESO) or Solid Isotropic Material with Penalization (SIMP). The SIMP topology 

optimization method is utilized in this thesis. 
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3.1 Density Method (SIMP) in FEA 

The SIMP method is implemented in a finite element formulation in OptiStruct. 

Basic concept in finite element based SIMP is to relate the elemental stiffness 

matrix with a continuous variable, which is used as a design variable in the 

optimization. The design variables are scaled up in regions of high strain energy 

and down in regions of low strain energy, thus iteratively creating a new 

distribution of stiffness in the FE-model. [ Bendsøe (2003) p.11] 

The design variable is interpreted as the density of the material and it is named 

relative density, denoted with ρ. Areas of low density are low in stiffness. A 

penalty factor p with a penalization scheme is included to make elements with low 

density values unfavourable in the optimization [Bendsøe (2003) p.4]. The 

distribution of stiffness in a FE-model is discrete due to the discretion in finite 

elements. Minimum compliance problem for one element is: 

        ( 3.1 ) 

       (  )    ( 3.2 ) 

       ( 3.3 ) 

where u and f are the displacement and load vectors. Here the stiffness Ke 

depends on the elements stiffness Ee. In the total mesh where elements are 

e=1,…,N, the problem is: 

  ∑  (  )

 

   

 ( 3.4 ) 

where Ke is the global element stiffness matrix. In the topology optimization 

problem, one is interested in material distribution, so in discretised form, in a 

mesh with voids or solids. In the design domain, this means that we are seeking 

the admissible stiffness matrices, for which: 

               
         {

           
             

 ( 3.5 ) 

 

And the minimum compliance design is sought for a limited volume fraction, i.e. 

limited amount of material is used as constraint. It follows: 

∫                 (    )    
 

 ( 3.6 ) 

This is a distributed discrete valued problem, i.e. intention is to find a structure 

comprising solid or void elements. The problem is solved by replacing the integer 

variables with continuous variables, i.e. relaxed. These are then penalized, so that 

the solution is steered into discrete 0-1 values in individual elements. The stiffness 

matrix of the problem is then formulated, so that it depends on continuous 

function, which is interpreted as the density of the material. In SIMP topology 

optimization this function is the design variable. [Bendsøe (2003) p.4-6]  
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In SIMP the stiffness depends on the design variable x as follows: 

     ( )   ( )     
      ( 3.7 ) 

∫  ( )        ( )  
 

      ( 3.8 ) 

Where ρ(x) ist the design function and E
0

ijk are the material properties of a given 

isotropic material. The ρ(x) is referred to as density, as the volume is evaluated as 

its integral over the domain. The density interpolates between 0 and E
0

ijk.  

Specifying p>1 makes intermediate densities uneconomical in the design, as they 

contribute less to stiffness than elements with density ρ(x)=1, but they weigh the 

same as solid elements. Typically in order to obtain true 0-1 designs, p>3 is 

required. The effect of the penalization is illustrated in Figure 9. 

 

Figure 9. Stiffness vs. relative density (cost) for various types of penalization scheme. [Modified from 

Rozvany (2001)] 
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3.1.1 SIMP in OptiStruct 

In OptiStruct the penalization factor p is always greater than 1, by default the 

value is p=2 for shell elements and p=3 for solid elements. When manufacturing 

constraints are used the value of p starts from 2 and is increased to 3 or 4 along 

with the iterations. [Altair HyperWorks Help]  

Figure 10 and the list below were constructed according to [Bendsøe p. 21] to 

illustrate the procedure of FEA based topology optimization. Let us assume the 

compliance is minimized at a given volume fraction constraint.  

a) Initially a homogeneous density distribution is applied in the design space 

elements.  

b) Volume constraint is applied from the initial guess onwards.  

 Alternatively at this point, the density variables are updated 

according to a previous iteration. (ρ at elements with high/low 

energy density is scaled up/down) 

c) For this distribution of the density variable, a FEA is conducted resulting 

nodal displacements.  

d) The compliance and the associated sensitivity of the design variable are 

calculated, and the change of compliance with respect to the objective 

function is examined.  

e) If less decrease is obtained than in the convergence criterion, iteration is 

stopped. Otherwise the iteration is repeated.  

f) The final solution is used in post processing with a given threshold value 

of the density variable. 

Once the optimization has converged OptiStruct suggests a solution, that consists 

of all the elements in the initial design space, but with scaled densities varying in 

the range of 0 < ρ < 1. No elements are removed during the optimization. User 

decides at which relative density the structure is printed out. OptiStruct offers 

smoothing algorithms to produce a structure with smoothed boundaries. 

 

Figure 10.OptiStruct iteration scheme. 
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3.2 Complications in Numerical Topology Optimization 

Two important issues are related to topology optimization as complications, 

namely dependence of solution on mesh-refinement and appearance of 

checkerboard pattern.  

3.2.1 Mesh-dependency of the Solutions 

The SIMP method suffers from the nonexistence of analytical, accurate and 

discrete solutions. The phenomenon is called mesh-dependency. In SIMP 

different optimal structure is found just by refining the mesh, i.e. without 

changing the optimization problem. This is not common in optimization. 

In SIMP finer mesh leads to structures of different microstructure and different 

topology, rather than better description of boundaries. In general the introduction 

of new smaller holes will increase the efficiency of the structure and the optimal 

solution is a microstructure instead of a macro structure. However, in applied 

topology optimization problems, macro structures are typically more interesting. 

[Bendsøe (2003) p.28-32] 

In Figure 11 it is seen that the microstructure of the finest mesh c) is more detailed 

and much different from the a) and b). The remedies to get clearly defined 

structures are to reduce the space of admissible designs by a global or local 

constraint on the variation of the density variable. This will rule out the possibility 

for finer scale microstructures. This is achieved by adding constraints to the 

optimization problem, reducing directly the parameter space for the designs, or 

applying filters in the optimization implementation. [Bendsøe (2003) p.28-32] 

 

 

Figure 11. Mesh-dependency phenomenon of SIMP. Discretizations with a)2700, b)4800 and c) 17200 

elements. [Bendsøe (2003) p.30] 
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3.2.2 The Checkerboard Problem 

In the checkerboard pattern problem, regions of alternating solid or void elements 

are formed in the solution. The elements are connected only in their corners and 

the stiffness of the structure is virtually high. The problem is illustrated in Figure 

12. The computational stiffness of the solutions b) and c) are similar in, but only 

the solutions c) represents a solution that would perform well also in reality. 

The checkerboard problem is related to features of finite element approximation 

and is due to numerical modelling, that overestimates the stiffness in such a 

structure. A viable solution is to use higher order elements with nodes along the 

edges. This solution requires more CPU time and also alternative methods have 

been developed. [Bendsøe (2003) p.39->] 

 
Figure 12. Checkerboard problem of a square structure. a.) Desing problem, b.) solution without 

checkerboard control, c.) solution with filtering conrols. [Bendsøe (2003) p.41]  
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4 Validation of the Topology Optimization Software 

In this chapter OptiStruct is tested and validated using three known optimal 

structures. Validation of the used topology optimization software is important to 

determine whether the software is able to deliver optimal or near optimal results, 

with the implemented SIMP algorithm. Research [Rozvany, Zhou, Barker (1992)] 

shows, that the interpolation scheme SIMP alone delivers good results to known 

analytical optimal topologies.  

In the field of nonlinear optimization it is tedious to find an optimal solution. 

Analytical solutions can only be found for academic topology optimization 

problems, such solutions are only available for truss and grillage-like structures. 

The grillage solutions are more realistic than truss like solutions, as no buckling 

effect is considered in the truss solutions. [Rozvany (2011)] For general solid 

solutions and higher volume fractions no analytical solutions exist and therefore, 

global optimality cannot be guaranteed. [Appendix A, Ole Sigmund 5.9.2012] In 

non-linear, real-life problems the objective function will have some constraints, 

other than zero or unity. Thus the solution methods are always numerical and 

based on iteration techniques. Furthermore no general method exists to prove the 

local or global optimality of a topology optimization result. [Appendix A, 

Parviainen 6.9.] As a result the neighbourhood of every topology optimization 

result has to be examined. The way to do this is to carefully alter the boundary 

conditions, loads or convergence criterion, to see if the solution represents a stable 

optimum. In an ideal situation the solution represents a stable global or local 

optimum that is not sensitive to alterations of the boundary conditions or loading. 

Otherwise small changes in dimensions e.g. caused by manufacturing tolerance of 

the actual part might lead to an unstable structure in reality. In the following 

benchmarking, however, this is not done, as the benchmark solutions represent an 

optimum accepted by the academic community. These solutions are used as a 

reference. 

4.1 Benchmark Cases 

OptiStruct is validated using three known benchmark cases presented in the 

topology optimization literature; the 2D plate benchmark [Lewinski, Rozvany et 

al. (2008)] and 3D torsion cylinder [Taggart, Dewhurst (2010)] have an analytical 

formulation. A 3D solution for a cantilever beam is also considered [De Rose, 

Diaz (2000)]. The material parameters of steel of Table 3 were used for all cases 

apart from the 3D cantilever model. The models are calculated in units mm, kg, N 

and MPa. The topology optimizations were run with OptiStruct default setttings 

so no checkerboard control or manufacturing constraints were used. Penalty 

factors 2 and 3 were used for shell and solid elements respectively. For further 

information on OptiStruct specific manufacturing constraints in topology 

optimization refer to [Zhou, M. Fleury, R. et al. (2011)]. 
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4.2 Exact Analytical Solution for a 2D Truss Structure 

In the first test an analytical truss solution is compared to a shell element solution 

of OptiStruct. The analytical problem is presented in Figure 13. The plate is 

rigidly mounted from the AB-side and a force is acting downwards in point P. 

According to the paper the minimal weight structure is sought.  

 

Dimensions and parameters used in 

OptiStruct model 

a=50mm a1=80mm bp=40mm 

ϴ= π/2+tan
-1

(3/8)= 110,556mm 

D1D2=80mm 

P=10N 

ρ=7800*10
-9

 kg/m
3
 

E=207*10
3
 MPa 

Figure 13. 2D topology optimization problem. [Lewinski, Rozvany et al. (2008), p.2] 

The optimal analytical solution is shown in Figure 14, where a.) illustrates the 

optimal truss structure and b.) classifies the optimal truss layout and loading 

condition. In the Figure 14a the rigid support on line AB is converted into pinned 

support in points A and B. Material is removed from the edges F, D1, D2 and 

region AG2B is empty. Inside the regions BG1G2 and BPG1 tension truss members 

carry load. A compression truss spans from AG2G1E2P.  

 

a.) 

b.) 

 
 

Figure 14. a.) Optimal truss layout for the inclined support. B.) Illustration of the solution. [Lewinski, 

Rozvany et al. (2008), p.2]  
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The above example was modelled in OptiStruct with a shell finite element model. 

Figure 15 represents the results of a topology optimization with linear and 

parabolic elements. Dimensions, material parameters and loading are presented in 

Figure 13. The red areas represent fully dense elements while the blue areas 

consist of elements with densities close to zero. The areas ranging from light blue 

to orange represent elements with intermediate density.  

 

The structures are similar to the analytical truss solution in both cases. Material is 

removed from the same areas and the structure consists of truss-like members. 

The initial boundary condition at the line support is separated clearly into two 

areas, but the support in point B is distributed over a larger area than in Figure 16, 

most likely because the singular support cannot be represented in a FE solution 

with shell elements. The structure is no longer attached all the way along the side 

AB. The author finds no explanation why the supporting member near point A is 

not vertical.  

 

While in the analytical truss solution no bending moments occur, they are present 

in the FEM solution. Thus in the computational solution all support member 

connections contain multiple members to distribute both bending moment and 

tensile/compressive loads. Checkerboard patterns can be recognized in the linear 

solution, but they were avoided using parabolic elements. Mesh dependence of the 

optimization is clearly visible in the two solutions. The parabolic model has 

roughly three times the mesh density of the linear model and thus there are 

differences in the connectivity of the truss members.  

 

 

Element type:  

Linear CTRIA3 

Element type:  

Parabolic CTRIA6 & CTETRA10 

Elements: 29,746.0 DOF: 90,462.0 Elements: 89,238.0 DOF: 1,254,228.0 

  
Figure 15. 2D benchmark solutions. 
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A static stress analysis was conducted on the final topology. The topology of the 

parabolic solution in Figure 15 was remeshed with 13560 parabolic triangle 

elements for this analysis. The model is presented in Figure 16. This structure 

consists of elements where the density was above 0.1 in the final optimization 

result. In this model, however, all elements have the density of steel. The same 

boundary conditions and load was applied to this FE-model as in the optimization.  

