
 RESEARCH REPORT VTT-R-00177-13

Version 1.0/1.11.2012

Multi-Core Processing from NPP
I&C Perspective
Authors: Jukka Ranta

Confidentiality: Public

RESEARCH REPORT VTT-R-00177-13
1 (11)

Report’s title

Multi-Core Processing from NPP I&C Perspective
Customer, contact person, address Order reference

VYR 4/2012SAF
Project name Project number/Short name

Coverage and Rationality of the Software I&C Safety
Assurance

73831 CORSICA

Author(s) Pages

Jukka Ranta 12/
Keywords Report identification code

Multi-core processor, Nuclear power, Instrumentation and
control

VTT-R-00177-13

Summary

This report provides an introduction to multi-core processors from the reliability point of view.
An overview of the technology and differences from single-core processors is given with
descriptions of some of the methods used for improving computing performance. The impact
on reliability is considered along with potential ways to use the technology.

Parallel processing using multiple processor cores provides advantages in computing power
with smaller space, weight and power requirements for the hardware. These advantages
drive the trend and goals of technological development. Given this trend, eventually these
types of processors will be used also for nuclear power plant instrumentation and control
applications. Possibly because there simply are no alternatives on the market.

Increased complexity of these devices and their functionality is one of the main concerns
when developing safety critical applications. The effort and thereby costs of verification and
validation activities can become prohibitively high.

Confidentiality Public
Espoo 21.1.2013
Written by

Jukka Ranta

Reviewed by

Jussi Lahtinen

Accepted by

Jari Hämäläinen

VTT’s contact address
VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374
Distribution (customer and VTT)

SAFIR2014 Reference group 2

The use of the name of the VTT Technical Research Centre of Finland (VTT) in advertising or publication in part of
this report is only permissible with written authorisation from the VTT Technical Research Centre of Finland.

RESEARCH REPORT VTT-R-00177-13
2 (11)

Preface

This report has been written as a part of the CORSICA-project (Coverage and rationality of
the software I&C safety assurance). One of the tasks in the project is to survey possible
future technologies that may become relevant from nuclear power plant instrumentation and
control systems. Earlier, FPGA-technology was studied. The overall objective of the project is
to improve the efficiency of safety evaluation of software based I&C systems.

CORSICA-project is a part of the SAFIR2014-research programme (Finnish Research
Programme on Nuclear Power Plant Safety 2011–2014) which funds projects related to
nuclear power plant safety.

Espoo, January 2013

Jukka Ranta

RESEARCH REPORT VTT-R-00177-13
3 (11)

Contents

Preface ... 2

Contents ... 3

1. Introduction ... 4

2. Technology Fundamentals .. 4

3. Development Drivers .. 5

4. Programs, Processes, Tasks and Threads.. 5

5. Scalar and Superscalar Processors and Other Performance Enhancements 6

6. Symptoms of Problems of Poorly Designed Scheduling .. 7

7. Symmetric and Asymmetric Multiprocessing ... 7

8. Virtualization, Supervisors, and Hypervisors ... 7

9. Error Detection and Recovery, Redundancy and Diversity on Chip 8

10. IP Cores for FPGAs and ASICs .. 9

11. Standards and Certification ... 9

12. Nuclear Perspective .. 9

13. Conclusions .. 10

References ... 11

RESEARCH REPORT VTT-R-00177-13
4 (11)

