
This document is downloaded from the
Digital Open Access Repository of VTT

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

By using VTT Digital Open Access Repository you are
bound by the following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

Title A Toolset for model checking of PLC software
Author(s) Pakonen, Antti; Mätäsniemi, Teemu;

Lahtinen, Jussi; Karhela, Tommi
Citation 18th IEEE International Conference on Emerging

Technologies and Factory Automation,
ETFA2013, 10-13 September 2013, Cagliari, Italy
Proceedings.

Date 2013
Rights © 2013 IEEE. Personal use of this material is

permitted. Permission from IEEE must be
obtained for all other uses, in any current or
future media, including reprinting/republishing this
material for advertising or promotional purposes,
creating new collective works, for resale or
redistribution to servers or lists, or reuse of any
copyrighted component of this work in other
works.

A Toolset for Model Checking of PLC Software

Antti Pakonen, Teemu Mätäsniemi, Jussi Lahtinen, Tommi Karhela
VTT Technical Research Centre of Finland

P.O. Box 1000, 02044 VTT
Espoo, Finland

antti.pakonen@vtt.fi, teemu.matasniemi@vtt.fi, jussi.lahtinen@vtt.fi, tommi.karhela@vtt.fi

Abstract

Model checking is a powerful formal verification
method that can also be used to evaluate PLC software.
A lot of manual work and some expertise are still
needed. Proposed methods for automating the process
rely on standardised specification languages, but PLC
software is often vendor-specific, and the source code
for function blocks may not even be available.

We propose a toolset for model checking of function
block based software. After manually modelling the
elementary function block library, the model of any
block diagram can be specified with easy-to-use
graphical tools. The counterexamples output by the
model checker can also be visualised using a “living”
function block diagram. Our toolset is based on
integrating the popular model checker NuSMV with the
open source modelling platform Simantics.

1. Introduction

Model checking has been proved to be an effective
method for the verification and validation (V&V) of
programmable logic controller (PLC) software. Due to
the exhaustive analysis, design errors can be found in
control systems that have already been evaluated using
more traditional methods such as testing or simulation.
Verification of the functionality of C or Java code may
not be fully feasible yet, but function block diagrams – a
very common programming language for PLCs – can
more easily be translated to formalisms used in model
checking.

Still, model checking is not widely used in control
engineering. One reason is the lack of dedicated tools,
which means that a lot of manual work is needed to carry
out the process.

In this paper, we propose a toolset for model checking
of PLC software expressed with function block
diagrams. After a function block model code library has
been constructed and verified, the modelling of any
application can be done using graphical user interfaces,
or the block diagram structure can be directly imported
from design data. The counterexamples produced by

model checkers can also be presented in a convenient
format.

In the following, we specifically avoid using the
abbreviation FBD when discussing function block
diagrams, since FBD is closely associated with the
language defined by IEC 61131-3. Our approach is as
well suited to any vendor-specific function block
specification as it is to the IEC 61131-3 FBD.

2. Model checking of PLC software

2.1. Model checking
Model checking [1] is a powerful formal method for

the verification of a system design model. A software
tool called a model checker is used to automatically
determine if a specified property is true, taking into
account all possible states and executions of the model.
Because of the exhaustive (but still quite fast) analysis,
model checking has obvious advantages over traditional
approaches such as simulation or testing.

The main challenge in model checking is to deal with
the state explosion problem. The number of model states
grows exponentially with the number of model inputs
and interacting components [1]. A key technique in
avoiding the problem is to employ symbolic verification,
which is based on the manipulation of Boolean formulas.
Binary decision diagrams (BDD) are used in several
tools to allow the verification of systems whose
extremely large state space would render explicit
enumeration methods useless [2]. The model is usually
based on a finite state machine (FSM) representation,
and a variant of temporal logic is typically used to
formulate the properties.

If a model checker finds a model behaviour that is
contrary to a specified property, the behaviour is
returned to the user as a counterexample (an error trace).
Analysis of the counterexample can reveal a design
error, but also an error in the way the model or the
property was specified. The method can therefore be said
to be self-repairing to some degree.

