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Abstract

This paper presents new risk importance measures applicable to a dynamic

reliability analysis approach with multi-state components. Dynamic reli-

ability analysis methods are needed because traditional methods, such as

fault tree analysis, can describe system’s dynamical behaviour only in lim-

ited manner. Dynamic flowgraph methodology (DFM) is an approach used

for analysing systems with time dependencies and feedback loops. The aim

of DFM is to identify root causes of a top event, usually representing the

system’s failure. Components of DFM models are analysed at discrete time

points and they can have multiple states. Traditional risk importance mea-

sures developed for static and binary logic are not applicable to DFM as

such. Some importance measures have previously been developed for DFM

but their ability to describe how components contribute to the top event is

fairly limited. The paper formulates dynamic risk importance measures that

measure importances of states of components and take the time-aspect of

DFM into account in a logical way that supports the interpretation of re-

sults. Dynamic risk importance measures are developed as generalisations of

the Fussell-Vesely importance and the risk increase factor.
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1. Introduction

Risk importance measures [1, 2, 3, 4] are important in the reliability analysis

of complex systems, such as safety systems in nuclear power plants. They

can be used to analyse which components or basic events are most important

with regard to the system’s reliability, the probability that the system does

not fail. The importance of a component depends not only on the reliability

of the component but also on the impact of its behaviour on the consequences

of interest. Risk importance measures reveal which are the beneficial ways

to improve the system’s reliability.

Dynamic reliability analysis methods [5] have been studied extensively

since 90’s because traditional methods, such as fault tree analysis, can de-

scribe system’s dynamical behaviour only in limited manner. Dynamic meth-

ods can represent system’s evolution in time more accurately than traditional

methods and they can be used to identify time-dependent failure condition

combinations that cause the system’s failure. There are well-established tech-

niques for the computation of risk importance measures in fault tree and

event tree analyses [6, 7]. However, in dynamic reliability analysis, fewer im-

portance measures have been developed [8]. The limitations are even more

evident with regard to dynamic reliability analysis approaches that include

components with more than two states.

This paper presents two new risk importance measures for a dynamic

reliability analysis approach called dynamic flowgraph methodology (DFM)



[9, 10, 11, 12]. A brief conference paper on these importance measures was

already published in 2012 [13] but this paper presents the work in a compre-

hensive and more general form.

Risk importance measures are typically calculated from minimal cut sets

which are usually the most essential result of reliability analysis. A minimal

cut set is a minimal combination of basic events that is sufficient to cause

the top event. If one of the basic events is taken away from a minimal cut

set, the remaining combination of basic events is not sufficient to cause the

top event anymore.

Two risk importance measures are generalised into the dynamic and

multi-state case of DFM: the Fussell-Vesely measure and the risk increase

factor (also known as the risk achievement worth). They are the most often

used risk importance measures in the reliability analysis of nuclear power

plants [1]. These two measures form a combination that can describe fully

the influence of the component’s unavailability. Fussell-Vesely measures how

large portion of the top event probability is caused by the minimal cut sets

that contain a given basic event and the risk increase factor measures how

much the probability of the top event increases if a given basic event occurs.

Hence, Fussell-Vesely measures the direct effect of the component’s unavail-

ability, whereas the risk increase factor depends more on the component’s

position in the system’s structure and the reliability of other components.

If P , V , L and M are basic events and PL, V L, PM and VM are minimal

cut sets, Fussell-Vesely of basic event V can be calculated (using so-called

“MCS upper bound” to calculate the top event probability) as presented in

(1) and the risk increase factor as presented in (2).



IFV (V ) =
QV

TOP

QTOP

(1)

=
1− (1−Q(V L)) · (1−Q(VM))

1− (1−Q(PL)) · (1−Q(V L)) · (1−Q(PM)) · (1−Q(VM))
,

where the notation Q(CS) means the probability of minimal cut set CS and

QTOP is the top event probability.

II(V ) =
QTOP (V = 1)

QTOP

(2)

=
1− (1−Q(L)) · (1−Q(M))

1− (1−Q(PL)) · (1−Q(V L)) · (1−Q(PM)) · (1−Q(VM))
.

Components can usually fail in more than one way. For example, a valve

could be failed open or close. The state in which a component is failed is

called a failure state in this paper. The paper concentrates on calculating

the new risk importance measures for failure states of components in DFM.

The paper is structured as follows. Section 2 briefly presents dynamic

flowgraph methodology. Section 3 reviews previous research and specifies

the objectives of the paper. New dynamic risk importance measures are

formulated in sections 4 and 5 and a case study is presented in Section 6.

The significance of the dynamic risk importance measures and possibilities

for further research are discussed in Section 7, and Section 8 concludes the

study.



2. Dynamic flowgraph methodology

Dynamic flowgraph methodology [9, 10, 11, 12] is an approach for analysing

systems with time dependencies and feedback loops. It is typically used to

model and analyse digitally controlled systems which include both hardware

and software components. For example, modern nuclear power plants in-

clude digitally controlled safety systems. The multi-state logic of DFM is an

advantage in modelling of that kind of systems because their components do

generally not behave in binary manners. Another advantage of DFM is that

only one model is needed to represent the complete behaviour of a system

and different states of the system can be analysed using the same model [10].

A DFM model is a directed graph which consists of nodes that represent

the system’s components and variables and edges that represent the depen-

dencies between nodes. A node can have a finite number of states and the

state of a node is determined either by a probability model or by states of

its input nodes at specified time steps. Input dependencies of a node are

represented in a decision table which is an extension of a truth table.

The aim of DFM is to identify root causes for a top event, which is defined

as a condition that particular nodes are in particular states at particular

time steps. The result is a set of prime implicants which are generalisations

of minimal cut sets. A prime implicant is a minimal combination of basic

events and other conditions that is sufficient to cause the top event. In DFM

analysis, a basic event or a condition is represented as a literal which is a

node in a state at a time step and a prime implicant is a set literals. Hence,

prime implicants of DFM can be understood as timed minimal cut sets.

An example on DFM analysis results is provided next. To keep the fo-



cus on concepts that are most relevant with regard to this paper, the actual

DFM model is not presented at this point. Expression F (−2) = 0 is a literal

representing node F in state 0 at time step −2, and {N(−3) = −1, T (−3) =

1, R(−3) = 1, F (−2) = 0, F (−1) = 1} and {C(−3) = 0, T (−3) = −1, R(−3) =

0, R(−2) = 1} are prime implicants of top event {T (−1) = 1, T (0) = 1} of

an example system that is presented later in Section 4.5 if the initial time

is −3. If the state of a node is determined by its input nodes, the node can

appear in prime implicants only at the initial time, such as N , T , and C in

this example. Negative time steps are used in this paper, because the same

notation has been used in previous DFM papers [9, 10, 11, 12] because DFM

models are mostly analysed deductively from effects to causes.

3. Towards dynamic risk importance measures

3.1. Previous research

In DFM modelling, risk importance measures need to be constructed so that

they map information from prime implicants to values that represent the

significances of different components. Thus, the time aspect of DFM should

be taken into account in dynamic risk importance measures as well as the

multi-state logic.

In the context of DFM, not much research has been conducted on risk

importance measures. References [14] and [15] present some DFM impor-

tance measures as generalisations of fault tree analysis importance measures.

The importance measures presented in [14] measure importances of different

nodes in DFM models. They do not consider which state or states of a node



appear in prime implicants even though the state information can play an

important role in the interpretation of DFM results. Significances of nodes

they provide can be useful but their ability to describe how components

contribute to the top event is fairly restricted in many cases.

In [15], importance measures are formulated for literals of DFM models.