The stress result is illustrated in Figure 17 where the stresses are illustrated as so-

called signed von  Mises stress. In the FE solver RADIOSS the sign of the signed 

von Mises stress is taken from the sign of the absolute maximal principal stress; 

blue members are in compression and red in tension. The loading condition of the 

trusses is similar to the analytical in solution Figure 14b. A compression member 

spans from P to near the region point A. Members inside APBA are mainly 

tension members. Thin compression members near the loading point, inside the 

domain APBA are unexpected. They were included in this analysis because the 

structure was exported from OptiStruct with a low threshold of relative density. 

These members would have been removed if the structure had been exported with 

the relative density above 0.4.  

 

Figure 16. Topology optimization result remeshed for static FEA. 

 

 
Figure 17. Stress state and displacement field of the 2D benchmark solution.  
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4.3 Analytical and Numerical Solution for a 3D Torsion 
Cylinder 

In the second validation case a 3D thick walled cylinder with minimum weight is 

studied. The cylinder is rigidly supported from three points at its bottom and load 

is applied through three points on the top end of the cylinder. [Taggart, Dewhurst 

(2010)] The attachment and loading points are cyclically symmetric about the 

longitudinal axis of the cylinder with a period of 2/3π. The dimensions of the 

cylinder and optimization problem formulation were not specified in the article. It 

is assumed to have been to maximize the stiffness with a volume fraction 

constraint. The constraining volume fraction was probably less than 20%.  

 

Figure 18 presents numerical solutions for the optimal topology of the cylinder for 

combinations of axial and pure torsion load. The structure on the left is exposed to 

pure axial tension and the rightmost structure experiences pure torsion. These 

structures consist of orthogonal families of helices intersecting at angles γ.  

 
Figure 18. Numerical solution for the optimal topology of a pure torsion cylinder. [Taggart, 

Dewhurst (2010)] 

 

The paper also represents an analytical solution for this angle: 

 

       (
  

  
) ( 4.1 ) 

 

Where Fr is the longitudinal force and T is the torque applied to the end of the 

cylinder. [Taggart, Dewhurst (2010)] For pure torsion γT (Fr=0, T=1) and for pure 

tension γFr (Fr=1, T=0) becomes: 
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( 4.3 ) is not defined so the solution is found by examining the graph of cotangent 

function in Figure 19.  When the angle approaches zero, the value of the function 

approaches infinity, thus it follows: 

 

           (   
  (

 

 
))     [    

 

 
] ( 4.4 ) 

 

 
Figure 19. Graph of the cotangent function. 

The FEM test model was constructed according to the articles illustrations and the 

model is presented in Figure 20. The length was 250mm and the outer and inner 

radii were 60mm and 40mm respectively. 83700 brick elements with six elements 

across the cylinder wall are used. A rigid interpolation element (RBE3
*
) was used 

to distribute the torsion to the cylinder and the cylinder was attached at its bottom 

in three areas, each consisting of 5x6 nodes. The case was calculated with linear 

and parabolic elements with a penalty factor p=2.5 and the results are shown in in 

Figure 21.  

 

 

 
Figure 20. FE-model of the 3D cylinder benchmark case. 

*RBE3 elements average the motion of dependent node on the independent nodes. The displacement of the dependent node 

is a weighted average of the motions at the independent nodes. Forced displacements will be applied to the dependent node 
in the optimization model.[HW help] 
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The result with linear elements converges to a helix-like structure near the 

boundary condition and loading areas, see Figure 21 a.).  The helices intersect the 

longitudinal axis in approximately 45° as expected, but the model has severe 

checkerboarding. This leads to a very low compliance as seen in Table 1. 

 

In the parabolic element model, Figure 21 b.), the checkerboard problem is not 

prevalent in the solution, but OptiStruct failed to converge to a well-defined 

structure in the centre of the cylinder where also areas with checkerboards are 

evident. In Figure 21 c.) the parabolic element solutions are illustrated with no 

density filtering. The structure is similar to the structure in Figure 18, but the 

helices are more connected internally and noticeably thinner. The helices intersect 

at approximately 90° angle but not near the boundary conditions. Calculation with 

parabolic elements required 5-10 times the CPU time of the linear element model 

solution. 

 
Table 1. End compliance comparison of the torsion cylinder topology optimizations. 

Model Initial state Linear element solution Parabolic  element solution 

Compliance 58 750.59 0.2431214 391.4889 

    

 
Figure 21. Solution structures for the 3D torsion cylinder benchmark.  
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In separate analysis the penalty factor was increased to 3.5 and the convergence 

criterion was tighter. In this analysis OptiStruct had also problems in converging 

to a well-defined structure in the middle, the helices did not always intersect at 

90° and there was checkerboarding in the middle of the cylinder. The method is 

also very sensitive to boundary conditions; a test case of a cylinder with uniformly 

distributed torsion loading and boundary conditions at both ends converged to a 

thin walled pure cylinder with no helix structure. The software developers were 

able to produce a solution with smooth boundaries, thicker helices and no 

checkerboarding [Discussion 1.5, Appendix A]. This solution, however, required 

the use of OptiStructs filtering like minimum member size and checkerboard 

control. 

4.4 Numerical Solution for a 3D Cantilever Beam in Bending 

The third test case is a 3D structure that was obtained by a mesh-less wavelet-

based solutions scheme for topology optimization. The method utilized is not 

based on finite element theory; instead the material distribution and displacement 

field are discretized over the domain using fixed-scale, shift variant wavelet 

expansions. The elasticity problem is solved using a wavelet-Galerkin technique 

during each iteration of SIMP. [DeRose, Díaz (2000)] This case serves as a good 

benchmark for the FE-based OptiStruct.  

 

Figure 22 illustrates the design domain of the test case; a pin-supported cantilever 

beam is loaded at the centre of an edge with a unidirectional load P. The objective 

function was not specified directly but the optimization problem is assumed to 

maximize stiffness with a volume constraint.  A volume fraction constraint of 

25% and a penalty factor 2.5 was given. The model uses a simplified material 

model with E=1.0, ν=0.3. This optimization setup was used with OptiStruct with 

force the value P=3N.  

 

 
Figure 22. Test case problem statement [DeRose, Diaz (2000), p.280] 
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A comparison of the resulting topologies from the paper and OptiStruct with the 

same discretion is illustrated in Figure 23.The OptiStruct solution on the right is 

illustrated with elements ρ>0.5. Material is removed from unloaded corners and 

the shape is hollow, the solution is a 3D continuum structure with various 

thickness structural members, i.e. combined beam-plate structure. This solution is 

compared to the one on the left hand side and they appear almost identical.  

 

Meshless solution Element type: CHEXA , 8 node parabolic  

Discretization: 64x64x64=262144 

voxels 

Discretization: 64x64x64=262144 elements 

Dimensions: 48 x 48 x 96mm 

Source: Diaz (2000), p.280.  
Figure 23. Comparison of the 3D cantilever beam solutions. 
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4.5 Concluding Remarks on Benchmark Problems 

OptiStruct performs well and converges to near optimal topologies if parabolic 

element formulation is used. Checkerboard problems were visible in all solutions 

with linear elements and to some extent also with parabolic element models. The 

calculation effort is far greater when parabolic elements are used, thus the use of 

linear elements is sensible for approximate solutions. These can be used for 

example to get an idea of the resulting structure and to make changes to decisive 

features of the model like loading direction etc. However, due to virtually high 

stiffnesses and unrealistic topologies these solutions are of little use. 

The topology optimization method is very sensitive to boundary conditions and 

the initial state of the optimization problem strongly affects the result. The final 

solutions of OptiStruct can hardly be named optimal as there is no guarantee of 

the optimality of the solutions in non-linear optimization and as the solutions of 

the software were only similar to the known optimal ones. Only in one test case 

the structure appears to be identical to the example optimal topology. The author 

suggests the solutions to be called “near optimal” or “optimized” to be used in this 

context. In most cases the final topology is also dependent of and sensitive to the 

used relative density threshold. High values of relative density should be used in 

post processing in order to obtain structures that are well defined and have clear 

load paths. By high values the author means ρ>0.5. 

The final conclusion is that the software can be used in the substructure topology 

optimization of this thesis without major restrictions. The software will be capable 

of producing near optimal topologies with parabolic element models. The use of 

the software’s built in filters and constraints results in better defined boundaries 

and load paths of the structure. Thus some symmetry and minimum member size 

constraints are used in the actual topology optimization. 
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5 Fatigue Strength Estimation of Welded joints 

In this chapter the fatigue strength of a welded joint is estimated in constant 

amplitude cyclic loading. The estimation of the fatigue strength is performed with 

the fatigue class (FAT) values according to the IIW recommendation. The 

intention is to provide means to classify, how big an effect on fatigue strength it 

has, if no welds exists in the generator attachment area. The new topology will 

probably be a cast steel component and it consists of basematerial with no welds. 

The basematerial is regarded concurrent to structural steel in this context. More 

detailed fatigue calculations and fatigue designs are not in the scope of this thesis, 

and thus assumptions like constant amplitude loading are made in order to make 

the comparison straightforward. More accurate fatigue strength assessment 

methods of cast components are presented e.g. in [FKM]. 

5.1 IIW Fatigue Class Estimation 

In the following, the presented stress range values are valid for structural steels up 

to 960MPa ultimate strength [IIW p.6]. The fatigue class assessment of welded 

joints is based on the nominal stress approach. In this study constant amplitude 

loading is considered and the knee point of the SN-curves corresponds to N=10
7
 

cycles. Welded steel joints of the original structure are considered to have FAT 36 

to 90. These regions are to be replaced with a cast component, for which the value 

FAT160 is used as reference for fatigue strength.  

 

Table 2 presents stress ranges at the knee point for different FAT values. Plate 

thicknesses up to t=25mm are covered. Table 3 presents material properties of 

cast steel that is used as reference for the material of the optimized attachment 

area. The fatigue stress range of non-welded base material corresponds to 

FAT160. For a welded T-joint FAT90 corresponds to a maximum quality joint 

with no imperfections. FAT71 corresponds to a welded T-Joint with full 

penetration and good quality and FAT36 represents a T-joint or a filled joint with 

partial penetration [IIW p.46-61]. Typical welded T-joints correspond to FAT71 

to FAT36. 

 
Table 2. FAT data, stress at knee point of S-N curve. [IIW (2008) p. 114] 

Fatigue class 
Stress ranges at knee point 

N=1x10^7 cycles, [MPa] 
FAT 160 / FAT XX 

FAT 160 116 1 

FAT   90 52.7 2.20 

FAT   71 41.5 2.80 

FAT   36 21.1 5.50 

   
Table 3. GS20Mn5 mechanical properties [MET, ASM] 

Young’s Modulus Poisson ratio Density Yield Strength Ult. Strength 

207 GPa 0,3 
7800-7830 

kg/m
3
 

260-300 MPa 500-650 MPa 
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The fatigue strength of the cast component is considered to be FAT160. The 

fatigue strength of the FAT 160 is approximately 2.8 or 5.5 times higher at 

1x10^7 cycles than it is for a other considered FAT71 or FAT36  welded joint. 

 

The conclusion is, that by removing welded joints in the attachment area the 

fatigue strength of the component is at least doubled, see Table 2. Additional 

increase in fatigue strength can be expected if the optimized is designed to have 

smooth internal connections and material if material is added to highly stressed 

areas.  
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6 Substructure Optimization  

In this chapter the stiffness of the attachment area was maximized using topology 

optimization. The structure was optimized within a fixed design space according 

to loadings, boundary conditions, objectives and constraints. The loadings of the 

structure are taken from an earlier computational simulation of the electric device 

in its operating environment. Static forced displacement load cases with a volume 

fraction, symmetry and minimum member size constraints are used for the 

optimization. Maximization of stiffness equals maximization of compliance when 

forced displacements are used as loadings. For the pre-processing, load extraction 

and meshing Abaqus 6.12., MATLAB and NX Ideas were utilized. The topology 

optimization was performed using Altair OptiStruct version 12.0. 

6.1 Generator Set W18V46 

A diesel generator set, genset, consists of a diesel engine connected to a generator 

via a flexible coupling. The engine and generator are mounted on a common base 

frame, which is dynamically isolated from the concrete foundation by steel 

springs. Generator sets produce electricity for various purposes, e.g. on off-shore 

facilities, for ship propulsion or as power plants [Wärsilä Powerplants homepage]. 

