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Monotonic degradation processes evolving in only one direction can be modeled 
as gamma processes. This model structure is an attractive choice since it describes 
monotonic evolution over time in tiny random increments representing the effects of 
randomly varying deteriorating factor such as stress on a structure [1]. Reported 
successful applications range from individual components [2] to large structures [3]. 

A gamma process { ( ), 0} with shape function ( ) and scale parameter u is 
a stochastic process with Gamma-distributed increments and has the following 
properties: 

 
(1) (0) = 0 and ( )  with probability one, 
(2) ( ) ( ) ~ Gamma( ( ) ( ), ) > 0, and 
(3) ( ) has independent increments. 

 
The probability density function ( ) of ( ) is consequently Gamma( ( ), ), 

with expectation value and variance given by 
 
 E ( ) = ( ) , Var ( ) = ( ) (1) 
 

A fault is defined as the up-crossing of the degradation process ( ) of a possibly 
stochastic threshold level . Let the time at which the fault occurs be denoted by the 
lifetime TY. Due to the monotonic behavior of the gamma process, the lifetime 
distribution can then be written as 
 
 ( ) = Pr( ) = Pr( ( ) ) = ( )( ) ( )  (2) 
 
where Y has probability density function . The threshold can also be modeled as a 
deterministic quantity y. [3] 

Selection of the shape function ( ) representing the functional form of 
degradation is discussed below. This function must be monotonic with (0) = 0 and 

( ) . Given a data set consisting of inspection times , = 1, … ,  and 
corresponding degradation observations  ( = 0 at time = 0), parameters of 

( ) can be identified from degradation increments =  by, e.g., 
maximizing the likelihood function 
 
 ( ) = ( ) ( )( ) (3) 
 

 
SELECTION OF THE SHAPE FUNCTION 

 
In published work, the shape function for gamma process modeling is commonly 

selected based on degradation assumedly being proportional to a power law 
 

 ( ) =  (4) 
 

which can represent expected degradation phenomena in a range of applications 
including, e.g., degradation of concrete due to corrosion of reinforcement (b = 1), 
sulphate attack (b = 2), and creep (b = 1/8)  [3]. However, it cannot accurately represent 



degradation that is faster at both ends of a lifetime (wear-in and wear-out) than in 
between. For modeling such phenomena, the following shape function is proposed: 

 
 ( ) = (sinh ( ) + sinh ) (5) 

 
Introducing other candidates for the shape function obviously implies that either a 

choice between them has to be made or a mechanism for combining the results 
computed using each has to be selected. In the absence of reliable enough a priori 
information the approach has to be selected based on accumulated data. In this work 
the choice between candidate shape functions is based on measurement data from 
previous lifetimes. In other words, measurement data from previous replacement 
intervals is utilized in learning the functional form of degradation and thus to increase 
the accuracy of RUL estimates with long prediction horizons. Hence the likelihood 
function for model identification becomes 
 
 ( ) =

, , , , , ,
,  (6) 

 
where  is the number of previous lifetimes considered and o is the number of 
inspected corresponding items. To reflect the current rate of degradation the scale 
parameter u is identified from the most recent data from the lifetime whose RUL is 
being estimated. In the experimental part of this study, values = 1 and = 1, … ,4 
were used. 

A systematic means for comparing candidate models is available through Akaike’s 
Information Criterion (AIC). It facilitates estimating which of the candidate models 
loses the least information (in the sense of Kullback–Leibler divergence) from the 
inadequately known process that generated the data. AICc, a modified version of the 
criterion including a correction term for short data lengths, is defined for model  as 

 
 AICc( ) 2 ln ( ) + 2 + ( ) (7) 
 
where  is the number of parameters identified from  data points. Selecting a model 
based on the likelihood function alone would guide selection towards a model with 
most adjustable parameters, allowing the model to describe the available data set 
accurately. However, identifying many parameters from a limited data set tends to 
increase the variances of the parameter estimates, making results calculated from the 
model more unreliable. Models that minimize AICc provide practical compromises 
between the accuracies and reliabilities of the respective candidate models. [4] 

 
 

REMAINING USEFUL LIFETIME OF AIR FILTERS 
 

Fibrous filters are widely used for air cleaning purposes due to their reliable 
operation and relatively low prize. Normally the lifetime of a filter is determined by 
reaching a certain pressure drop over the filter. Exceeding the designed pressure drop 
level causes unnecessary power losses in the system and increases the risk of 
mechanical failure of the filter. 