They consider each time point separately while analysts are mainly interested

in the overall importances of nodes and states of nodes. For example, if

literals V (−t1) = s and V (−t2) = s represent node V in state s at time

steps −t1 and −t2, importance measures are only calculated for these literals

separately even though they represent the same condition. The importance

of node V or state s is not directly provided. This paper aims to develop

risk importance measures that measure importances of states of nodes and

still maintain the information about time steps of literals in the results.

3.2. Other methodologies

Markov models constitute a dynamic reliability analysis approach that is

comparable to DFM [16]. Markov models can be used to analyse dynamic

multi-state systems as DFM models. Some studies have been carried out on

risk importance measures for Markov models [8, 17, 18]. However, it would

not be practical to use similar importance measures in DFM because they

rely on the perturbation of transition rate matrices of Markov models and

DFM models are not based on transition rates.

There are two types of importance measures for multi-state systems [19].

Measures of type 1 are formulated for components and they measure the

significance that a component has to the system’s reliability as a whole.



Type 1 measures are useful when analysing whether the number of redundant

components needs to be increased. Measures of type 2 are formulated for

states of components and they measure how a certain state or states of a

component affect the system’s reliability. Different states of a component

can assume quite different values of a type 2 measure. For example, the

top event probability might increase if a valve is in state ‘failed-close’ but

the same analysis might show that the top event probability decreases if the

valve is in state ‘failed-open’. Type 2 measures provide guidance on how a

component should be changed so that the system’s reliability improves. Many

risk importance measures of traditional fault tree analysis can be generalised

for multi-state systems.

An approach of type 2 is to transform a multi-state component into a

binary component by dividing the states into two sets with regard to a spec-

ified performance level [20]. For example, if a pump can function in ‘low’,

‘medium’, ‘high’ or ‘very high’ power, states ‘low’ and ‘medium’ could form

one group and states ‘high’ and ‘very high’ one group. When a multi-state

component is treated as a binary component, traditional risk importance

measures can be applied to it. Another approach to measure the importance

of a multi-state component is composite importance measures [21], which are

weighted averages of type 2 state importances and represent type 1 measures.

For example, an average of the risk increase factors of valve’s ‘failed-close’,

‘failed-open’ and possible other states weighted with state probabilities could

be calculated to get a value that measures the significance of the valve as a

whole. Both approaches could be applied in DFM.

The modelling of the time-dependent failure behaviour of a component



can be performed similarly in the reliability analyses of multi-phase missions

[22] and in DFM, even though only a single mission is considered in DFM.

In multi-phase missions, basic events can occur during different phases simi-

larly to time steps in DFM. In [23], importance measures are formulated for

phase specific events. Correspondingly, in DFM, importance measures can

be formulated for time step specific events.

3.3. Conclusion on objectives

The dynamic risk importance measures, the dynamic Fussell-Vesely and the

dynamic risk increase factor, are formulated for the different states of nodes.

The dynamic Fussell-Vesely is formulated also for different time steps and

the dynamic risk increase factor takes the time aspect into account in its own

way.

The paper especially focuses on computing dynamic risk importance mea-

sures for failure states of components. It is presented how the information

about failure states in prime implicants can be tracked by tracing the graph

model backwards and utilised to calculate risk importance measures to pro-

vide more specific information on how components contribute to the top

event probability.



4. The dynamic Fussell-Vesely

4.1. The basic form

Dynamic risk importance measures need to take the multi-state logic and

time aspect of DFM into account in a logical way that supports the inter-

pretation of results. For coherent systems, Fussell-Vesely can be interpreted

as how much the top event probability would relatively decrease if a com-

ponent was perfect. In coherent systems, only component failures can cause

the top event but in incoherent systems, a failure of a component may ac-

tually prevent the top event from occurring and the act of repairing might

cause the top event [24]. In multi-state reliability analysis, a system can be

defined as coherent if only one state per node appears in prime implicants.

Even though DFM models are usually incoherent, they can be coherent with

regard to some nodes.

The dynamic Fussell-Vesely (DFV) should be constructed in such a way

that the idea about the decrease of the top event probability is maintained.

For systems that are coherent with regard to the considered state of the

node, the DFV should be possible to interpret so that it indicates how much

the top event probability would decrease if the node could be made not

to be in the considered state at least until a particular time step. Thus,

as the definition of Fussell-Vesely deals with minimal cut sets that include

a particular component failure, the definition of the DFV should consider

prime implicants that include a particular node in a particular state before

or at a particular time step.

Let us assume that the time step of the latest literal in the top event is 0



meaning that it is the last time step of the analysis and the initial time is −n

(n ∈ N). These notations are valid for the rest of the paper. The dynamic

Fussell-Vesely is defined in its basic form in Definition 1.

Definition 1. The dynamic Fussell-Vesely measure of state s of node i at

time step −t is

IDFV (i(−t) = s) :=
Q

i(−t)=s
TOP

QTOP

, (3)

where QTOP is the top event probability and Q
i(−t)=s
TOP is the probability that

a prime implicant, including node i in state s before or at time step −t

(0 ≤ t ≤ n), causes the top event.

When time steps of literals are not considered interesting, all the attention

can be paid to IDFV (i(0) = s) because it takes all time steps into account.

4.2. Importances of failure states

In DFM, components are often modelled with two nodes: one that represents

the functional state of a component and one that determines if the component

is failed or not. Let the following definitions apply for the rest of the paper:

1. The node whose state determines if the component is failed or not is

called a ‘failure node’.

2. A component is failed when the failure node is in state 1 and it functions

normally when the failure node is in state 0.

3. The initial state of a failure node is 0.

4. The time lag of a failure node is 0.



5. The node that defines the functional state of a component is called a

‘component node’.

These definitions are used in the DFM tool YADRAT [12]. With these defi-

nitions, a failure event can be interpreted as a change of failure node’s state

from 0 to 1. When a failure node is in state 0, the component is in one of

its normal states determined by the component node. The failure state is

defined by the combination of a failure node being in state 1 and the state

of the component node. For example, if a component node of a water level

measurement sensor has states ‘low’, ‘medium’ and ‘high’, the water level

measurement sensor component has normal states ‘low’, ‘medium’ and ‘high’

and failure states ‘failed-low’, ‘failed-medium’ and ‘failed-high’.

If a component is modelled using two nodes, the failure state of a com-

ponent cannot directly be read from a prime implicant. A prime implicant

only shows that the failure node is in state 1. The failure state can depend

on the initial states of nodes and other literals that appear in the prime im-

plicant. The dynamic Fussell-Vesely cannot therefore directly be calculated

for failure states according to Definition 1. Equation (4) presents the specific

definitions of the dynamic Fussell-Vesely for a failure state of a component.

IDFV
fs (i(−t) = s) :=

Q
f(−t)=1, i(−t)=s
TOP

QTOP

, (4)

where f is a failure node connected to component node i and Q
f(−t)=1, i(−t)=s
TOP

is the probability that a prime implicant, including a failure in state s of

component node i before or at time step −t (0 ≤ t < n), causes the top

event.



4.3. Measuring incoherency of a component

When a failure node is in state 0, the corresponding component is functioning

as it is meant to. It might be interesting to know if a system is incoherent

with regard to a failure of a given component. It could therefore be useful

to measure how much state 0 of a failure node contributes to the top event.

However, if the dynamic Fussell-Vesely of state 0 of a failure node was cal-

culated according to Definition 1, the interpretation of the result would not

come naturally because a failure node is defined to be initially in state 0.

