

A Dosimetry Cross Section Library Mainly Based on IRDFF

Authors:

Tom Serén

Confidentiality:

Public

Report's title	
A Dosimetry Cross Section Library Mainly Based on IRDFF	
Customer, contact person, address	Order reference
Valtion ydinjätehuoltorahasto	5/2012SAF
Project name	Project number/Short name
CRISTAL/SAFIR 2014	73800
Author(s)	Pages
Tom Serén	5/2
Keywords	Report identification code
dosimetry, IRDFF	VTT-R-00948-13
0	

Summary

A dosimetry cross section library in the SAND-II 640-group format has been compiled. The library is mainly based on the newly released IRDFF library in the ENDF-6 format. A few reactions of interest in reactor dosimetry and nuclide production and not included in IRDFF have been added, however without uncertainty information. The library will be used to update the cross sections for the PREVIEW code and to produce coarse-group cross sections for the adjustment codes LSL-M2 and NSVA 3.

Confidentiality	Public	
Espoo 5.2.2013		
Written by	Reviewed by	Accepted by
Tom Ser (PS 25	S Tiers Trastole
Tom Serén,	Petri Kotiluoto	, Timo Vanttola,
Senior Scientist	Principal Scien	tist technology manager
VTT's contact address		
Teknologian tutkimuskesk	kus VTT, PL 1000, 02044 V	ΥTT
Distribution (customer and SAFIR2014/TR3, TK50	I VTT) 011	
The use of the name of the V this report is only permiss	TT Technical Research Centre ible with written authorisation	of Finland (VTT) in advertising or publication in part of from the VTT Technical Research Centre of Finland.

Contents

1	Introduction: the IRDFF Library	3
2	Need for a Simplified Library	3
3	The New Master Library	3
4	Future Actions	4
Re	ferences	5

1 Introduction: the IRDFF Library

A new dosimetry cross section library IRDFF [1] was released by the IAEA in May – June 2012. It supersedes the IRDF-2002 library [2], which was released in 2005. The most important changes are:

- The energy range is extended from 20 MeV to 60 MeV for fusion and acceleratorbased applications,
- Nine new reactions have been included $(^{235}U(n,\gamma)$ is missing in Table 4 of [1]), bringing the total number of reactions to 75 plus three cover reactions,
- The cross sections and their uncertainties for 33 reactions previously included in IRDF-2002 have been revised.

Fortunately many of the most frequently used reactions (such as 54 Fe(n,p), 58 Ni(n,p), 63 Cu(n, α) and 93 Nb(n,n')) have not undergone changes from IRDF-2002.

The cross section data and their uncertainties are given in the ENDF-6 format [3] as original pointwise data and in the extended SAND-II 640-group format with additional data above 20 MeV. The group data have been processed with the codes LINEAR and GROUPIE from the PREPRO 2010 package [4]. The NJOY code system [5] was used to convert uncertainty data in the MF=32 format to MF=33.

2 Need for a Simplified Library

For many applications the rather complex ENDF-6 data format cannot be used directly, and a simplified representation is necessary. An example is the LSL-M2 adjustment code package [6] which is in use at VTT. It uses a "Master" library in the SAND-II format (first group, last group, cross section data in ascending energy order) from which the data can be converted to a coarse group structure (e.g. the 47-group BUGLE-80 group structure) with the FLXPRO code using appropriate weighting. The BUGLE-80 group structure is also used in the PREVIEW code [7] used by VTT for VVER-440 dosimetry applications.

The rather complicated ENDF-6 formats for representing covariance information are replaced by a simplified format with relative groupwise uncertainties plus a correlation matrix multiplied by 1000 (integers, upper triangle representation). By expressing the cross sections in cm^2 reaction rates can be directly calculated by groupwise multiplication and summing since fluence rates are conventionally expressed as n/(cm²s). This format is simple, straightforward and "human readable".

A "Master" library in the format described above, based on IRDF-2002, has previously been developed for internal use (IRDF2002.XSO). With the introduction of IRDFF it is now time to update this library.