1. Introduction

This report is prepared as a part of the CORSICA project of the SAFIR2014 research
programme. The SAFIR programs (The Finnish Research Programme on Nuclear Power
Plant Safety) consider nuclear power plant (NPP) safety from multiple aspects ranging from
reactor physics to cognitive aspects of control room design. SAFIR2014 runs from 2011 to
2014. The main focus of CORSICA (Coverage and Rationality of the Software I&C Safety
Assurance) is on evaluation and assessment of the reliability and safety of software for
instrumentation and control (I&C) systems.
The aim of this report is to give an overview of multi-core processors and parallel processing
and their characteristics relevant to use in safety related applications. The main terminology
is presented along with the main concepts and technological aspects. The most relevant
topics mentioned often in the literature are covered. This should give a basis and a starting
point for the reader to follow the developments in the field.
Though it is unlikely that advanced multi-core processors will be used for safety systems in
the near future, the trend suggests that eventually the processor market offers few
alternatives. Also, even modern single-core processors have features that make them much
more complex than their predecessors. These features, such as speculative instruction
execution, are also introduced in this report. Multi-core processors are mentioned in the 2009
NRC (U.S. Nuclear Regulatory Commission) report [NRC, 2009] on emerging technologies.
Sections 2 and 3 introduce the background and basics of multi-core processing technology
and the drivers of current technological and market development. Section 4 introduces task
structure of software execution (processes, threads). Sections 5 and 6 cover performance
enhancing features used also in single-core processors and potential problems and faults
from poor design. Sections 7 and 8 describe symmetric and asymmetric multi-core
processing and virtualization. Section 9 discusses methods to improve robustness of
systems using redundancy and diversity on multiple cores and abundant computing
resources. Section 10 introduces use of multiple cores and emulation of regular processors
on ASIC and FPGA devices. Section 11 briefly considers the standards currently relevant
form multi-core perspective. Sections 12 and 13 further consider nuclear specific topics and
give a summary.

2. Technology Fundamentals

 The essence of multi-core processing is in executing multiple program instructions in parallel
and independent of each other. Traditional processors have one core and execute one
instruction at a time. The novelty of the technology is actually not in having multiple cores
processing in parallel but having those cores on the same processor device. If the cores are
on the same chip it is referred to as chip multiprocessors (CMP). The processor cores can
also be on multiple chips in a single package. Computers with multiple processors on
separate circuit boards and several processors per circuit board have been the basis for
“supercomputing” since the 1960s.
Two to eight core general purpose processors are commonplace in the consumer market
while processors with hundreds of cores are being designed and already found in more
specialised applications, such as, graphics and signal processing. Special purpose devices
commonly have a variety of processing cores of different designs for specific tasks, whereas,
general purpose processors for the consumer market have a number of identical cores which
are often same designs as older single-core processors. These are referred to as
heterogeneous and homogeneous cores, respectively. Heterogeneous and special purpose
processors have a longer history of multi-core computing with large numbers of cores but the
general purpose processors in laboratories are catching up.

RESEARCH REPORT VTT-R-00177-13
5 (11)

From the efficiency point of view, a current issue is redesigning software originally designed
to be run on a single-core processor into a structure suitable for multi-core processing.
Typically programs are designed to be run as a single stream of instructions being processed
in a particular order with the results of earlier computations readily available. With parallelism
(and dynamic scheduling of instructions onto a number of cores) it is not always clear what
data is up to date. Some computations simply must be run sequentially but, for example,
vector operations such as sum of two vectors is easy to process element wise in parallel.
The vector sum would be characterised as single instruction multiple data, SIMD, and is a
typical feature of modern processors with history reaching back to 1970s and vector
supercomputers. Computer systems running multiple separate programs are more suited to
take advantage of parallel processing than systems running a single computationally heavy
program. The less the computations are dependent on each other and the less there is data
transfer, the easier it is to run them in parallel. Due to less than perfect design and structure
of software, the full benefits of using multiple cores are not achieved and the efficiency of
increasing the number of cores falls short of linearly increasing computing power.
Processors are CMOS technology; for the physical aspects and reliability considerations, see
e.g. the earlier CORSICA report on FPGA technology [Ranta, 2012].