But, let the time aspect be inverted so that the definition considers prime

implicants that contain a failure node in state 0 at time step −t or later

instead of at time step −t or before. In this case, the measure can be in-

terpreted as how much the top event probability relatively decreases if the

component fails at a given time step at the latest, if the system is coherent

with regard to state 0 of the failure node. The DFV measure is formulated

for state 0 of a failure node in (5).

IDFV
0 (f(−t) = 0) :=

Q
f(−t)=0
TOP

QTOP

, (5)

where Q
f(−t)=0
TOP is the probability that a prime implicant, including a literal

representing failure node f in state 0 at time step −t or later, causes the top

event.

4.4. Computation

In the calculation of the dynamic Fussell-Vesely, each prime implicant is ex-

amined. If a prime implicant contains the considered node in the considered



state (or the considered component in the considered failure state) in the

considered time frame, its contribution is added to the DFV.

It is possible that the failure state of the considered component is not

unambiguous in a prime implicant. A failure can lead to different states of

the component node in separate scenarios. Probabilities for different failure

states are therefore solved and a prime implicant’s contribution to a failure

state DFV presented in (4) is the probability of the prime implicant multi-

plied by the probability that the component fails to the considered failure

state.

The failure state probabilities can be solved deductively by backtracking

the model or inductively by simulating different scenarios. The deductive

approach is chosen here for the same reason why DFM models are most often

analysed deductively: the number of scenarios to be simulated grows easily

large with complex models. The backtracking process to solve failure state

probabilities starts from the component node at the failure time step. The

state probabilities of the component node can be calculated when the state

probabilities of its input nodes are known. Hence, the state probabilities

of the input nodes are needed and they can be calculated from the state

probabilities of the input nodes of the input nodes of the component node.

Because of this, the backtracking algorithm is based on the recursive calling

of a function that calculates the state probabilities of an output node from the

state probabilities of the input nodes. When the state probabilities of input

nodes are known, the state combination probabilities of input nodes can be

calculated and the probability of an output state is the sum of probabilities

of those input state combinations that lead to the considered output state.



The recursive calling of the function continues till the initial time is

reached or the considered node is a stochastic node. In these cases, the

state probabilities are obtained from the probability model of the node. In

the calculation of the DFV, the backtracking is performed under the condi-

tions set by a prime implicant. This means that the states of some nodes are

known and the state probabilities are obtained from this information, not

from the probability model or calculated as conditional probabilities if the

prime implicant information does not imply a certain state but affects the

probability model.

The backtracking algorithm implemented in the YADRAT tool is illus-

trated using flow charts in Figures 1 and 2. YADRAT contains three types

of nodes: deterministic nodes, failure nodes and random nodes. The state

of a deterministic node is determined by its input nodes through a decision

table, except at the initial time step at which the state is determined by a

probability model. A failure node is a non-decreasing binary node that is

initially in state 0 and whose state is determined by a probability model. A

random node is a multi-state stochastic node whose state is determined by a

probability model. Each node type is treated differently in the backtracking.

4.5. Backtracking example

Figure 3 shows an example of a DFM model based on a tank system with a

digitally controlled valve and Table 1 gives an example of a decision table.

In the model, node C represents the functional state of a valve, N represents

water level measurement value and T represents water level. Nodes F and R

determine if the valve and the water level measurement are failed and they



Figure 1: A flow chart of the backtracking process to solve failure state probabilities.
The calculation of the state probabilities of failure nodes, random nodes and deterministic
nodes at the initial time is illustrated in its own flow chart in Figure 2.



Figure 2: A flow chart of the calculation of the state probabilities of failure nodes, random
nodes and deterministic nodes at the initial time. This flow chart is a subpart of the flow
chart presented in Figure 1 and it takes the node, time step -t and time lag l as inputs
from Figure 1.



change states stochastically. Each row of the decision table represents a state

combination of input nodes (F , N and C) and the output column determines

to which state of the output node C each state combination of input nodes

leads to. The time lag row determines the delays in the dependencies between

the input nodes and the output node. In Table 1, node C depends on its own

state at the previous time step because the time lag is 1. From Table 1, it

can be seen that the valve remains in failure state ‘failed-0’ or ‘failed-1’ after

the failure, because node C stays in the same state it was at the previous

time step when F is in state 1.

Figure 3: A DFM model from the DFM tool YADRAT

A set of literals π = {N(−3) = −1, T (−3) = 1, R(−3) = 1, F (−2) =

0, F (−1) = 1} is a prime implicant of top event {T (−1) = 1, T (0) = 1}

of the system presented in Figure 3 when the initial time is −3. Node F

is the failure node of the valve. The failure time is therefore −1. Hence,

the failure state probabilities are the state probabilities of C(−1). Under

the failure condition, component node C is remains in the same state it was



Table 1: The decision table of component node C

Output Inputs
Node C F N C

Time lag 0 0 1
0 0 −1 0
0 0 −1 1
0 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
0 1 −1 0
1 1 −1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1

in at the previous time step. Thus, the failure state probabilities are the

state probabilities of C(−2). As node C is a deterministic node, its state

probabilities are defined by the state probabilities of its input nodes. The

state probabilities of F (−2), N(−2) and C(−3) therefore have to be solved.

Probability Q(F (−2) = 0 | π) = 1 because prime implicant π contains

a literal F (−2) = 0. Node N is a deterministic node. Hence, the state

probabilities of its input nodes should be examined to determine its state

probabilities at time step −2. The initial state of component node C does not

appear in prime implicant π. The state probabilities of C(−3) are therefore

obtained from the probability parameters. If Q(N(−2) = s | π) = n2,s for all

s ∈ {−1, 0, 1}, Q(C(−3) = r) = c3,r for all r ∈ {0, 1}, n2,−1 + n2,0 + n2,1 = 1

and c3,0 + c3,1 = 1, Table 1 indicates that Q(C(−2) = 0 | π) = n2,−1 +n2,0c3,0

and Q(C(−2) = 1 | π) = n2,1 + n2,0c3,1. The backtracking structure of



Figure 4: The backtracking tree starting from the node C at time step −2.

this example is illustrated in Figure 4. The progression of the backtracking

algorithm is illustrated more closely in Appendix A.

4.6. Solving accurate failure state probabilities

Sometimes the solving of failure state probabilities has to be divided into

different scenarios to obtain correct results. When the backtracking pro-

cess diverges, different branches are examined independently even though

they can contain the same nodes. This type of dependencies are taken into

account by backtracking the model to identify those nodes that appear in

multiple branches and solving failure state probabilities separately in differ-

ent scenarios related to them. Here, a scenario means that the nodes are

set to particular states at particular time steps and the backtracking is per-

formed under that state combination assumption. The probabilities of the

state combinations are calculated and accurate failure state probabilities are

computed as weighted sums of failure state probabilities related to different



scenarios.

There are cases in which the accurate failure state probabilities can be

solved by a single backtracking without dividing the solving process into

different scenarios and only applying the algorithm presented in Figures 1

and 2. If a single backtracking gives an unambiguous failure state, the result

is always accurate because the backtracking covers all the possible scenarios.

However, in some cases, the backtracking can imply a possibility of a failure

state that is not really possible. Hence, it is computationally most efficient to

calculate the failure state probabilities first with a single backtracking and

if the failure state is not unambiguous, calculate accurate probabilities by

examining different scenarios separately.

4.7. The non-decreasing property of failure nodes

The non-decreasing property of a failure node has to be taken into account

in the DFV calculation. Let F be a failure node and −t a time step. Literal

F (−t) = 1 represents a condition that the corresponding component is failed

at time step −t. Due to the non-decreasing property of failure nodes, this

condition can be satisfied by a failure that occurs at time step −t or earlier.