Technical specifications of the Wärtsilä 18V46 genset are listed in the table 4.  

 

Table 4. Technical data of the 18V46GD Genset. [Wärtsilä Dual-Fuel Engines homepage] 

Technical data 50 Hz/ 500 rpm Model: 18V48GD 

Electrical output (MW)) 17,076 

Electrical efficiency (%) 45.3    

Dimensions and dry weight  

of generating sets 
 

Length (m) 18,260 

Width (m) 5,090  

Height (m) 5,890   

Weight (t) 358         

Engine layout V18  

Turbolader 2 
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A genset Wärtsilä W18V50 with a generator is illustrated in Figure 1. The scale of 

the 18V50 and 18V46 are very similar, so the figure serves well for illustrative 

purposes. An example of a frame construction similar to the studied generator is 

illustrated in the Figure 24. The considered attachment area of this thesis is 

marked in the figure. The attachment area transfers all the loads that the generator 

is exposed to, in its operating environment. Rotor, ventilation unit and bearings 

are excluded from the figure and stator windings are shown in red. In its present 

configuration the attachment area is composed of steel plates welded together. As 

a part of a generating set the generator is exposed to cyclic loadings caused by 

vibration caused by the diesel engine. Engineering and constructional information 

was used to define a suitable size for the substructure considered in this thesis. 

 

Figure 24. ABB Electric Motor frame with the optimization area illustrated in the boxed area. [ABB 

Brochure with modifications.] 

6.2 Optimization Area 

A CAD-model to be meshed with finite elements for the optimization is shown in 

Figure 26 and multiple geometrical constraints are imposed on the optimization 

area. A blower unit is mounted on top of the frame for ventilation so the 

attachment area needs to have sufficient air flow conditions. A trapezoidal shape 

was selected for the ventilation duct, so that the optimization will be able to 

converge to a thick beam or plate-like structure near the stator fixing areas. 

Adequate space for tooling is to be reserved for fastening and tightening of the 

generator to the base frame. A lead-through has to be kept clear of material at the 

back. Entry to the stator should be possible from the tooling area, but this 

condition is dealt with later on as it would have restricted the design space for the 

optimization too much. 
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A single coordinate system is used throughout the thesis and applies to all 

presented models. The origin lies on the rotating axis of the rotor, positive x-axis 

points towards the back of the generator and x=0 at the centre of the generator, see 

Figure 25. In the figure the all sides of the generator are named according to 

coordinate values. A and B-bank have different y-coordinates, A-bank having 

negative coordinate values. D- and N-end have different x-coordinate values, D-

end having negative sign. The abbreviation D stands for the “engine driven end” 

and N for the “neutral end”. In this thesis the generator frame considered 

symmetric about the zx-plane, x-axis is longitudinal and z-axis horizontal. The yz-

plane of the attachment area models lies between the middle frame plate 

extensions see Figure 26b.  

 

Figure 25. Coordinate system, abbreviations and orientations used in the analyses. 

In Figure 26 the dimensions of the topology optimization model are presented. 

The measures are dimensionless, longest side having the value 1.The substructure 

is a 45° sector from the shaft line downwards; this area encloses three lines of 

stator fixing points. These are illustrated Figure 26a alongside with longitudinal 

beams which, however, are excluded from the optimization models. The length of 

the model is approximately 0.6 times the total length of the generator. A part of 

the original cover plates were included in the model. These are 4.8x10
-3

 thick, 

0.13 long in D-end and 0.19 long at N-end. The tooling spaces are 0.27 x 0.12 x 

0.07 and have a 0.12 rounding. The Attachment flange is 0.03 thick and bolt holes 

are 0.03 in diameter. The scale of the generator frame is listed in the Table 5 using 

the corresponding unit less system. 

Table 5 ABB Generator steel frame main dimensions. 

Main dimensions of the generator Relative dimensions (unitless) 

Height   1.91  

Length  1.69  

Width   2.12  
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a.)

 

b.)

 

c.) 

 

d.)

 

e.) 

 
Figure 26. Attachment area, A-bank CAD model dimensions. 
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6.3 Finite Element Models 

A finite element model was created using the CAD geometry of the attachment 

region, see Figure 27. The FE-model comprises 45 3781 parabolic 10 node 

tetrahedral elements, and has 1,976,754 degrees of freedom (dof). All solid 

elements share the same material but colour coding was used to divide the model 

in two: non-design space, in elements purple and to design space elements in blue. 

The genset coordinate system is used, i.e. x-axis is the generator rotating axis, 

where z=0 and y=0. Nodes with positive y-coordinates belong to the so called B-

side of the genset and A-side nodes have negative y-coordinate values 

respectively. ZY-plane lies between the two middle frame plates.  

Topology optimization is performed inside the designs space and all optimization 

constraints only affect this area. The value of the objective function, however, is 

calculated for the whole model. Boundary conditions are applied only on the non-

design space. The purpose of this area is to eliminate convergence problems near 

boundary conditions and to smooth loading in highly stressed areas, giving more 

realistic and feasible topologies inside the design space. Element densities will not 

be scaled inside the non-design space during optimization. Green elements are so 

called RBE3 rigid elements with one dependent node and multiple independent 

nodes. With these the boundary condition areas will not deform as rigid planes 

which avoids stress concentration in these areas. This is important, as the topology 

optimization method was found to be sensitive to boundary conditions in chapter 

4.5. RBE3 elements of the stator attachments are not visible in Figure 27 

Material properties for cast steel presented in Table 3 may vary according to the 

composition of the steel [ASM], so fixed values were chose for the optimization. 

Following material properties ρ=7800kg/m
3
, E=207GPa, v=0.3 were used in all 

models of the thesis. 

 
Figure 27. FE-model of the B-bank attachment area. 

 

 

 

 

 
Figure 28. RBE3 element 

attached to non-design space. 
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6.4 Extraction of Boundary Conditions from Response 
Analysis 

The complex loading and boundary conditions of the generators attachment area 

were simplified for topology optimization as forced static displacements. 

Initially a dynamic harmonic response analysis was performed with the FE-

method for the whole generating set assembly. In the analysis the internal 

excitations of the diesel engine, due to rotating masses, combustion cycles etc., 

were used in the response analysis and no excitation of the concrete fundament of 

the genset was present. Excitation order refers to the frequency of the vibration, 

excitation order 1 being the crank shaft rotating frequency of the diesel engine. 

This facilitates illustration of data when internal combustion engines are 

considered. 

The response analysis resulted in complex valued harmonic response data, i.e. 

frequency dependent displacements of the generating set during operation. This 

complex valued data included the rotatory movement of the nodes of the FE-

model and the phase of the responses varied between the different locations of the 

structure.  

The displacements of the attachment area were printed out in the areas of the cut 

boundaries of the optimization design space. The cut boundaries are named in 

Figure 32. The displacements of the boundary nodes at a specific frequency are 

illustrated in Figure 29. From this data the forces acting on the attachment area 

during operation were obtained and these are presented in Figure 30. The force 

level has been scaled, so that the highest resultant force equals unity. Each column 

represents the sum of nodal forces at a given order of excitation. Significant 

excitation orders (1, 2, 4.5 and 6) were selected according to the presented force 

levels.  

 

Figure 29. Nodal displacements of the cut boundries from an response analysis. 
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Figure 30. Reaction forces on the boundaries of the excitation model. 

The maximum deformation of the attachment area at a critical excitation order 

was extracted in MATLAB from the complex valued data according to the 

following procedure;  

 in Figure 31 a node is circulating on the unit circle.  

 The phase angle ϕ where the peak amplitude of the nodal displacement 

was found, was used to idealize the data to form real valued, quasi-static 

boundary conditions for the topology optimization.  

In other words, the components cos ϕ of the complex valued data are only used, 

see Figure 31. 

 

 

Figure 31. A node at z, circulating a unit circle. 
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As the meshes of the excitation analysis model and topology optimization model 

were not identical, the static nodal displacements from the excitation analysis 

were mapped over to the optimization model in the following manner: 

a) Node sets were defined, according to Figure 32, both for the excitation 

analysis model and topology optimization model.  

b) In the excitation analysis model, every node set was assigned a reference 

node. The coordinates of this node were calculated as the mean values of 

all node coordinates in the specific node set. 

c) The displacements of all nodes in a node set were averaged to give the 

displacement of the reference node. 

d) In the topology optimization model, RBE3 elements were created. The 

dependent nodes of these elements were created at exactly the same 

locations as the reference nodes of the excitation model. An RBE3 element 

and the dependent node are illustrated in Figure 28. 

e) The displacements of all reference nodes of the excitation model were 

brought to the topology optimization model. These displacements were 

assigned to the dependent nodes of the RBE3 elements. 

f) The RBE3 element averaged the displacement of the dependent node to 

the nodes of the node set. 

 

 

Figure 32. Node sets used in the FE-models, A-Bank. 
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An illustration of the displacement field mapping procedure is presented in  

Figure 33. In the figure on the right, the displacements of both attachment areas, 

A- and B-bank, of the excitation analysis model are illustrated. On the left the 

displacements of the B-side displacement field is mapped over to the optimization 

model using RBE3 elements. The procedure of extracting boundary conditions 

explained above is outlined in Appendix B.  

 

Figure 33. Displacement field mapping of the complex data (right) to static displacements of the 

optimization model (left). 

After the topology optimization analysis the material distribution of the design 

domain changes and the stiffness, stress levels and displacements change 

accordingly. Thus the initial boundary conditions cannot be used to test the 

performance of the optimized structure. A proper test is to insert the new topology 

back in to the frequency response analysis and analyse it. However this process 

takes some time and the new topology is tested with more simple boundary 

conditions later on in a finite element analysis. 
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6.5 Load Cases  

To get an idea of the severity of different excitation orders, nodal forces from the 

cut boundaries of the excitation analysis model in Abaqus were gathered in Figure 

30. The conclusion from this figure is that the absolute force levels are somewhat 

higher on the B-bank nodes. Thus topology optimization was performed with 

static displacements from the B-side where the loading is more critical.  

Excitation orders 1, 2, 4.5, and 6 were selected as critical frequencies for the 

attachment area. These orders, or frequencies of vibration, stand out from others 

orders in force level, see Figure 30. Appendix C illustrates the global movement 

of the cut-boundary nodes of the excitation analysis model at a given excitation 

order. The magnification of the amplitude of motion is the same in all figures. 

Four load cases were formed according to the orders 1, 2, 4.5 and 6. To form a 

load case, the static displacement field of the attachment area at an order of 

excitation, was extracted and mapped on the topology optimization model, 

according to chapter 6.4. The load cases were given names LC1 (order 1), LC2 

(order 2), LC3 (order 4.5) and LC4 (order 6). Topology optimization was 

performed for each load case individually and by combining them as is presented 

in the following. The general displacements and deformations of the generator are 

illustrated in a very simplified manner in Figure 34. 

The force levels of orders 1 and 2 are high due to large inertia forces of the 

generator. At these orders the attachment area has little deformation in relation to 

the deformation of the generator frame and baseframe. The attachment area is said 

to move “rigidly” along with the generator.  

At order 1 nodes of the attachment area translate mostly in Z-direction. The nodes 

of the generator FE-model would form a skewed ellipse trajectory, like in Figure 

34. 

At order 2 the nodes oscillate mainly in XZ-plane. The A and B bank oscillate 

with an opposite phase angle, so the generator frame has significant elastic 

deformation.  

At order 4.5 the movement of the attachment area at this order is mainly 

translation of the nodes in Y-direction in opposite phases. Order 4.5 is of 

additional interest due to it being the ignition order of the diesel engine. In general 

the torsional excitations from the diesel engine are significant at this.  

At order 6 the elastic deformation is mainly shear in XZ-plane. This order has a 

relatively high reaction force level and the displacement field in is assumed to be 

critical fatigue wise. For more figures of the displacement field see Appendix C, 

Figure 4 

Scaled static displacement data used as BC’s in the optimization models are 

gathered in Appendix D and the named node sets in this data are illustrated in 

Figure 32. 
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Load case 1, order 1 

 

Load case 2, order 2 

 

Load case 3, order 4.5 

 

Load case 4, order 6 

 
Figure 34. Simplified illustration of the generator frame deformations and displacements in the load 

cases 1 to 4. 
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6.6 Optimization Problems 

In this work the optimal material layout for stiffness was sought with a given 

amount of material. The amount of material was limited to the same as in the 

original design. This facilitated the before-and-after type comparison of the 

structures and answers the question: “How much was the stiffness increased with 

approximately the same amount of material at hand.”  