3. Development Drivers

 The main driver to move to multi-core is the aim to have more computing power with less
electric power consumption. Also, reducing the amount of hardware needed for a system is
an advantage. Increasing the clock speed of a processor causes a significant increase in the
power consumption. This causes heating problems requiring more efficient cooling and also
more and more systems run on batteries. The energy consumption of a single-core
processor increases approximately as the cube of operating frequency (increasing clock
speed requires also using higher voltages). Approaches such as pipelining require more
transistors for control and memory, speculative execution does things twice if the guess went
wrong, and increasing the number and size of cache memories requires more transistors on
the chip and controllers to handle them. Increasing the number of cores causes an
approximately linear increase in power consumption (assuming the work can be efficiently
distributed onto the cores).
Splitting the computing effort onto multiple processors provides a better scalable approach
for increasing computing power. Having the processor cores on the same chip provides
significant advantages in transferring data between the cores because accessing RAM can
be a significant bottle neck for program execution. On-chip cache memories and high speed
intercore communication (via architectures such as bus, crossbar, ring, or network-on-chip)
enhance benefits of parallel processing when the processes or threads need to exchange
data. If there is no need to transfer any data at all between the cores, the programs could run
on entirely separate computers (requiring more space for the equipment).
Forerunners of the use of multi-core processors in the safety area in the future are likely to
be the automotive and aviation/aerospace industries. Both have an interest in packing the
systems into smaller space with less weight. Also, both have an interest in the power
consumption and cooling requirements. There are advantages from the reduced space,
weight and power (SWaP) needs also in industrial automation systems.

4. Programs, Processes, Tasks and Threads

A program (application) is a set of instructions (an executable file or a set of files) residing on
a disk. When it is loaded into memory and being executed it is a process, that is, a process is
an instance of a program and there can be multiple instances of a specific program. On the
other hand, a program can consist of multiple processes. Processes do not communicate or
exchange data except through system level methods, for example, accessing the same files.
The operating system sees to it that processes do not interfere with each other by, for

RESEARCH REPORT VTT-R-00177-13
6 (11)

example, allocating separate memory areas and other resources for each. A thread is like a
process but on a lower level and exists within a process. A process can have multiple
threads. Threads do not have resources allocated to them like processes do and are often
called light-weight processes. Threads share their process’ resources, exchange data and
need to be designed carefully to avoid race conditions and other potential problems of
parallel execution. A task is usually defined as a set of instructions loaded into memory and
often means a part of a process or a thread.

5. Scalar and Superscalar Processors and Other Performance
Enhancements

 The following describes a number of approaches to improve efficiency of a single-core
processor (or a single core on a multi-core processor). Many multi-core processors are
based on single-core designs and each of the cores uses these technologies.
A scalar processor executes one instruction at a time on each clock cycle with none of the
special features of a superscalar processor. It takes one instruction and related data and
processes them and then starts fresh with the next instruction. Superscalar processors can
execute more than one instruction per clock cycle and break the simple scalar progress in
program execution. A superscalar processor contains several functional units (e.g.,
Arithmetic Logic Units (ALU) and Floating-Point Units (FPU)) within the processor and they
are not all needed for each instruction. Allocating the instructions suitably onto the functional
units multiple instructions can be executed in parallel. The efficiency of this approach
depends on how accurately the instructions are dispatched onto the functional units to keep
them occupied.
Pipelining is another approach to make best use of the resources on a processor. Executing
one instruction consists of multiple steps from fetching the instruction from memory to writing
the output. These steps use different parts of the processor which can process different
instructions. Therefore it is possible to “pipeline” instructions to execute at the same time but
at different steps. For example, on first cycle instruction A is at step 2 and instruction B at
step 1, then on the second cycle instruction A has moved to step 3, B to step 2 and a new
instruction C starts at step 1. Pipelining is instruction level parallelism, whereas multiple
cores implement thread level parallelism.
Speculative execution starts executing a conditional branch (based on an “if”-statement)
before the needed comparison (result of the “if”) has finished executing. The branch
instructions are placed into the pipeline before the comparison results are available. The
choice is based on a prediction or a guess of which branch is more likely and the associated
instructions are processed while waiting for the comparison results. If the guess is wrong, the
results are scrapped and the correct instructions are then processed.
If the particular data needed by the next instruction is not available in the cache and access
to memory is slow, out of order execution can be used to keep the processor busy doing
something (hopefully) useful while waiting for the data. Some other instruction which has its
data available is executed instead of the one that should be next. Hence, the instructions are
not executed in the original order.
Because the access to RAM is slow compared data transfer on chip and execution of
instructions, cache memories are used to hold some of the data on the chip. The efficiency
can be improved by using larger caches in multiple levels (named L1, L2, etc.). Typically
program instructions and data have separate caches. The efficiency also depends on cache
management (there are multiple alternative replacement policies), that is, what data is
dumped from the cache when more is retrieved from RAM. Therefore, the specifics of the
data in the cache and order of instructions affects the final efficiency as a cache miss (the
needed data was not found in a cache) can cause a significant delay of possibly hundreds of
cycles while waiting for data to arrive from RAM (when a processor stops because it has
nothing to do while waiting, is called a stall). Further, having copies of data in multiple caches
requires measures to be taken to maintain coherence of the data [Blake et al., 2009].