Hence, when DFV values are calculated for the state 1 of F , it must be

taken into account that condition F (−t) = 1 can be caused by a failure

at an earlier time step. For this reason, a prime implicant that includes

condition F (−t) = 1 also contributes to the DFV values of earlier time steps

than −t. If prime implicant π includes literal F (−t) = 1 and −u < −t,

the contribution of π to IDFV (F (−u) = 1) is Q(F (−u) = 1 | π) · Q(π).



Conditional probability Q(F (−u) = 1 | π) is usually

Q(F (−u) = 1)

Q(F (−t) = 1)
(6)

but if prime implicant π includes, for example, literal F (−u) = 0, Q(F (−u) =

1 | π) = 0 as condition F (−u) = 0 implies that the component must be

functioning at time step −u.

Let s be a state of component node C. The contribution of prime impli-

cant π to IDFV
fs (C(−u) = s) is

Q(F (−u) = 1 | π) ·Q(π) ·Q(C(−u) = s | πF (−u)=1), (7)

where πF (−u)=1 is a modified version of prime implicant π that includes literal

F (−u) = 1 instead of F (−t) = 1.

5. The dynamic risk increase factor

5.1. Definition

The risk increase factor measures how much the unavailability of a system

increases if a component fails. Thus, in the calculation of the risk increase

factor it must be assumed that a component is failed. In DFM, a component

can fail at different time steps. The failure of a component does not usually

cause system’s failure immediately. To provide all the available time for the

failure to affect the system, let the dynamic risk increase factor (DRIF) be

defined so that the component fails at the earliest possible time step. When



a component is failed, it remains failed for the rest of the scenario.

To formulate a more general version of DRIF, let the idea that the condi-

tion lasts the whole scenario be applied to a state of a node and the dynamic

risk increase factor be formulated so that it measures how much the top event

probability increases if the considered node is in the considered state at all

time steps. The definition is presented in Definition 2.

Definition 2. The dynamic risk increase factor for a state of a node is

IDI(i = s) :=
QTOP (i(−t) = s, ∀ t ∈ {0, 1, ...,m− 1,m})

QTOP

, (8)

where QTOP (i(−t) = s, ∀ t ∈ {0, 1, ...,m − 1,m}) is the probability that

the top event occurs assuming that a node i is in state s at every time step

starting from −m (0 ≤ m ≤ n) which is the earliest possible time step for

the node i to be in state s considering the initial conditions.

The earliest possible time step for a node to be in a state can vary. For

example, a failure node is defined to be initially in state 0. Hence, it can be

in state 1 only starting from time step −n+ 1. Similarly, for random nodes

and component nodes, all states might not be initially possible.

5.2. Computation

In the calculation of the DRIF, a conditional top event probability is needed.

Possibilities are to identify new prime implicants of the conditional top event

either by deriving them from originally identified prime implicants or per-

forming a completely new DFM analysis with a modified top event or develop

an algorithm to calculate the conditional top event probability “directly”



from the model without identifying prime implicants first. A completely new

DFM analysis for each DRIF value would be too time-consuming. The com-

putation of the top event probability without identifying prime implicants

is an interesting problem that could be examined in the future but in this

paper, prime implicants of the conditional top event are derived from the

original prime implicants which is more straightforward.

Prime implicants of the conditional top event can be derived from the

original prime implicants in the following way. The prime implicants are

examined one by one. Those prime implicants that contradict with the con-

dition (contain a node at a specific time step in a wrong state) are removed

and the literals that appear in the condition are removed from the prime

implicants because their conditional probability is 1. After this, if accurate

results are wanted, all duplicate prime implicants and implicants that are not

prime implicants anymore have to be removed from the set. This can be done

by comparing changed prime implicants with each other and comparing the

untouched prime implicants with the remaining changed prime implicants.

Figure 5 presents a flow chart to illustrate the identification of new prime

implicants.

Table 2 presents the prime implicants of the top event {T (−1) = 1, T (0) =

1} of the system presented in Figure 3. When the DRIF is calculated for

the failure of the valve, the condition is {F (−2) = 1, F (−1) = 1, F (0) = 1}.

When the new prime implicants are derived, prime implicants 10 and 13

from Table 2 are removed because they contain literal F (−2) = 0. Literals

F (−2) = 1 and F (−1) = 1 are removed from other prime implicants. 11 non-

minimized implicants are left (Table 3). When these implicants are compared



Figure 5: A flow chart representing the identification process of prime implicants of the
conditional top event



Table 2: The prime implicants of the top event {T (−1) = 1, T (0) = 1} of the system
presented in Figure 3

No. Prime implicant
1 {C(−3) = 0, F (−2) = 1}
2 {C(−3) = 0, F (−1) = 1, T (−3) = −1, R(−3) = 0}
3 {C(−3) = 0, F (−1) = 1, T (−3) = −1, N(−3) = 0}
4 {C(−3) = 0, F (−1) = 1, T (−3) = −1, N(−3) = −1}
5 {C(−3) = 0, T (−3) = −1, R(−3) = 0, R(−2) = 1}
6 {C(−3) = 0, T (−3) = −1, N(−3) = 0, R(−2) = 1}
7 {C(−3) = 0, T (−3) = −1, N(−3) = −1, R(−2) = 1}
8 {C(−3) = 0, F (−1) = 1, N(−3) = 0, R(−3) = 1}
9 {C(−3) = 0, F (−1) = 1, N(−3) = −1, R(−3) = 1}
10 {N(−3) = −1, R(−3) = 1, F (−2) = 0, T (−3) = 1, F (−1) = 1}
11 {C(−3) = 0, N(−3) = 0, R(−3) = 1, R(−2) = 1}
12 {C(−3) = 0, N(−3) = −1, R(−3) = 1, R(−2) = 1}
13 {N(−3) = −1, R(−3) = 1, F (−2) = 0, T (−3) = 1, R(−2) = 1}

to each other, it is noticed that only {C(−3) = 0} is a prime implicant and

others are non-minimal implicants.

The dynamic risk increase factor can be calculated for a failure state of a

component assuming that the failure node is in state 1 starting from the first

time step after the initial time and that the component node remains in the

corresponding state after the failure. The failure node in state 1 does not al-

ways guarantee a particular failure state. It must therefore be assumed that

the initial conditions are such that the component fails to the considered fail-

ure state. If the failure causes the component node to remain in its previous

state, it is assumed that the initial state of the component node is the state

that corresponds to the considered failure state. If the component always

fails to the same failure state, no initial condition assumption is needed. If

the component node can change state after the failure, the DRIF should only



Table 3: The non-minimized implicants of the conditional top event

No. Prime implicant
1 {C(−3) = 0}
2 {C(−3) = 0, T (−3) = −1, R(−3) = 0}
3 {C(−3) = 0, T (−3) = −1, N(−3) = 0}
4 {C(−3) = 0, T (−3) = −1, N(−3) = −1}
5 {C(−3) = 0, T (−3) = −1, R(−3) = 0, R(−2) = 1}
6 {C(−3) = 0, T (−3) = −1, N(−3) = 0, R(−2) = 1}
7 {C(−3) = 0, T (−3) = −1, N(−3) = −1, R(−2) = 1}
8 {C(−3) = 0, N(−3) = 0, R(−3) = 1}
9 {C(−3) = 0, N(−3) = −1, R(−3) = 1}
10 {C(−3) = 0, N(−3) = 0, R(−3) = 1, R(−2) = 1}
11 {C(−3) = 0, N(−3) = −1, R(−3) = 1, R(−2) = 1}

be calculated for state 1 of the failure node because the component does not

necessarily remain in the same failure state for the whole scenario.