NuSMV is a BDD-based symbolic model checker
allowing for the representation of both synchronous and
asynchronous finite state systems, with a discrete

representation of time. Properties can be specified using
Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL) [1]. The open source model checker has
been quite widely adopted, especially in the field of
research, and it has also been used in our work.

2.2. PLC software verification
Since 2007, we have been applying model checking

in practical customer work, by performing independent
verification of I&C software for both the Finnish
Radiation and Nuclear Safety Authority (STUK), and
recently also the Finnish nuclear power company
Fortum. Our experience has shown that model checking
is a very useful addition to the set of existing V&V tools
[3].

The problem is that a lot of work and expertise is
needed in applying model checking to a particular
domain such as control software. Since no dedicated
tools are available, manual work and ad hoc solutions are
needed to construct the model. Attempts at automating
the process are based on standard languages that are
hardly universally adopted (see next Chapter).

 Specifying the properties to be verified is another
problematic issue, linked to the general challenges in
requirement engineering. Natural language requirement
specifications are often vague and ambiguous, whereas
model checking depends on exact formal representation.

A very significant practical problem is the effort spent
on the interpretation of counter-examples [4]. Typically,
the counterexample is returned as hundreds of lines of
text listing signal values in different states. Manually
browsing through such data – visualised, at best, with
hundreds of trend graphs – makes it difficult to pinpoint
the underlying problem.

3. Related research

Model checking of PLC software is a topic addressed
by several authors using a range of different methods
[5][6]. The attempts at facilitating the use of model
checking often aim at automating aspects of the overall
process, with emphasis usually on transforming the
model automatically based on the original PLC program.
Several approaches are proposed based on the standard
programming languages of IEC 61131-3: Function Block
Diagram (FBD) [7][8], Instruction List (IL) [5],
Structured Text (ST) [6], Sequential Function Chart
(SFC) [9], and Ladder Diagram (LD) [10], just to list a
few.

The issue with these approaches is that they are (quite
understandably) based on IEC 61131-3, which –
although quite well known – is not universally adopted.
Also, it is assumed that the implementation or the source
code of the elementary function blocks is known and
available, which may not be the case. Furthermore, the
methods often have limitations related to, e.g.,
processing of timing or analog signals: the models may

require manual tweaking to properly handle delay or
counter blocks [8], or such variables can be omitted
altogether [6][9].

In order to make the counterexamples returned by
model checkers easier to understand, different
approaches have been proposed. From a theoretical
perspective, minimisation algorithms that eliminate
irrelevant variables from the counterexample are a
common topic [11]. A more practical viewpoint is to
focus on the visualisation method.

An intuitive visualisation is often achieved through
the use of timing graphs, or trends [4], a common way to
display numerical data over time. Still, when dealing
with hundreds of model variables, it might be difficult to
understand what is relevant.

In general, the preferable visualisation method
depends on the users’ background and application
domain, with “model animation” sometimes being a
favoured view [12]. The idea is to animate the
counterexample in the context and presentation of the
original system model, which in our case would be the
function block diagram.

4. Modular approach to model checking of
PLC software

4.1. The function block model code library
Our approach for model checking function block

based PLC software is based on the manual specification
of model checker code for each elementary function
block. The justification for resorting to manual block
specification is as follows:

1. Instead of using standard languages as specified
by IEC 61131-3, many major PLC system
vendors use vendor-specific function blocks.

2. Often, vendors are unwilling to disclose the
actual implementation algorithms for the
elementary function blocks (black box),
addressing them as non-propriety intellectual
property. Only the functional description is
handed to customers.

3. Even if the internal logic of the blocks were
revealed (white box), it is likely that the
implementation is based on languages such as
Java or C, which does not usually enable direct
representation in tools such as NuSMV.

The starting point for modelling is therefore most
often the functional description of the elementary
function blocks. The corresponding model checker code
is then written for each block. Model checking can be
used to ensure that the block model code is correct, by
verifying properties derived from the functional
description.