RESEARCH REPORT VTT-R-00177-13
7 (11)

6. Symptoms of Problems of Poorly Designed Scheduling

Several different types of problems may arise when the design of the software is a mismatch
for the operating system and hardware platform. Mainly these problems are due to allocation
of shared resources and scheduling of processes and threads onto cores. The symptoms are
seen as the worsening of the following characteristics: Latency is the time delay or response
time of the system; Jitter is the variation in response time; and Throughput is the total data
flow. A problem can also manifest as: Lockout happens when one core prevents other cores
from accessing a shared resource; Deadlock is a situation in which no one can access a
resource because (at least) two requests wait for and block each other. Using deterministic
scheduling (static schedules) of instructions helps with these problems but also the access to
all shared resources should have a deterministic schedule. Generation of static schedules
and other scheduling issues are discussed in [Hilbrich, Goltz, 2011]. Worst case execution
time (WCET) analyses, real-time performance requirements and related design guidelines
are discussed in [Kästner et al., 2012]. Timing anomalies is the term used for counter
intuitive scheduling problems arising from seemingly small changes.

7. Symmetric and Asymmetric Multiprocessing

 Symmetric multiprocessing (SMP) and Asymmetric multiprocessing (AMP) refer to the
platform and the way processes are handled. When using symmetric multiprocessing, there
is one operating system and all processes run under it and are scheduled by it. The
reliability, especially real time performance, of SMP is greatly influenced by the load
balancing algorithms used by the OS to schedule tasks onto the cores and allocate other
resources. Asymmetric multiprocessing approach considers each core as a separate
processing element and there is little or no intercore communication. Different cores can run
different processes or even different operating systems. The presence and need to use
shared resources creates additional complexity to an AMP system (see Virtualization below).

8. Virtualization, Supervisors, and Hypervisors

 Efficient computing resources allow virtualization of computing environments. The overall
system can run on one set of hardware but contain multiple systems which can have their
own operating systems and tasks which know nothing about each other. The common
resources are allocated by a higher level controller, a hypervisor, which ensures that the
operating systems all have the resources they need and do not interfere with each other. A
single operating system acts as a supervisor to control the access that individual processes
have to hardware. A hypervisor is a step up in the ladder as it controls multiple operating
systems, see Figure 1.

RESEARCH REPORT VTT-R-00177-13
8 (11)

Process

Operating
System

ThreadThreadThread

Hypervisor

CoreCoreCoreCore

Process

ThreadThreadThread

Process

Operating
System

ThreadThreadThread

Process

ThreadThreadThread

Figure 1. Structure of operating systems controlled by a hypervisor in a virtualized
environment. The operating systems do not know about each other or about the underlying
hardware.