Component node C in Table 1 is stuck in its previous state when failure

node F turns to state 1. Hence, in the calculation of IDI(C = 0) with the

initial time −3, the condition is that F (−t) = 1 for all −t ∈ {0,−1,−2} and

C(−3) = 0 and similarly, in the calculation of IDI(C = 1), the condition is

that F (−t) = 1 for all −t ∈ {0,−1,−2} and C(−3) = 1.

There are also cases in which the failure state at time step −n + 1 is

determined in a more complicated way and more complex initial state as-

sumptions are needed. Generally, the initial conditions that are needed to

produce the failure state need to be identified. The result is a set of ini-

tial state combinations. The DRIF is calculated separately with each initial

state combination assumption and the final DRIF for the failure state is cal-

culated as a weighted average of the DRIFs of the initial state combinations

that lead to the failure state. These cases are not considered further in this



paper because more simple cases are more common.

Other than for failure states of components, there is no easy and efficient

way to calculate the DRIF for states of deterministic nodes because only

initial states of deterministic nodes appear in prime implicants and there

is therefore no easy way to derive the prime implicants for the conditional

top event from the original prime implicants. The conditions that would

be needed to produce the condition that the considered deterministic node

would be in same state at all time steps should be solved. After that, the

DRIF should be calculated assuming each of those conditions separately, and

finally, a weighted average should be calculated. This could not be efficiently

done with complex models because the number of different conditions would

be large in many cases. However, a risk increase factor can be calculated

for initial states of deterministic nodes by only assuming that a node is in a

particular state at the initial time.

6. Importance analysis of an emergency core

cooling system

6.1. Emergency core cooling system

In this section, an emergency core cooling system of a boiling water reactor

[12] is analysed with the DFM tool YADRAT. The system is shown in Fig-

ure 6. The purpose of this system is to provide adequate water cooling of

a reactor core if the ordinary cooling system is not functioning. An on-off

control system regulates the water level in the pressure vessel by controlling



Figure 6: An emergency core cooling system of a boiling water reactor

a pump and a regulation valve. Sensors measure the water level and the

pressure which are utilised in controlling of the valve, while only the water

level measurement affects controlling of the pump. The water level can de-

crease due to evaporation. If the water level is low, more water is pumped

into the pressure vessel until an upper limit is reached. The regulation valve

is opened if both water level and pressure are measured to be under lower

limit.



6.2. System reliability model

Figure 7 presents the node structure of a DFM model from the YADRAT

tool based on the emergency core cooling system [12]. This model contains

one pump line that includes four components: a water level sensor modelled

with component node WLM and failure node WLM-fail, a pressure sensor

modelled with component node PM and failure node PM-fail, a regulation

valve modelled with component node V and failure node V-fail and a pump

modelled with component node P and failure node P-fail. Component node

P has two states: ‘on’ and off’ but the pump can only fail to failure state

‘failed-off’, which means that it does not pump any water. The valve can

be failed in state ‘failed-close’ or ‘failed-open’. The water level measurement

can be frozen in state ‘failed-low’, ‘failed-medium’ or ‘failed-high’, while the

pressure measurement can be frozen in state ‘failed-low’ or ‘failed-high’.

An exponential model is used for failure probabilities. The failure rates

are presented in Table 4. A failure rate is here the probability that the

component fails during one time step.

Table 4: The failure rates of the components

Failure node Failure rate [1/∆t]
P-fail 0.01
V-fail 0.02
WLM-fail 0.03
PM-fail 0.04

The pump line also contains a random node PL that represents a pump

leakage signal and several deterministic nodes that represent the signals be-

tween the sensors, the control logic and the actuators. The model also in-



Figure 7: A DFM model based on the emergency core cooling system



cludes two deterministic nodes to represent the water inflow (WF) and the

reactor water level (WL). The nodes of the model are described more in

Appendix B.

6.3. Results

The analysed case was that the water level is low four time steps in a row (top

event {WL(−3) = low,WL(−2) = low,WL(−1) = low,WL(0) = low})

which is a long enough time to be critical with regard to cooling of the core.

The initial time was chosen to be −5 because earlier experiences had shown

that all the relevant prime implicants can be identified using this time frame

and same patterns are only repeated in prime implicants using a longer time

frame.

The number of identified prime implicants was 338 and five of them are

presented in Table 5. These five prime implicants were chosen because they

represent different prime implicant types. They are not necessarily the most

important prime implicants. In prime implicants 2 and 4, the regulation valve

fails in state ‘failed-close’. In prime implicant 3, the pressure measurement

is frozen in state ‘failed-high’. In prime implicant 5, the failure states of the

water level measurement and valve are not unambiguous but can be different

in different scenarios. The water level measurement is frozen in state ‘failed-

low’ with a probability of 0.5 and in state ‘failed-medium’ with a probability

of 0.5, and the valve is failed in state ‘failed-open’ with a probability of

0.17 and in state ‘failed-close’ with a probability of 0.83. Prime implicant 1

includes only an initial condition of the water level WL, initial conditions of

components, a pump leakage signal at the initial time, a condition that the



Table 5: Examples of prime implicants

tot-pr. pr. Node t State
1 3.5E-2 0.330 WL −5 high

0.500 V −5 close
0.500 PL −5 true
0.500 PM −5 low
0.885 PM-fail −2 0
0.970 WLM-fail −4 0

2 1.0E-2 0.500 V −5 close
0.020 V-fail −4 1

3 1.0E-2 0.500 V −5 close
0.500 PM −5 high
0.040 PM-fail −4 1

4 9.9E-3 0.500 V −5 close
0.500 PL −5 true
0.040 V-fail −3 1

5 1.4E-5 0.330 WL −5 low
0.500 P −5 on
0.500 PL −5 true
0.100 PL −4 true
0.059 V-fail −2 1
0.941 WLM-fail −3 0
0.030 WLM-fail −2 1

pressure measurement is functioning at time step −2 and a condition that

the water level measurement is functioning at time step −4.

Table 6 presents both accurate and approximated DFV values for failure

states of components. Approximated results were calculated using a single

backtracking for each failure in a prime implicant in the solving of failure state

probabilities and accurate results were calculated by dividing the failure state

probability solving process into different scenarios as described in Section 4.6.

Figure 8 presents the DFV values for component failures and pump leak-



Table 6: The dynamic Fussell-Vesely values for failure states. Those DFV values that are
0 are left out.

Component node failure state Time DFV accu. DFV appr.
P failed-off 0 0.198 0.198

failed-off −1 0.198 0.198
failed-off −2 0.184 0.184
failed-off −3 0.151 0.151
failed-off −4 0.089 0.089

V failed-open 0 0.00004 0.0003
failed-open −1 0.00004 0.0003
failed-open −2 0.00003 0.0001
failed-open −3 0.00003 0.00003
failed-open −4 0.00003 0.00003
failed-close 0 0.289 0.289
failed-close −1 0.289 0.289
failed-close −2 0.262 0.262
failed-close −3 0.197 0.197
failed-close −4 0.087 0.087

WLM failed-high 0 0.060 0.062
failed-high −1 0.060 0.062
failed-high −2 0.060 0.062
failed-high −3 0.060 0.060
failed-high −4 0.036 0.036
failed-medium 0 0.083 0.081
failed-medium −1 0.083 0.081
failed-medium −2 0.083 0.081
failed-medium −3 0.059 0.059
failed-medium −4 0.034 0.034
failed-low 0 0.00004 0.00004
failed-low −1 0.00004 0.00004
failed-low −2 0.00004 0.00004

PM failed-high 0 0.119 0.119
failed-high −1 0.119 0.119
failed-high −2 0.119 0.119
failed-high −3 0.084 0.084
failed-high −4 0.042 0.042



Figure 8: The dynamic Fussell-Vesely values for component failures and pump leakage
signal. On the right side of the graph, curves are ordered according to their end points.

age signal and Figure 9 presents the DFV values for 0-states of failure nodes

in the form of a graph. Table 7 presents the DRIF values for failure states

of components, Table 8 for component failures and Table 9 for the states of

the random node.