As a small example, Figure 1 below shows a fragment
of a (non-standard) function block diagram with two

connected blocks: a greater-than comparison block, and
a bistable set-reset memory block.

The corresponding code in NuSMV for the two
function blocks would then read as follows:

MODULE GT(in, limit)
DEFINE
 out := (in > limit) ? TRUE : FALSE;

MODULE SR(set, reset)
VAR
 memory : boolean;
DEFINE
 out1 := case
 set : TRUE;
 !set & reset : FALSE;
 TRUE : memory;
 esac;
 out2 := !out1;
ASSIGN
 init(memory) := FALSE;
 next(memory) := out1;

The code for invoking and connecting the two block
objects on the diagram would then read:

VAR
 IN1 : 4..20;
 IN2 : boolean;
 GT001 : GT(IN1, 15);
 SR001 : SR(GT001.out, IN2);

NuSMV contains only quite basic expressions and
simple types (boolean, integer, enumeration, bit word,
array), meaning that algorithmically rich function blocks
(e.g., PID) cannot be modelled with reasonable
precision. Complex control logic is therefore either
abstracted away, or completely omitted from
verification.

4.2. Function block diagram modelling
Once the library of model code modules (that

corresponds to the vendor-specific set of elementary

function blocks) has been constructed, the task of
modelling any function block diagram is reduced to
making the same block connections in the NuSMV
model. This is achieved by either a) manually copying
the diagram structure, or b) importing the diagram
structure directly from another tool. For these purposes,
we use the Simantics tool introduced in the following
chapter.

4.3. Challenges in diagram modelling
A key obstacle for the applicability of model

checking is the state space of the FSM growing too
rapidly. In our work, we have rarely found this to be an
issue. Especially when verifying binary logic, the
method scales very well, with analysis times for FSMs
with 1040 states still in the range of minutes, if not
seconds. Even with analog (integer) values and simple
math, NuSMV is very efficient. Problems typically arise
from excessive amount of feedback loops, and, e.g.,
function blocks storing integer data into memory.

There are, however, aspects of modelling function
block diagrams that require specific attention from the
modeller: timing, asynchrony (in distributed systems),
and the discretisation of analog variables. Also, since
NuSMV can only handle integer numbers, some scaling
back and forth is sometimes necessary to properly model
simple arithmetic.

5. A graphical toolset for model checking

5.1. Simantics
Simantics is an open, ontology-based integration

platform for different modelling and simulation tools
[13]. Originally developed at VTT, it is now released
and maintained as an open source tool by THTH
Association of Decentralized Information Management
for Industry (http://www.ththry.org).

Simantics has a client-server architecture based on the
Eclipse framework. The plugin user interface and the
semantic modelling kernel enable easy integration of
range of (commercial and non-commercial) simulation
and engineering tools. Examples of industrial tools
already integrated into the environment include
OpenModelica, BALAS, Apros, SULCA, OpenFoam,
Comos and SmartPlant.

For our purposes, Simantics provides a graphical
modelling framework with model structure browsing and
editing, model component reuse, support for model
validation, version control, team features and
documentation, and most of all easy integration with an
existing model checker tool. Eventually the design
(CAD) system connections provided by Simantics
should enable automatic model import based on data
available from software development tools [13].

Figure 1. An exemplar fragment of a
function block diagram with two
connected blocks.

5.2. NuSMV integration
We have developed a model checking tool for

Simantics, currently enabling us to construct or
reproduce the function block diagram using a graphical
user interface, and to transform the diagram structure to
an input file for NuSMV.

The model checking tool consists of four main
plugins. There are two ontology plugins, a plugin for
NuSMV integration, and a plugin for user interface and
model update features. The first ontology plugin defines
foundation concepts for modelling, while the other
plugin utilizes them to establish different predefined
concepts, such as the variable types that are available.
The NuSMV integration plugin enables configuration
management for different model checker versions, and
provides an interface for communication with NuSMV.
The user interface plugin binds the elements together,
and provides features for model management.