Sometimes filters are changed based on predefined schedules, leading to 
remarkable parts of filter lifetime being lost and increasing filtration cost 
unnecessarily.  In many cases, however, the pressure drop values are monitored. RUL 
is not estimated, though, as prediction of pressure drop development is very difficult 
with current systems. Estimation of RUL of air filters, like many other CBM targets, is 
complicated by strong variations in operating conditions. In addition to environmental 
conditions like humidity and temperature, the properties of loading aerosols have 
significant effects on filter pressure drop development. The most important properties 
in dust cake formation are particle concentration, size distribution, particle surface 
properties, and stickiness. [5] 

Estimating remaining filter lifetime would enable considerable savings for the 
operator. One application field is gas turbine inlet air filtration [6], where vast flow of 
air must be cleaned in widely varying environmental conditions. It is economically 
essential to maintain power generation during episodes of worst filtration conditions 
including, e.g., sandstorms, high humidity, and icing as energy price is high during 
such periods. Reliable RUL information about air filters would provide a significant 
advantage for power plants when planning their service shutdowns.  

 
 

EXPERIMENTAL SETUP 
 

The applicability of the proposed approach was studied utilizing functional forms 
of decreasing RUL acquired from filter loading experiments combined with available 
air quality data. No information specific to this application was used in RUL 
estimation below. 

In the loading experiments air filters of different designs were exposed to aerosols 
of different characteristics in altogether 24 combinations. The functional forms of 
decreasing RUL were acquired by measuring pressure drop, particle concentration and 
air flow for each combination. Functional forms of RUL degradation were computed 
as pressure differences (measured in Pa) as functions of cumulative exposures 
(mg/m3*h). Figure 1 shows the measured pressure drops from five filter loading 
experiments. The experimental arrangement is presented in more detail in [7]. 

RUL-decreasing factors in this study were represented by air quality 
measurements (Figure 1) from multiple geographical locations, made available by the 
Finnish Meteorological Institute [8]. These air quality time series provided real-world 
data characteristics (i.e., non-compliance with theoretical background), especially a 
variety of autocorrelatedness, non-stationarity, and distribution functions. To preserve 
these data characteristics, time series of RUL indicators ( P) representing multiple 
lifetimes were generated simply by integrating the measurement data of the particle 
concentration ( g/m3) over time and converting this filter exposure (mg/m3*h) to P 
(Pa) with the experimental functional forms. RUL indicator signals for all 
combinations of 24 functional forms and 121 exposure time series were generated, 
each indicator signal representing multiple consecutive filter lives. Altogether the data 
set included 448868 computational filter lives. The prognostics terminology (RUL, 
End-of-Life, …) used in the next section refer to this data set. 

 



       
 

Figure 1. Examples of measurement data used to generate time series representing filter lifetimes. 
Functional forms of degradation are shown on the left and a time series of a degrading factor on the 

right. 
 
 

PERFORMANCE STATISTICS 
 
In order to gain understanding about the feasibility of the proposed approach, RUL 

estimates were computed from the indicator signals ( P) described in the previous 
section. Test cases were generated by selecting pseudo-random combinations of 

 
 functional form of degradation (from air filter loading experiments), 
 time series representing degrading factors (geographical location of air 

quality measurement), 
 the computational lifetime whose RUL to estimate (the “current” life), 
 how many (1-4) previous lives to use to learn the functional form of 

degradation, and 
 time instant for computing the estimate (5-99% of current life). 

 
For each of 140000 test cases generated, RUL was estimated using both vp and vs 

as the shape function of the gamma process model. Figure 2 shows examples of RUL 
estimation with these shape functions. In this data set, based on AICc, vs was selected 
over the corresponding vp in 75.5% of cases. The lengths of the lifetimes where 
predictions were being made ranged from 0.11 to 7.2 times the lengths of the 
corresponding previous lifetimes utilized in identifying the shape functions. 

For reference, predictions were also computed with a more traditional approach 
where vp is identified from the data of the lifetime whose RUL is being predicted. The 
functional forms of degradation acquired from filter loading experiments were not 
utilized in RUL estimation. 

Figure 3 summarizes the computed RUL predictions. The average values and the 
0.5% and 99.5% percentiles are shown as functions of prediction horizon, measured as 
the “true” RUL value known only a posteriori. As can be seen from the convergence 
of the percentiles, learning functional forms of degradation from previous lifetimes 
brings most significant accuracy improvements to long-term predictions, where the 
functional form cannot yet be inferred from data from the current lifetime. Also, as can 
be seen, the additional improvement from using more than one previous lifetime for 
learning is minor or non-existent in this data set. RUL estimates computed with vs 
have a narrower distribution than those computed with vp, which is consistent with 
AICc-indicated preference of vs in majority of the cases. 
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Figure 2. Examples of RUL predictions with two different functional forms of degradation (left and 

right) and with two different shape functions (top and bottom). Dotted vertical lines show the times the 
predictions are made and dotted horizontal lines show the degradation levels being predicted. Dotted 

curves represent the predicted and solid curves the “actual” degradation. The shape functions have been 
identified and selected with AIC from four previous lifetimes. On time axis value 1 represents the 

average length of the four previous lifetimes. 
 