6.6.1 Single Load Case Topology Optimization 

As discovered in chapter 4, the computational effort is multiplied when parabolic 

elements are used. Thus linear element models are used initially to run topology 

optimization individually in all load cases, LC1 to LC4, with no additional 

constraints on e.g. symmetry. The results from these analyses give insight to the 

optimized material distribution and main load paths in each load case. This is vital 

information when features of the combined topology optimization are examined.  

The optimization problem statement for these analyses was: 
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Ci is the compliance in a load case,  fi are reaction forces of load case i, u(x) is the 

displacement field, N is the number of elements, V is the total volume of the 

model,  ̅ is the volume constraint value, ve elemental volume,   is the relative 

density of the whole model,    relative element density and      is a minimum 

treshold for “void” elements. 

As the displacement field stays constant, the internal forces of the optimized 

structure are increased with increasing compliance.   
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6.6.2 Combined Load Case Topology Optimization 

In the combined load case topology optimization the structure is optimized with 

respect to all four load cases LC1 to LC4. Parabolic element models are used to 

obtain well defined structures.  

The optimization problem statement used for these analyses was: 

             ∑      
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                    ( 6.7 ) 

Where Cw is the weighted compliance, wij are the weighting factor of analysis i 

and load case j, Ci Compliance of a load case,  fi are reaction forces of load case i, 

u(x) is the displacement field, V is the total volume of the model,  ̅ is the volume 

constraint value, ve elemental volume,   is the relative density of the whole model, 

   relative element density and      is a minimum treshold for “void” elements. 

The above statement says that topology optimization of the structure with multiple 

load cases is a minimization problem of the weighted average of the compliances 

of each load cases. The load cases are weighted by factors, which are selected 

manually. The weighting of the load cases has a profound effect on the final 

solutions, so care must be taken when weighting factors are selected. The 

weighted compliance topology optimization is also referred to as combined load 

case topology optimization in the following text. 

Four analyses were conducted. Each analysis consists of a combined load case 

topology optimization with specific weighting factors on the LC1 to LC4. This is 

illustrated in Table 6.  

Table 6. Combined load case topology optimization: Weighting factors and compliances of different 

analysis. 

Load 
case 

Analysis 1 Analysis 2 Analysis 3 Analysis 4 

W1 
Init. 
Comp. 

W2 
W.  
Comp. 

w3 
W. 
Comp. 

w4 
W. 
Comp. 

LC1 W11=1 413.65 W21=0.1 41.37 W31=0.05 20.68 W41=0.10 39.61 

LC2 W12=1 589.96 W22=0.1 59.00 W32=0.05 29.49 W42=0.07 39.61 

LC3 W13=1 9.14 W23=1 9.14 W33=1 9.14 W43=4.33 39.61 

LC4 W14=1 39.61 W24=1 39.61 W34=1 39.61 W44=1.00 39.61 
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Descriptions of the analyses: 

 Analysis 1 was conducted without any weighting of the load cases, i.e. w11 

to w14 =1, or additional constraints on the optimization.  

 Analyses 2 and 3 the highest compliances of LC1 and LC2 were brought 

to the lower magnitudes similar to LC3 and LC4. 

 Additional constraints were applied: symmetry in YZ-plane and a 

minimum member size of 0.036 units.  

 Analysis 4 has same compliances in all load cases, compliance of LC4 

serving as reference. Compliances, weighting factors and weighted 

compliances of the runs are presented in the Table 6. 

The weight of the final optimization result will differ from the value given by 

“volume fraction constraint * density of the material”; this is because a varying 

density threshold is used to print out the optimization result. According to chapter 

4.5, high density threshold values should be used. In the following optimization, 

the value ρ=0.8 was selected according preliminary tests, on which density 

threshold is suitable. Thus the weight of a topology optimization result may have 

about 10-20% less weight than given by the volume constraint. This variation in 

turn is affected by other optimization parameters that affect the amount of 

intermediate density elements. 
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7 Results 

The resulting topologies of the linear and parabolic element model analysis at 

ρ>0.8 are presented in this chapter.  

7.1 Single Load Case Topology Optimization, Linear Elements 

Figure 35 illustrates the solutions of the linear element model runs. For more 

detailed figures refer to Appendix E. 

In the result of load case 1 the material was mainly concentrated to the N-end, for 

reference see Figure 25, of the attachment area. Two thick plate-like areas were 

formed and they followed the stator circumference. These were connected in the 

area between stator fixing points, in x-direction, for reference see Figure 26. In y-

direction supporting members stretched out to the attachment flange beyond the 

bolt line towards the exterior of the generator. Some material was also distributed 

in the area of the service hatch, behind the former frame plates. At the D-end 

some irregular material distribution was present. This is due to linear element 

formulation and checkerboarding.   

Material distribution of the load case 2 was concentrated at the D-end and two 

plate-like structures were formed. These were connected in the area between 

stator fixing points, in x-direction. No supporting members were formed to the 

bolt flange area like in order 1. The result had some irregular material at the N-

end of the model and a badly defined support for one lower stator attachment at 

the SxAx3x3 fixing point, for reference see Figure 32. 

Solution of the load case 3 had mainly material above the attachment flange. 

Thick supporting members were formed to the attachment flange in y-direction. In 

this area the general material orientation seemed to be in (-1,0,1) in the global 

coordinate system, for reference see Figure 25. Only minimal material was 

distributed below the attachment flange, where also some irregular material 

distribution was present. N- and D-end attachments had reinforcements and were 

highly connected to surrounding material. 

The results for the load case 3 and 4 shared many features. In load case 3 the 

material was concentrated above the bolt flange with no material below this level. 

The solution had very little irregular material distribution. All stator attachments 

above the attachment flanges and N- and D-end attachments were connected to 

surrounding material. Connectivity to the attachment flange is not as strong as in 

load case 4. Exceptional to other solutions was the hollow cavities that formed 

inside the domain. 

An additional analysis was conducted in which the sign of the displacements was 

changed. This had no effect on the material distribution of the solutions. 
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Load case 1 - Order 1 Load case 2 - Order 2 

 

 

Load case 3- Order 4.5 Load case 4 - Order 6 

 
 

Figure 35. Single load case linear element model solutions, ρ>0.8. 
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7.2 Combined Load Case Topology Optimization, Parabolic 
Elements 

As presented in Table 6 four analyses with different weighting factors were 

performed. The results of the parabolic element model analysis at ρ>0.8 were 

illustrated in the Figure 36 and Figure 37. The results are compared to the linear 

element model analysis results. For more detailed figures of the topologies refer to 

Appendix F.  

Resulting topology of the analysis 1, without weighting factors, was somewhat 

irregular. The unconnectivity of the material in the Figure 36 is due to the high 

selected relative density threshold. The solution of load case 2 is dominant in the 

structure, i.e. at D-end of the design space. The influence of other load cases was 

hard to distinguish.  

In the result of the analysis 2, in Figure 36, material was distributed mainly below 

the attachment flange, symmetrically about the ZY-plane. Higher compliances of 

load cases 1 and 2, see Table 6, most probably cause this emphasis in the material 

distribution. Upper middle stator attachments SxAx1x2 to SxAx1x3, see Figure 

32, were connected to the frame plate non-design space probably due to the 

influence of load cases 3 and 4.  

In the result of the analysis 3, in Figure 37, material was distributed above the bolt 

attachment flange and practically no material was placed below this level. The 

structure was connected to the attachment flange before or at the bolt line, which 

seemed to be characteristic for the load case 4.  No support members extended 

beyond this line as in the linear element solution of the load case 3. The structure 

has internal cavities and the dominance of the load case 4 is evident in the 

solution. The compliance of this load case was the highest in the analysis. 

The solution of the analysis 4, in Figure 37, shared many features with the 

solution of the analysis 3, but at N- and D-end material was also extended up to 

the lower stator attachments and frame plate non-design space. This seemed to be 

characteristic of the load cases 1 and 2. Elsewhere material was mainly distributed 

above the attachment flange. The compliance of all load cases had been scaled to 

the same value, but load case 3 and 4 seemed to define the structure above the 

attachment flange. Unlike in the analysis 3 supporting members extended further 

into the attachment flange from the middle area of the design space, which was 

characteristic of the load case 3. In general the solution consisted of thinner and 

individual support members than in the solution of analysis 3.  
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Analysis 1: 

Combined compliance, non-weighted. 

  
Analysis 2: 

Combined compliance, w1, zy-sym. 

 
 

Figure 36. Parabolic element model solutions for combined load case analyses 1 to 2, ρ>0.8 
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Analysis 3: 

Combined compliance, w2, zy-sym. 

  

Analysis 4: 

Combined compliance, w3, zy-sym. 

  
Figure 37. Parabolic element model solutions for combined load case analyses 3 to 4, ρ>0.8 
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7.3 Concluding Remarks on the Topology Optimization 

The linear element models served as good references for the combined 

compliance analysis. With the results of the linear element models it was possible 

to detect presence of the load cases 1 to 4 in the solutions of the combined 

compliance analysis with parabolic elements. 

Combined compliance analysis 1 and 2 were highly dominated by load cases 1 

and 2. Should these topologies be suggested as the feasible design for the 

generators attachment area would the result probably have been very unoptimal in 

loading conditions similar load case 3 or 4. Also the linear element solutions for 

load cases 1 and 2, and the combined compliance analysis 1 and 2 indicated that 

near optimal topologies for these loading conditions would comprise of plate-like 

structures. Dominant features in the mentioned cases were plate structures that 

expanded over the design domain, along the stators circumference. This 

configuration was similar to the original design of the original construction, i.e. 

welded steel plate generator frame. This indicates that a plate-like design would 

perform well in loading conditions LC1 and LC2.  

Results of the combined compliance analysis 3 and 4, with more weighted 

compliances, were similar in many features. In general the load case 4, i.e. order 

6, seems to dominate the final topology in both cases. The solution of the analysis 

3 was more robust in design and comprised of thicker members everywhere in the 

design space. This is because in this analysis the weighting of the LC4, had the 

highest effect on the topology, see Table 7. This resulted in a stable and robust 

topology. When analysis 4, where all load cases have the same effect on the final 

topology, is compared to the solution of the analysis 3, this topology is a 

compromise between all load cases. The structure appears to be less robust and 

comprises of more detailed and slender supporting members. Noticeable 

difference is the longer extending supports at the bolt flange, at the back of the 

attachment area. 

As a conclusion it proved to be tedious to find a topology optimization solution, 

comprising all load cases in the final optimization result. The variation of the 

weighting parameters would have required an optimization of its own to examine 

more combinations of load cases. The solution of the analysis 3 is selected as 

feasible solution for the reality however. It represents most of the load cases and 

especially the fatigue critical LC4, order 6, is dominant. Based on previous 

experiences from the generators operating environment and cyclic loading this is 

beneficial. The solution from this analysis needs some modifications, however to 

fit in the generator frame; the frame plates have to be extended to the bolt flange 

level. As mentioned above in this paragraph, plate-like structures in these areas 

seem to be beneficial in load cases 1 and 2. 
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8 Analysis of the Suggested New Topology 

Figure 38 presents the result of the thesis. It is a manually modified and near 

optimal topology for the considered four load cases. The performance of the 

structure is analysed in this chapter and its features are discussed. 

 

The structure is based on the solution from the analysis 3, but with plate-like 

extensions from the attachment flange downwards. Ideally and according to the 

solution of analysis 4, the topology would also have more reinforcements at the 

attachment flange in the y-direction, Figure 38, on the right. However at the time 

the model was created, the author did not have the results from analysis 4. As 

mentioned in chapter 6.6 due to the density threshold value ρ=0.8, the analysis 3 

solution has less weight than in the original structure. After adding the frame plate 

extensions to the structure in Figure 38, the weight of the structure is 108.5% of 

that of the original structure. 

 
  

 

 

Figure 38. Suggested new topology for the generator attachment area. 
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8.1 Finite Element Analysis of the New Topology 

The finite element model comprised of 148803 parabolic tetrahedral solid 

elements and had 770388 DOF. The model was attached rigidly from the bottom 

of the attachment flange at all nodes.  

Four static load cases were defined to compare stiffness changes of the optimized 

structure to the original one. The load cases are illustrated in Figure 39. Simple 

unidirectional displacements were used in the load cases to facilitate the extraction 

of reaction forces, their components and the comparison of stiffnesses between the 

original and the new topology. 

In load case 1 all nodes on the xy-plane of the upper frame plate extensions are 

forced to displace 6x10
-4

 units in the positive x-axis. The purpose of this load case 

is to demonstrate the distribution of shear stiffness in x-direction. Probably the 

stiffness increase in load case 2 is higher than in load case 1. 