The valve clearly has more significant effects to the system’s reliability

than other components. It has the largest DFV values except for time step−4

(Figure 8) and also according to the dynamic risk increase factor, its failure

in state ‘failed-close’ has the worst effect on the system (Table 7). However,

the valve’s failure in state ‘failed-open’ decreases the top event probability

significantly and the failure of the valve therefore has the smallest DRIF value

of the component failures (Table 8). According to both importance measures,

the pump is more important than the sensors even though its failure rate is

smaller. This is logical because the pump and the valve directly affect the



Figure 9: The dynamic Fussell-Vesely values for 0-states of failure nodes. On the right
side of the graph, curves are ordered according to their starting points.

Table 7: The dynamic risk increase factor values for failure states

Component node Failure state DRIF
P failed-off 1.51
V failed-open 0.17

failed-close 1.81
WLM failed-high 1.50

failed-medium 1.44
failed-low 0.30

PM failed-high 1.42
failed-low 0.46



Table 8: The dynamic risk increase factor values for component failures (1-states of failure
nodes)

Failure node DRIF
P-fail 1.51
V-fail 0.99
WLM-fail 1.20
PM-fail 1.10

Table 9: The dynamic risk increase factor values for states of the random node

Random node State DRIF
PL true 1.51

false 0.55

water flow. However, the top event is most often caused by the pump leakage

signal (PL in the ‘true’ state).

When analysing the time-dependent behaviour of DFV values in Table

6 and Figure 8, it has to be remembered that DFV values are calculated

cumulatively. The DFV values indicate that early failures of time steps −4

and −3 contribute most to the top event in all cases. This is logical because

they have a more long lasting effect on the water level than later failures.

The pump is the easiest component to analyse here because it always fails

in the same way and its failure always has the same impact. The earlier the

pump fails the more likely it is causing the top event as can be seen from the

DFV values in Table 6. The DFV values of PM and WLM are also consistent

with the intuitive idea that the earlier failure is more likely to cause the top

event than a later failure.

The valve however has the largest addition to the cumulative DFV at

time step −3. The reason for this is that component node V is more likely



to be in state ‘close’ at time step −4 than at the initial time −5, and hence,

the valve is more likely to be stuck in the harmful failure state ‘failed-close’

at time step −3 than at time step −4. High pump leakage signal probability

0.5 at the initial time is the main reason why component node V is more

likely to be in state ‘close’ at time step −4. If component node V is in state

‘open’, the valve is closed due to the pump leakage signal unless it is fails.

For the pump and valve, failures of time step −1 can still contribute to

the top event but failures of time step 0 cannot. This is because failures

of the valve and the pump affect the water level with a delay of one time

step. Measurement failures have to occur at time step −2 at the latest to

contribute to the top event because they affect the water level with a delay

of two time steps.

All possible failure states except the ‘failed-low’ state of the pressure

measurement appear in the prime implicants. State ‘low’ of WLM, together

with state ‘low’ of PM, sends the valve a signal that it needs to open so

that more water can be pumped into the pressure vessel. Hence, failure

state ‘failed-low’ cannot contribute to decreasing the water level but only

increasing it. Failure state ‘failed-low’ of the water level measurement had

small dynamic Fussell-Vesely values even though it cannot really cause the

water level to decrease. In some of those prime implicants that had the

water level measurement failed, such as in prime implicant 5 in Table 5, the

situation was that either the sensor failed in state ‘failed-medium’ and partly

caused the top event, or the sensor failed in state ‘failed-low’ and some other

conditions caused the top event. None of the prime implicants implied that

the water level measurement was frozen in state ‘failed-low’ with certainty.



Hence, failure state ‘failed-low’ did appear in some prime implicants but did

not really contribute to the top event. In those cases, the failure of the

water level measurement appeared in the prime implicants because in some

scenarios, the failure in the ‘failed-medium’ state was needed to cause the

top event. Failure state ‘failed-open’ of the valve had small DFV values for

the same reason.

It seems worth highlighting that failure state ‘failed-medium’ of the water

level measurement had larger overall DFV value (DFV value of time step 0)

than failure state ‘failed-high’. This was because the failure in state ‘failed-

medium’ at time step −2 can contribute to the top event but the failure in

state ‘failed-high’ at time step −2 cannot. If the water level measurement

is frozen in state ‘failed-high’ at time step −2, it means that the water level

must have been ‘high’ at time step −4 and thus, the water level could not

have been ‘low’ at time step −3.

Some differences appeared between accurate and approximated failure

state DFV values because failure states were not calculated correctly using

a single backtracking in every case. For example, approximated results im-

ply that the failure in state ‘failed-high’ of the water level measurement at

time step −2 contributes a little to the top event even though it is impos-

sible as explained in the previous paragraph. The reason for this was that

node WLM-fail at time step −4 appeared in two different branches of back-

tracking. The positive probability for failure state ‘failed-high’ came from an

impossible scenario in which WLM-fail was in state 1 in one branch and 0 in

another. Wrong failure state probabilities are always a result of taking this

kind of impossible scenarios into account. These impossible scenarios appear



in the calculations more likely if there are more time steps to backtrack. In

other words, wrong results are more likely with late failures than with earlier

failures because the backtracking process is longer and nodes are analysed

at more time steps. In this example, wrong failure state probabilities were

calculated only for failure times −2 and −1 as can be seen from the DFV

values in Table 6.

As the wrong failure state probabilities are more likely to appear with late

failures, those prime implicants for which wrong failure state probabilities

are calculated are likely to have small probabilities and small effect to DFV

values. Because of this, approximated DFV values are most often very close

to accurate values. Also, even if impossible scenarios appear in backtracking,

they do not necessarily lead to wrong failure state probabilities. In this

example, the most important prime implicant for which wrong probabilities

were calculated formed the portion of 0.89% of the top event probability, and

as total, such prime implicants formed the portion below 2.5% of the top

event probability. The only real issue that wrong failure state probabilities

caused to complicate the analysis of results was the implication that the

failure in state ‘failed-high’ of the water level measurement at time step -2

could contribute to the top event and even that is not very significant with

regard to final conclusions drawn about the system.

The system is not coherent with regard to failure events, except the fail-

ure of the pump. The results of Figure 9 indicate that some prime implicants

include failure nodes in state 0. State 0 of PM-fail, in particular, contributes

significantly to the top event. When this condition appears in prime impli-

cants, it ensures that the pressure measurement cannot fail in state ‘failed-



low’, which would prevent the top event from occurring. Hence, according to

the DFV values, failure state ‘failed-low’ would prevent the top event from

occurring in many cases.

From the dynamic risk increase factor values (Tables 7 and 8), it can be

seen that some failure states increase the top event probability and some

decrease it. Failure state ‘failed-open’ of the valve, failure state ‘failed-low’

of the water level measurement and failure state ‘failed-low’ of the pressure

measurement decrease the top event probability because they can only cause

the water level to increase not decrease. Those failure states that had sig-

nificant DFV values in Table 6 can cause the water level to decrease and

hence, they have DRIF values larger than 1. The failure of the regulation

valve in state ‘failed-close’ at time step −4 causes the top event to occurs

with certainty.