5.3. Modelling with Simantics
For the purpose of specifying the function block

model code library, the user is provided with a text-
based code editor. For each elementary function block
type, the user will specify the block interface (input and
output ports), write the internal code, and define the
graphical element. Once constructed, the function block
library can be exported and shared between different
users.

After the function block model code library is
complete, the user can construct the system models in a
2D graphical view by adding function block objects in a

drag-and-drop fashion, and wiring them together (Figure
2). Default input values or binary port negations can also
be assigned directly to block input ports.

Composite function block types can also be defined.
The internal logic is first composed with a set of function
blocks. The logic is then encapsulated within a
composite block, and a suitable graphical element is
again defined. After this, the composite block objects
can be added to the diagrams in a drag-and-drop fashion.
The (potentially multi-level) model hierarchy can be
directly browsed, as double-clicking any composite
block on the diagram will reveal the underlying internal
logic.

The user can then generate an input file for NuSMV
containing all the necessary model elements (module
code for the used elementary blocks, as well as upper
level modules recreating the block connections). The
system properties are currently input using a plain text
editor (See chapter 5.5).

5.4. Counterexample visualisation
A counterexample output by a model checker is an

exemplar sequence of model states that shows a
behaviour that is contrary to a specified property. Closer
analysis of the counterexample can reveal a design error
(or an error in the model or the property specification).

The tool displays the counterexample as an animated
“living” function block diagram, by using monitors and
different colours and line styles to show changing model
variables (see Figure 3).

Binary signal values are shown by changing the
colour and thickness of the block connection wire. The

Figure 2. The Simantics modelling tool allows the user to specify the function block
diagram in a graphical view, and generates the corresponding input file for the NuSMV
model checker.

default setting is a thick red line for one (true), and a thin
black line for zero (false). The changing thickness will
add contrast, and using only one colour will help avoid
contradictory interpretations and issues for users with
impaired colour vision.

Analog values (number or text data) are shown with
monitors attached to the input gates of each function
block.

If supported by the function block specification, data
indicating the status or validity of the signal can be
visualised using dashed connection wires.

Since the counterexample is a sequence of states, the
user is able to play it back and forth as an animation. The
animation can be paused and browsed step-by-step. As
the animation is being browsed, the user can also move
between different levels of the model structure, i.e., to
look inside composite function blocks. An engineer or
analyst familiar with the function block diagram notation
can quite quickly pinpoint the exact cause of the
unwanted behaviour and the potential design issue.

The user is also provided with a trend view of model
signals.

5.5. Future work
In addition to the system model, the properties

specifying proper system behaviour are also needed as
an input for the model checker. Typically expressed
using temporal logic, the formulations can become
convoluted and difficult to understand. To ease the task,
we are currently working on a template-based approach
for property formalisation, motivated by the seminal
work on property specification patterns by Dwyer et al.
[14].

Since Simantics is essentially an integration platform,
our next objective is to implement automatic import of
the function block diagram structure from, e.g., an
existing (legacy) software development tool.

We are also taking part in more theoretical research
with the Aalto University on topics such as 1)
compositional analysis of very large models using
iterative abstraction refinement, 2) developing tools and
methods for analysing asynchronous phenomena in
distributed systems, and 3) modelling of failure modes of
the underlying PLC hardware.

Figure 3. The counter-example output by the model checker is presented to the user as an
animation illustrating how signal values change – a “living” function block diagram.

6. Conclusions

Careful verification and validation of PLC software is
an important issue for not only systems that are safety-
critical, but also for applications whose downtime leads
to substantial financial loss. Practise has shown that
model checking is a valuable V&V method, since hidden
errors can be found from systems already evaluated
using more traditional means.

Although the use of relatively simple modelling
languages means that systems with arithmetically
complex elements (PID blocks, for example) cannot be
effectively analysed, model checking is very powerful in
the verification of more straightforward binary logic.
Function block diagrams specify a clear input-output
mapping and have a well-defined modular structure.
Both these factors make model checkers like NuSMV a
viable tool for the evaluation of PLC software.