In load case 2 stator fixing points in the lines SxBx1 and SxBx2, see Figure 32, 

are forced to displace 6x10
-4

 units to the positive x-axis. This load case 

corresponds well with the loading condition of the order 6 in chapter 6.5.  

In load case 3 all stator fixing points are forced to displace 3x10
-5

 in the positive 

y-axis. This load case demonstrates the performance of the structure in a loading 

condition similar to order 4.5 in chapter 6.5. 

In load case 4 all stator attachments the top frame plate ends are displaced 3x10
-5

 

in the negative z-direction. This load case demonstrates the performance of the 

structure in a loading condition similar to order 1 and 2 in chapter 6.5. 

Both the original and the optimized structure were analysed in the aforementioned 

load cases. The reaction forces from the support nodes were printed out and 

equivalent stiffness of the structure were calculated in all directions. In addition 

stress data was extracted from the analysis. 

 

Figure 39. Forced displacements in the analysis of the new topology. 
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8.2 Static Analysis Results 

Table 8 presents a comparison of the stiffness in various directions. Low 

stiffnesses with values lower than 10
-2

 were ignored in the comparison in order to 

obtain reasonable results. Results of the stress analysis of load cases 1-4 and more 

detailed stiffness calculation data is presented in Appendix G. Lower index 1 

refers to a stiffness value of the new topology, Kx1 being the stiffness in x-

direction for example. The results of Table 8summarised: 

a) In load case 1 the optimized structure had 3.8 times the stiffness of the 

original structure in x-direction. 

b) In load case 2 the optimized structure had 6.5 times the stiffness of the 

original structure in the x-direction.  

c) In load case 3 the optimized structure had 1.6 times the stiffness of the 

original structure in the y-direction.  

d) In load case 4 the optimized structure had 0.7 times the stiffness of the 

original structure in the z-direction.  

Table 8. Stiffness Comparison, Optimized vs. Current Structure. 

 

 

The FE-mesh of the new topology was rough from the topology optimization, and 

had high stress regions. The general stress state and regions of high stress in the 

component are examined rather than singular element stresses, thus averaging of 

the von Mises stress was used. Stress analysis figures are presented more detailed 

in the Appendix G. 

In load case 1 the shear loading is distributed quite evenly to the support members 

and onwards to the attachment flange. Concentrated stress regions are found 

between the middle frame plates near the loading points and also at the junction of 

the attachment flange and side plates. 

The stress analysis results of load cases 2 and 3 indicate that connection to the 

attachment flange will have concentrated stress regions. Reinforcements like in 

the solution of the combined compliance analysis 4, of chapter 7.2, would have 

facilitated this situation. The reinforcements would have distributed stresses 

further into the attachment flange. 

In load case 4 stresses are distributed in wide areas, but clear concentration of 

stress is seen near the upper frame plates and at the junction of the support 

members to the attachment flange. This indicates that uniform plate-like structures 

along the stator circumference indeed would be good load carrying structures in 

this case. Also the reinforcements that were discussed above would distribute 

stresses into the attachment flange more evenly. 

  

Directional 
stiffnesses 

Load Case1 Load Case 2 Load Case 3 Load Case 4 

Kx1/Kx2 3.78 6.50 0.00 0.00 

Ky1/Ky2 0.00 0.00 1.55 0.00 

Kz1/Kz2 0.00 0.00 0.00 0.73 
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Load case 1, ∆x=6e-4 Load case 2, ∆x=6e-4 

  
Load case 3, ∆x=3e-5 Load case 4, ∆z=3e-5 

 
 

Figure 40. Von Mises Stress analysis results of the new topology. 
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9 Discussion 

In this chapter the scope and results of the thesis are analysed according to the 

demands of the generators operating environment. Other possible approaches or 

interesting analyses are presented and compared to the ones used in the thesis.  

This discussion is followed with an introduction to ways of working with the 

topology optimization method and outlines some suggestions for future research. 

An example workflow for a product development procedure utilizing topology 

optimization as an integral part is presented. The procedure starts with a concept 

and results with a near optimal component for engineering applications. The 

chapter also presents an example CAD geometry made from a topology 

optimization result of the thesis.  

9.1 Outcome of the Optimization 

The stiffness of the optimized attachment was increased in load cases 1 to 3 in 

chapter 8.2, especially in load case 3 a 6.5 time stiffness increase is considered 

significant. This result demonstrates the potential of the topology optimization 

method. The fatigue strength and allowable stress amplitudes of the new topology 

will be at least double as presented in Chapter 5. On behalf of these load cases and 

the fatigue strength study the objectives of the thesis was obtained. 

The result of load case 4, however, revealed a 27% decrease in stiffness in a 

loading condition mimicking excitation orders 1 and 2. Earlier topology 

optimization in Chapters 7.1 and 7.2 indicated that the best structure for the orders 

1 and 2 would be plate-like or beam structures along the stators circumference. As 

these structures are not dominant in the tested topology, its performance was 

lower in the load case 4, than in the case of the original attachment area. This fact 

and the stress concentration regions at the attachment flange, mentioned in 

Chapter 8.2, indicate that the proposed new topology should undergo some 

modifications, if stiffness in this load case should be increased and stress 

concentrations lowered. These modifications include extensions of support 

members longer onto the attachment flange, like in the solution of analysis 4 of 

Chapter 7.2, and smoother junction of the lower frame plates into the attachment 

flange, see Figure 41.  

The changed stiffness characteristics of the model will affect its dynamic 

behaviour as a part of the genset. The frequency response analysis of the genset 

with the new topology is outside the scope of this thesis, but it would reveal 

important information on how the attachment area performs in its operating 

environment.  
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Figure 41. Possible modifications of the new topology. 
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9.2 Alternative Approach 

In the presented optimization setup much effort was put into extracting static 

displacements from complex valued frequency response data. Due to the 

idealization of using the real part of the complex displacement data some 

information was lost during this extraction. The used load cases, in Chapter 6.5, 

represent the approximate deformation of the generator attachment area during 

operation at different frequencies.  

Changing sign of the static displacements was attempted in order to get topologies 

representing an optimized structure from loadings with a 180 degree phase angle 

difference. This however had no effect on the optimization which is not 

surprising; the topology optimization method relies on linear elastic material 

behaviour and changing the sign does not affect the response of the structure. 

Instead the used static displacements should have been extracted with 180 degree 

phase difference from the excitation analysis model. 

An alternative, simpler approach might have been just to study differences of the 

deformations of the frequency response model at different orders of excitation. 

According to this information, simplified unidirectional or varying direction load 

cases might have been formulated, similar to ones that were made in Chapter 8. 

This approach would have saved enough time to run both the topology 

optimization and the frequency response analysis of the genset with the modified 

attachment area. 
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9.3 Ways of Working With the Method 

Topology optimization is a conception approach which, in an ideal situation, is a 

part of a product development procedure. The method is readily applicable to 

situations where very little a priori knowledge of the structure is at hand. If main 

dimensions, loading and boundary conditions are known, the method offers an 

appealing way to search feasible structures. Figure 42 presents how an initial 

guess with a simple design domain leads to a topology optimization result and to a 

3D printed part. Figure 42a shows the boundary conditions, loading and symmetry 

planes in red. Figure 42b is the result of a static maximum stiffness topology 

optimization with 20% volume constraint and Figure 42c is a 3D printed part from 

the result. 

 

a.) 

 

b.) 

 

c.) 

 

Figure 42. Steps from model to 3D printed part. a.) Design space, BC’s and loading, d.) topology 

optimization result 20% volume fraction, c.) Plastic 3D printed part. 

 

On the other hand the method may be applied to structures that are very well 

defined and critical loading conditions can be stated. In this case the result might 

be an updated structure, with less material and superior performance with regard 

to the optimized condition. However, it requires a systematic approach and 

simultaneous the use of multiple software to re-engineer a component.   

Once the structure has been modelled and a suitable optimization set-up is ready, 

multiple optimization runs have to be conducted in order to be able to find 

feasible structures. These results of are often complicated and branched, which is 

many times the case in near optimal structures as they consist of regions with 

various purpose supporting members; compression-tension members or meshed 

structures, for reference see for ex. Figure 14. The actual topology optimization 

result is not likely feasible to be used as such in real life. This is due to the 

limitations of many manufacturing methods. Additive manufacturing for example 

provides an interesting alternative in many cases, like in Figure 42 where the 

topology optimization result was manufactured directly without any 

postprocessing of the model. 

When conventional manufacturing methods, such as casting, machining of forging 

are regarded, the use of manufacturing constraints of the software facilitates the 

reproduction of real life geometries in most cases.  Typically also these solutions 

require further modifications before the structure is manufacturable. The 

constraints might also suppress some interesting topologies. Thus initial 

optimization runs with minimal manufacturing constraints are recommended.   
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OptiStruct lacks proper tools for geometry synthesis from topology optimization 

results. The current approach requires simultaneous usage of different software. 

At the moment a CAD-file exported from OptiStruct consist of thousands of faces 

and manipulation of the geometry with common CAD tools is troublesome. One 

solution to select only a few faces from critical support members or conjunctions 

of the topology optimization result to be exported into STEP or IGES file. These 

faces serve as reference for forming the actual CAD-geometry of the final part. 

This procedure is also recommended by topology optimization professionals at 

Altair and surprisingly seems to be the most effective one, though still tedious. 

The finished CAD model will then be meshed for FE analysis which reveals 

critical areas of the model are recognized, like hot-spot stress regions. With this 

information a suitable shape optimization could be constructed; minimizing the 

maximum Von Mises stress with a volume constraint for example. Shape 

optimization is ideal for finding right member sizes or roundings to enable good 

performance in working environment. The optimization result has to be once 

again reformulated in CAD. At this point shape optimization results, however, are 

easier to deal with than branched topology optimization results. To bear in mind is 

that producing a manufacturable part from optimization results contributes to the 

unoptimality of the final suggested part; manufacturable part is a near optimal 

structure based on a near optimal solution. The final outcome is a near optimal 

structure for real-life working environment. 

An example CAD-geometry was produced from a topology optimization result to 

illustrate what the structure might look like in CAD after some modifications. The 

outcome is presented in Figure 43. The presented CAD part would still require 

fine tuning of features, FE analysis to determine structural response and possibly 

shape optimization to reduce stress concentration. These however were left out as 

the scope of this thesis is the topology optimization of the attachment area and not 

the post-processing. More figures can be found in Appendix H. 
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a) Result of analysis 4, Design space elements. 

 

 

b) Example CAD-model. 

  
Figure 43. Converting topology optimization solution into a CAD-model. 
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9.4 Workflow from Concept to Component 

The following procedure describes generally the workflow to get from concept to 

component. 

1) Building the design space in CAD or in FE-software  

a. Main dimensions, loading conditions. Design / non-design space 

definitions. 

b. FE discretization according to the needs of the topology 

optimization. 

2) Topology Optimization 

a. Defining the optimization set-up, what is optimized, what is critical 

at which cost and constraints? 

b. Use of additional constraints. Are they needed yet? 

c. Running multiple topology optimizations. Screening sensitivity for 

boundary and loading conditions. Fine-tuning optimization 

parameters. 

d. Selecting the feasible structure. 

3) FE analysis 

a. Examine the topology optimization results in various analyses. 

Obtain data from the performance of the structure.  

b. Recognise critical load paths and member sizes etc. 

4) Building the CAD model 

a. Remove non-manufacturable and noncritical members and 

branches of the mesh. Remove most of the finite elements that are 

not needed to describe the structure.  

b. Reserve elements in critical load paths and at conjunctions. 

c. Export in CAD format & read-in CAD software. 

d. Building CAD features with the aid of the remaining element 

faces.  

e. Remove the original element faces. 

f. Main dimension check: volume, mass, member sizes, angles of 

load carrying members etc. 

5) FE reanalysis 

a. Import the CAD geometry to FE software. 

b. Mesh and run FE-analysis for stresses / displacements according 

operating environment. 

c. Examination of results, Hot-spot recognition. 

6) Shape optimization in optimization software. 

a. Import the FE-model to optimization software. 

b. Building a suitable optimization set-up according to 5c. Example: 

[objective: Min(Max Von Mises), constraint: 0.9< Vtot <1.1)] 

c. Set appropriate design variables in the elements/nodes in the 

regions of hot-spots. 

d. Define move-limits, move directions, additional constrains for the 

optimization. 

e. Optimize for stresses, deflection etc. 

f. Examine results and compare the performances. 

g. Export in a CAD format. 