The pump leakage signal has the highest DFV values (0.648 when all time

steps are taken into account) and same or higher DRIF value (1.51) than any

of the component failures. The best way to improve the reliability of this

system would therefore be to reduce the probability of the pump leakage

signal which could be done by reducing the probability of the spurious signal

and the probability of the pump leakage. It would also be beneficial to

improve the reliability of the valve and the pump. Results also indicate that

the top event probability would lower if the control system was changed so

that the valve was more open and the measurement sensors displayed low

values for the water level and the pressure all the time. However, this type

of change is neither practically possible nor sensible and it might cause the

water level to be high all the time which could be harmful too. Because



of this, it would be worthwhile to analyse the system with the top event

{WL(−3) = high,WL(−2) = high,WL(−1) = high,WL(0) = high} as

well. With this top event, the results would be quite different.

7. Discussion

7.1. Benefits

The dynamic risk importance measures are an important contribution to the

dynamic flowgraph modelling because the previously developed importance

measures [14, 15] were not designed to measure significances of node’s states

properly while the states of nodes often play an important role in the inter-

pretation of DFM results. The dynamic risk importance measures take the

time aspect of DFM into account in a logical way that supports the inter-

pretation of results. In addition, they can provide detailed information on

how components modelled with two nodes contribute to the top event. In

principle, they could also be applied in all dynamic methods that rely on

variables with a finite number of states. The time aspect of the dynamic

risk importance measures could also be generalised to the case of continuous

time.

7.2. The dynamic Fussell-Vesely

The Fussell-Vesely measure is the importance measure used most often be-

cause it is simple to compute and it encapsulates purely the information

from minimal cut sets or prime implicants. The dynamic Fussell-Vesely has



the same qualities. The dynamic Fussell-Vesely takes into account both the

probability that the node is in the considered state and how the node and

the state interconnect with other nodes. However, the DFV does not take

the incoherency of a system into account because it does not consider that

the prime implicants can include the node in different states. This limits

the interpretation of the DFV values calculated for component failures. The

incoherency can only be taken into account by calculating separate DFV val-

ues for the state 0 of a failure node. For example, the results of Figure 8

could not indicate that the system was incoherent with regard to some failure

nodes and the incoherency only came evident when the results of Figure 9

were analysed.

If the system is coherent with regard to a failure, other risk importance

measures that depend on the conditional top event probability with a condi-

tion that the considered component is functioning can also be derived from

Fussell-Vesely. The same cannot be done in the incoherent case. The frac-

tional contribution [25] gives same results as Fussell-Vesely in coherent case

and takes the incoherency into account in incoherent case. But, the dynamic

fractional contribution would be computationally more demanding as new

prime implicants of the conditional top event should be identified.

7.3. The failure state approach

The failure state approach used in the calculation of the dynamic risk im-

portance measures for components provides information about the state of

a failed component as discussed in Section 4.2. This information cannot di-

rectly be read from prime implicants. The failure state approach is useful



because a failure state (or failure mode) is really an important factor when

analysing causes of a top event even if only the failure is the fundamental

cause from the mathematical point of view. There are also other ways to

model different failure modes in DFM. One way is to use a so-called “multi-

state failure node” that contains separate states for different failure modes.

If a “multi-state failure node” is used instead of modelling presented in this

paper, there is no need to solve failure states. This requires own failure node

state for each failure state, and hence, the decision table of the component

grows large, which makes the DFM model computationally more demanding.

The solving of accurate failure state probabilities is based on an examina-

tion of different scenarios related to nodes that appear in different branches

of backtracking as discussed in Section 4.6. This can be very demanding for

components of complex systems because the number of different scenarios

can be large. In some cases, it is better to compute approximations by a sin-

gle backtracking than to examine all the different scenarios. In the example

case presented in this paper, accurate failure state probabilities, which af-

fected the DFV results in Table 6, were calculated in two seconds. The same

model was also analysed with −6 as the initial time instead of −5 (results not

presented here) and in that case, the computation lasted two minutes while

approximated results were obtained in a second. Thus, one time step more

to backtrack makes a significant addition to computation demands. But,

the effect that inaccurate failure state probabilities have on DFV values was

small in all the examined example cases such as in the results presented in

Table 6. Hence, when only approximations of failure state DFV values are

needed, the use of a single backtracking may be sufficient.



7.4. The dynamic risk increase factor and other impor-

tance measures

Like the traditional risk increase factor, the dynamic risk increase factor

mainly depends on how other components can keep the system operating

while the considered component is failed or node is in a given state. When

used independently, the DRIF gives a fairly restricted view on how a state of

a node contributes to the top event but it is a good complement to the DFV.

The DRIF can be used to derive some other dynamic risk importance mea-

sures that rely on the conditional top event probability with an assumption

that a node is in a given state at all time steps.

There are many other importance measures that could also be generalised

in dynamic and multi-state cases. Other often-used importance measures

include Birnbaum importance, the risk decrease factor (also known as the

risk reduction worth), the criticality importance and the partial derivative

[1]. For some risk importance measures, there is more than one way in which

the generalisation to the dynamic case can be made. In the dynamic risk

increase factor, it is assumed that the condition starts at the first possible

time step. The DRIF could also be generalised for other time steps. A

similar idea has been considered in relation to multi-phase missions [23].

This could bring worthwhile additional information in some cases when the

system is incoherent with regard to the considered node but mostly not. The

computation of the DRIF for a failure state with an assumption of a late

failure would be significantly more demanding than the computation of the

DRIF with the failure at the first possible time step, because not only initial

conditions would affect the failure state but also the states of the random



nodes and failure nodes at earlier time steps than the considered failure

time. All the different state combinations of affecting nodes at relevant time

steps should be considered when the assumption of a failure state is made.

Computation demands would, of course, be much smaller if failure states

were not considered.

Many risk importance measures rely on the calculation of a conditional

top event probability. In those importance measures that include a failure

assumption, the failure condition can be replaced with an assumption that

a node is in a particular state at particular time steps. An assumption that

a component is functioning can also be replaced with an assumption that

a node is not in a particular state at particular time steps. In these cases,

a new set of prime implicants is identified for the conditional top event. If

accurate results are to be produced, the identification of new prime implicants

is computationally demanding when the original set of prime implicants is

large.

The computation of differential risk importance measures, such as the

partial derivative and the differential importance measure [26], would be eas-

ier in DFM because prime implicants of the conditional top event would be

the same as the original prime implicants. Only manipulation of probabil-

ity parameters and recalculation of probabilities would be required in the

calculation of the conditional top event probability. It would however be dif-

ficult to apply differential risk importance measures to failure states unless

a separate probability is assigned to each failure state.



7.5. Measuring the importance of a node

This paper focused on importance measures that measure the importance

of a state of a node. Sometimes, analysts are more interested in the over-

all importances of nodes so that the most critical components of a system

can be identified. To measure the overall importances of nodes, the com-

posite importance measure approach presented in [21] could be applied to

the dynamic risk increase factor. The Fussell-Vesely presented in [21] differs

significantly from the dynamic Fussell-Vesely as it relies on the computation

of the top event probability with an assumption that the node is in a certain

state. Instead, the Fussell-Vesely from [14] could be generalised to take the

time aspect into account. In the risk increase factor presented in [14], it is

assumed that the node is in its worst state at each time step. The worst state

can be different at different time steps. In the dynamic risk increase factor,

it is assumed that a node is in the same state at each time step, which makes

these measures fundamentally different. However, the worst state approach

could be applied to the dynamic risk increase factor to formulate an overall

DRIF measure for a node. If the worst state was the same at every time step,

these measures would give the same value, but if the worst state differed, the

risk increase factor from [14] would give a larger value.