Due to lack of domain-specific tools, however,
application of model checking is all but mainstream in
the control engineering domain. A lot of time and
expertise are needed, as is common with formal
methods. Other proposed methods of automating the
work process rely on the use of standard programming
languages (most often IEC 61131-3) and/or access to
function block source code, both of which are far from
guaranteed when dealing with many system vendors.

Having to specify the function block model code
library manually may seem rudimentary, but in many
cases, it might be the only option, and it only has to be
done once for each vendor-specific function block
specification. Certainly the approach is universal, and
our claim that it is also very effective is supported by the
several years of experience we have in model checking
real-world systems in customer projects.

Using the open source modelling platform Simantics,
we have been developing tools to support model
checking of function block based software. The
advantages have been obvious, since (notwithstanding
the initial work phase of defining block model code
library) specifying the model now requires very little
understanding of the modelling languages involved.

By far the most useful feature, however, is the
visualisation of counterexamples as a “living” function
block diagram, a step-by-step animation that can be
freely manipulated. This intuitive presentation is clearly
superior to trend displays in helping the modeller or
analyst find the root of the cause. This sophisticated
feature would also be difficult to implement if the model
specification used in model checking did not follow the
modular structure of the original function block diagram.

References

[1] E. Clarke, Jr., O. Grumberg, D. Peled, Model Checking,
The MIT Press, 1999.

[2] J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang,
“Symbolic Model Checking: 1020 States and Beyond”,
Information and Computation, Vol. 98, pp. 142-170,
1992.

[3] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I.
Niemelä, K. Heljanko, ”Model checking of safety-critical
software in the nuclear engineering domain”, Reliability
Engineering and System Safety, Vol. 105, pp. 104-113,
2012.

[4] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, P.
Seong, “FBDVerifier: Interactive and Visual Analysis of
Counter-Example in Formal Verification of Function
Block Diagram”, Journal of Research and Practice in
Information Technology, Vol. 42, pp. 171-188, 2010.

[5] B. Schlich, J. Brauer, J. Wernerus, S. Kowalewski,
“Direct Model Checking of PLC Programs in IL”, 2nd
IFAC Workshop on Dependable Control of Discrete
Systems, Bari, Italy, June 10-12, 2009.

[6] V. Gourcuff, O. De Smet, J. Faure, “Efficient
representation for formal verification of PLC programs”,
8th International Workshop on Discrete Event Systems,
Ann Arbor, MI, USA, July 10-12, 2006.

[7] D. Soliman, K. Thramboulidis, G. Frey, “Transformation
of Function Block Diagrams to UPPAAL timed automata
for the verification of safety applications”, Annual
Reviews in Control, Vol. 36, pp. 338-345, 2012.

[8] J. Yoo, S. Cha, E. Jee, “Verification of PLC Programs
Written in FBD with VIS”, Nuclear Engineering and
Technology, Vol. 41, pp. 79-90, 2009.

[9] R. Huuck, Software Verification for Programmable
Logic Controllers, Dissertation, University of Kiel, 2003.

[10] O. Rossi, P. Schnoebelen, “Formal Modeling of Timed
Function Blocks for the Automatic Verification of
Ladder Diagram Programs”, The 4th International
Conference on Automation of Mixed Processes (ADPM
2000), Dortmund, Germany, Sep 18-19, 2000.

[11] K. Ravi, F. Somenzi, “Minimal Assignments for
Bounded Model Checking”, K. Jensen, & A. Podelski
(Eds.): Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science,
Vol. 2988, pp. 31-45, 2004.

[12] K. Loer, M. Harrison, “Integrating Model Checking with
the Industrial Design of Interactive Systems”, 26th

International Conference on Software Engineering,
Edinburgh, Scotland, UK, May 23-28, 2004

[13] T. Karhela, A. Villberg, H. Niemistö, “Open ontology-
based integration platform for modeling and simulation
in engineering”, International Journal of Modeling,
Simulation, and Scientific Computing, Vol. 3, 2012.

[14] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, “Patterns in
Property Specification for Finite-State Verification”,
Proceedings of the 21st International Conference on
Software Engineering, ACM, New York, 2012.