7) Final adjustments in the CAD software.  
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9.5 Proposals for Future Work 

The use of topology optimization as a part of a larger optimization setup for 

example is attractive, as this enables screening of solutions with different 

parameters. For example in optimizations like in this thesis finding the right 

weighting factors might have been done in another optimization loop.  

Figure 44 illustrates the implementation of Topology Optimization n in another 

optimization loop. The topology optimization model would have to be 

parameterized; i.e. main dimensions or loading directions or discretization of the 

mesh. The higher optimization loop could then vary loading direction, volume 

fraction constraint or compliance weighting parameters. Objectives and 

constraints of this higher optimization setup could be minimizing mass with 

multiple displacement constraints in various load cases. 

 

Figure 44. Topology optimization as a part of a higher optimization loop. 
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To test effects of the initial constraints of the topology optimization of the thesis a 

short combined compliance test analysis was performed with the load cases of 

Chapter 6.5 and scaling factors for compliances of the analysis 4 were used. The 

model presented in Figure 45a. It had no space requirements on the design space, 

i.e. for e.g. ventilation. The design space is the elements in blue, and non-design 

space is the elements in purple. A symmetry constraint in YZ-plane and a volume 

fraction constraint of 40% were applied. The same load cases and scaling factors 

for compliances were used as in analysis 4.  

The result in Figure 45b indicates interesting aspects for future analysis; initial 

optimizations should be run also with minimal space requirements. In this case the 

result indicates, that the ventilation duct cross should be closed in the middle area 

of the stator fixing points to maximize stiffness. Also according to the solution 

lead-through space requirement would not needed in the optimization. 

 

a.)

 

b.)

 
Figure 45. Topology optimization with minimal constraints. a.) Optimization model, b.) Result, ρ>0.8. 
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10 Conlusions 

In the benchmarking optimization analysis OptiStruct performed well and 

converged to near optimal topologies. Checkerboarding is an issue with linear 

element models and parabolic elements formulation should be used. Linear 

element models, however, can be used for initial analysis. For relative density 

ρ>0.5 values should be used in post processing in order to obtain structures that 

are well defined and have clear load paths.  

The solutions of OptiStruct can hardly be named optimal as there is no guarantee 

of the optimality of the solutions in non-linear optimization, and as the solutions 

of the software were only similar to the known optimal ones. Topology 

optimization method is very sensitive to boundary conditions and the initial state 

of the optimization problem strongly affects the result. The solutions should be 

called “near optimal” or “optimized” in this context. OptiStruct’s additional 

constraints resulted in better defined solutions. Thus some symmetry and 

minimum member size constraints were used in the actual topology optimization 

of the thesis. 

In Chapter 7.1 initial analyses with linear element models, without combining 

compliances in the objective function, gave a good insight to different solutions of 

the applied load cases. This information facilitated decision making in the 

combined compliance analysis with parabolic elements in Chapter 7.2.  

First combined compliance parabolic element model solutions were dominated by 

few load cases and the outcome would not have been optimal in the operating 

environment of the generator. Scaling of the compliances of the load cases was 

needed to obtain a feasible structure in the generators working environment. Two 

structures with similar features were found. Based on the result from analysis 3 

and experiences from the linear element model analysis a new model was 

constructed and tested in a FE analysis. The analysis showed significant stiffness 

increase in critical loading conditions. Although the model has some stress 

concentration regions, allowable stress range in fatigue calculations can be at least 

doubled when compared to the original structure. This is because there are no 

welds in the critically loaded areas. The presented structure is a combination of 

different features from the optimization analysis. The structure lacks some 

supporting members in the bolt flange area due to shortage of information at the 

time the model was constructed, but improvements are presented.  

 

Running topology optimization as a part of a bigger optimization loop with a 

parameterized topology optimization model is suggested for a future research 

topic. This approach would provide some interesting benefits for example in 

finding the optimal weighting factors or volume fraction constraints. Also the 

examination of the generator attachment area with minimal initial space 

requirements or manufacturing constraints might give an interesting insight on 

how to distribute material in coming concepts of the attachment area. 

 

 

 



- 66 - Substructure Topology Optimization of an Electric Machine 

 

 

  



REFERENCES  - 67 - 

  

 

REFERENCES 

 

ABB Finland Homepage. [Referred 8.4.2013] Available: 

http://www.abb.fi/cawp/fiabb251/49ec18cae8cea8b1c12575bc002a085e.aspx 

ABB Brochure: Motors & Generators. Synchronous motors. High Performance in 

all Applications. 9AKK105576 EN12-2011 

Altair HyperWorks Help. [Referred 10.4.2013]. Available: 

http://www.altairhyperworks.com/hwhelp/Altair/hw12.0/index.aspx 

ASM International. (1978). Metals Handbook Volume 1. Properties and Selection: 

Irons, Steels, and High-Performance Alloys. 9
th

 Edition. Ohio, United States: 

American society for metals. ISBN: 0-87170-007-7. p. 393 

Bendsøe, M.P. Sigmund, O. (2003). Topology Optimization. Theory, Methods 

and Applications. Berlin Heidelberg, Germany: Springer-Verlag. ISBN 3-540-

42992-1. 

Christensen, Peter W. Klarbring, A. (2008). An Introduction to Structural 

Optimization. Berlin Heidelberg, Germany: Springer-Verlag. ISBN-13: 978-

1402086656 

DeRose, G. C. A.  Jr., A. R. Díaz. (2000). Solving three-dimensional layout 

optimization problems using scale wavelets. Computational Mechanics 25:274 – 

285. DOI 10.1007/s004660050476 

Dowling, N.E. (1999). Mechanical Behaviour of Materials. 2
nd

 Edition. New 

Jersey, United States: Pentrice Hall. ISBN 0-13-905720. p. 362.  

FKM, Forschungskuratorium Maschinenbau e. V. Festigkeitsnachweis nach der 

FKM-Richtlinie. Frankfurt am Main. [Referred 10.4.2013]. Available: 

http://www.fkm-net.de/fkm-richtlinien/index.html. 

International Institute of Welding. (2008). Recommendations for Fatigue Design of 

Welded Joints and components. IIW document IIW-1823-07. p. 41-21, 46-61. 

[Referred 10.4.2013]. Available: 

http://www.iiwelding.org/Publications/BestPractice_Statements/Pages/C-

XVBestPracticeDocuments.aspx 

MET, Metalliteollisuuden keskusliitto. (2001). Raaka-ainekäsikirja. Valuraudat ja 

valuteräkset. Helsinki, Finland. Metalliteollisuuden kustannus Oy. ISBN 951-817-

757-0. p. 165 

Griva, I. Nash, S.G. Sofer, A. (2009). Linear and Nonlinear Optimization. 2
nd

 

Edition. Society of Industrial and Applied Mathematics (SIAM). Philadelphia, 

United States. ISBN 978-0-898716-61-0. 

Rozvany, George I. N. (2011) A review of new fundamental principles in exact 

topology optimization. Warsaw, Poland. CMM-2011 – Computer Methods in 

Mechanics. [Referred 24.5.2013]. Available: 

http://www.cmm.il.pw.edu.pl/cd/pdf/053_f.pdf 



- 68 - Substructure Topology Optimization of an Electric Machine 

 

 

Rozvany, George I. N. (2001). Aims, scope, methods, history and unified 

terminology of computer-aided topology optimization in structural mechanics. 

Structural Multidisciplinary Optimization. 21:90–108. DOI 

10.1007/s001580050174 

 

Rozvany, George I. N. (2007). A Critical review of established methods of 

structural topology optimization. Structural Multidisciplinary Optimization. DOI 

10.1007/s00158-007-0217-0. 

 

Rozvany, G.I.N. Zhou, M. and Birker, T. (1992) Generalized shape optimization 

without homogenization. Structural Optimization 4: 250-252. DOI 

10.1007/BF01742754 

Singiresu, S. Rao (2009). Engineering Optimization Theory and Practice, 4
th

 

Edition. New Jersey, United States. John Wiley & Sons, Inc. ISBN978-0-470-

18352-6 

Svanberg, Krister. (1987). The Method of Moving Asymptotes – A New Method 

for Structural Optimization. International Journal for Numerical Methods in 

Engineering. 24: 359-373. [Referred 15.4.2013]. Available: 

http://www2.math.kth.se/~krille/originalmma.pdf 

Springer Images. Image of a long optimal cantilever. [Referred 27.5.2013]. 

Available: http://www.springerimages.com/Images/RSS/1-10.1007_s00158-010-

0557-z-2 

T-Lewinski. Rozvany, G. I. N. Sokol, T. Bolbotowski, K. (2008). Exact analytical 

solutions for some popular benchmark problems in topology optimization |||: L-

shaped domains. Structural Multidisciplinary Optimization 3.5:165-174. DOI 

10.1007/BF01197436 

Taggart, D.G., P. Dewhurst. (2010). Development and validation of a numerical 

topology optimization scheme for two and three dimensional structures. Advances 

in Engineering Software 41: 910-915. Elsevier. DOI: 

10.1016/j.advengsoft.2010.05.004 

Wärtsilä Power Plants. Homepage. [Referred 27.11.2012]. Available: 

http://www.wartsila.com/en/power-plants/smart-power-generation/gas-power-

plants 

Wärtsilä Power Plants. Dual-Fuel Engines. [Referred 27.11.2012]. Available: 

http://www.wartsila.com/en/power-plants/technology/combustion-engines/dual-

fuel-engines 

Wärtsilä Power Plants. Lokaraari, Tero. Figure of an 18V50 Genset 

Zhou, M. Fleury, R. et al. (2011). Topology Optimization. Practical Aspects for 

Industrial Applications. 9
th

 World Congress on Structural and Multidisciplinary 

Optimization 2011. Shizuoka, Japan. [Referred 15.4.2013].  

Available: http://www.altairuniversity.com/2011/05/25/topology-optimization-

practical-aspects-for-industrial-applications/ 

 

  



  - 69 - 

  

 

 

 

 

 

 

 

 

 

 

 

APPENDICES  



- 70 - Substructure Topology Optimization of an Electric Machine 

 

 

  



APPENDIX A: Email Discussions  - 71 - 

  

 

APPENDIX A: Email Discussions 

Discussion 1 

From: Parviainen Heikki,  

Sent: 6. syyskuuta 2012 15:59 

To: Hämäläinen Juhani,  

Subject: Topologian optimointisoftien validointi 

 

Tervehdys, 

 

en kovin paljon osaa tähän vastata… Jos halutaan ohjelmistoja validoida, niin 

kyllä on järkevää käyttää vertailuratkaisuina tunnettuja tarkkoja ratkaisuja. 

Rozvanyn ratkaisut ovat sopivia, mutta kuten sanoit sauvapohjaisia, ja tarkasti 

ottaen niitä voi käyttää vain sellaisiin tapauksiin. Mutta kyllä sauvaratkaisuja voi 

hyvin käyttää eräänlaisena kontinuumiratkaisun raja-arvona ainakin topologisessa 

mielessä (oikea määrä aukkoja oikeissa kohdissa jne.), ja myös muotomielessä, 

jos käytetään tiheitä elementtiverkkoja. Epälineaarisessa optimoinnissa on 

ylipäätään hyvin vaikeata löytää oikeasti ”tarkkoja” ratkaisuja. Analyyttisiä 

ratkaisuja voi odottaa vain ns. akateemisiin tapauksiin. 

 

Realistisissa ongelmissa on lähes aina aktiiviseksi tulevia (muutakin kuin nollaa 

tai ääretöntä) rajoituksia suunnittelumuuttujien funktioille (rajoitusfunktioille), ja 

ratkaisut ovat tällöin lähes aina numeerisia. Jos löydät journaaliartikkeleissa 

vertailuratkaisuina käytettyjä tai niissä laskettuja numeerisia ratkaisuja, niin 

kyllähän niitä voi käyttää. Mutta analyyttinen ratkaisu realistiselle pinta-

/tilavuusrakenteelle topologian optimoinnissa kuulostaa aika haastavalta, eikä 

minulle tule mieleen. Yksi ongelmahan on se, että pitäisi paitsi löytää lokaali 

ratkaisu, niin myös osoittaa että tämä lokaali ratkaisu on myös globaali. Siihen ei 

yleisesti ole 1-käsitteistä  

tapaa, mutta tietenkin jos tiedetään etukäteen jotakin kohdefunktion muodosta 

suunnittelumuuttujien suhteen (yleistettyjä konveksisuusominaisuuksia tms.), niin 

silloin ratkaisuun on mahdollisuuksia.  