7.6. DFM tool development

Other YADRAT tool related research includes modelling of common cause

failures and other dependencies between failures as well as a study of different

component reliability models. Group importance measures are investigated



in relation to dependent failures. Dynamic risk importance measures, for ex-

ample, can be formulated separately for each failure state combination of a

common cause failure group. An interesting question is how the time aspect

of DFM is considered in group importance measures. In addition to failure

nodes and random nodes, different stochastic node types will be developed

when some component reliability models are implemented in YADRAT. The

computation of dynamic risk importance measures has to be studied in rela-

tion to different dynamic constraints of stochastic nodes.

The main challenge in DFM tool development is to provide trustworthy

results in a reasonable calculation time. In the dynamic risk importance

measure calculation, this means that it is usually better to compute approxi-

mations rather than to try to aim for accurate values. It is also important in

the development of dynamic risk importance measures in DFM to consider

what information is actually useful, as the main objective of risk importance

measures is to provide guidance for the system’s design. The information

given by importance measures needs to be kept simple enough so that the

analysts can interpret it.

8. Conclusion

The dynamic risk importance measures use all the information that is avail-

able in prime implicants of DFM to measure significances of node’s states

unlike any other importance measure. With dynamic risk importance mea-

sures calculated for different failure states of components and states of failure

nodes, the component’s influence on the system’s reliability can be analysed



more comprehensively than with just risk importance measures calculated

for failure events. As the dynamic Fussell-Vesely is calculated for time steps,

it is also possible to judge at which points of the time line certain failures

and conditions need to occur to contribute to the top event.
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Appendix A. Backtracking algorithm example

This section presents how the backtracking algorithm presented in Figures

1 and 2 progresses step by step in the backtracking example of Section 4.5.

Some parts of the process are cut out to keep the length of the example

moderate. The state probabilities of node A at time step −u are represented

by a vector SP (A(−u)) = (au,0, au,1, ..., au,b), where b is the number of states

of A and au,s is the probability of state s. All calculated state probabilities

are always stored. The backtracking process starts from the component node

at the failure time:

1. Component node C at −t = −1.

2. The input nodes are F , N and C.

2.1. Examine F .

2.1.1. The time lag l = 0.

2.1.2. The node type is failure node.

2.1.3. −t = −1 6= −3.

2.1.4. The prime implicant does not contain a literal of the form

F (−u) = 0,−u ≥ −1.

2.1.5. The prime implicant contains literal F (−1) = 1.

2.1.6. The probability for state 1 is 1.

2.1.7. SP (F (−1)) = (0, 1).



2.2. Examine N .

2.2.1. The time lag l = 0.

2.2.2. The node type is deterministic node.

2.2.3. −t− l = −1 > −3.

2.2.4. −t = −t− l = −1.

2.2.5. Deterministic node N at −t = −1.

2.2.6. The input nodes are R, T and N

2.2.6.1. Examine R.

2.2.6.1.1. The time lag l = 1.

2.2.6.1.2. The node type is random node.

2.2.6.1.3. The prime implicant does not contain a literal repre-

senting R at −t− l = −2.

2.2.6.1.4. State probabilities r2,0 and r2,1 are obtained from the

probability parameters.

2.2.6.1.5. SP (R(−2)) = (r2,0, r2,1).

2.2.6.2. Examine T .

2.2.6.2.1. The time lag l = 0.
...

2.2.6.2.x. SP (T (−1)) = (t1,0, t1,1, t1,2).
...

2.2.6.3. Examine N .

2.2.6.3.1. The time lag l = 1.
...

2.2.6.3.x. SP (N(−2)) = (n2,−1, n2,0, n2,1).
...



...

2.2.x. SP (N(−1)) = (n1,−1, n1,0, n1,1).
...

2.3. Examine C.

2.3.1. The time lag l = 1.

2.3.2. The node type is deterministic node.

2.3.3. −t− l = −2 ≥ −3.

2.3.4. −t = −t− l = −2.

2.3.5. Deterministic node N at −t = −2.

2.3.6. The input nodes are F , N and C.
...

2.3.8. SP (C(−2)) = (c2,0, c2,1) = (n2,−1 + n2,0c3,0, n2,1 + n2,0c3,1) (cal-

culated in Section 4.5).

2.3.9. This node is component node C but −t = −2 is not the failure

time −1.

2.3.10. The time lag l = 1.

2.3.11. −t = −t+ l = −1.

3. State probabilities are calculated by summing the probabilities of the

rows in Table A.10:

c1,0 = n1,−1c2,0 + n1,0c2,0 + n1,1c2,0 = c2,0 = n2,−1 + n2,0c3,0 (A.1)

and

c1,1 = n1,−1c2,1 + n1,0c2,1 + n1,1c2,1 = c2,1 = n2,1 + n2,0c3,1. (A.2)



Table A.10: Probabilities of the rows in the decision table of C
Output Inputs

Node C F N C Prob
Time lag 0 0 1

0 0 −1 0 0 · n1,−1 · c2,0 = 0
0 0 −1 1 0 · n1,−1 · c2,1 = 0
0 0 0 0 0 · n1,0 · c2,0 = 0
1 0 0 1 0 · n1,0 · c2,1 = 0
1 0 1 0 0 · n1,1 · c2,0 = 0
1 0 1 1 0 · n1,1 · c2,1 = 0
0 1 −1 0 1 · n1,−1 · c2,0 = n1,−1c2,0
1 1 −1 1 1 · n1,−1 · c2,1 = n1,−1c2,1
0 1 0 0 1 · n1,0 · c2,0 = n1,0c2,0
1 1 0 1 1 · n1,0 · c2,1 = n1,0c2,1
0 1 1 0 1 · n1,1 · c2,0 = n1,1c2,0
1 1 1 1 1 · n1,1 · c2,1 = n1,1c2,1

4. SP (C(−1)) = (n2,−1 + n2,0c3,0, n2,1 + n2,0c3,1).

5. This node is C and −t = −1.

6. Failure state probabilities are n2,−1 + n2,0c3,0 and n2,1 + n2,0c3,1.

Appendix B. Emergency core cooling system

model

Each node of the emergency core cooling system model presented in Figure

8 is briefly described in Table B.1.



Table B.1: The nodes of the emergency core cooling system model (Figure 8).

Node Description
EHL Is true if the water level measurement is high. The node is used

in controlling the valve.
ELL Is true if the water level measurement is low. The node is needed

for starting the pump and opening the valve.
HL Is true if the water level measurement is high. The valve can open

only if this node is true.
HL-TD Time delay condition for the closing of the valve.
LL Is true if the water level measurement is low. The node is used in

controlling the valve.
LP Is true if the pressure measurement is low. The node is needed for

opening the valve.
LP-TD Time delay condition for the first opening of the valve.
P Represents pump which can be on or off. The pump is controlled by

start and stop commands.
PL Is true if pump leakage signal is sent. If the signal is sent, the

pump is commanded to stop and the valve commanded to close.
PM Represents pressure measurement which can be low or high. It is

assumed that the pressure is high/low every other time step.
P-STA Start command is sent to the pump when this node is true.
P-STO Stop command is sent to the pump when this node is true.
V Represents valve which can be open or closed. The valve is

controlled by open and close commands.
VC Close command is sent to the valve when this node is true.
VO Open command is sent to the valve when this node is true.
WF Water flow is high if the pump line pumps water into the pressure

vessel.
WL Represents water level which can be low, medium or high. Level

rises if water flow is high and lowers if water flow is low.
WLM Water level measurement measures the water level from previous

time step.