9. Error Detection and Recovery, Redundancy and Diversity on
Chip

Multiple processors provide resources for redundancy and diversity (see [Reichenbach,
Wold, 2010 and Villalpando et al., 2011]). Unused resources can provide redundancy to
compensate for permanent faults, for example, by switching computations from a failing core
onto an unused core which can have its own cache memory. In addition to multiple cores,
chips can have multiple power pins, I/O ports and other resources. Running the same
computations on multiple cores in parallel allows an easier switch to using the results of a
redundant core but also the comparison of the results to check correctness. For example,
three parallel processors provide a triple modular redundancy (TMR) structure. Different
versions (by different design teams) of the software provide diversity that could allow a TMR
scheme to discover design errors in addition to hardware failures.
The term lockstep execution or lockstep mode refers to running multiple copies of the same
code parallel on multiple processor cores. With some separate and some common caches
for cores, shared access to memory and other shared resources together with dynamic
scheduling means that clock cycle by clock cycle lockstep execution does not necessarily
happen automatically when executing multiple identical processes or threads. Hence, the
platform needs to be designed to facilitate lockstep mode and some chips on the market
feature special lockstep cores.
As an internal protection against errors many processors and platforms implement error
checking for data transfer. Error detection and correction codes and redundant data (parity
data) are used to verify that data has not changed during transmission (detection) or can be
recreated (correction) if it does. These approaches provide protection against, for example,
errors caused by radiation or power fluctuation. As more and more transistors are packed
onto the chips, their susceptibility to outside effects increases (smaller transistors are less
robust and more of them means more potential error sources).

RESEARCH REPORT VTT-R-00177-13
9 (11)

A drawback of having redundancy and diversity on the same chip is the susceptibility to
common cause failures affecting the circuit board the chip is on or originating from it, such
as, power fluctuation or error in the clock signal. Also, elaborate methods to improve
reliability are likely to increase complexity and the overall benefits may be lost as verification
and validation become more laborious.

10. IP Cores for FPGAs and ASICs

Multiple cores can be present also in devices such as FPGAs (Field Programmable Gate
Array) or ASICs (Application Specific Integrated Circuit) which are electronic circuits
designed for specific purposes. As such they can implement parallel processing without the
software - operating system - processor structure but with the logic built into the hardware
circuitry. The design process of the circuitry allows the use of predesigned blocks and
components that can be combined with application specific designs rather similar to
subroutine libraries for software. These are known as IP (Intellectual Property) cores and can
implement actual processor cores that execute software instructions. This approach allows
emulation of no-longer existing processors types and production of custom multi-core
processors by including multiple IP cores (copies of the same or different cores) onto a single
device.

11. Standards and Certification

The standards that are often mentioned in literature on multi-core processors in safety
related applications reflect the application areas which have interest in the SWaP
advantages, namely automotive (IEC 26262) and aerospace (DO178B for software and DO-
254 for hardware). The higher generic IEC 61508 is also often referenced. The nuclear
standard 61513 has been mentioned in the literature in the multi-core context but for now
nuclear applications are far from the focus of interest.
Certified multi-core computing platforms are beginning to appear on the market, again, with
aerospace and automotive leading the way. In the aviation field Integrated Modular Avionics
(IMA) concept and ARINC 600-series standards are used. The automotive industry has
AUTOSAR (AUTomotive Open System ARchitecture) partnership (http://www.autosar.org/).
On the other hand, an example on the research side is the RECOMP-project which aims to
find approaches to achieve more cost efficient certification. In [Reichenbach, Wold, 2010]
some examples of certified products and current certification activities are mentioned and
[Fuchsen, 2010] considers numerous aspects of reliability of multi-core platforms for aviation.
Thus, with time there will be a selection of platforms certified according to various standards
along with experience on developing them. However, nuclear won’t be a forerunner.

12. Nuclear Perspective

For a safety system intended to be used in a nuclear power plant, simplicity is a key
advantage. Verification and validation of the design are simpler and can be performed with
less effort. It also helps with licensing, maintenance and in the future replacing the system
with something more up-to-date. Multi-core processing is not simple. In particular, when
compared to old scalar processors the difference is significant.
The overall trend is moving to multi-core processing. In a decade or two we may be in a
situation where all available “modern” processors are based on some type of multi-core
approach with various other performance enhancing features included. For a software based
system designed at that time and intended to have a lifetime of decades, the alternatives are
limited. On the other hand, other areas with safety requirements will push the development
and reliable platforms will be available and potentially adaptable to the needs and
requirements of nuclear applications.

RESEARCH REPORT VTT-R-00177-13
10 (11)

The increase in computing power will have an impact on design of systems. For example,
testing by simulation can be more comprehensive given a certain amount of time to run the
simulations and the same improvements also allow running more static analyses during
design.