3 The New Master Library

The conversion programs CVXS (cross sections) and CVCT (uncertainties) from the LSL-M2 package were the main tools in creating the new Master library. However, CVCT cannot handle the LB=8 covariance format used in some MF=33 uncertainty files. Also, for six reactions ($^{55}Mn(n,\gamma)$, $^{197}Au(n,\gamma)$, $^{232}Th(n,\gamma)$, $^{235}U(n,f)$, $^{238}U(n,f)$, $^{238}U(n,\gamma)$ and $^{239}Pu(n,f)$) the

uncertainty information was given in a very fine group structure. In both those cases the X333 program from the STAYNL package [8] was used (slightly modified to accommodate larger covariance matrices). In order to save space the fine-group covariances were condensed to the 47-group BUGLE-80 structure with a standard weighting spectrum (Maxwell + 1/E + fission). This required some editing work since the output format of X333 is different from that of CVCT. The editing was conveniently accomplished by importing the data to Excel and performing the necessary transformations.

Since the library is mainly intended for use with fission reactors there is no need to extend the upper energy limit beyond 20 MeV (upper limit in the SAND-II group structure). In order to reduce the volume of the covariance information the same upper energy limit was also imposed on these matrices. The truncation was performed manually as needed. An example of the data format used is given in Appendix 1 (excerpt from the file IRDFF.XSO).

Some reactions of interest in dosimetry as well as isotope production, but not included in IRDFF, have been added to the library, however without uncertainty information. These are listed in Table 1. The cross section for the reaction ⁶⁷Zn(n,p) was grossly erroneous in IRDFF and has been replaced (K. Zolotarev, private communication). A few reactions (mainly Ti) producing the same reaction product have also been combined as weighted sums (weights according to isotopic composition).

Reaction	Source	Comment
37 Cl(n, γ)	ENDF/B-VII	
$^{58}Ni(n,X)^{57}Co$	ENDF/B-VII	Sum of (n,2n) and (n,np)
75 As(n, γ)	ENDF/B-VII	
81 Br(n, γ)	JENDL 4.0	Commercial nuclide production
117 Sn(n,n')	JEFF 3.1/A + JENDL 4.0	Special interest for research reactors
152 Sm(n, γ)	ENDF/B-VII	Medical isotope production
164 Dy(n, γ)	ENDF/B-VII	Medical, sensitive to thermal neutrons

Table 1. Additional reactions not included in IRDFF

4 Future Actions

The PREVIEW code uses spectrum-weighted 47-group cross sections for calculating reaction rates, activities etc. [7]. The same cross sections in combination with input spectra and reaction rates calculated with PREVIEW can be used with the LSL-M2 adjustment code [6]. An important task for the near future is thus to update the dosimetry cross sections in PREVIEW to conform to the new fine-group library. This also provides an opportunity to check all the other basic nuclear data such as decay constants and fission yields.

Time and resources permitting, an updated cross section library should also be compiled in the 89-group structure used by the MATLAB-based NSVA-3 adjustment code [9], preferably in MATLAB's own .mat data format.

References

- 1. E. M. Zsolnay et al., Summary Description of the New International Reactor Dosimetry and Fusion File (IRDFF release 1.0), INDC(NDS)-0616, IAEA, Vienna, May 2012. http://www-nds.iaea.org/IRDFF.
- 2. International Reactor Dosimetry File 2002 (IRDF-2002), IAEA Technical Reports Series No. 452, Vienna 2006, http://www-nds.iaea.org/irdf2002/docs/irdf-2002.pdf.
- A. Trkov, M. Herman and D. A. Brown (ed.), ENDF-6 Formats Manual, Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, Upton, New York, December 2011.
- 4. D. E. Cullen, PREPRO 2010, ENDF/B Pre-processing Codes, IAEA, Vienna, November 2010, http://www-nds.iaea.org/ndspub/endf/prepro/.
- 5. R. E. MacFarlane and D. M. Muir, NJOY-99.0: Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data, Technical Report PSR-480, Los Alamos National Laboratory, 2000.
- 6. F. W. Stallmann, LSL-M2: A Computer Program for Least-Squares Logarithmic Adjustment of Neutron Spectra, NUREG/CR-4349, ORNL/TM-9933, Oak Ridge 1986. Additional instructions for version 2.0 dated 1994.
- 7. T. Serén, An Optimised Adjustment Library for the Kernel-Based PREVIEW Program, Licentiate's Thesis, Helsinki University of Technology, November 2001.
- 8. E. J. Szondi, H. J. Nolthenius, User's Guide to the Cross Section Processing Code X333, BME-NTI 222/95, Institute of Nuclear Techniques, Technical University of Budapest, May 1995.
- 9. J. G. Williams, A. P. Ribaric and T.Schnauber, NSVA-3: A Computer Code for Least-Squares Adjustment of Neutron Spectra and Measured Dosimeter Responses, Proceedings of the 13th International Symposium on Reactor Dosimetry, Akersloot, the Netherlands, 25-30 May 2008, World Scientific, Singapore 2009.