 

Vastaan kysymyksiisi niin, että kaikki tarkat vertailuratkaisut ovat käyttökelpoisia 

ja siinä mielessä tämä tapa on järkevä; kuitenkaan ne yksinkertaisuudessaan eivät 

kerro paljon ohjelman mahdollisuuksista yleisessä tapauksessa; ja topologia-

optimoinnin (pinta-/tilavuusrakenteet) analyyttisiä ratkaisuja ei minulla ole 

tiedossa. 

 

Suosittelen löysentämään kriteereitä niin, ettei pyri vertaamaan ainoastaan 

tarkkoihin ratkaisuihin (koska niitä ei juuri löydä), vaan eri ohjelmien ratkaisuja 

samaan tehtävään keskenään, ja ottamaan kirjallisuudesta (artikkeleista) 

ratkaisuja, vaikka ovat numeerisia, likimääräisiä ja mahdollisesti lokaaleja, ja 

vertaamaan myös niihin. Koska optimointialgoritmien toiminta on usein aika 

parametriherkkää (ja mesh-herkkää jne.), saattaa tasapuolinen vertailu olla 

toisinaan vaikeata. 

 

Terveisin, 
Heikki  
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Discussion 1 

From: Hämäläinen Juhani 

Sent: 5. syyskuuta 2012 10:53 

To: Parviainen Heikki; Kokkonen Petteri 

Subject: Topologian optimointisoftien validointi 

 

Hei, diplomityössäni oleellinen osa on käytettyjen FEM-pohjaisten topologian 

optimointiohjelmien validointi ja tulosten testaus. Ajattelin kysyä kokeneemman 

mielipidettä tässä asiassa.  

Suoritan ohjelmien tulosten arvioinnin kirjallisuudesta löytyvillä benchmark –

tapauksilla, joita ovat esim.: Rozvany G.I.N: 

 Exact analytical solutions for some popular benchmark problems in 

topology optimization. 

 Exact analytical solutions for some popular benchmark problems in 

topology optimization 2:     three-sided polygonal supports. 

 Exact analytical solutions for some popular benchmark problems in 

topology optimization 3:L-shaped domains. 

 

Nämä kaikki käsittelevät sauvaratkaisuja ja työssäni käsiteltävää rakennetta ei voi 

toteuttaa sauvoilla. Onko tämä validointitapa mielestäsi järkevä? Osaatko neuvoa, 

mistä löytäisin esim. analyyttisiä ratkaisuja 3D tapauksille ja paksuille 

poikkileikkauksille? 

 

Ystävällisin terveisin, 

Juhani Hämäläinen 
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Discussion 2 

From: Ole Sigmund [mailto:sigmund@mek.dtu.dk]  

Sent: 5. syyskuuta 2012 15:47 To: Hämäläinen Juhani Cc: Kokkonen Petteri 

Subject: RE: Validation of Topology Optimization Software 

  

Hi Juhani, 

  

Analytical solutions are only available for grillage and frame-like solutions. Since 

optimal solutions (at least for one load case problems) always have bars crossing 

at perpendicular angles and hence introduce no bending moments, Rozvany, 

Hemp and Mitchell type solutions are valid both for frame and truss like solutions 

(but assuming low volume fractions). For more solid solutions there don’t exist 

analytical solutions. Here you may use some of my recent papers that contain 

some benchmark examples for comparisons. Obviously I cannot guaranty them to 

be globally optimal but they can serve as good goals. 

  

Ole Sigmund 

Department of Mechanical Engineering, Section for Solid Mechanics  

Technical University of Denmark, Building 404, Room 112, DK-2800 Lyngby, 

Denmark 

  

Phone: (+45) 4525 4256, Fax: (+45) 4593 1475, 

E-mail: sigmund@mek.dtu.dk, 

Homepage: http://www.fam.web.mek.dtu.dk/os.html 

Group homepage: www.topopt.dtu.dk 

 

  

From: Hämäläinen Juhani [mailto:Juhani.Hamalainen@vtt.fi]  

Sent: 5. September 2012 08:31 

To: Ole Sigmund Cc: Kokkonen Petteri 

Subject: Validation of Topology Optimization Software 

  

Hello Mr. Sigmund, 

  

I am Juhani Hämäläinen from the Technical Research Centre of Finland and I am 

working on my Master’s Thesis about Topology Optimization of a frame 

structure. I will use different commercial optimization software in my work. My 

question is: 

  

What approach would you suggest for the validation and verification of the 

commercial software? 

  

I have found four articles of analytical benchmark cases from Mr. Rozvany, but 

these utilize truss solutions. My professor would also like to see some optimal 

analytical beam solutions. Would you know if there are any? 

  

I really appreciate your opinion and help.  

Best regards,  

Juhani Hämäläinen 
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Discussion 3 

Sent: 15 April 2013 15:33 

To: Fredrik Nordgren; Joakim Truedsson 

Subject: OptiStruct Topology Optimization formulation 

Hi Juhani, 

Yes, and there is also a new method in v12, (-level set method, there is a 

description in v12 help, did you install v12 yet?). I think it’s gradient based.  

Best regards 

Joakim 

 

Sent: den 15 April 2013 12:39 

To: Fredrik Nordgren; Joakim Truedsson 

Subject: OptiStruct Topology Optimization formulation 

Hi, 

I would like to know what methods are applied in the Topology optimization in 

OptiStruct. Apparently the SIMP material interpolation scheme is used.  

How is the optimization problem solved? With gradient based methods (MMA) or 

optimality condition based methods? 

B.r. 

Juhani Hämäläinen 
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Discussion 4 

From: Joakim Truedsson 

Sent: den 11 Januar 2013 09:00 

To: Hämäläinen Juhani 

CC: Henrik Molker 

Subject: RE: OptiStruct support 

Attachments ”A animation of the solution of the torsional cylinder validation 

case.s”  

 

Hi Juhani, No problem :)  

I was just about to suggest running with MINDIM or Stress constraint .. but I 

guess that is not an option then. (I got a discrete structure when trying the run with 

MINDIM).  

When running with MINDIM it takes many iterations before it starts to get 

discrete structure. Perhaps the tolerances needs to be tightened.  

You can try to decrease the tolerance OBJTOL and increase max number of 

iterations DESMAX.  

If I remember correct DISCRETE  =3 gives p=4, yes. CHEXA should be good to 

use.  

Unfortunately I can’t tell if reducing the volume constraint would help.  

I will try some more runs tomorrow, 

Best regards  

Joakim 

 

From: Hämäläinen Juhani 

Sent: den 10 januari 2013 14:38 

To: Joakim Truedsson 

CC: Henrik Molker 

Subject: RE: OptiStruct support 

 

Hello Joakim, 

sorry for hammering you with difficult questions all the time:  

Here is another figure attached of the convergence problem for a longer cylinder. 

The attached picture shows that the helical structure ends after three stages and the 

middle section is a pure cylinder. (Analytical solutions says that the helices go all 

the way down) 

How can I force the solution to a truss like structure? (DISCRETE, dese mesh?) 

My volume constraint is 10%, what if I put it down to 5%? 

Is it actually optimal already? DeSaint Venant’s principle says that stress state 

equalises after some distance from the loading/boundary conditions. Has the 

helical structure made an even shear stress loading to the centre section? Optimal 

in this area would be a pure cylinder.  

I want to use CHEXA because the actual structure to be optimizes is modelled 

with them.  

Is CHEXA worse element for topology optimization than TETRA and why? 

MINDIM is definitely an additional filter that should not be used in this 

validation, says my professor. 

DISCRETE=3 would mean that my penalty exponent p=4? Right? I might test this 

next… 

Best regards, Juhani 
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APPENDIX B: Extraction of BCs from Excitation Analysis 

1. Finite element excitation analysis in ABAQUS 

a. Create node sets of the nodes at suitable locations and at suitable 

division along the planned cut-boundaries of the sub-model region.  

b. Calculate the responses at the cut-boundaries of the sub-model 

region of the structure by dynamic harmonic response analysis for 

the genset. 

2. Data transfer from ABAQUS to MATLAB 

a. Write the response data, nodal coordinates and node and element 

set data from the FE-software to output files.  

b. Read the data to MATLAB.  

c. Recollect the response and coordinate data in MATLAB.  

3. Animate the responses over the phase angle at all orders of excitation for 

visual assessment and validation of the data. Select significant orders of 

excitation. 

4. Determine the master node definitions. 

a. Calculate the master node coordinates as mean values of the 

coordinates of the nodes in the node sets.  

b. Calculate the displacements at the master node locations as mean 

values of the displacements responses of the nodes in the node sets. 

c. Seek the highest displacement amplitude and the corresponding 

phase angle. 

d. Transform the phase angle of the complex valued responses to real 

valued.  

5. Write the OptiStruct input –files for RBE3 element: 

a. Dependent node coordinates. 

b. Dependent node node sets.  

c. Dependent node displacements 

d. Independent node sets.  

6. Run Topology Optimization model. 
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APPENDIX C: Displacement Fields of Different Orders 

 

1
St

  order of excitation 

 

1 2 

  

3 4 

 
 

  

5 6 

  
Figure 46. Nodal displacements of the attachment area in frequency response model, 1st order of 

excitation. 
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Figure 47. Nodal displacements of the attachment area in frequency response model, 2nd order of 

excitation. 
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Figure 48. Nodal displacements of the attachment area in frequency response model, 4.5th order of 

excitation. 
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Figure 49. Nodal displacements of the attachment area in frequency response model, 6th order of 

excitation. 
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APPENDIX D: Scaled Forced Displacements. 

 