 
 

 
Figure 3. Experimental mean values and 99% confidence limits for RUL estimates. On top left, the 

shape function vp is identified from each lifetime being predicted; in other graphs the mutually almost 
superimposed curves are computed with shape functions identified from 1-3 previous lifetimes. Axes are 

scaled so that value 1 represents the average duration of all filter lifetimes. Value 0 indicates End-of-
Life. 
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An apparently straightforward way to estimate confidence limits for the RUL 
estimates would be through the statistical properties of the gamma process, Equation 
2. However, this approach is complicated by the mutual dependencies of the 
parameters of the shape function v and the scale u parameter as their values are 
estimated from measurement data. Even though Equation 2 can be easily written to 
explicitly accommodate the joint PDF of the identified parameters, estimation of such 
joint PDFs from limited data sets can be challenging. 

The large number of cases in this data set facilitates statistical characterization of 
the computed RUL estimates. A number of metrics have been used to evaluate the 
performance of prognostic algorithms ranging from basic statistical characterization to 
application-specific assessment involving cost factors for too early and too late 
estimates [9]. In this study the estimation accuracy was evaluated in terms of relative 
prediction error, 

 
 = 100% (8) 

 
where  is the RUL estimate for the ith test case and choice of shape function.  is the 
corresponding a posteriori value.  

Table 1 shows the mean values and the 95% confidence limits (2.5% and 97.5% 
percentiles) of this relative error for various value ranges of  . For a single test case 
the RUL estimates computed with different shape functions can fall into different 
value ranges, so a single test case can contribute to multiple lines of the table. The 
results suggest that learning the functional form of degradation from previous lifetimes 
improves the accuracy of RUL estimates, especially at the early stages of filter life. 
Towards the end of filter life the accuracy improvement becomes less notable. 
Utilizing data from both previous and current lives for shape function identification is 
a topic for further study. 

 
 
 

TABLE 1. STATISTICS FOR RUL ESTIMATION ERROR. 

 
 
  

p2.5 mean p97.5 p2.5 mean p97.5 p2.5 mean p97.5 p2.5 mean p97.5

(% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% )
1.8 - 2.0 17 214 618 4 135 461 -7 44 178 -9 36 129
1.6 - 1.8 10 200 628 -3 112 404 -12 38 144 -14 30 119
1.4 - 1.6 -2 183 606 -13 96 409 -14 30 156 -15 26 119
1.2 - 1.4 -16 169 681 -19 84 454 -17 24 124 -18 22 114
1.0 - 1.2 -25 157 726 -23 82 511 -21 20 117 -22 19 108
0.8 - 1.0 -30 136 707 -28 78 556 -26 17 125 -26 17 115
0.6 - 0.8 -38 129 819 -32 82 627 -34 15 133 -31 15 124
0.4 - 0.6 -37 116 692 -35 83 592 -44 17 177 -39 17 172
0.2 - 0.4 -33 79 375 -38 58 357 -52 23 243 -46 25 239
0.1 - 0.2 -35 54 275 -39 34 246 -57 10 169 -49 14 170

0.05 - 0.1 -43 46 273 -47 30 241 -65 0 139 -58 5 144
0.01 - 0.05 -53 24 199 -57 18 192 -76 -14 116 -69 -8 130

RUL estimate in range
(1 = average filter life)

v p  from current life v p  from previous lives v s  from previous lives v AICc  from previous lives



DISCUSSION 
 
This paper has proposed an approach to RUL estimation with gamma process 

modeling when reliable enough a priori information of the degradation phenomena is 
not available. The computational results indicate that the reliability of RUL estimates 
can be improved when the functional form of degradation is identified from data from 
earlier lifetimes. Also, the results support the feasibility of using AICc for selecting a 
model for RUL prediction from a set of candidate models. For the data set studied, the 
accuracy of the RUL improved considerably when data from one previous lifetime 
was utilized; longer data records didn’t provide significant further improvement. 

The achieved improvement in accuracy was considerable at long prediction 
horizons. This is beneficial especially in CBM applications (not limited to air filters) 
in environments with infrequent maintenance shutdowns. For example, planning of an 
annual maintenance shutdown of a nuclear power plant is aided if RUL estimates 
indicate that some maintenance actions can be postponed one year further. For short 
prediction horizons towards the end of component life the use of data from both 
previous and current lifetimes should be studied. 

A key factor for industrial acceptance of the technique is the reliability of the RUL 
estimates computed. This issue will be further studied, considering e.g. the effects of 
measurement uncertainties and inspection intervals. 
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