APPENDIX 1 (Report VTT-R-00948-13)

Example of the data format in IRDFF.XSO with additional comments (in **bold**).

CU63 (N,	A) C	060					Ur	nchang	ged f	rom II	RDF-20	02		
463	640	;	Firs	t and	last	grou	o fol	lowed	l by	group	cross	sect	ions	(cm^2)
5.597	E-32	4	.477E	-31	8.95	4E-31	1.	189E-	-30	1.518	3E-30	2.3	46E-3	0
3.943	E-30	б	.626E	-30	1.07	7E-29	1.	683E-	-29	2.53	LE-29	3.6	80E-2	9
5.201	E-29	7	.172E	-29	9.68	3E-29	1.	284E-	-28	1.675	5E-28	2.1	55E-2	8
2.738	E-28	3	.439E	-28	4.27	7E-28	5.	269E-	-28	6.434	4E-28	7.7	94E-2	8
9.369	E-28	1	.118E	-27	1.32	SE-27	1.	560E-	-27	1.824	4E-27	2.1	20E-2	7
2.448	E-27	2	.810E	-27	3.20	6E-27	3.	636E-	-27	4.099	9E-27	4.5	94E-2	7
5.120	E-27	5	.674E	-27	6.25	3E-27	6.	856E-	-27	7.478	3E-27	8.1	16E-2	7
8.767	E-27	9	.427E	-27	1.00	9E-26	1.	076E-	-26	1.143	3E-26	1.2	10E-2	б
1.277	E-26	1	.343E	-26	1.40	9E-26	1.	474E-	-26	1.539	9E-26	1.6	03E-2	б
1.666	E-26	1	.729E	-26	1.79	1E-26	1.	853E-	-26	1.914	4E-26	1.9	75E-2	6
2.036	E-26	2	.097E	-26	2.15	8E-26	2.	219E-	-26	2.280)E-26	2.3	41E-2	6
2.403	E-26	2	.465E	-26	2.52	27E-26	2.	590E-	-26	2.654	4E-26	2.7	18E-2	6
2.782	E-26	2	.847E	-26	2.91	3E-26	2.	979E-	-26	3.040	5E-26	3.1	14E-2	6
3.182	E-26	3	.250E	-26	3.31	9E-26	3.	388E-	-26	3.45	7E-26	3.5	27E-2	6
3.596	E-26	3	.666E	-26	3.73	5E-26	3.	803E-	-26	3.871	lE-26	3.9	39E-2	6
4.005	E-26	4	.070E	-26	4.13	4E-26	4.	196E-	-26	4.250	5E-26	4.3	14E-2	6
4.369	E-26	4	.422E	-26	4.47	2E-26	4.	519E-	-26	4.562	2E-26	4.6	01E-2	6
4.637	E-26	4	.669E	-26	4.69	6E-26	4.	718E-	-26	4.736	5E-26	4.7	49E-2	6
4.758	E-26	4	.761E	-26	4.75	9E-26	4.	752E-	-26	4.740)E-26	4.7	23E-2	6
4.701	E-26	4	.674E	-26	4.64	3E-26	4.	607E-	-26	4.56	7E-26	4.5	22E-2	6
4.474	E-26	4	.422E	-26	4.36	6E-26	4.	308E-	-26	4.240	5E-26	4.1	82E-2	6
4.116	E-26	4	.048E	-26	3.97	7E-26	3.	906E-	-26	3.833	3E-26	3.7	59E-2	6
3.684	E-26	3	.609E	-26	3.53	4E-26	3.	458E-	-26	3.383	3E-26	3.3	07E-2	6
3.232	E-26	3	.158E	-26	3.08	4E-26	3.	011E-	-26	2.939	9E-26	2.8	68E-2	6
2.798	E-26	2	.729E	-26	2.66	2E-26	2.	595E-	-26	2.530)E-26	2.4	66E-2	б
2.403	E-26	2	.342E	-26	2.28	2E-26	2.	224E-	-26	2.16	7E-26	2.1	11E-2	6
2.056	E-26	2	.003E	-26	1.95	2E-26	1.	901E-	-26	1.852	2E-26	1.8	04E-2	6
1.758	E-26	1	.712E	-26	1.66	8E-26	1.	625E-	-26	1.584	4E-26	1.5	43E-2	6
1.503	E-26	1	.465E	-26	1.42	8E-26	1.	391E-	-26	1.350	5E-26	1.3	21E-2	6
1.288	E-26	1	.256E	-26	1.22	4E-26	1.	193E-	-26	-		<i>.</i>		
27 ; N	umbe:	r of	grou	p lim:	its f	or uno	certa	intie	es, g	roup 1	Limits	(eV)		-
1.000	E-05	2	.250E	+06	4.50	0E+06	5.	000E+	+06	6.000)E+06	7.0	00E+0	6
8.000	E+06	9	.000E	+06	1.00	0E+07	1.	100E+	+07	1.200)E+07	1.2	50E+0	7
1.300	E+07	1	.350E	+07	1.40	0E+07	1.	450E+	+07	1.500)E+07	1.5	50E+0	7
1.600	E+07	1	.650E	+07	1.70	0E+07	1.	750E+	+07	1.800)E+07	1.8	50E+0	7
1.900	E+07	1	.950E	+07	2.00	0E+07	-							_
0.000	E+00	2	.878E	-01	5.17	6E-02	3.	821E-	-02	3.792	2E-02	3.5	12E-0	2
3.420	E - 02	3	.398E	-02	3.19	4E - 02	2.	868E-	-02	2.57	bE-02	2.3	20E-0	2
2.042	E = 02	T	.801E	-02	1.67	9E-02	⊥.	723E-	-02	1.894	4E-02	2.1	24E-0	2
2.381	E-02	2	.684E	-02	3.07	''/E-02	3.	613E-	-02	4.32	bE-02	5.2	29E-0	2
6.329	E-02	7	.622E	-02;	Rela	tive g	group	unce	ertai	nties	, corr	. mat	. x 1	000
1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U 1000	0	0	0	10	0	U	0	0	0	0	~		-	~
TOOO	0⊥ 1 4	46 1 -	10	13	32	4⊥	36	21	6	-2	-9	-11	- 7	U
8	14 70	15	1 T O	9	2	-4	-10	-16	-21		0.5	~~	0	25
1000 5	/0	259 05	T \ 8	242	290	2/9	202	115	55	4	-27	-28	U	37
00 1000 7	85 70	85 567	68	4⊥ >>c	8 202	-24 211	-54	-8T	200	140	75	7 /	10	<u></u>
T000 \	/0 1/	/ 0C	406	330	3∠3 101	311 100	∠ŏ∠ 112	250	206	140	/5	14	-18	-23
-9	14	42	0/	0/	TUT	T02	113							