13. Conclusions

Transition from simple scalar processors to superscalar processors and the use of pipelining,
speculative execution, and other performance enhancing features makes it less transparent
and predictable what is going on inside a processor in different situations. With the addition
of multiple processing cores running in parallel, the situation becomes even less clear as the
order in which instructions of different threads and processes are executed may vary and the
cores compete for shared resources, such as, access to the main memory.
Determinism in performance is a key property to strive for. This objective has multiple
aspects. Scheduling of processes running on cores should be based on static schedules
instead of dynamically scheduling them at runtime. The use of shared resources should also
be deterministic. This means, for example, intercore communication, common caches, and
memory controllers. For systems that have strict reliability requirements this is an important
property and in particular important to achieving reliable real-time performance.
One approach to improve reliability is to carefully divide the available caches. Some areas of
caches can be reserved for instruction while others contain only data. Caches used by
multiple cores can be segmented for those cores and similarly different processes can have
their own predesignated cache areas. Specific cache areas can be allocated for intercore
communication so that only one core, process or other entity has write permission. These
approaches reduce risk of conflicts on resource use and scheduling problems resulting from
cache misses. Also, with such a strict approach the risk of memory corruption is reduced.
The memory controller providing access to main memory is also a shared resource and it
can become a bottleneck for maintaining availability of needed data in the caches and worst
case performance should be evaluated.
Asymmetric multi-core processing has less interaction between cores and is the
recommended approach over symmetric multi-core processing where an operating system
schedules the use of the cores and other resources. Downside is the increased complexity
due to the need for a hypervisor level in the architecture, that is, the result is more but
simpler layers.
If the computational load is sufficiently small, using just one of the cores can be an option.
This simplifies the structure of computations significantly. If the future trends go towards
processors with a large number of simple cores instead of just a few (or a few dozen) more
versatile ones, using just one processor core that behaves like a scalar processor may be a
very good choice in safety related NPP systems. The SWaP advantages are not as important
as in fields like aviation and automotive industry. Instead, laborious design and V&V activities
needed to produce and licence a system or platform have greater importance. Furthermore,
the available resources and computing power make it easier and more tempting to run
several functions on the same hardware but this makes the system more susceptible to
common cause failures.
Running multiple cores in lockstep is another way to keep the situation more orderly and
transparent. This approach also facilitates detection of hardware malfunctions by running
multiple copies of the same process on different cores and comparing the results, for
example, triple modular redundancy. Design errors can be detected by using different
versions or designs in parallel.

RESEARCH REPORT VTT-R-00177-13
11 (11)

References

Blake, G., Dreslinski, R., Mudge, T., 2009. A Survey of Multicore Processors, IEEE Signal
Processing Magazine, pp. 26-37.

Fuchsen, R., 2010. How to Address Certification for Multi-core Based IMA Platforms: Current
Status and Potential Solutions, 29th Digital Avionics Systems Conference.

Hilbrich, R., Goltz, H.-J., 2011. Model-based Generation of Static Schedules for Safety
Critical Multi-core Systems in the Avionics Domain, International Workshop on
Multicore Software Engineering, IWMSE'11, pp. 9-16.

Kästner, D., et al., 2012. Meeting Real-Time Requirements with Multi-core Processors,
SAFECOMP 2012 workshops, pp. 117-131.

NRC, 2009. Instrumentation and Controls in Nuclear Power Plants: An Emerging
Technologies Update, NUREG/CR-6992.

Ranta, J., 2012. The Current State of FPGA Technology in the Nuclear Domain, VTT
Technology: 10.

Reichenbach, F., Wold, A., 2010. Multi-core Technology - Next Evolution in Safety Critical
Systems for Industrial Applications, 13th Euromicro Conference on Digital Systems
Design: Architectures, Methods and Tools, pp. 339-346.

Villalpando, C., Rennels, D., Some, R., Cabanas-Holmen, M., 2011. Reliable Multicore
Processors for NASA Space Missions, Aerospace Conference, 2011 IEEE, pp. 1-12.