Forced Displacement Fields                      

Analysis 1   Analysis 2   Analysis 3  Analysis 4 
Ref.N  Node Set DOF  Scaled disp  Scaled disp  Scaled disp Scaled disp. 
39     FxTxBx1   1   0,8309       0,3865       -0,0594      0,1727 
39     FxTxBx1   2   0,2440       -0,2693      -0,2476      0,1606 
39     FxTxBx1   3   0,4843       0,2391       -0,0210      0,0228 
40     FxTxBx2   1   0,8345       0,3865       -0,0597      0,1751 
40     FxTxBx2   2   0,2911       -0,3056      -0,1824      0,0791 
40     FxTxBx2   3   0,1461       0,0964       -0,0129      0,0034 
41     FxTxBx3   1   0,8370       0,3877       -0,0597      0,1751 
41     FxTxBx3   2   0,3406       -0,3454      -0,1153      0,0111 
41     FxTxBx3   3   -0,2065      -0,0615      -0,0062      -0,0099 
42     FxTxBx4   1   0,8357       0,3877       -0,0588      0,1739 
42     FxTxBx4   2   0,3901       -0,3829      -0,0517      -0,0924 
42     FxTxBx4   3   -0,5447      -0,2041      0,0044       -0,0291 
43     PxTxBx1   1   0,7778       0,3575       -0,0816      0,1606 
43     PxTxBx1   2   0,2174       -0,2512      -0,2874      0,2476 
43     PxTxBx1   3   0,6473       0,2476       0,0258       0,0074 
44     PxTxBx2   1   0,7802       0,3563       -0,0803      0,1582 
44     PxTxBx2   2   0,2669       -0,2874      -0,2150      0,1203 
44     PxTxBx2   3   0,3309       0,1173       0,0349       -0,0111 
45     PxTxBx3   1   0,7850       0,3563       -0,0796      0,1570 
45     PxTxBx3   2   0,3164       -0,3261      -0,1486      0,0361 
45     PxTxBx3   3   -0,0488      0,0622       0,0377       -0,0149 
46     PxTxBx4   1   0,7899       0,3563       -0,0801      0,1594 
46     PxTxBx4   2   0,3659       -0,3659      -0,0833      -0,0496 
46     PxTxBx4   3   -0,3587      -0,1884      0,0409       -0,0185 
47     PxTxBx5   1   0,7911       0,3575       -0,0816      0,1643 
47     PxTxBx5   2   0,4203       -0,4336      0,0441       -0,3092 
47     PxTxBx5   3   -0,6969      -0,3370      0,0510       -0,0354 
48     FxBxBx1   1   -0,3128      -0,0737      0,0615       -0,0182 
48     FxBxBx1   2   -0,2053      0,2053       -0,0162      0,0616 
48     FxBxBx1   3   0,5000       0,3780       -0,1094      0,0486 
49     FxBxBx2   1   -0,3104      -0,0743      0,0609       -0,0180 
49     FxBxBx2   2   -0,1473      0,1498       0,0400       0,0126 
49     FxBxBx2   3   0,2391       -0,2609      -0,1006      0,0279 
50     FxBxBx3   1   -0,3092      -0,0742      0,0614       -0,0180 
50     FxBxBx3   2   -0,0908      0,0977       0,0937       -0,0412 
50     FxBxBx3   3   -0,3188      -0,1812      -0,0897      0,0044 
51     FxBxBx4   1   -0,3104      -0,0736      0,0626       -0,0182 
51     FxBxBx4   2   -0,0370      0,0454       0,1461       -0,0932 
51     FxBxBx4   3   -0,6159      -0,1969      -0,0797      -0,0187 
52     PxBxBx2   1   -0,5145      -0,1739      0,0547       -0,0337 
52     PxBxBx2   2   -0,2428      0,2428       0,0453       0,0341 
52     PxBxBx2   3   0,3273       0,2548       -0,0719      0,0271 
53     PxBxBx3   1   -0,5121      -0,1727      0,0550       -0,0316 
53     PxBxBx3   2   -0,1824      0,1872       0,1010       -0,0200 
53     PxBxBx3   3   0,1558       -0,1437      -0,0645      0,0087 
54     PxBxBx4   1   -0,5121      -0,1739      0,0560       -0,0314 
54     PxBxBx4   2   -0,1268      0,1377       0,1534       -0,0749 
54     PxBxBx4   3   -0,4191      -0,1316      -0,0550      -0,0097 
55     PxBxBx5   1   -0,5109      -0,1739      0,0566       -0,0309 
55     PxBxBx5   2   -0,0725      0,0789       0,1993       -0,1174 
55     PxBxBx5   3   -0,7319      -0,2222      -0,0495      -0,0161 
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56     SxBx1x1   1   0,6232       0,3031       -0,0306      0,1449 
56     SxBx1x1   2   0,1498       -0,1643      -0,1908      0,1244 
56     SxBx1x1   3   0,4819       0,2874       -0,0558      0,0411 
57     SxBx1x3   1   0,6244       0,3043       -0,0314      0,1473 
57     SxBx1x3   2   0,2500       -0,2488      -0,0709      -0,0141 
57     SxBx1x3   3   -0,2367      -0,0835      -0,0351      -0,0068 
58     SxBx1x4   1   0,6232       0,3043       -0,0306      0,1449 
58     SxBx1x4   2   0,3007       -0,2923      -0,0162      -0,0809 
58     SxBx1x4   3   -0,5640      -0,1848      -0,0227      -0,0330 
59     SxBx2x1   1   0,3007       0,1763       0,0105       0,0987 
59     SxBx2x1   2   0,0215       -0,0257      -0,1208      0,0865 
59     SxBx2x1   3   0,4855       0,3140       -0,0731      0,0472 
60     SxBx2x2   1   0,3031       0,1763       0,0107       0,1007 
60     SxBx2x2   2   0,0733       -0,0714      -0,0665      0,0342 
60     SxBx2x2   3   0,1824       -0,1860      -0,0620      0,0205 
61     SxBx2x4   1   0,3019       0,1763       0,0105       0,0993 
61     SxBx2x4   2   0,1824       -0,1739      0,0406       -0,0748 
61     SxBx2x4   3   -0,5773      -0,1812      -0,0380      -0,0316 
62     SxBx3x1   1   0,0395       0,0762       0,0357       -0,0533 
62     SxBx3x1   2   -0,0932      0,0941       -0,0664      0,0700 
62     SxBx3x1   3   0,4952       0,3659       -0,1033      0,0525 
63     SxBx3x3   1   0,0399       0,0775       0,0367       -0,0529 
63     SxBx3x3   2   -0,0219      -0,0141      0,0400       -0,0303 
63     SxBx3x3   3   -0,3056      -0,1655      -0,0809      0,0030 
64     SxBx3x4   1   0,0402       0,0769       0,0368       -0,0535 
64     SxBx3x4   2   0,0774       -0,0671      0,0919       -0,0816 
64     SxBx3x4   3   -0,6075      -0,1908      -0,0693      -0,0250 
65     NxB       1   0,1872       0,0831       0,0082       0,0066 
65     NxB       2   0,0048       -0,0161      -0,1098      0,0791 
65     NxB       3   0,5048       0,2391       -0,0199      0,0268 
66     DxB       1   0,2017       0,1006       0,0051       0,0128 
66     DxB       2   0,1618       -0,1534      0,0510       -0,0737 
66     DxB       3   -0,5519      -0,2114      0,0093       -0,0320 
67     VxBx1     1   -0,0079      -0,0071      -0,0002      -0,0034 
67     VxBx1     2   -0,0545      0,0645       -0,0446      0,0338 
67     VxBx1     3   0,3285       0,1365       -0,0110      0,0095 
68     VxBx2     1   0,0000       0,0000       0,0000       0,0000 
68     VxBx2     2   0,0000       0,0000       0,0000       0,0000 
68     VxBx2     3   0,0000       0,0000       0,0000       0,0000 
69     VxBx3     1   0,0044       0,0040       0,0001       0,0013 
69     VxBx3     2   0,0552       -0,0570      0,0455       -0,0405 
69     VxBx3     3   -0,3164      -0,1304      0,0028       -0,0032 
70     RXBXDX1   1   0,1316       0,0525       -0,0190      0,0198 
70     RXBXDX1   2   -0,0850      0,1208       -0,1256      0,0911 
70     RXBXDX1   3   0,7464       0,2995       0,0140       0,0365 
71     RXBXDX2   1   0,0554       0,0237       -0,0027      0,0068 
71     RXBXDX2   2   -0,1139      0,1522       -0,1126      0,0752 
71     RXBXDX2   3   0,7488       0,3200       -0,0022      0,0382 
72     RXBXDX3   1   -0,2464      -0,0762      0,0355       -0,0203 
72     RXBXDX3   2   -0,2186      0,2500       -0,0580      0,0783 
72     RXBXDX3   3   0,7633       0,3865       -0,0531      0,0348 
73     RXBXNX1   1   0,1365       0,0595       -0,0216      0,0368 
73     RXBXNX1   2   0,1993       -0,2319      0,1156       -0,1329 
73     RXBXNX1   3   -0,8478      -0,4155      0,0682       -0,0671 
74     RXBXNX2   1   0,0595       0,0327       -0,0038      0,0175 
74     RXBXNX2   2   0,1763       -0,2101      0,1094       -0,1144 
74     RXBXNX2   3   -0,8442      -0,3865      0,0498       -0,0542 
75     RXBXNX3   1   -0,2452      -0,0709      0,0354       -0,0178 
75     RXBXNX3   2   0,2174       -0,1292      0,1981       -0,1558 
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75     RXBXNX3   3   -1,0000      -0,3418      -0,0337      -0,0056 
76     PxBxBx1   1   -0,5157      -0,1751      0,0546       -0,0349 
76     PxBxBx1   2   -0,2874      0,2911       0,0121       0,0609 
76     PxBxBx1   3   0,5918       0,3575       -0,0761      0,0385 
80     SxBx1x2   1   0,6244       0,3031       -0,0315      0,1473 
80     SxBx1x2   2   0,1981       -0,2041      -0,1316      0,0579 
80     SxBx1x2   3   0,1655       -0,1534      -0,0452      0,0147 
81     SxBx2x3   1   0,3031       0,1775       0,0107       0,1010 
81     SxBx2x3   2   0,1280       -0,1244      -0,0130      -0,0210 
81     SxBx2x3   3   -0,2585      -0,1088      -0,0505      -0,0051 
82     SxBx3x2   1   0,0395       0,0773       0,0364       -0,0527 
82     SxBx3x2   2   -0,0373      0,0403       -0,0128      0,0203 
82     SxBx3x2   3   0,2258       -0,2464      -0,0928      0,0278 
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APPENDIX E: Linear Element Model Solutions 

 

 

 

 
Figure 50. Topology optimization result of linear element model in load case 1, order 1, ρ>0.8. 
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Figure 51. Topology optimization result of linear element model in load case 2, order 2, ρ>0.8.  
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Figure 52. Topology optimization result of linear element model in load case 3, order 4.5, ρ>0.8. 
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Figure 53. Topology optimization result of linear element model in load case 4, order, ρ>0.8. 
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APPENDIX F: Parabolic Element Model Solutions 

 

 

 

 
Figure 54. Topology optimization result of combined load cases with parabolic elements, analysis 1, 

ρ>0.8.  
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Figure 55. Topology optimization result of combined load cases with parabolic elements, analysis 2, 

ρ>0.8  
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Figure 56. Topology optimization result of combined load cases with parabolic elements, analysis 3, 

ρ>0.8  
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Figure 57. Topology optimization result of combined load cases with parabolic elements, analysis 4, 

ρ>0.8 
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APPENDIX G: Static Finite Element Analysis 

Load case 1, ∆x=6e-4 

 

 
Figure 58. Static stress analysis of the new topology with simplified static displacements, load case 1 
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Load case 2, ∆x=6e-4 

 

 
Figure 59. Static stress analysis of the new topology with simplified static displacements, load case 2 
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Figure 60. Static stress analysis of the new topology with simplified displacements, load case 3 

 

Load case 3, ∆x=3e-5 
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Figure 61. Static stress analysis of the new topology with simplified displacements, load case 4 

 

Load case 4, ∆z=3e-5 
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Table 1. Stiffness Comparison. Optimized vs. Original Structure 
 

 

Optimized Structure Spring  
rates 

LC1 LC2 LC3 LC4 
LC1 LC2 LC3 LC4 

x x y z 

 Disp. 
[Dim.less] 6,00E-04 6,00E-04 3,00E-05 3,00E-05 

Fx  
[KN/mm] -7,58E+01 -9,47E+01 1,21E-10 -2,06E-10 

Kx  
[KN/mm] 

-
1,26E+05 -1,58E+05 4,03E-06 -6,85E-06 

Fy 
 [KN/mm] 7,14E-12 2,31E-10 -3,45E+02 -7,35E-10 

Ky  
[KN/mm] 1,19E-08 3,85E-07 -1,15E+07 -2,45E-05 

Fz 
 [KN/mm] 1,13E-10 -1,75E-10 4,75E-09 2,84E+02 

Kz 
 [KN/mm] 1,88E-07 -2,92E-07 1,58E-04 9,46E+06 

Fmag 
 [KN/mm] 7,58E+01 9,47E+01 3,45E+02 2,84E+02 

Kekv 
[KN/mm] 1,26E+05 1,58E+05 1,15E+07 9,46E+06 

 

 

Original Structure 
Spring  
rates 

LC1 LC2 LC3 LC4 

LC1 LC2 LC3 LC4 

     
x x y z 

Disp. 
 [Dim.less] 6,00E-04 6,00E-04 3,00E-05 3,00E-05 

Fx 
[KN/mm] -2,00E+01 -1,46E+01 -1,42E-12 3,29E-12 

Kx  
[KN/mm] -3,34E+04 -2,43E+04 -4,72E-08 1,10E-07 

Fy 
[KN/mm] 1,70E-03 1,09E-11 -2,23E+02 -9,88E-10 

Ky  
[KN/mm] 2,84E+00 1,81E-08 -7,44E+06 -3,29E-05 

Fz  
[KN/mm] 1,61E-01 -2,19E-14 4,20E-10 3,88E+02 

Kz  
[KN/mm] 2,69E+02 -3,65E-11 1,40E-05 1,29E+07 

Fmag 
[KN/mm] 2,00E+01 1,46E+01 2,23E+02 3,88E+02 

Kekv 
 [KN/mm] 3,34E+04 2,43E+04 7,44E+06 1,29E+07 

 

  

Stiffness comparison 

 
LC1 LC2 LC3 LC4 

Kx 3,78 6,50 -85,44 -62,44 

Ky 0,00 21,28 1,55 0,74 

Kz 0,00 7987,82 11,29 0,73 

Kekv 3,78 6,50 1,55 0,73 

 
Change in % 

Kx 278,40 % 550,02 % -8643,90 % 

-
6344,48 

% 

Ky 0,00 % 2028,28 % 54,56 % -25,63 % 

Kz 0,00 % 
798682,18 

% 1029,31 % -26,85 % 

Kekv 278,40 % 550,02 % 54,56 % -26,85 % 
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APPENDIX H: Example Geometry 

 

OptiStruct solution from analysis 3 

 

 

 

Example geometry reproduced in CAD 

 

 
 

  

 

 

Figure 62. Example CAD-geometry based on the topology optimization result of analysis 3. 

 

 





 

  

 

 

 