APPENDIX 1, page 2

1000 -32	877 9	615 57	429 101	359 138	346 167	337 189	321	289	227	135	35	-33	-62	-59
1000	887	721	594	477	383	319	252	179	103	42	9	2	12	31
51	69	83	91	96	97									
1000	945	830	649	477	359	246	143	66	30	33	57	84	105	114
111	97	79	58	39										
1000	953	801	622	486	345	206	89	24	16	43	83	120	145	154
149	135	115	95											
1000	937	805	684	538	367	188	50	-10	-8	30	85	140	184	211
224	226	221												
1000	958	883	764	587	357	137	0	-46	-27	31	109	185	248	294
324	343													
1000	978	905	757	522	261	70	-21	-32	10	85	170	246	307	353
385														
1000	971	864	654	389	174	52	12	33	90	163	234	294	340	375
1000	955	800	561	338	191	120	106	131	176	224	268	304	333	
1000	936	763	564	408	307	251	227	223	230	240	251	261		
1000	936	801	664	550	457	380	316	265	226	198	177			
1000	955	868	768	661	548	436	335	249	182	130				
1000	970	906	812	694	562	434	320	227	152					
1000	975	913	812	687	555	433	328	241						
1000	975	908	807	689	573	469	380							
1000	974	909	818	720	627	544								
1000	976	920	848	773	703									
1000	980	938	886	832										
1000	985	956	920											
1000	989	970												
1000	993													

1000